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Abstract

The prognosis for pancreatic ductal adenocarcinoma (PDAC) patients has not significantly

improved in the past 3 decades, highlighting the need for more effective treatment approaches.

Poor patient outcomes and lack of response to therapy can be attributed, in part, to a lack of

uptake of perfusion of systemically administered chemotherapeutic drugs into the tumour. Wet-

spun alginate fibres loaded with the chemotherapeutic agent gemcitabine have been devel-

oped as a potential tool for overcoming the barriers in delivery of systemically administrated

drugs to the PDAC tumour microenvironment by delivering high concentrations of drug to the

tumour directly over an extended period. While exciting, the practicality, safety, and effective-

ness of these devices in a clinical setting requires further investigation. Furthermore, an in-

depth assessment of the drug-release rate from these devices needs to be undertaken to

determine whether an optimal release profile exists. Using a hybrid computational model

(agent-based model and partial differential equation system), we developed a simulation of

pancreatic tumour growth and response to treatment with gemcitabine loaded alginate fibres.

The model was calibrated using in vitro and in vivo data and simulated using a finite volume

method discretisation. We then used the model to compare different intratumoural implantation

protocols and gemcitabine-release rates. In our model, the primary driver of pancreatic tumour

growth was the rate of tumour cell division. We were able to demonstrate that intratumoural

placement of gemcitabine loaded fibres was more effective than peritumoural placement. Addi-

tionally, we quantified the efficacy of different release profiles from the implanted fibres that

have not yet been tested experimentally. Altogether, the model developed here is a tool that

can be used to investigate other drug delivery devices to improve the arsenal of treatments

available for PDAC and other difficult-to-treat cancers in the future.
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Author summary

Pancreatic cancer has a dismal prognosis with a median survival of 3–5 months for

untreated disease. The treatment of pancreatic cancer is challenging due to the dense

nature of pancreatic tumours which impedes retention of drug at the tumour site. As

such, systemic administration of chemotherapies, such as gemcitabine, has a limited effi-

cacy. To overcome this, sustained-release devices have been proposed. These devices are

injected locally and release drug over time, providing a concentrated local, sustained drug

concentration. To investigate the possible efficacy of these devices, we developed a mathe-

matical model that would allow us to probe treatment perturbations in silico. We mod-

elled the individual cancer cells and their growth and death from gemcitabine loaded into

the sustained delivery devices. Our platform allows future investigations for these devices

to be run in silico so that we may better understand the forms of the drug release-profile

that are necessary for optimal treatment.

Introduction

Inoperable pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, with a median

survival of 3−5 months for untreated disease [1]. Treatment of PDAC with the chemothera-

peutic agent gemcitabine can achieve clinical benefit and symptom improvement in 20−30%

of patients [1,2], although PDAC is still regarded as a chemotherapy-resistant tumour [3,4].

Gemcitabine is designed to target and kill cancer cells by incorporating into the DNA strand

of a PDAC cell allowing only one deoxynucleotide to be incorporated, which prevents strand

elongation [5,6], resulting in cell cycle arrest and subsequent cell death [7,8]. Despite gemcita-

bine being established as a standard treatment for advanced PDAC over 20 years, most subse-

quent large phase III studies have not shown significantly improved survival benefit [9].

Overall prognosis for PDAC has seen little improvement in the last 3 decades, largely due to

drug resistance and poor intratumoural drug accumulation.

The majority of chemotherapeutics, gemcitabine included, are administered systemically

via bolus or infusion intravenous administration. This often results in significant systemic tox-

icity, with only a fraction of the injected dose reaching the tumour. As such, there has been a

growing interest in the development of localised targeted delivery systems which can modify

the bio-distribution of drugs and achieve local drug accumulation in the tumour tissue [10–

12] (Fig 1). For example, drug-eluting polymeric implants are designed to deliver high concen-

trations of chemotherapeutic drugs directly at the tumour site over some period of time, over-

coming transport and tissue barriers as well as limiting off-target toxicities [13]. Biodegradable

implants, can be designed to provide sustained drug release over weeks or months, avoiding

repeated external drug dosing, clinic visits and other surgical interventions. The characteristics

of these devices make local delivery especially attractive for chemotherapeutics with a narrow

therapeutic window or short in vivo half-life [14], such as gemcitabine. However, there is still

some discussion around the optimal way in which the implanted devices should release drug,

for example whether the rate at which drug leaves the device is variable or fixed.

Drug-loaded polymeric fibres can be prepared by various cross-linking methods and allow

for drug molecules to be released in a controlled manner depending on the cross-linking type

and methods [15]. Previously, Wade et al. [14] showed that wet-spun gemcitabine-loaded algi-

nate fibres inhibited ex vivo PDAC spheroid growth and reduced PDAC cell viability com-

pared to gemcitabine delivered as a free drug. In a subsequent study, Wade et al. [13,16]

showed that a coaxial fibre formulation, in which the alginate was encased by a
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polycaprolactone (PCL) shell, demonstrated significant in vivo antitumour efficacy; however,

it is not possible to conclude experimentally whether an alternative release-profile of gemcita-

bine may be more effective. Fortunately, computational and mathematical modelling is well

situated as a predictive tool for quantifying the efficacy of alternative drug release profiles and

drug administration patterns.

Mathematical models have been used to help understand formation and treatment of a

range of different cancers for some time now [17–22]. In particular, agent-based models

(ABM) have been used extensively in cancer modelling as they allow for the consideration of

spatial and phenotypic heterogeneity [23–31] which are known to be major drivers of varia-

tions in treatment outcomes. In ABMs, the likelihood of events, such as cell proliferation,

movement, death or mutation are modelled as probabilities, allowing the simulation to evolve

stochastically in time. ABMs have been used to contribute understanding to tumour growth

dynamics [24,26–28], such as angiogenesis [31] and cell cycling [32]; the impacts of certain

treatments [30,33,34]; and the likelihood of tumour recurrence [23]. ABMs have also been

used to model chemotherapy treatment and movement through a tumour [35–41]. For exam-

ple, Tang et al. [38] developed a 3D computational model of tumour growth under treatment

with chemotherapy, where cells are modelled as discrete agents whose proliferation is

Fig 1. Motivation for sustained–delivery implants for treatment of PDAC. Sustained–delivery implants are a promising treatment methodology over

conventional single free–drug intravenous or intrantumoural injections. A hypothetical comparison of drug concentrations at the tumour site under these two

protocols is pictured. Systemic injections of anti–cancer drugs often result in only a fraction of the drug arriving at the tumour site followed by a rapid decrease

of drug concentration at the tumour site. In comparison, sustained–release mechanisms deliver drug over a prolonged period resulting in a durable drug

presence at the tumour site. Created using biorender.com.

https://doi.org/10.1371/journal.pcbi.1010104.g001
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dependent on interstitial pressure and chemotherapy is captured by a partial differential equa-

tion (PDE). With their model they investigated the effects of the tumour microenvironment on

the intratumoural distribution of chemotherapy and concluded that the main driver was the

pressure difference within capillary blood and extracellular space. While important for intrave-

nously administered chemotherapy, their model is too complex for considering an implanted

degradable chemotherapy device. Furthermore, there is yet to be developed an ABM for the

release of chemotherapy treatment through sustained-release or degradable devices. Insights on

therapeutic failure in immunotherapy and virotherapy have also been provided through an

ABM software known as PhysiCell [42–45]. There have been ABMs developed that specifically

focus on pancreatic cancer growth [46,47]; however, an ABM describing pancreatic cancer

growth and treatment with a degradable polymer implant has not yet been developed.

