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Abstract

Karenia is a genus containing at least 12 species of marine unarmored dinoflagellates. Species 

of the genus can be found throughout the world in both oceanic and coastal waters. They are 

usually sparse in abundance, but occasionally form large blooms in coastal waters. Most Karenia 
species produce a variety of toxins that can kill fish and other marine organisms when they bloom. 

In addition to toxicity, some Karenia blooms cause animal mortalities through the generation 

of anoxia. At least one species, K. brevis, produces brevetoxin that not only kills fish, marine 

mammals, and other animals, but also causes Neurotoxic Shellfish Poisoning and respiratory 

distress in humans. The lipid soluble brevetoxin can biomagnify up the food chain through fish to 

top carnivores like dolphins, killing them. Karenia dinoflagellates are slow growers, so physical 

concentrating mechanisms are probably important for the development of blooms. The blooms are 

highly sporadic in both time and space, although most tend to occur in summer or fall months 

in frontal regions. At the present time, our understanding of the causes of the blooms and ability 

to predict them is poor. Given the recent discovery of new species, it is likely that new Karenia 
species and toxins will be discovered in the future.

1. Introduction

The genus Karenia includes about 12 described species (Table 1) of marine unarmored 

dinoflagellates. They have become well known because most produce toxins that kill fish 

and other marine organisms. At least one species, K. brevis, can produce the neurotoxic 

brevetoxins, which cause Neurotoxic Shellfish Poisoning (NSP) in humans and generates an 

aerosol that causes respiratory distress in humans.
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Karenia species are found throughout the world. Most have been described as a result of 

investigations into extensive animal mortalities or human health problems. K. mikimotoi was 

the focus of the earliest studies on species now included in the Karenia genus. It was initially 

described as Gymnodinium mikimotoi, which caused fish kills and oyster mortalities in 

Japan (Oda, 1935). Once Gymnodinium breve (now Karenia brevis), was discovered to be 

the cause of the Florida red tide that causes widespread animal mortality and affects human 

health (Davis, 1948; Gunter et al., 1948; Woodcock, 1948), it became one of the most 

studied species of harmful algae with extensive investigations into its toxicity, physiology 

and bloom formation.

For half a century, animal mass mortality, NSP, and respiratory distress caused by frequent 

blooms of K. brevis in the Gulf of Mexico, and animal mass mortality by K. mikimotoi 
in many parts of the world were thought to be the primary problems caused by Karenia. 

In the past few decades however, new blooms of newly discovered species of Karenia 
have developed in many parts of the world, also causing animal mass mortalities, NSP, 

and respiratory distress. We also now know that blooms in the Gulf of Mexico, while 

still dominated by K. brevis, are often mixtures of several species of Karenia. Although 

brevetoxin is the most intensively studied toxin produced by some Karenia species, 

gymnodimine, gymnocins, and a variety of toxic sterols, polyunsaturated fatty acids 

(PUFAs), and other compounds are produced by various Karenia species. It is likely that 

more species and more toxins of Karenia will be discovered in the future.

2. Systematics

Kareniaceae is a taxonomic family of unarmored dinoflagellates that had most recently 

been classified as Gymnodinium (Daugbjerg et al., 2000). Within the family are 3 genera, 

Karenia, Karlodinium, and Takayama, which all apparently kill fish (Bergholtz et al., 

2005). The genus Karenia G. Hansen & Moestrup 2000 was created as a result of a 

molecular and morphological study of athecate dinoflagellates previous contained within 

the Gymnodinium genus (Daugbjerg et al 2000). Karenia initially contained three species: 

K. brevis (Davis, 1948) G. Hansen & Moestrup, K. mikimotoi (Gymnodinium mikimotoi 
Miyake & Kominami ex Oda, 1935) and K. brevisulcata (F.H. Chang, 1999) G. Hansen 

& Moestrup, 2000. A major characteristic that differentiates the Kareniaceae from other 

dinoflagellates is that, instead of peridinin (which most dinoflagellates have), they have the 

accessory pigments fucoxanthin, 19’-butanoyloxyfucoxanthin, 19’-hexanoyloxyfucoxanthin, 

and 19-hexanoyloxyparacentrone 3-acetate (gyroxanthin-diester) (Hansen et al., 2000; 

Steidinger et al., 2008a).

Karenia are relatively small unarmored dinoflagellates with no distinct cell wall plates, so 

are quite pleiomorphic. As a result, cells can be relatively difficult to identify to species 

using standard light microscopy, particularly using standard fixatives such as Lugol’s iodine. 

Even the early studies (Wilson, 1967) described the wide range of morphologies that 

can exist in a clonal culture of Karenia brevis. Tools from molecular genetics are now 

helping considerably to distinguish the different species. For example, Haywood et al. 

(2004) compared the morphology and molecular taxonomy of six species of Karenia, which 

resulted in the description of three new species.
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The classification history of some species within the Karenia genus has been complex. 

For example, K. brevis was previously described as Gymnodinium breve (Davis, 1948), 

Gymnodinium brevis Davis, 1948 and Ptychodiscus brevis (Davis) Steidinger, 1979. K. 
mikimotoi was initially described from Japanese waters as Gymnodinium mikimotoi Miyake 

& Kominami ex Oda, 1935. Both Gymnodinium nagasakiense Takayama & Adachi, 1984 

and Gyrodinium nagasakiense Takayama & Adachi, 1984 were later found to be the same 

as G. mikimotoi, based on DNA sequencing data (Hansen et al., 2000). To complicate 

matters, in European waters, what is now called K. mikimotoi, was initially identified as 

Gyrodinium aureolum after Hulburt (1957) in response to a bloom in 1966 (Braarud and 

Heimdal 1970). The fact that blooms of European G. aureolum were associated in mass 

mortalities of fish, while American strains where the type material was isolated, did not have 

any harmful effects led the European strains to be referred to as Gyrodinium cf. aureolum, 

G. cf. nagasakiense and G. cf. mikimotoi (Gentien, 1998). It was not until Hansen et al. 

(2000) performed an in depth morphological, molecular and pigment study of a variety of 

geographically distinct strains of Gyrodinium aureolum and Gymnodinium mikimotoi that 

the European strain of G. aureolum was confirmed as being conspecific with G. mikimotoi 
(Hansen et al., 2000). This study also suggested that Gyrodinium aureolum Hulburt 1957 

should be placed in the genus Gymnodinium and renamed Gymnodinium aureolum (Hansen 

et al., 2000). This reclassification was further corroborated by Hansen (2001) and Tang et al. 

(2008), although Hansen (2001) suggested that the classification of Gymnodinium aureolum 
may be temporary and called for an in depth examination of the Gyrodinium/Gymnodinium 
genera.