For some time, mathematical models of degradable drug delivery mechanisms have been

used to assist in the understanding of polymer degradation, hydrolysis kinetics and the subse-

quent effect of drug release on the applied system [10,48–55]. Using mass-balance kinetic

equations, McGinty et al. [52] investigated the extent to which variable porosity drug-eluting

coatings can provide better control over drug release using transport diffusion equations.

Their results indicate that the contrast in properties of two layers can be used as a means of

better controlling the release, and that the quantity of drug delivered in early stages can be

modulated by varying the initial drug distribution. More recently, Spiridonova et al. [56] fitted

drug release from polymer microparticles and investigated the effect of size distribution on dif-

fusional drug release from sustained-delivery systems using a system of PDEs. Whilst useful

for capturing the drug delivery mechanism, most models of drug-loaded polymers such as

these have not examined the influence of changes to drug release profiles on antitumour effi-

cacy or how intratumoural stochasticity impacts drug delivery.

In this work, we have developed a hybrid mathematical and computational model of PDAC

tumour growth and death from treatment with gemcitabine released from a polymeric fibre.

We extended a previously published ABM known as a Voronoi cell-based model (VCBM) [57]

to model tumour cell growth and death and coupled this with a PDE model for gemcitabine

release from polymeric implants. In vitro drug release curves were used to optimise the PDE

formulation describing how gemcitabine is released from fibres. A numerical simulation was

then used to initialise the parameters in the ABM using in vivo control PDAC tumour growth

measurements. The potential impact of these fibres on tumour growth and cell death was then

investigated with the VCBM-PDE model and improvements on drug release kinetics and fibre

placement were suggested. We quantified the impact of varying sustained-release profiles

including a constant release, exponential release, and sigmoidal release from these devices. In

this way, we could conclude whether the rate at which drug was released from the implant had

any impact on treatment effectiveness. The model was developed as a tool that can be applied

to interrogate other cancer therapies using polymeric implants with the goal to improve treat-

ment response for PDAC patients.

Experimental methods

Ethics statement. All animal experiments were conducted in accordance with the

NHMRC Australian Code for the Care and Use of Animals for Scientific Purposes, which

requires 3R compliance (replacement, reduction and refinement) at all stages of animal care

and use, and the approval of the Animal Ethics Committee of the University of Wollongong

(Australia) under protocol AE18/13.

Fibre fabrication and characterisation. Full details for the fabrication and characterisa-

tion of alginate fibres loaded with or without gemcitabine are described in Wade et al. [13,14].
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Briefly, gemcitabine-loaded alginate fibres had a uniform surface area from 50−120 μm in

diameter. Experimentally, fibres displayed different drug release profiles and total drug

released depending on the concentration of polymer used. Primarily, the effect of changing the

alginate percentage and PCL presence was seen in the speed of release of the drug and time to

full drug release; see [14] for more details. To investigate this further in this work, using a

computational model we consider alternative release profiles not yet fabricated to examine

their effectiveness, these include constant, exponential and sigmoidal release gradients. These

are considered purely in silico. Fibre diameter also varied depending on the materials used

[14].

Fibre gemcitabine release kinetics. Full details for the experiments measuring gemcita-

bine release can be found in Wade et al. [14] with brief details here. Gemcitabine-loaded fibres

were added to 2mL of simulated body fluid (SBF), Ph 7.4 and incubated at 37˚C. At various

time points (10, 30, 60, 90 min hourly for 10h and then daily for 3 weeks), buffer solution

(200μL) was removed for analysis of gemcitabine release and replaced with fresh SBF. The

amount of drug released from alginate fibres was determined using high performance liquid

chromatography (HPLC). The amount of gemcitabine released (μg) was calculated by interpo-

lating AUC values from the standard curve using Empower Pro V2 (Waters) software.

Implant toxicity in vitro. Gemcitabine loaded fibres were tested for their cytotoxicity

against human pancreatic cancer cells (Mia-PaCa-2) cells over 72h. Cells were incubated with

0.5 cm lengths of gemcitabine loaded or non-drug loaded fibre formulation before an endpoint

MTS cell viability assay was performed. Results are displayed as a percentage of an untreated

control. Experiments were performed in triplicate. Full details for the toxicity experiments can

be found in Wade et al. [13].

In vivo Mia-PaCa-2 cell growth. Animals were subcutaneously inoculated with 100μL

suspension of 1×106 Mia-PaCa-2 cells in PBS. Tumour volume measurements began when

tumours reached a volume of 200 mm3 using

volume ¼ width�
length2

2

where width is the longest tumour diameter measurement and length is the tumour measure-

ment along the axis perpendicular to this (Fig H in S1 Text). Tumour volume was measured

daily for a duration of approximately 33 days. Full details for this experiment can be found in

Wade et al. [13]. All animal experiments were conducted in accordance with the National

Health and Medical Research Council (NHMRC) Australian Code for the Care and Use of

Animals for Scientific Purposes, which requires 3R compliance (replacement, reduction, and

refinement) at all stages of animal care and use, and the approval of the Animal Ethics Com-

mittee of the University of Wollongong (Australia) under protocol AE18/13.

Mathematical methods

The model developed for the release of gemcitabine from alginate fibres and the impact on a

growing PDAC tumour is formulated in two parts below. The first describes the PDE describ-

ing the concentration of gemcitabine in the tumour microenvironment (TME) and surround-

ing tissue over time. The second describes the VCBM [57] that captures the way tumour cells

proliferate, move and undergo apoptosis from gemcitabine. We chose to model the tumour

growth and treatment in 2 dimensions as the in vivo tumour growth measurements were taken

as only width and height measurements and we assumed any third-dimension effects were

analogous to what happens in 2 dimensions. All parameters introduced for the model are sum-

marised in Tables A-E in S1 Text and a schematic for the model is in Fig 2.
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Model of gemcitabine. To capture the concentration of gemcitabine in the tumour

microenvironment, we first considered a 2D rectangular domain with boundary B (Fig A in

S1 Technical Supplementary Information). Inside this domain, is implanted a gemcitabine

drug-loaded fibre which is represented by a vertical line source (panel A of Fig A in S1 Tech-

nical Supplementary Information and Fig 2A). Gemcitabine diffuses from the line source at

some time-dependent rate that decreases as the polymeric fibre degradation slows. The

Fig 2. The main components of the VCBM–PDE model. In the VCBM, we model the interactions between healthy cells (grey), cancer cells (orange), MCC

(blue) and dead cells (read) in a 2–dimensional tumour microenvironment cross section. (A) The concentration of drug in the TME was modelled in a 2

dimensional domain bounded by B, where C(x,y,t) was the concentration in the TME at position (x,y). The fibre implant was then placed at a position x = xF
and modelled as a line source. To capture the diffusion of drug from the fibre, we modelled the concentration of gemcitabine inside the fibre F(r,y,t) at radial

position r and domain position y where the continuity condition in Eq (3) required equal concentrations at the fibre boundary and at the immedicate local

microenvironment, i.e. F(rtotal,y,t) = C(xF,y,t). (B) The concentration of gemcitabine inside the polymeric fibres was modelled by radially symmetric diffusion

Eq (2) using a finite volume method (FVM) discretisation and considering the 2D cylindrical cross section of the fibres which have length L and radius rtotal.
The fibre was discretised into concentric annuli Fm,j at annulus m and cross section j, (i = 0,1,. . .,M) and the concentration of drug in each annulus Fm,j was

modelled by considering drug diffusion across the bounadaries (e.g. Fm−1,j and Fm+1,j flow into Fm,j and vice vera). The full discretisation is presented in S1

Technical Supplementary Information. (C) Modelling assumptions for the VCBM were that cancer cells (orange) proliferate and some are able to cause

epithelial to mesenchymal transtion and become invasive. We model this transition by assuming cells differentiate into a mesenchymal cancer cell (MCC) with

one daughter cell placed on a neighbouring healthy cell. These MCCs cause the break down of surrounding tissue (i.e. replace healthy neighbouring cells with

their progeny). Cancer cells can then die through gemcitabine uptake from their local environment. For more details see Fig B in S1 Text. (D) Individual cells

were modelled as cell centres connected by springs [57]. The proliferation of a cell introduced a new cell into the lattice network which caused the

rearrangement of the cells in the lattice with movement governed by Hooke’s law. (E) To simulate the gemcitabine concentration in the TME, Eq (1), we

introduced a FVM discretisation, where the gemcitabine concentration was defined at discrete volumes centered around points in the discretisation. Cells

could take up drug from the nearest grid point to their centre, and this concentration was used to determine their likelihood of drug–induced cell–death.

https://doi.org/10.1371/journal.pcbi.1010104.g002
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gemcitabine concentration in the domain outside the fibre is diffusing and decaying. PDAC

cells in the domain are also taking up gemcitabine, removing it from the concentration in the

domain. Inside the fibre, we model the diffusion of drug as radially symmetric (Fig 2B).

We denote the concentration of drug in the TME at position (x,y) by C(x,y,t) and model

this concentration by

@C
@t
¼ Dr2C
zfflffl}|fflffl{
diffusion

� lC
z}|{
decay

�
X

cells i

dðx � xiÞdðy � yiÞvCWiC
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

cell uptake

þ dðx � xFÞJðy; tÞ;
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{

fibre release

ð1Þ

where D is the diffusion coefficient in the TME, and λ is the decay rate of the drug. To model

cancer cells taking up gemcitabine, we used δ(x) which is the Dirac delta function in one-

dimension, where (xi, yi) is the ith cancer cell’s Voronoi centre position in the domain (Fig A

in S1 Text), and Wi is the cell’s volume. Pancreatic cancer cells take up drug in the domain at a

rate νc. Cell uptake was modelled by point sinks analogous to that in PhysiCell and BioFVM

[43,58], where cells are considered discrete “point masses” in the domain that take up drug

from a single rectangular discretised voxel weighted by the local concentration of drug. We

then used a line source at x = xF, y0�y�y0+L to model the release of gemcitabine from the

polymeric fibre, where y0 is the location of the bottom of the fibre and L is the fibre length (Fig

B in S1 Technical Supplementary Information). This line source was represented by a Dirac

delta function in one-dimension and the drug diffuses from the line source with flux J(y,t).
To derive the flux of drug from the line source, we first assumed that the release of drug

from the fibre would be time dependent. As such, we chose to explicitly model a concentration

of drug diffusing inside the fibre. We denote the concentration of gemcitabine at radial posi-

tion r and location (xF, y) by F(r,y,t) (Fig B in S1 Technical Supplementary Information and

Fig 2A). We model the diffusion and movement of drug inside the fibre assuming radial sym-

metry. We assumed that diffusion in the radial direction is significantly faster than along the

fibre since the radius of the fibre rtotal is significantly less than the length of the fibre L (Figs A

and B in S1 Technical Supplementary Information). This gives

@F
@t
¼ DF tð Þ

1

r
@

@r
r
@F
@r

� �

; ð2Þ

where DF(t) is the time-dependent diffusion of drug inside the fibre. We imposed the continu-

ity condition

Fðrtotal; y; tÞ ¼ CðxF; y; tÞ; ð3Þ

so that the diffusion of drug out of the fibre at the line source will depend on the location (xF,

y) and local exterior concentration. The flux out of the line source J(y,t) in Eq (1) can then be

approximated from the release of drug across the boundary of the fibre:

J y; tð Þ ¼
�

2prtotal
h

DF tð Þ
@F
@r

rtotal; y; tð Þ y0 � y � y0 þ L

0 y < y0; y > y0 þ L
: ð4Þ

8
<

:

This term is derived by converting the flux out of the radial fibre into the flux represented

by the line source in Eq (1) and converting to a concentration per surface area where h is the

depth of the rectangular region (presumed thin, see Fig A in S1 Technical Supplementary

Information). Both Eq (3) and Eq (4) are necessary boundary conditions for Eq (1) and Eq

(2). In this way, we assume the concentration is continuous and the flux of the fibre is equal to

the flux into the TME, equivalent to a conservation of mass.
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The diffusivity of the drug, DF(t), is modeled by the function

DF tð Þ ¼
k

t þ �
þ Dconst; ð5Þ

where k controls the gradient of the drug release rate(i.e. how quickly the fibre swells), Dconst is

the constant decay rate from the fibre and � is a tuning constant to provide a finite initial diffu-

sion coefficient, i.e. DF(0) = k/�+Dconst. We expect DF(0) to be initially large (>1) since the

polymeric fibre is hydrophilic and drug would immediately diffuse out of the fibre. In addi-

tion, some drug is never properly loaded into the fibre and can be released instantaneously.

The formalism in Eq (5) was broadly chosen to capture the rapid decline in release as the poly-

meric fibre degrades. It is possible to model the breakdown of the drug release mechanisms to

include device swelling and degradation and for examples of this see [56,59–61].

No-flux boundary conditions on B, the exterior of the TME, are imposed:

@C
@ n!
¼ 0

where n! is the outward unit normal on the boundary B (Fig E in S1 Technical Supplemen-

tary Information). In the case of a fibre implantation, all drug in the domain is initially situ-

ated in the fibre:

F r; y; 0ð Þ ¼
C0

pr2
totalL

;C x; y; 0ð Þ ¼ 0; ð6Þ

where C0 is the amount of drug in μg, the denominator is the volume of the fibre and there is

no drug initially in the domain B. We assume the location of the fibre is fixed in space over the

course of the simulation and is not affected by cells around it. For more details on the deriva-

tion of the model see S1 Technical Supplementary Information.