There has been speculation as to whether K. mikimotoi has been introduced from Asia into 

European waters and should be considered an ‘exotic flagellate’ (Elbrachter, 1999, Gomez, 

2008). Partensky et al. (1988) as well as Chang (1996) suggested that differences observed 

in DNA content and the formation of small cells in culture was a basis for separation of the 

Asian and European strains, although molecular studies using partial LSU rDNA sequences 

where a single base substitution was observed could not support this (Guillou et al., 2002; 

Hansen et al., 2000). A recent in depth molecular study using concatenated rDNA and 

ITS sequences as well as the rbcL genes suggest the separation of K. mikimotoi into two 

different subgroups with K. mikimotoi from Europe and New Zealand being more closely 

related than isolates from Japan (Al-Kandari et al., in press.).

Over the past two decades, blooms of other Karenia species have been discovered in many 

parts of the world. In 1999, Karenia brevisulcata (first named Gymnodinium brevisulcatum) 

was observed in New Zealand in a bloom that produced fish kills and human respiratory 

distress symptoms very similar to those produced by K. brevis blooms (Chang, 1999). 

Karenia longicanalis (Yang et al., 2001) was described from a bloom in Hong Kong. Karenia 
digitata was identified from blooms in Japan and Hong Kong that caused large fish kills 

(Yang et al. 2000).

In the Atlantic, Botes et al. (2003a) described the new species K. cristata and K. 
bicuneiformis from blooms in South Africa. K. cristata blooms caused animal deaths and 

respiratory problems in humans. Haywood et al. (2004) described three new species, from 
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New Zealand, including K. bidigitata (now considered a synonym for K.bicuneiformis), K. 
selliformis, and K. papilionacea.

Although initially isolated from New Zealand (Haywood et al., 2004), K. selliformis has 

also been found in association with fish kills in Kuwait (Glibert et al., 2002, Heil et al., 

2001). Similar strains, based on very similar LSU rRNA gene sequences have also been 

reported from Chile and Tunisia as well (Guillou et al., 2002).

K. papilionacea was first described from New Zealand waters and the Gulf of Mexico 

(Haywood et al., 2004). In a re-examination of K. brevis-like cells from the South China Sea 

and Hong Kong region, Yeung et al. (2005) also identified K. papilionacea-like cells.

An additional new species from New Zealand, Karenia concordia, was described by Chang 

and Ryan (2004). This species co-occurred with K. mikimotoi and K. brevisulcata in a 2002 

New Zealand bloom.

De Salas et al. (2004a) described the new species K. umbella from blooms in Tasmania 

that caused fish kills. K. asterichroma from blooms in Tasmania caused large fish kills in 

aquaculture (de Salas et al., 2004b). K. asterichroma occurred in blooms with 5 other species 

of Karenia, so its contribution to toxicity is not known.

Almost certainly there is a bias towards species that form large blooms and/or cause animal 

mortalities or human illnesses. It seems likely that more Karenia species exist that simply 

have not caught the attention of researchers yet. For example, Henrichs et al. (2011) have 

suggested that the oceanic Brachidinium probably belongs in the Karenia genus. This 

indicates that Karenia species may be more widespread than currently thought.

For detailed description of Karenia species, see Daugbjerg et al. (2000) in general, 

Steidinger et al. (2008b) for species in the Gulf of Mexico, Haywood et al. (2004) and 

de Salas et al. (2005) for species in New Zealand, and de Salas et al. (2004a, b) for species 

in Tasmania.

In this paper, we will refer to only the most recent species name, which in many cases is 

different from what it was named in the original reference paper.

3. Life cycle

While we are aware of at least 12 species of Karenia, most research on the basic biology 

has been conducted on K. brevis. Wilson (1967) described its basic morphology and the 

amount of morphological variation that occurs in a culture. He observed cells 20–40 microns 

in size in culture but noted that cells up to 90 microns could be observed in the field. He also 

observed nonmotile spherical cells that appeared to be resting stages.

K. brevis reproduces asexually most of the time, dividing by binary fission once every 2 

to 10 days. Like most dinoflagellates, they divide primarily at night, the diel phased timing 

being under the control of a biological clock (Van Dolah et al., 2009). They occasionally 

produce planozygotes, indicating the capability for sexual reproduction. Wilson (1967) 

observed that up to 40% of the cells in culture existed as pairs at times and appeared to be in 
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the process of conjugation. Walker (1982) observed an increase in gamete production when 

different clones of K. brevis were mixed together, and when they were subjected to nitrogen 

limitation, blue or green light, and lower temperatures. She observed the aggregation and 

fusion of isogamous gametes and subsequent formation of planozygotes.

Hypnozygote resting cysts that could provide a benthic seed stock as part of the life 

cycle have been hypothesized (Wilson, 1967; Steidinger and Ingle, 1972; Steidinger, 1975). 

Wilson (1967) observed what appeared to be benthic resting cysts in cultures. Kang (2010) 

found many cells that appear similar to the resting cells observed in cultures of K. brevis 
at many locations in the sediments on the West Florida Shelf, but they have not yet been 

confirmed genetically as K. brevis. Because much of the area where K. brevis blooms is 

shallow enough that light reaches the bottom, it certainly seems plausible that part of its life 

cycle may be in the benthos. Sinclair and Kamykowski (2008) have shown that K. brevis 
will swim into sediment porewaters. The existence of such cysts or active benthic cells could 

alter our view of the possible initiation mechanisms of blooms of this species. Most research 

on K. brevis tends to focus on the water column. More research on the benthos as a habitat 

for part of the life cycle may prove fruitful.

The life cycle of K. mikimotoi has not been examined in such detail. A study on a 

K. mikimotoi culture from Japan revealed the presence of sexual reproduction with the 

formation of isogamous gametes, although with a low incidence (Ouchi et al., 1994). 

Observations of K. mikimotoi cultures grown for molecular and morphological analysis did 

not reveal the presence of any temporary cysts (Hansen et al., 2000). The formation of small 

cells through vegetative cell division has been observed in laboratory culture (Partensky 

and Vaulot, 1989). Small cells have also been observed in field samples towards the end of 

blooms (Partensky and Vaulot, 1989; Gentien, 1998).