We solved Eqs (1)–(4) numerically using a Finite Volume approximation. In particular, the

diffusion of drug within the fibre, Eq (2), was solved through discretising the cross section of a

fibre into annuli (see Fig 2B and S1 Technical Supplementary Information). The model is

solved using a finite volume method (FVM) discretisation, for examples of this form of discretisa-

tion in cancer growth and treatment see [62–70]. As part of the investigations of these fibres in

this work, we chose to quantify the impact of varying the drug release profile to a constant release,

exponential release, or sigmoidal release profiles. To do this, we replaced the drug diffusion in Eq

(2) by the corresponding profile being examined and imposed drug conservation on the total

drug released. More details on this can be found in S1 Technical Supplementary Information.

Voronoi Cell-Based Model (VCBM) of pancreatic tumour growth. Agent-based models

(ABMs) are primarily used to simulate heterogeneity that arises through stochasticity in cellu-

lar interactions. We present an ABM to capture the 2D formation of a pancreatic tumour in

the pancreas. Our model extends a Voronoi cell-based model (VCBM) for tumour growth

already published in [57]. The model describes how individual cells behave over time by con-

sidering their behaviour to be a stochastic process. We consider a set of (x,y) points in the

domain B as representatives of cell centres and then overlay this with a Voronoi tessellation to

define individual cell boundaries. A Voronoi tessellation defines the region of space where the

Euclidean distance to a point is less than the distance to any other point e in the lattice. Voro-

noi tessellations have been used to model tissue and cancer cell dynamics for some time [71–

75]. Using a Voronoi tessellation for the ABM allows cell morphology to be heterogeneous and

not fixed, and the morphology can change with cell movement. The model is solved on a time

increment of 1hr to account for the fact that cellular interactions are slow in comparison to
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drug diffusion (Fig C in S1 Technical Supplementary Information). To model pancreatic

tumour formation, we assumed the primary functions of pancreatic tumour cells were move-

ment and proliferation. Below are details of the cell types, the model for cell movement and

proliferation, a description of the dynamics of tumour mesenchymal cells, the model for cell

death and details of how the domain changes as the tumour grows.

PDAC cells can acquire mesenchymal-like phenotype properties through a process known

as epithelial-mesenchymal transition (EMT) [76–79]. In the EMT process, epithelial elements

undergo cytoskeleton remodelling and migratory capacity acquisition due to the loss of intra-

cellular contacts and polarity [77]. This enables the formation of mesenchymal-like cancer

cells (MCCs) which have enhanced migratory capacities and invasiveness, as well as elevated

resistance to apoptosis [78]. Since there is evidence that EMT plays an important role in

PDAC progression [76–79], we have introduced this cell type into the model.

We considered four main cell types in the model: healthy pancreatic cells, PDAC cells,

MCCs and dead cells (cancer cells that have experienced drug-induced death); see Fig 2C.

Each cell has an initial location in domain B such that for cell i its cell centre would be at

r!i ¼ ðxi; yiÞ. The initial tissue comprises of healthy cells, arranged so that the corresponding

Voronoi cells form a hexagonal tessellation, analogous to other work in the literature [80,81].

To initialise the tumour formation, we removed a healthy cell from the centre of the domain

and replaced it with a pancreatic tumour cell (Fig A in S1 Text). These pancreatic tumour

cells could proliferate, die from gemcitabine, or form MCCs. Once formed, these MCCs then

move and proliferate until they die. Healthy cells are assumed to be able to move or be

removed from the domain by being replaced by MCCs (Fig B in S1 Text).

Cell movement is governed by pressure-driven motility, modelled using Hooke’s law [57].

Each cell’s (x,y) position is updated by calculating the effective displacement of the cell’s lattice

point by the sum of the forces exerted on that cell, where force is modelled as a network of

damped springs connecting a cell to its nearest neighbours (defined by a Delaunay triangula-

tion). To determine the movement of an individual cell, we use the vector representation for

that cell’s (x,y) position from the origin r!i ¼ ðxi; yiÞ. For cell i, the displacement of this point

in time Δtcells is given by

r!iðt þ DtcellsÞ ¼ r!iðtÞ þ lm
X

8j

r!i;jðtÞ
jj r!i;jðtÞjj

si;jðtÞ � jj r
!

i:jðtÞjj
� �

; ð7Þ

where r!iðtÞ is the vector representation for the ith cell’s centre position in the lattice at time t,
λm is a damping and mobility constant, r!i;j is the vector between cell i and j, si,j is the spring

rest length (equilibrium distance) between cell i and j. Cells j are the cells connected to cell i in

a Delaunay triangulation, i.e. in a neighbourhood of cell i. The introduction of new cells in the

lattice through proliferation introduces new spring connections and shortens or extends oth-

ers, promoting the movement of cells in the environment (Fig 2D).

Tumour cell proliferation was assumed to be a function of the cell’s distance, dneut, to the nutrient

source (tumour periphery, i.e. nearest healthy cell centre, see Fig C in S1 Text). The maximum

radial distance for nutrient-dependent cell proliferation is dmax. Cells that are a further distance

from the nutrients than dmax enter a quiescent (non-proliferative state), forming what is commonly

known as a necrotic core. The probability of a cell dividing pd in time step Δtcells is given by

pd ¼
p0 1 �

dneut

dmax

� �

dneut � dmax

0 dneut > dmax

; ð8Þ

8
><

>:
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where p0 is a proliferation constant derived based on the maximum rate of cell proliferation ϕ (i.e.

p0 ¼ 1 � expð� �DtcellsÞ � �Dtcells). The formalism in Eq (8) is similar to what was used by Kansal

et al. [82], and Jiao and Tarquato [83].

Mechanical feedback between cells has been shown to be a regulatory mechanism for growth

control of tissue cells in vitro and in vivo [84]. A cancer cell’s ability to proliferate, while generally

considered to be dysregulated, has been shown to slow down and eventually arrest with compres-

sion from neighbouring cells [85,86]. To model this, we introduced a constraint on cell prolifera-

tion: if all cells within a cell’s neighbourhood (i.e. connected to that cell by a Delaunay

triangulation) are within s/page of the cell, then the cell will not proliferate. If a cell i proliferates, a

new lattice point j is created and the two cells are placed at a distance s/page from the original prolif-

erating cells position at a rotation θ~2 U(0,2π] (Fig 2D). To simulate the enlargement and reposi-

tioning of the daughter cells, the resting spring length of the connection between i and j linearly

increases over time from s/page to the mature resting spring length s as was formulated in our previ-

ous work [57]; see Fig C in S1 Text. Once a cell has proliferated, it takes gage time steps before the

daughter cell will try to proliferate again, accounting for G1 phase of the cell cycle where the cell

transitions from mitosis M to DNA synthesis S [57]. It is well known that tumours contain highly

heterogeneous populations of cells that have distinct reproductive abilities. To account for hetero-

geneity in the cell cycling, cells sampled the age at birth from a Poisson distribution with mean 50.

MCCs are created at the boundary of the tumour with probability pMCC. These cells are cre-

ated from tumour cell differentiation. In this way, a single tumour cell can either proliferate

into two new tumour cells or undergo differentiation into a tumour cell and an MCC. We

model the invasive property of MCCs by placing the newly differentiated MCC daughter cell

at the position of a neighbouring healthy cell, removing that healthy cell from the domain; see

Fig B in S1 Text. As such, through their creation, these MCCs contribute to the degradation of

the healthy tissue surrounding the tumour.

As in [87–90], we assumed that cancer cells die from gemcitabine contact at a rate described

by the Michaelis-Menten term

b ¼
dmCi;j

Ci;j þ IC50

;

where δm is the maximum death rate due to the drug, Ci,j is the concentration of drug at the

grid position (i,j) in the FVM discretisation closest to the cell’s centre (Fig 2E and S1 Techni-

cal Supplementary Information), and IC50 is the concentration at which half the effect of the

drug is attained. From this, the probability of an individual cell dying can be determined by

assuming Prob(cell death) = 1 � expð� bDtcellsÞ � bDtcells. While we chose not to model explic-

itly the resistance to gemcitabine that cancer cells can develop [3,4], we believe that by model-

ling cell death probabilistically we can capture some of the heterogeneity that may exist

intratumourally. If a cell dies, then its phenotype changes to be a dead cell and it takes dage
hours to disintegrate. To simulate disintegration, at each time increment the spring rest

lengths of a dead cell to each of its neighbours, si,j, decreases by si,j/dage. Once the dead cell has

disintegrated, it is removed from the simulation and the space left behind becomes “empty

space” which is plotted in white. Cells are free to move into this space over time following

Hooke’s law.

As the tumour grows, the model domain expands. To reduce computational cost, new

healthy cells are added to the domain only when a tumour cell’s radial distance from empty

space is <10 model units (Fig D in S1 Text). A summary of the overall model rules is provided

in a decision tree diagram in Fig E in S1 Text.
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Numerical simulations and parameter estimation

The VCBM-PDE model was written in C++ and simulations called through Matlab 2021b by

creating a definition file for the C++ library using clibgen and build in Matlab 2021b. Code for

the model at the various stages (e.g. fibre, single injections) can be found on github (https://

github.com/AdrianneJennerQUT/hybrid-VCBM-of-gemcitabine-and-pancreatic-cancer).

Full details on all aspects of the code can be found in S1 Code Documentation.

An approximation for tumour volume was then determined from the 2D simulations using

the same formula as the calibre measurements, multiplied by a scalar σ:

volume ¼ width2 �
length

2
� s3

where width is the longest distance of a cell on the periphery from the centre and length is the

distance of the farthest cell from the centre on the radial axis perpendicular to the radial axis of

the longest distance (Fig H in S1 Text) where σ unit length of the model is equivalent to 1

mm. This calculation choice was made to closely resemble the tumour volume calculation with

calipers done in vivo. As the size of the computational domain was smaller than the size of the

real tumour, the length unit was scaled by σ, which scaled the unit length in the VCBM domain

to a comparable mm unit measurement that reduced the computational cost. We chose σ =

0.1728.

We performed a convergence test for the VCBM to determine a threshold for the minimum

number of simulations of the model to have average convergence at day 33 (Fig F in S1 Text).

We found that from 500 simulations onward, the average tumour volume at day 33 had con-

verged to some mean value. As such, we picked n = 500 to be the number of simulations of the

model we would run at each investigation.

To fit the parameters in the model, we first consider only the drug release and diffusion

compartment of the model and using in vitro fibre release data obtain the relevant parameters

for this compartment. Following this, we fit the cell proliferation and death rates based on in
vitro cell count and viability measurements. Lastly, we estimate the remaining VCBM cell pro-

liferation parameters by using a Latin Hypercube Sampling (LHS).

All fitting was undertaken using lsqnonlin in Matlab 2021b using pdepe and ode45 to simu-

late the model. Parameters in the model were fit using experimental data or estimated from

the literature. To fit the parameters relating to drug release from the fibre we used the in vitro
drug release experiments. We simplified the model to consider only one cross section, i.e. Fm,j

= Fm, since the outside concentration of drug was independent of location in the absence of

cells in the in vitro experiment.

To estimate parameters for the pancreatic cell growth kinetics, we did a large Latin Hyper-

cube sample of the parameter space and determined parameters that resulted in a minimal

least squares distance to the in vivo control tumour growth measurements. To do this, we set

an initial seed and obtained 1000 samples of the parameter space and simulated the model 30

times for each sample each time calculating the residual between the data and the simulation.

The parameter sample with the lowest average was then fixed for the remainder of the model

simulations. It should be noted that this method does not provide us with a fitted parameter

value but was a numerical way of obtaining a reliable estimate for these parameters. Other

parameters were either fixed to previous values in the literature or estimated based on previous

work. See Tables A-E in S1 Text for a full summary of all parameter values and relevant

references.
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Results

Calibration of drug release kinetics and drug-induced cell death to in vitro

measurements

Gemcitabine-loaded fibres were placed in a solution bath and the resulting cumulative concen-

tration of gemcitabine measured (Fig 3A). To obtain a model describing the release rate of the

drug from the fibre, we fitted parameters from Eqs (1)–(4) to these in vitro measurements for

the release of gemcitabine from 3% alginate 15% PCL fibres [14]. Fitting the release curve

parameters k, dconst, C0 and Aout gave the fit in Fig 3B and parameter values in Table A in S1

Text. Overall, the model was able to obtain the fit to the data and followed the trend which

showed a rapid initial release of gemcitabine followed by a steady-state threshold. We validated

the model’s predictive capability by also fitting gemcitabine release from 1% and 2% alginate

fibres (Fig G in S1 Text).

To assess the efficacy of the drug on inducing death in PDAC cells, cell viability studies

were performed using Mia-PaCa-2 cell lines. To model these experiments, we considered a

simplified deterministic and spatially independent version of our model with only live cancer

cells PL(t), dead cancer cells PD(t) and a concentration of drug C(t):

dPL

dt
¼ �PC �

dmC
C þ IC50

PC; ð9Þ

Fig 3. Calibration of model parameters to in vitro experiments. (A) Drug release profiles for gemcitabine with 3% alginate 15% PCL were measured by

placing the gemcitabine–loaded alginate fibre in a solution bath and measuring the released drug concentration over time. (B) The drug concentration in the

solution bath (black) was used to fit model parameters for the drug release from the fibre (green). Resulting parameters are in Table A in S1 Text. (C) The

drug–induced death rate of pancreatic cancer cells was determined by simplifying the full model assumptions to consider a homogeneous model for live cancer

cells PL(t) that were proliferating and dying (become dead cells PD(t)) through the effect of the drug gemcitabine C(t), Eqs (9)–(11). (D) Fitting an exponential

growth curve to Mia–PaCa–2 cell proliferation in vitro [91] gave the growth rate of cells ϕ. Values are the mean±std. (E) To measure the efficacy of the

protocol, the cell viability was determined after aliquots from drug released from gemcitabine–loaded fibre were placed in a well with proliferating Mia–PaCa–2

cells at 24, 48 and 72 hours. (F) The resulting cell viability at 72 hours from the experiment depicted in (E) was used to fit the drug–induced cell death rate (Eqs

(9)–(11)). The data is plotted as a box and whisker plot. Resulting parameters for (D) and (F) are in Table B in S1 Text.

https://doi.org/10.1371/journal.pcbi.1010104.g003
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dPD

dt
¼

dmC
C þ IC50

PC; ð10Þ

dC
dt
¼ m tð Þ � lC; ð11Þ

where ϕ is the exponential proliferation rate of cancer cells in vitro, δm is the death rate of can-

cer cells by gemcitabine, IC50 is the drug’s half effect concentration, and λ is the decay rate of

the drug (Fig 3C). To first determine the proliferation rate of pancreatic cancer cells in vitro,

an exponential growth curve was fit to cell count measurements for Mia-PaCa-2 cells [91] (Fig

3D, parameter values Table B in S1 Text) using simple exponential growth (i.e. setting C(0) =

0 in Eq (9)). Fixing this growth rate and the estimate for the decay rate of drug, we then deter-

mined the antitumour efficacy of gemcitabine-loaded fibres in the cell viability experiments.