4. Swimming behavior

K. brevis can swim approximately 1m/hr using 2 flagella over a rather wide range of 

environmental conditions (McKay et al., 2006). Studies by Heil (1986), Kamykowski et 

al. (1998) and Kerfoot et al. (2004) indicate that K. brevis exhibits both phototaxis and 

geotaxis. It tends to accumulate at the surface during the day and disperse downward 

throughout the water column at night. The studies by Heil (1986) showed that upward 

swimming began before the light period began and downward swimming began before 

the dark period began, suggesting that the diel swimming behavior is controlled by a 

biological clock. This was confirmed by her observation of continued diel vertical migration 

in continuous darkness for 4 days. Its swimming behavior is thought to interact with 

hydrographic features that cause it to become concentrated in certain hydrographic areas 

independent of growth, which could be a mechanism for the initiation of blooms. The 

physical accumulation at the surface can also help it become essentially monospecific in 

a parcel of water. This diel change in degree of aggregation at the surface can have a 

large impact on satellite imagery (Schofield et al., 2006). Mesocosm studies by Sinclair and 

Kamykowski (2008) showed that K. brevis can migrate to the sediment surface and into the 

sediments where higher nutrient concentrations occur.
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Vertical migration of K. mikimotoi within the water column has been observed to be 

dependent on water column stability with vertical migration occurring while the water 

column is well mixed. When stratification is greater migration does not occur (Dahl and 

Brockman, 1989; Gentien, 1998), and in some instances it has been suggested it can take 

longer than a day (Holligan et al., 1984). Field studies of K. mikimotoi revealed that when 

migration does occur it can undergo diel vertical migration at speeds of around 2m/hr 

(Koizumi et al., 1996), about twice as fast as K. brevis.

5. Physiology

Culture studies have been conducted primarily on K. brevis and K. mikimotoi. Overall, 

Karenia species do not appear to have any unusual physiological characteristics that would 

distinguish them from other dinoflagellate species that would predict that they could 

outcompete other species to dominate blooms.

5.1 Temperature

K. brevis has been observed in the field between 7 and 33°C, but optimal growth in 

laboratory cultures is between 22 and 28 °C (Magaña and Villareal, 2006; Vargo, 2009). K. 
mikimotoi has been found over a wide range of temperatures, 4–31°C (Gentien, 1998); 

however, in some instances growth was observed within a strict window within that 

temperature range. For example Gyrodinium aureolum isolated in 1977 from the Oslofjord 

by Tangen (assumed to be K. mikimotoi) did not grow at temperatures <10°C or > 25°C 

(Nielsen and Tǿnseth, 1991).

5.2 Salinity

K. brevis generally grows between salinities of 18 and 45 PSU, but has a maximum growth 

rate between 30 and 34 PSU (Magaña and Villareal, 2006; Maier Brown et al., 2006; Vargo, 

2009). Because K. brevis prefers full salinity seawater and is usually not found at salinities 

below about 24 PSU, blooms are generally found in coastal waters but not estuaries. The 

only time blooms occur in estuaries is during droughts when the salinity is high in the 

estuary (Steidinger and Ingle, 1972; Landsberg and Steidinger, 1998). They are also found in 

the high salinity lagoons of Texas (Tester et al., 2004).

Contrary to this generalization of high salinity that has been widely observed, Dortch et 

al. (1998) found K. brevis near the mouth of the Mississippi River in waters as low as 5 

PSU and numerous locations below 24 PSU. This appears to be a one-time event in which 

K. brevis populations from the western panhandle of Florida were transported westward 

towards the Mississippi Delta into low salinity water.

K. mikimotoi has been found over a wide range of salinities, from 9 to 35 PSU (Gentien, 

1998), however maximum growth in some culture studies was observed at salinities > 12 

PSU (Nielsen and Tǿnseth, 1991).
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5.3 Light

All Karenia species have chlorophylls a and c; and have fucoxanthin, 19’-

butanoyloxyfucoxanthin, 19’-hexanoyloxyfucoxanthin, and 19-hexanoyloxyparacentrone 3-

acetate (gyroxanthin-diester) as accessory pigments instead of peridinin, like most other 

dinoflagellates (Steidinger et al., 2008a). K. brevis and K. mikimotoi also have gyroxanthin 

(Richardson and Pinckney, 2004).

K. brevis has a compensation point around 6–8 μmol photo m−2 sec −1 and saturation around 

35–120 μmol photon m−2 sec −1 (Magaña and Villareal, 2006; Vargo, 2009). Schaeffer et 

al. (2007) show significant differences among clones of K. brevis in their photosynthetic 

characteristics and that they can grow well in a wide range of light intensities. This indicates 

they are adapted for the high light intensities they experience when aggregated at the surface 

as well as the low light intensities found in the bottom waters and sediment surface. Studies 

on changes in the pigment and biochemical composition of K. brevis under a variety of 

environmental conditions indicate that they are not significantly different from other species 

of dinoflagellates (Shanley, 1985; Higham et al., 2004; Evens and Leblond, 2004). While 

K. brevis appears well adapted to low light levels, it appears to use the photoprotective 

xanthophyll cycle pigments diadinoxanthin and diatoxanthin to tolerate high light intensity 

when it accumulates at the surface during the day (Evens et al., 2001).

K. mikimotoi seems to also tolerate a wide range of light intensities, from the surface to the 

pycnocline (Gentien, 1998). Cells exhibit photoadaptation mechanisms with cells growing in 

low light conditions containing more chlorophyll a, improving photosynthetic efficiency at 

low light intensities. Photosynthetic efficiency was also improved when dark adapted cells 

were returned to high irradiances (Garcia and Purdie, 1994). Saturation was observed to be 

approx 200 μmol photon m−2 sec −1 (Richardson and Kullenberg,1987).

5.4 Nutrition

Karenia dinoflagellates are considered primarily autotrophic, but they do have some 

capability for using organic compounds and ingesting microbes. Studies with field 

populations of K. brevis show that it can use nitrate, ammonia, urea, glutamate, and 

dissolved organic matter from Trichodesmium (Bronk et al., 2004). Sinclair et al. (2009) 

have shown that K. brevis takes up ammonia and urea at night as well as day, which could 

be important in obtaining nutrients during diel vertical migration. Baden and Mende (1979) 

showed that K. brevis can use glycine, valine, and methionine. Shimizu et al. (1995) found 

that urea and glycine added to cultures of K. brevis stimulates a shift to a more heterotrophic 

mode, and increased biomass and brevetoxin amount 2 to 4 fold. Mulholland et al. (2004, 

2006) have shown that K. brevis can utilize dissolved organic matter that has been excreted 

by Trichodesmium. Vargo and Shanley (1985) have shown that K. brevis uses organic 

phosphorus, using alkaline phosphatase. Jeong et al. (2005) and Glibert et al. (2009) have 

documented that cultures of K. brevis can ingest cells of the cyanobacteria Synechococcus 
and enhance its growth rate. It appears that K. brevis is nutritionally quite versatile, utilizing 

inorganic nutrients, organic nutrients, and phagotrophy on other microbes. The fact that K. 
brevis lives in the oligotrophic central Gulf of Mexico (Geesey and Tester, 1993) indicates 

that it can survive on very low levels of nutrients.
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Other species of Karenia probably have similar capabilities. Mountfort et al. (2006) 

found that glycolate and alanine added to cultures of K selliformis doubled the biomass 

and gymnodimine production. Nitrogen has been identified as an important nutrient in 

Karenia blooms. K. mikimotoi has been observed to utilise nitrate, nitrite and ammonium 

as N sources however urea and uric acid were not so well utilized in laboratory 

studies(Yamaguchi and Itakura 1999). Urea was observed to be taken up in the East China 

Sea (Li et al., 2009). Glutamine and tryptophan were utilised as well as both organic and 

inorganic forms of P (Yamaguchi and Itakura, 1999). Gentien (1998) has suggested that 

K. mikimotoi is stimulated by the organics released from decaying diatom blooms. A field 

study on K. mikimotoi from the Ushant front in the western English Channel revealed 

ammonia to be the preferred nitrogen source. In addition, dark N uptake did not occur in 

nutrient replete cells, while it was observed in nutrient limited cells (Dixon and Holligan, 

1989).