Cells were treated with aliquots of simulated body fluid from gemcitabine-loaded fibres that

had been incubating for 24, 48 or 72 h (Fig 3E). To simulate these experiments, the model is

solved piecewise such that μ(t) = δ(t−taliquot)C(taliquot), where taliquot are the times of the drug

administrations. An approximation for the concentration of drug at each time point, C(taliquot),
can be determined using the calibrated PDE model for drug release from the fibres. Fitting the

drug-induced death rate and IC50 gave a good approximation to the data (Fig 3F). The result-

ing parameter values from the fit of the model can be found in Table B in S1 Text.

Calibration and sensitivity of pancreatic tumour growth

The VCBM simulation of pancreatic tumour growth in the absence of treatment depicts inva-

sive and disorganised movement of cancer cells into surrounding healthy tissue (Fig 4A). To

calibrate tumour growth parameters in the model, we used an exhaustive numerical search of

the parameter space using a Latin Hypercube Sampling for gage, dmax, p0 and pMCC, where we

were minimising the least squares of the simulation with the in vivo tumour volume of Mia-

PaCa-2 cells over 33 days (Fig 4B and Table C in S1 Text). To obtain an understanding of the

stochasticity in our model, we fixed the parameter values obtained and we simulated the

model 500 times and plotted the tumour volume over 33 days. From Fig 4B, while the growth

is varied at points, there are no distinct outliers or unusual tumour growth rates, and the stan-

dard deviation throughout the entire period of observation remains small. In addition, the

simulations sit within the in vivo tumour growth measurements from Wade et al. [13] for

untreated pancreatic cancer growth. The histogram for the number of MCCs across the simu-

lations (Fig 4C) shows only a small number of MCCs are created over the 33 days of growth,

which is realistic when considering the ratio between a single cell agent in the model and a real

cell in a biological tumour and matches findings that MCCs will compose only a small subset

of the tumour [92–94].

To analyse the drivers of pancreatic tumour growth dynamics in our model, we conducted

a detailed sensitivity analysis. A systematic multi-parameter sensitivity analysis was performed

for p = [p0, pMCC, dmax, gage, page] using weighting identified by Wells et al. [95] (Fig 4D). This

sensitivity analysis can identify combinatorial influences of multiple parameters and elucidate

systemic features of the model. The average tumour volume predicted by the model at day 33

for 500 simulations was recorded for each parameter set. Pairs of parameters were varied, with

each cell of Fig 4D depicting the weighting applied to each parameter in p from 0.25, 0.75,

1.25, 1.75, and 2.25. This allowed for all combinations of alterations for two parameter values

to be tested.
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The time taken for a cell to prepare for mitosis, gage, has the greatest impact on final tumour

volume (Fig 4D). Increasing gage decreases tumour volume and conversely a decrease in gage
increases the final volume. As a result, the model predicts that if cells take longer to move

through the cell cycle and undergo mitosis this will result in a smaller tumour volume. Reduc-

ing the maximum distance, dmax, from the periphery at which a cell can still proliferate

decreases the final tumour volume. This is to be expected, as reducing the proliferating cell

rim (through decreasing the distance from the periphery for which cells can proliferate) will

reduce the number of cells available to proliferate and subsequently reduce the tumour vol-

ume. Decreasing the value of dmax only appears to have a significant impact on the final

Fig 4. Using the VCBM to model control tumour growth. (A) Snapshots of the model simulation at 0, 5 and 10 days with cancer cells in orange, MCCs in

blue and healthy cells in grey (a zoomed in version is in Fig I in S1 Text). (B) Mia–PaCa–2 tumour volume over 33 days measured in vivo in mice (black,

n = 4). Overlaid is the tumour volume from the VCBM simulation (pink, n = 500) with parameters from Table C in S1 Text. (C) MCC counts in the VCBM

simulations (n = 500). (D) Sensitivity analysis of control tumour growth. Maximum tumour volume over 33 days for perturbations of parameters with weights

of 0.25, 0.75, 1.25, 1.75 and 2.25, and spatial plots of large and small tumours simulated using the depicted weightings. In the heatmap, each pixel represents 500

averaged simulations with two parameters. In the boxes, the parameters vertically and horizontally in the grid are the weightings in ascending order, with each

pixel being a “coordinate” representing the weighting for each parameter and the result from 500 averaged tests. Diagonal pixels only use individual parameters

with different weightings. Legend for cell colouring: cancer cell (orange) healthy cell (grey), MCC (blue).

https://doi.org/10.1371/journal.pcbi.1010104.g004
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tumour volume when the weighting applied is�50%. In comparison with dmax and gage, the

tumour volume is insensitive to changes in both the probability of a cell proliferating if it has

reached mitosis, p0, and the probability of a new pancreatic cancer stem cell being created,

pMCC. The time taken for a cell to reach adult size (when it can proliferate), gage, similarly has a

negligible impact on the tumour volume.

Intratumoural implantation provide an alternate effective protocol

As previously shown by Wade et al [13–16], pancreatic cancer growth was inhibited under

administration of gemcitabine as a free drug. This growth inhibition was furthered when gemci-

tabine was administered in loaded alginate fibres. Before quantifying the efficacy of varying

gemcitabine-loaded fibre characteristics, we first looked to evaluate the impact of varying proto-

cols for single point free-drug injections (Fig 1) of gemcitabine on the tumour volume. Simulat-

ing single point free-drug injections with the VCBM-PDE is a simplification of the full model

presented in Eqs (1)–(4) where F(r,y,t) = 0. More details on this can be found in S1 Technical

Supplementary Information. We considered free-drug injections of gemcitabine as adminis-

tered along a radial axis of the tumour in either a single dose or four free-drug injections which

are rotationally symmetric (Fig 5A). In the case of the four injections, the total dosage is spread

across the injections so that the total amount of drug administered is conserved.