6. Biotic interactions

In addition to K. brevis ingesting other microbes, other microbes can also attack K. brevis. 

Paul et al. (2002) isolated an apparent virus that lyses K. brevis. Onji et al. (1999, 2000) 

have isolated a virus that lyses K. mikimotoi. What role such viruses may play in the 

population dynamics of Karenia species is unknown at this time. Certainly viruses can 

spread more easily in a dense bloom, causing their decline, but some blooms maintain their 

high densities for many months.

Doucette et al. (1999) isolated two strains of bacteria that were lethal to K. brevis and K. 
mikimotoi. Subsequent studies by Mayali and Doucette (2002) revealed a complex situation 

in which the bacteria were lethal only when K. brevis was present at high concentrations, 

but the toxic bacteria were rendered much less toxic in the presence of certain other bacteria. 

Roth et al. (2008) examined two strains of bacteria that can kill K. brevis and also found a 

complex interaction between bacteria and Karenia lethality.

Experiments conducted by Collumb and Buskey (2004) suggest that the copepod Acartia 
tonsa does not ingest K. brevis, a result of selective feeding. It was shown that this was not 

the result of brevetoxin or direct toxicity. Breier and Buskey (2007) argued that K. brevis 
is nutritionally deficient to Acartia tonsa, leading to reduced grazing rates and reproduction 

rates. The same observations were made on two species of rotifers given the opportunity 

to feed on K. brevis (Kubanek et al., 2007). Huntley et al. (1986) and Sykes and Huntley 

(1987) found that that two species of copepods would not eat K. brevis but were affected 

by toxins in the water that caused their heart rate to increase and the loss of control of their 

muscles. Turner and Tester (1989) found that three species of copepods that live in the same 

area as K. brevis ate the toxic dinoflagellate with no apparent problems. Two other species 

of copepods would not ingest K. brevis. The unknown mechanism (discussed below as 

possible allelochemicals) behind this may reduce grazing pressure by metazoan zooplankton 

on K. brevis relative to other competitive algal species. In field studies, Lester et al. (2008) 

have shown that the zooplankton communities inside blooms of K. brevis are quite different 

from those outside the blooms. This could be due to specific effects that K. brevis has on 

zooplankton, or to responses to overall algal biomass inside and outside the bloom, or to 
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other environmental differences in the water masses that led to the bloom occurring in some 

water masses and not others in the first place. K. mikimotoi has also been observed to be 

toxic to rotifers (Zou et al., 2010) and have a negative effect on some ciliates (Hansen, 

1995), however in some mesocosm experiments, reduction of grazing pressure has resulted 

in an increase in K. mikimotoi numbers (Turner and Graneli, 2006). It should also be noted 

that some dinoflagellate species can have an adverse impact on K. mikimotoi. Uchida et 

al. (1999) observed the dinoflagellate Heterocapsa circularisquama to kill K. mikimotoi at 

certain cell densities. K. mikimotoi was also observed to have a negative impact on H. 
circularisquama at certain cell densities.

7. Allelochemistry and toxin production

Kubanek et al. (2005) and Prince et al. (2008a, b) found that K. brevis produces 

allelochemical compounds that suppress the growth of most other species of algae tested. 

Prince et al. (2010) concluded that these compounds are not brevetoxin, but a variety 

of unstable, polar organics. Poulson et al. (2010) found that K. brevis produces multiple 

compounds other than brevetoxin that are allelopathic to other phytoplankton species and 

showed that there can be complex interactions.

Similar compounds have been observed in other Karenia species. Yasomoto et al. 

(1990) isolated two toxins, a glucolipid (1-acyl-3-digalactosylglyercol) and a fatty acid 

(octadecapentaenoic acid (OPA)) from K. mikimotoi. Arzul et al. (1995) found that 

polyunsaturated fatty acids (PUFAs) from K. mikimotoi inhibit diatom growth and bacterial 

bioluminescence and are hemolytic. Multiple investigators have observed that K. mikimotoi 
produces lipophylic toxins and observed toxic effects from a variety of PUFAs in tissue 

culture studies (Bodennec et al., 1995; Fossat et al., 1999; Sola et al., 1999). Gentien et 

al. (2007) also observed allelopathic effects of K. mikimotoi PUFAs on diatoms and these 

compounds also show a degree of autotoxicity. Chang (2011) found that K. concordia, K. 
brevisulcata, and K. mikimotoi produce lipophilic allelochemicals that inhibit other species 

of algae. The allelochemicals were especially effective against cryptophytes, raphidophytes, 

prasinophytes, and diatoms, but less effective against other dinoflagellates. These cytotoxic 

compounds disrupted cell membranes, apparently by altering ion pumps and osmotic 

balance. Chang et al. (2008) showed that K. concordia in New Zealand had hemolytic 

and cytotoxic activity. Neely and Campbell (2006) showed that K. brevis and K. mikimotoi 
have hemolytic activity. Mooney et al. (2007) showed that K. brevis, K. mikimotoi, K. 
papilionacea, and K. umbella all produce unusual lipids, sterols, and PUFAs and suggested 

that most species in Kareniaceae produce PUFAs and sterols that are ichthyotoxic. The mode 

of toxicity of the sterols is unknown but it is thought that they could have allelochemical 

properties as well. The toxicity of the PUFAs can be enhanced by lipid peroxidation in the 

presence of reactive oxygen species (Mooney et al., 2007). Zou et al. (2010) showed that K. 
mikimotoi is hemolytic but needs direct cell contact to kill.

Most of these bioactive compounds have not been fully characterized, but one has been well 

described. Gymnodimine is a spirocyclic imine ring produced by K. selliformis (Miles et 

al., 2003; Mackensie et al., 2004; Munday et al., 2004; Mountfort et al., 2006; Molgó et 

al., 2007; Munday, 2008) that activates calcium receptors and alters nicotic actylocholine 
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receptors in muscles (Molgó et al., 2007) and acts as a neuromuscular blocking agent 

(Mountfort et al, 2006). As a result, it causes widespread death of both invertebrates and 

vertebrates. It is not known if it has any allelochemical properties. Munday et al. (2004) 

concluded that gymnodimine may be fairly widespread in marine food webs. Gymnodimine 

has been found in shellfish in New Zealand, Tunisia, and Canada, but no human health 

effects have been observed (Mackensie et al., 1996; Seki et al., 1996; Munday et al., 2004; 

Molgó et al., 2007; Munday, 2008). K. mikimotoi has been observed to produce Gymnocin 

A and B (Satake et al., 2002, 2005) however these have been observed to be only weakly 

toxic to fish (Silke et al., 2005).

In addition to organic compounds, Marshall et al. (2005a, b) have shown that many 

algae produce superoxide for allelopathic purposes against other algae and bacteria. K. 
brevis and K. mikimotoi were among the larger producers of superoxide. Interestingly, 

the raphidophytes Chattonella antigua, C. marina, Heterosigma akashiwo, and Fibrocapsa 
japonica that also produce brevetoxin produce large amounts of superoxide in even higher 

concentrations (Mooney et al., 2011).

It appears that all Karenia species that have been studied produce allelochemicals. Many 

species also produce compounds that kill various marine animals. As most of these 

compounds are not identified, we do not know the overlap between these two groups 

of compounds. It certainly seems plausible that most of these compounds that are 

allelochemicals against other microbes (algal competitors; viral, bacterial, and protozoan 

predators) could kill larger animals because of biochemical similarities, particularly at the 

high concentrations generated in blooms. Similarly, as many of the compounds are lipid 

soluble, it can be hypothesized that a small fraction of these allelochemicals can make 

their way through the food web to humans. While there is no evidence yet that brevetoxin 

serves as an allelochemical, such studies have investigated only a small fraction of the biotic 

interactions possible. That some of the cytotoxic allelochemicals produced from Karenia 
species appear to affect ion transport across membranes suggests that brevetoxin, which 

affects sodium channels, may serve as an allelochemical. Alternatively, Errera and Campbell 

(2011) suggest that brevetoxin may aid in osmoregulation through its effects on the sodium 

channel.

Allelochemistry can be advantageous against microbial predators because cell to cell contact 

can expose the predator to a toxin before the algae is killed. Inhibition of the microbial 

predator leaves the toxic algal cell alive to propagate its genotype. This will not work against 

large metazoan grazers that gather many algal cells at a time. The algal cell with the toxin 

is dead by the time the toxin affects the large predator and the toxic genotype is lost. 

Furthermore, the death of the large predator helps all competing algal species and genotypes, 

not just the one producing the toxin. Also the toxin from one cell is probably not enough to 

affect a large animal.

Even if not naturally selected for attacking or deterring metazoans, allelochemicals aimed at 

microbes can still affect metazoans because of similar biochemical sensitivities, especially 

at high algal concentrations. This may prolong dense blooms once high concentrations of 

toxin have reduced the predator population, but does not help low concentrations of algae 
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to develop into a bloom in the first place. Diel vertical migration and Langmuir circulation 

cells can lead to high concentrations locally, and this may help an initially sparse population 

to concentrate enough to generate high enough concentrations of allelochemicals to affect 

metazoans.

8. Animal deaths

Whether the compounds produced by Karenia are allelochemicals or serve some other 

purpose, their biochemical mechanisms can affect a variety of animals. In some cases where 

they occur at sublethal concentrations, instead of directly causing mortality, the compounds 

are incorporated into animal tissues, such that they can then biomagnify up the food chain 

to concentrations that are lethal. In other cases, certain animals appear to simply not be 

susceptible to the toxin. For example, brevetoxin appears to not be toxic to most filter 

feeding molluscs, but can be toxic to animals that eat the molluscs. Landsberg (2002) has 

reviewed the literature on the wide variety of animals that are killed by various algal toxins.

A complicating factor is that many Karenia species probably produce more than one toxin. 

Therefore animal mortalities associated with blooms of Karenia cannot always be blamed 

on any one particular toxin. For example, K. brevis, in addition to brevetoxin, produces O,O-

dipropyl(E)-2-(1-methyl-2-oxopropylidene) phosphorohydrazidothioate-(E)oxime, which is 

toxic to fish (Mazumder et al., 1997). Furthermore, many blooms are composed of more 

than one species of Karenia, making it difficult it difficult to assign toxins and effects to 

particular species. For example, many species of Karenia tend to bloom together along 

the west coast of Florida (Steidinger, 2009). Blooms in New Zealand in 1992–1993 and 

2002 included K. concordia, K. mikimotoi, and K. brevisulcata and both gymnodimine and 

brevetoxin were found in the tissues of animals (Chang et al., 1996; Satake et al, 1996; 

Ishida et al, 1996; MacKensie et al, 1996; Seki et al, 1996; and Chang and Ryan, 2004).

Another complicating factor is that toxicity is usually the result of high biomass. High 

biomass not only generates large amounts of toxins, but also mucilage and anoxia in certain 

situations. Therefore, it is not always easy to distinguish mortality from toxicity, mucilage 

interference with respiration, or anoxia or some combination of the three.

Blooms of K. mikimotoi have killed fish and invertebrates throughout the world (Gentien, 

1998), including Japan (Oda, 1935; Honjo et al., 1990; Ono et al, 1996; Matsuyama et al., 

1998; Okaichi, 2004), Korea (Park et al., 1989; Kim et al., 1995), and Europe (Braarud and 

Heimdal, 1970; Helm et al., 1974; Tangen, 1977; Lindahl, 1983; Gentien et al., 1998; Silke 

et al., 2005; Davidson et al., 2009). It can be found in many other places, but not necessarily 

associated with mass animal mortality. Other species of Karenia have much more restricted 

distributions.

K. brevis lives primarily in the Gulf of Mexico. Records of fish kills in the Gulf of Mexico 

go back to at least 1530 (Steidinger et al., 1998) and 1648 (Magaña et al., 2003). It was 

not until 1946–1947 that K. brevis was discovered to be the cause (Davis, 1948; Gunter et 

al., 1948; Woodcock, 1948). Since then, many mass mortalities of many species of fish have 

been documented, along with invertebrates, seabirds, turtles and mammals (Gunter et al., 
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1947, 1948; Landsberg, 2002; Steidinger et al., 2008a; Landsberg et al., 2009). K. brevis 
blooms on the west coast of Florida kill enough fish to affect population size and the overall 

fish community (Gannon et al., 2009; Landsberg et al., 2009). Blooms along the Texas coast 

have occurred less frequently, but have also resulted in mass fish kills (Buskey et al., 1996; 

Magaña et al., 2003).