Simulations of the model under the different injection protocols can be found in Figs 5B

and 5C, and J in S1 Text. The sensitivity of parameter values governing tumour volume were

again probed, now under a single administration of gemcitabine at the centre of the tumour

(Figs 5D and 5E, and K in S1 Text). The same trends with gage and dmax were observed; how-

ever, an additional parameter, which represents the concentration the drug required to have

an impact on the tumour volume, IC50, was found to influence the volume under further per-

turbations of the parameter value (Fig 5E). As expected, a lower value of IC50, which indicates

that a smaller concentration of the drug is required for it to influence cancerous cells, leads to

a lower tumour volume, while an increased value of IC50 leads to a higher tumour volume

when compared to original estimate for IC50.

To determine the effect of injection placement on tumour volume over time, we considered

two protocols. The first was a single injection into the tumour of concentration C0, and the sec-

ond was four injections into the tumour, each of concentration C0/4 placed at equal rotations

around the tumour. For each of these protocols we considered five potential placements of

each injection at a distance dm from the centre: a central injection (dm = 0), and injections dm
= 0.9 mm from the centre, dm = 1.7 mm from the centre, dm = 2.5 mm from the centre and dm
= 3.5 mm from the centre (Fig 5A). For example, for the second protocol where four injections

are being placed, we could choose a distance dm = 2.5mm from the centre of the tumour for

the placement of the injections and the four injections were then placed at equal rotations

around the tumour centre. For each of these placements, 500 simulations were run over 33

days and both the number of tumour cells and the tumour volume over time were measured

(Fig 5F). For a single injection, distance did not impact the effectiveness of the injection and

the tumour volume is qualitatively similar. The tumour volume was more significantly affected

by distance in the case of four injections (Fig 5F), with free-drug injections further away from

the centre of the tumour performing worse than those intratumoural injections. Primarily, sin-

gle free-drug injections implanted peritumourally may encourage branching of external

tumour structures in the model, and hence increase the calculated volume as it is based on the

maximum distance from the centre of the tumour to the edge. Tumours with invasive edges or

branching formations have been shown in some cases to be more challenging to treat in the

long term [83,96]. From our model, this suggests that avoiding injection protocols that induce
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branching is crucial. While we present an approximation for tumour volume and placement of

injections in units relevant to in vivo models (i.e. mm3 and mm respectively), more work

needs to be done to validate that the efficacy of treatment predicted by the model would map

to the human scale.

Fibre location and release kinetics are a major driver of tumour arrest or

tumour growth

Using the VCBM-PDE, we analysed the impact of varying the position of the fibre and the ini-

tial drug concentration on the tumour growth dynamics (Fig 6A). We introduced three

Fig 5. Impact of intratumoural free–drug point injections on tumour cell eradication. (A) Tumour growth was investigated under different gemcitabine

single free–drug injections: central, 0.9 mm from centre, 1.7 mm from centre, 2.5 mm from centre, 3.5 mm from centre. Locations of injections on the tumour

surface for a single free–drug injection or four free–drug injections is depicted schematically. (B) VCBM with a single central injection and the drug

concentration at 24h. (C) The tumour volume with four injections placed 30μm from the centre, and the drug concentration at each location at 6h. (D)

Maximum tumour volume over 33 days for ±50% perturbations in parameter values compared to the normal value (i.e. baseline parameter values). (E)

Maximum tumour volume over 33 days for different perturbations of IC50 compared to the normal volume. (F) The tumour volume over 33 days with each

injection protocol, averaged over 500 simulations. Legend for cell colouring: cancer cell (orange) healthy cell (grey), MCC (blue), dead cell (read). Note, the

white space in the simulation images represents ‘empty space’ in the tumour where dead cells have been previously, but have since disintegrated.

https://doi.org/10.1371/journal.pcbi.1010104.g005
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classifications for the tumour growth dynamics: tumour eradication (i.e. a tumour volume

<1mm3) tumour stabilisation, i.e. a tumour volume at day 33 less than the initial tumour size

(� 100mm3), and tumour growth, i.e. a tumour volume on day 33 greater than the initial

tumour volume. Large concentrations of gemcitabine loaded into the fibre positioned at dm =

3.5 mm or dm = 4.3 mm from the tumour centre were unable to stabilise or eradicate the

tumour, also known as tumour arrest (Figs 6B and 6C, and M in S1 Text). Once the fibre was

positioned closer to the tumour centre (�1.7 mm) lower concentrations of drug were suffi-

cient to result in stabilisation of the tumour growth (Fig 6B). It was only with high drug con-

centration and centered fibres that we saw complete tumour eradication (Fig L in S1 Text).

There are large variations in the response of tumour growth to the different protocols, suggest-

ing that tumour stabilisation or arrest might be achievable for some tumours whereas others

might experience tumour growth even in the presence of drug-loaded fibre.

To then analyse the effects of changes to the drug release profile on the tumour growth, we

investigated four different release profiles: constant release, exponential release, sigmoidal

Emax/Imax release profiles [97–99] (See Section TS3 in S1 Technical Supplementary Infor-

mation,). Each of these release profiles were parameterised by a release rate γ and for the

Emax and Imax curves a half-effect term η. The different release profiles were tested with the

fibre placed either centrally (intratumourally) (Fig 6D) or on the periphery of the tumour

(peritumourally) (Fig 6E). The four different release profiles (constant, exponential, sigmoid

emax, sigmoid imax) were tested with 8 different release rates. For each parameter value, 500

simulations were run over 33 days, with an initial amount of 500 μg of gemcitabine.

For fibres positioned in the centre (Fig 6D), it is possible to eradicate the tumour with all

release profiles considered given a small enough value of γ. In comparison, none of the drug

release profiles resulted in tumour eradication when positioned peripherally (Fig 6E).

Although, of note, the exponential release profile performed best out of the four release cases

in both the centered and peripheral fibre configurations. Overall, the results suggest that it is

possible to reduce tumour size with peripheral fibre injections irrespective of the shape of the

release curve.

Discussion

PDAC is a difficult-to-treat cancer with a poor prognosis. Novel therapeutic interventions are

desperately needed to improve patient survival. While chemotherapy drugs, such as gemcita-

bine, have shown durable efficacy for pancreatic cancer, there has been little to no improve-

ment in patient survival in the last 30 years [100]. PDACs are notorious for a dense fibrotic

stroma that is interlaced with ECM [101] and is a major cause of therapeutic resistance [102].

One way of improving drug retention at the tumour site, and by consequence increase tumour

eradication and patient survival, is through sustained-delivery devices (Fig 1). Polymeric fibres

loaded with gemcitabine have shown increased therapeutic efficacy over conventional treat-

ment delivery. To further analyse the potential of these novel therapeutic implants, we have

designed a hybrid Voronoi cell-based model (VCBM)-partial differential equation (PDE)

model to describe pancreatic tumour formation in healthy pancreatic tissue and the resulting

effect of gemcitabine on the tumour tissue when delivered locally. With this model, we consid-

ered both the impact of a single fibre implanted with varying drug release profiles and

hypothesised alternative and more effective treatment protocols.