Toxicity to invertebrates is more sporadic. While some bivalves are harmed by K. brevis 
(Leverone et al., 2006; Summerson and Peterson, 1990), many filter feeding molluscs appear 

to not be affected by brevetoxin, leading to their accumulation of the toxin in their fatty 

tissues and thus leading to Neurotoxic Shellfish Poisoning (NSP) in humans (Landsberg et 

al., 2009). Other invertebrates are killed by blooms of K. brevis, although we cannot be 

sure at this time if it is due to brevetoxin or other toxins produced by K. brevis, or toxins 

produced by other species of Karenia that tend to coexist with K. brevis in these blooms. 

Landsberg (2002) provides a good review of the wide variation in effects on invertebrates.

In some cases, widespread mortality is due more to anoxia resulting from dense blooms. 

In 1971 and 2005, large blooms of K. brevis occurred on the West Florida Shelf during 

the summer when water temperatures were particularly high and vertical stratification of 

the water column was strong (Smith, 1975; Landsberg et al., 2009). This led to anoxia of 

the bottom waters and mass mortality of the benthic community over thousands of square 

kilometers of the West Florida Shelf.

Marine mammals can apparently die from brevetoxin by either breathing the aerosol or from 

their diet. Landsberg and Steidinger (1998) argue that widespread death of manatees occurs 

along the west coast of Florida in the spring when the manatees undergo migration in the 

area and only in years of low rainfall and runoff so that the salinity in the estuaries is not 

too low for the growth of K. brevis. Seagrass and/or filter feeding epiphytes can apparently 

accumulate high concentrations of brevetoxin and then kill manatees at a later date when no 

red tide is apparent.

Flewelling et al. (2005) argued that bottlenose dolphins can die from brevetoxin in the 

absence of a red tide due to biomagnification of brevetoxin up the food chain to fish that are 

eaten by dolphins. Naar et al. (2007) have documented that many species of fish accumulate 

brevetoxin in their tissues and it remains many months after their exposure to K. brevis 
blooms.

Flewelling et al. (2010) have documented brevetoxin in sharks and rays from mass deaths 

associated with blooms of K. brevis. Large numbers of seabirds are sometimes also killed 

during blooms of K. brevis. This appears to be due to them consuming contaminated fish or 

invertebrates (Forrester et al., 1977; Steidinger et al. 2008a; Landsberg et al., 2009).

Blooms of other Karenia species that have killed animals have appeared only in the last few 

decades. Blooms of K. cristata in South Africa in 1989–1990 killed abalone (Botes et al., 

2003b). Blooms of K. digitata caused large fish kills in Japan and Hong Kong in 1995–1996 

(Yang et al., 2000). Chang (1999) and Wear and Gardner (2001) found that a bloom of 

K. brevisulcata in Wellington Harbour, New Zealand caused widepread death of benthic 

animals and fish. An analysis of the lipid soluble toxins from cultures of K. brevisulcata 
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indicated that they affected sodium channels like brevetoxin and other characteristics were 

similar to brevetoxin. Chang et al. (2008) showed that K. concordia killed large numbers 

of fish and shellfish in New Zealand in 2002 and had hemolytic and cytotoxic activity. In 

Tasmania, blooms of K. umbella in 1989 and K. asterichroma in 2003 led to large fish kills 

(de Salas et al., 2004a, b).

9. Human health impacts

While a number of toxins produced by Karenia species can kill animals, only brevetoxin 

is known to affect human health. While the effects of brevetoxin can be severe, no human 

deaths have been directly attributed to the toxin (Plakas and Dickey, 2010).

9.1 Brevetoxin

Brevetoxin is the toxin from Karenia species that affects human health and has been studied 

the most. Brevetoxins are produced by K. brevis, and there is some evidence that K. 
bicuneiformis, K. brevisulcata, K. concordia, K. cristata, K. papilionacea, and K. selliformis 
may also produce brevetoxins or similar molecules. The raphidophytes Chattonella antigua, 
C. marina, Fibrocapsa japonica, and Heterosigma akashiwo also produce brevetoxins 

(Landsberg, 2002; Furey et al, 2007; Ramsdell, 2008).

The brevetoxins are lipid soluble cyclic polyether compounds with molecular weights of 

around 900 that are tasteless, odorless, and heat stable. K. brevis produces two parent 

compounds, PbTx-1 and PbTx-2, which have somewhat different structures (Furey et al., 

2007; Ramsdell, 2008). PbTx-1 is somewhat flexible with 10 fused polyether rings. PbTx-2 

is more rigid with 11 polyether rings (Furey et al., 2007). PbTx-1 is more toxic but 

PbTx-2 occurs in higher concentrations (Steidinger et al., 2008a; Plakas and Dickey, 2010). 

Brevetoxins are polyketides synthesized by the polyketide synthase (PKS) pathway (Wright 

and Cembella, 1998). While there were earlier speculations that perhaps bacteria associated 

with K. brevis actually produce brevetoxin because laboratory cultures sometimes lose their 

ability to produce brevetoxin, genetic studies have now confirmed that the PKS genes exist 

in the K. brevis genome (Snyder et al., 2003, 2005; Monroe and Van Dolah 2008; Monroe 

et al., 2010). It is possible that bacteria are involved by stimulating the production of 

brevetoxin, especially if it serves as an allelochemical. K. brevis also produces brevisamide 

and brevisin, which are 4-fused cyclic ether rings and brevenals, which are 5-fused cyclic 

ether rings (Bourdelais et al., 2004, 2005; Ramsdell, 2008; Van Wagoner et al., 2010). These 

are thought to be incomplete products of the PKS biosynthetic pathway. Brevenal acts as an 

antagonist to brevetoxin and may also be useful as a therapeutic agent against cystic fibrosis 

(Potera, 2007).

In addition to PbTx-1 and PbTx-2, another 10 congeners are the result of small 

modifications, primarily reductions, oxidations, and hydrolysis, of these two main 

compounds, primarily once they are released from the cells and are modified by physical/

chemical processes or microbes in the water, and metabolism by animals in the food chain. 

Each genotype of K. brevis produces somewhat different amounts and ratios of these two 

toxins, and the array changes with environmental and physiological changes (Lekan and 

Tomas, 2010; Errera et al., 2010). Even more changes occur as the brevetoxins enter 
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the water, air, and food web, and are metabolized. Genetic variation was more important 

than environmental variation (temperature, salinity, nutrients) in determining amount of 

brevetoxins. Errera et al. (2010) found a 10-fold range in the amount of brevetoxin and 

brevenal produced by different genotypes of K. brevis. They also observed a shift to the 

more toxic PbTx-1 at lower salinity. Recently, Errera and Campbell (2011) have found that a 

rapid decrease in salinity can induce a 10-fold increase in brevetoxin production.

Brevetoxin is a long molecule that spans voltage gated sodium channels, causing them to 

remain open for an excessive amount of time, leading to uncontrolled sodium influx and 

depolarization of the membrane (Ramsdell, 2008). As a result of the persistent activation and 

repetitive firing of neurons, brevetoxin affects neuromuscular junctions, which can lead to 

respiratory distress; and affects cardiac muscle, leading to slow and arrhythmic heart beat 

(Ramsdell, 2008).

In several cases, Karenia species other than K. brevis have caused brevetoxin-like symptoms 

in humans. K. concordia in New Zealand caused respiratory distress and NSP in humans 

(Chang, 2011). Blooms of K. brevisulcata in New Zealand in 1998 caused mass mortality 

of animals and aerosols from the blooms affected the respiration of humans (Truman, 

2007). The symptoms were similar to those produced by K. brevis in the Gulf of Mexico. 

An analysis of the lipid soluble toxins from cultures of K. brevisulcata indicated that 

they affected sodium channels like brevetoxin, and other characteristics were similar to 

brevetoxin, but not completely. K. cristata bloomed in South Africa in 1995–1996 and 

caused respiratory problems in humans (Botes et al., 2003a, b). It is not known if brevetoxin 

was involved in this case. Brevetoxin specific ELISA tests indicated the presence of 

brevetoxin in K. bicuneiformis, K. papilionacea, and K. selliformis (Haywood et al., 2004). 

To date, there has been no actual confirmation of brevetoxin in these 6 species by LC-MS 

however.

Brevetoxin can affect human health in three ways – by ingestion of contaminated food, by 

skin contact in water, and by inhalation of the aerosol.

9.2 Neurotoxic Shellfish Poisoning

Neurotoxic Shellfish Poisoning (NSP) results from humans eating filter feeding molluscs 

that have accumulated brevetoxin in their fatty tissues. We now know that brevetoxin can be 

found in the tissues of other seafood as well, such as non-filter feeding molluscs (Poli et al., 

2000) and fish (Naar et al., 2007). The toxin tends to accumulate more in the fatty tissues of 

organs than in muscle tissue. Because humans usually eat only the muscle tissue of fish, but 

the entire body of shellfish, shellfish has been the primary source of NSP.

Because of a monitoring program and the banning of shellfish harvesting during red tides 

along the west coast of Florida, NSP cases are now extremely rare. There are no restrictions 

on the consumption of fish however, because it has been assumed that fish exposed to 

brevetoxin die and are not available for consumption. We now know that fish exposed to 

sublethal concentrations in fact do accumulate brevetoxin (Naar et al., 2007). While the 

concentrations in the muscle tissue is less than that found in the liver and other organs or 

in the whole bodies of shellfish, we do not know what effects these low concentrations of 
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brevetoxin could have on human health. Interestingly, Kirkpatrick et al. (2010a) have found 

increased incidences of hospital admittances for gastrointestinal disorders during periods of 

red tide along the west coast of Florida.

NSP has occurred primarily in the Gulf of Mexico, particularly the west coast of Florida, 

but more recently it has also occurred in North Carolina due to an unusual transport of a K. 
brevis bloom from the west Florida coast to North Carolina by the Gulf Stream (Tester et 

al., 1989; Tester and Stumpf, 1991) and New Zealand where a new bloom of K. concordia 
developed (Chang, 2011). While blooms of Karenia are largest and most frequent in the 

Gulf of Mexico, few cases of NSP occur there because of careful monitoring. Cases of NSP 

occurred in North Carolina and New Zealand because new blooms occurred where they had 

not occurred before and were unexpected and thus not monitored for seafood safety.

After the consumption of brevetoxin contaminated food, symptoms begin within minutes to 

hours but diminish within a few days (Watkins et al., 2008; Plakas and Dickey, 2010). The 

primary gastrointestinal and neurological symptoms are abdominal pain, nausea, vomiting, 

diarrhea, headache, vertigo, numbness of lips, mouth and face, dilated pupils, muscle 

pain, loss of coordination, partial paralysis, convulsions, disorientation, tingling sensations, 

temperature sensation reversals, and respiratory distress (Watkins et al., 2008; Kirkpatrick et 

al., 2004; Fleming et al., 2011).

9.3 Skin contact

Because some brevetoxin is released into the water, primarily because of cell lysis, 

swimmers can experience eye and nose irritation (Kusek et al, 1999; Ramsdell, 2008). This 

appears rare and is not considered to be a major health hazard.

9.4 Aerosol

Because Karenia is a delicate, unarmored dinoflagellate, the cells can be ruptured relatively 

easily by turbulence at the surface or along the shore, releasing the brevetoxin into the air as 

an aerosol. Humans that breathe brevetoxin contaminated aerosols immediately experience 

coughing, sneezing, runny nose, watery eyes, a burning sensation in the nose and throat, 

chest tightness, and shortness of breath (Fleming et al., 2005; Abraham and Baden, 2006). 

Large aerosol particles (6–10 microns) only make it into the upper respiratory tract, causing 

throat and nasal irritation, while small aerosol particles (0.1–0.2 microns) make it into the 

lower respiratory tract, making breathing difficult (Ramsdell, 2008).

Kirkpatrick et al. (2006) found pneumonia, bronchitis, asthma and respiratory distress to 

increase 31%, 56%, 44% and 64% respectively during a red tide up to 1.6 km inshore 

along the west coast of Florida. Humans with asthma are particularly sensitive to brevetoxin 

aerosols and often end up in the hospital with severe symptoms (Kirkpatrick et al., 2004, 

2011a; Abraham and Baden, 2006; Fleming et al. 2007, 2011)

Humans have experienced respiratory distress from blooms of other species of Karenia in 

New Zealand (Truman, 2007; Chang, 2011), South Africa (Botes et al., 2003a, b), and New 

Jersey, USA (Mahoney et al., 1990).
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9.5 Other effects

Some studies have indicated that brevetoxin may affect the immune system (Bossart et al., 

1998; Benson et al., 2005; Fleming et al., 2011). Radwan and Ramsdell (2008) showed that 

brevetoxin forms covalent DNA adducts and is thus potentially mutagenic.

10. Ecosystem pathways for toxins

Brevetoxin is the only toxin that has been studied enough that we have some understanding 

of the pathway of the toxin from the Karenia cell to the animals and humans it affects.

K. brevis produces PbTx-1 and PbTx-2 as the primary endproducts of the PKS biosynthetic 

pathway and the other congeners are the result of modifications further down the ecosystem 

pathway. The changing suite of congeners down the ecosystem pathway is complex and 

we only understand parts of it. As organisms metabolize brevetoxin, primarily through the 

cytochrome P450 system (Fleming et al., 2011), the resulting congeners tend to be more 

polar.