The model was calibrated to in vitro and in vivo data. A limitation of this calibration was

the lack of spatial data available to calibrate the parameters in the model. To try and quantify

the impact of this limitation we performed a range of sensitivity analyses at different stages of

the model investigation. The parameter sensitivity analysis then revealed that the fundamental
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driver of tumour growth in our model was the rate of cell mitosis. The idea that the cell cycling

time is a fundamental part of tumour progression has been found in other mathematical mod-

els [103], suggesting that the model’s sensitivity in terms of tumour volume is in line with

other models in the literature. It is also known that molecules can modulate the cell cycle of

Fig 6. Comparison of different fibre release and placement options. (A) Tumour growth was investigated under different gemcitabine–loaded fibre

placements dm: central, 0.9 mm from centre, 1.7 mm from centre, 2.5 mm from centre, 3.5 mm from centre and 4.3 mm from centre. Locations of fibres on

tumour surface for single implantations is depicted schematically. (B) A heatmap for the averaged final state of a tumour after 33 days of simulation for

different initial injection concentrations and fibre placements. “Eradicate” denotes a tumour volume below 1mm3, “stabilise” denotes a tumour volume less

than the initial tumour volume, and “growth” denotes a tumour volume greater than the initial tumour volume. (C) The mean (solid lines) and standard

deviation (shades areas) of the tumour volume over 33 days for different fibre placement options with corresponding values highlighted in (B). (D) The tumour

volume on day 33 for different release rates (indicated by the γ value) and release profiles with a central fibre placement. (E) The tumour volume on day 33 for

different release rates (indicated by the γ value) and release profiles with a fibre placed on the edge of the tumour (3.5 mm away from centre). See Section TS3

in S1 Technical Supplementary Information for more details on these release functions. Legend for cell colouring: cancer cell (orange).

https://doi.org/10.1371/journal.pcbi.1010104.g006
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cancer cells, changing the cancer aggressivity. For example, melatonin is a hormone known for

its antitumour efficacy as it significantly increases the duration of the cell cycle of human

breast cancer cells [104]. Given a heterogeneous cohort of individuals with varying degrees of

tumour growth rates, our model suggests that the driver of these differences is most likely the

cell cycling rate. Drugs targeting this should, therefore, be considered.

Depending on the cancer type, administering an intratumoural injection of a drug can be

extremely difficult and administering treatments on the periphery can be an easier course of

action. Simulating the model, we found that intratumoural administration of gemcitabine-

loaded fibres significantly outperforms peritumoural administration. However, there is a

threshold distance from the tumour to achieve an effective treatment, beyond which placing

fibres further into the tumour bulk sees no added benefit. There is a clear benefit to increasing

the dosage multiplicity and spreading the administered drug out amongst the tumour com-

pared to a single high dose. Tumour volume was most significantly decreased when four free-

drug point injections were administered compared to a single free-drug point injection. This

proposes the existence of a potential threshold above which increasing the multiplicity of dos-

ages or dosage size has a negligible effect over spreading out the dosages.

The location of the fibre and the total drug concentration in the fibre was a major driver of

tumour eradication. For fibres located within the centre of the tumour with a significantly

high drug concentration, it was possible to completely eradicate the tumour. Moving the fibre

farther away from the centre, we found that there was no concentration of drug that would

inhibit growth. This suggests that a large amount of drug from the implants is lost to the sur-

rounding tissue, and this has detrimental effects on the efficacy of these devices. Fortunately,

simulations show there is a minimal concentration of drug necessary for stabilisation, allowing

these predictions to be used a way to guide dosage so that toxicity is minimised, and efficacy is

maximised.

Interestingly, we found that changing the release profile of the drug from the device had a

similar effect for fast enough release curves, i.e. γ between 10−3 and γ−1. This suggests that

there is some margin of error for the creation of these devices and provides some promise for

their optimisation.

More recently, research has been focused on combining gemcitabine with other drugs to

improve its efficacy in the sustained-release devices. For example, nanoparticle albumin-

bound paclitaxel (nab-paclitaxel) administered in combination with gemcitabine [9] is one of

the standard of care treatment regimens that has shown an increase in overall survival in

patients with advanced PDAC, as shown in a Phase I/II clinical trial [9]. A phase III clinical

trial showed that gemcitabine and erlotibin also significantly increased overall survival in

advanced PDAC patients compared to gemcitabine alone [105,106]. This drug combination

has been investigated in an analogous sustained-release system by Wade et al. [13] and using

this model, future work hopes to examine how the release profile of combination drugs such

as this might be optimised.

Due to wanting to reduce the computational complexity of the VCBM, we made some sim-

plifying assumptions that have introduced limitations into our model. To avoid simulating

excessively large numbers of cells, we have chosen to scale the spatial unit appropriately so that

we simulate on the order of ~106 cells. An improvement for this model, could be to parallelise

the agent update step to increase the speed of the simulation. In addition, we consider only a

2-dimensional cross section of the tumour, which is a simplification given tumour’s grow in

3-dimensional environments. While this is a simplification, since the measurements obtained

by Wade et al. [13] only measure tumour dimensions in a 2-dimensional cross-section, i.e.

width and length, we feel it is appropriate to model growth in 2 dimensions. In addition, since

the large effects felt in 3 dimensions will be based on surrounding organ tissue, we feel that
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since we model neighbouring tissue as having a homogenous effect on tumour growth, there

would be no significant impact of extending our model to 3 dimensions. Lastly, we model cell

uptake by point sink terms; however, a cell would uptake drug across its surface area through drug

molecule binding and internalisation. It would be possible to model this by extending the frame-

work from a single point uptake to a uniform uptake across a cell’s defined Voronoi cell region.

There are considerable avenues for future extensions of this work, and we feel the platform

we have built is easily extendable by other computational oncologists. In particular, future

modelling could extend the model to account for the dense fibrotic nature of PDAC [101,102]

and investigate the impact the release and delivery of drug. In addition, the model could be

used to simulate the efficacy of dual drug-loaded polymer and verify whether improvements

on the current treatment protocol exist. There are many applications of degradable polymeric

drug delivery systems in cancer therapy [10], for example, Rezk et al. [10] developed a pH-sen-

sitive polymeric carrier to study the local delivery of anticancer drug bortezomib. They fitted

the release profile of the drug from their carrier system to a mathematical formalism. Using

our pancreatic cancer growth VCBM, it would be possible to feed in their drug release mecha-

nism and simulate the efficacy under alternative protocols and predict the remaining tumour

volume. Lastly, while we did not consider gemcitabine resistance in our model, it does occur

in PDAC [3,4]. A simple extension of the model could consider the impact of resistance on the

performance of therapy like other works on resistance of chemotherapeutics using mathemati-

cal models [107,108].

Conclusion

Treatment for cancers with a poor prognosis, such as PDAC, are in vital need of novel thera-

peutic approaches that provide sustained, heightened, localised drug concentrations. The

computational platform developed in this work can recapitulate spatially heterogeneous

tumour growth and treatment with the chemotherapy drug gemcitabine. Investigating the effi-

cacy of gemcitabine released from a degradable polymeric fibre implant, we can suggest that a

minimum dosage for maximum efficacy exists based on the location of the device within the

tumour. Furthermore, certain release profiles are more effective than others, suggesting that

the way in which drug is released from these devices is crucial to improving patient treatment.

Moving forward, a study of this form could be used to help inform experimental design and be

integrated into future device development.
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