If there is sufficient turbulence in the water, such as at the surface and at the shoreline, the 

delicate cells can be disrupted, releasing the brevetoxins into the water. These brevetoxins 

appear to be the most toxic to fish. Laboratory studies have shown that fish exposed to 

intact K. brevis cells are much less affected than fish exposed to disrupted cells (Ramsdell, 

2008). The brevetoxin is thought to be taken up by fish and other animals at the gill surface. 

Brevetoxin in the water in the presence of other species of algae declines as a result of 

uptake and/or degradation (Myers et al., 2008). Other microbes undoubtedly also cause a 

decline in brevetoxin concentrations in water.

Some of the brevetoxin can end up at high concentrations in the surface microlayer 

(Rumbold and Snedaker, 1999). These can then end up in aerosol particles in the air and 

ultimately inhaled by humans and marine mammals. Photodegradation (Hardman et al., 

2004) and other physical/chemical processes alter the suite of brevetoxin congeners such 

that a different mix is observed in the air (Pierce et al., 2003, 2005; Cheng et al., 2005, 

2010). Brevetoxin aerosols can be found at least 1.6 kilometers inland (Kirkpatrick et al., 

2010b).

Intact cells are harvested by various filter feeders. Tester et al. (2000) have shown that 

planktonic copepods can feed on K. brevis and accumulate brevetoxin in their tissues, which 

can then be transferred up the food chain to fish. Some species of copepods appear to not be 

affected by brevetoxin, thus accumulating it, while others avoid feeding on K. brevis, thus 

not accumulating brevetoxin. Higher up the food chain, many fish species have also been 

found to accumulate brevetoxin, primarily in the fatty tissues of their organs, but some is 

also found in the muscle tissues that humans eat (Naar et al., 2007). Long after a bloom, up 

to 1500 ppb of brevetoxin in muscle and 2700 ppb in internal organs were found. Animals 

such as dolphins that get a large part of their diet from fish can end up with large amounts 

of brevetoxin in their tissues as well, leading their death (Flewelling et al., 2005). Fire et 

al. (2007) found low levels of brevetoxin in dolphins in Sarasota Bay in the absence of any 

obvious recent blooms.
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Dense blooms tend to kill animals quickly, so the brevetoxin ends up in the detrital 

food chain. Brevetoxin can be found in the sediments (Mendoza et al., 2008). Sublethal 

concentrations however, do not kill animals initially, allowing brevetoxin to accumulate in 

tissues and then propagate up the food chain, until high enough concentrations build up in 

the tissues of top carnivores that they become lethal. This propagation of brevetoxin up the 

food chain can lead to the death of animals in places and times when there are no blooms of 

K. brevis (Flewelling et al., 2005). As a result, dense blooms may tend to kill animals at the 

lower end of the food chain, while sublethal concentrations of K. brevis may eventually lead 

to the death of animals at the upper end of the food chain.

Benthic filter feeding molluscs such as mussels, clams, and oysters can also feed on K. 
brevis, accumulating high concentrations of brevetoxin, primarily in the fatty tissues of 

their organs (Landsberg et al., 2009). It is the consumption of the whole body of these 

molluscs that can lead to NSP. The suite of brevetoxins changes as they are metabolically 

processed by the animals (Pierce et al., 2004; Weidner et al., 2004). Depuration time in 

shellfish is typically 2–8 weeks (Watkins et al., 2008). Because filter feeding mollusks are 

so good at harvesting large amounts of sparse algal cells, a dense bloom is not needed 

to accumulate high amounts of brevetoxin in their tissues. For this reason, shellfish are 

considered potentially toxic in the presence of 5000 cells/l of K. brevis, concentrations far 

below that needed for visual or satellite detection or the amount needed to kill fish.

Manatees are herbivores that eat seagrasses and macroalgae, but they also die in blooms 

of K. brevis (Landsberg and Steidinger, 1998; Flewelling et al., 2005). It appears that filter 

feeders such as tunicates attached to the blades of seagrass accumulate brevetoxin and end 

up ingested by manatees (O’Shea et al., 1991; Landsberg et al., 2009).

A complicating factor for air breathing animals such as dolphins, manatees, turtles, and sea 

birds is that they have two major routes of exposure, diet and aerosol, and it is not always 

easy to determine the relative importance of each in contributing to the animal’s death.

11. Global distributions

Our understanding of the global distribution of Karenia species is probably very incomplete 

because most studies are initiated only in response to obvious blooms and that is how 

most Karenia species have been discovered. Zingone et al. (2006) conducted a careful 

examination of potentially toxic phytoplankton species along the west coast of Italy and 

found K. bicuneiformis, K. cristata, K. mikimotoi, K. papilionacea, and K. selliformis 
present, even though they were not creating blooms. It is likely that more studies like this 

in other parts of the world will discover more species of Karenia and extend the spatial 

distribution of species already known.

K. mikimotoi and K. selliformis appear to be worldwide in distribution. K. mikimotoi has 

been documented in the Gulf of Mexico, Atlantic coast of North America, South Atlantic, 

North Atlantic coast of Europe including Spain, France (Gentien, 1998), Ireland (Raine 

et al., 2001; Silke, 2005; O’Boyle and Silke, 2010), Great Britain (Pingree et al., 1975, 

Holligan et al., 1984; Davidson et al., 2009) Norway, (Braarud and Heimdal, 1970, Tangen, 
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1977) Sweden, (Lindahl, 1983, Lindahl, 1986, Graneli et al., 1989) Denmark (Carstensen 

et al., 2004), Germany (Elbrachter, 1999), Japan (Honjo, 1994; Yamaguchi, 1994; Ono et 

al., 1996; Okachi, 2004), Korea (Park et al., 1989; Kim et al., 1995), Hong Kong (Gentien, 

1998), China (Qi et al., 2003; Li et al., 2009) New Zealand (Wear and Garder, 1998; Chang 

,1999; Chang and Ryan, 2004). Descriptions and impacts from K. mikimotoi blooms are 

discussed in these papers.

K. selliformis has been found in the Gulf of Mexico (Haywood et al., 2007), Canada, New 

Zealand, Australia, Mediterranean, Tunisia (Munday et al., 2004) and Kuwait (Heil et al., 

2001).

Other species of Karenia appear to have much more restricted distributions. K. brevis lives 

primarily in the Gulf of Mexico, where it is found in low concentrations in the open waters 

(Geesey and Tester, 1993), but forms toxic blooms frequently along the west coast of Florida 

and occasionally along the Texas and Mexico coasts (Steidinger, 2009; Magaña et al., 2003). 

The Gulf Stream occasionally carries blooms originating in the Gulf of Mexico along the 

east coast of North America (Murphy et al., 1975; Tester et al., 1989; Tester and Stumpf, 

1991; Tester and Steidinger, 1997). K. brevis was first discovered to be the cause of fish 

kills in 1946–1947 (Davis, 1948; Gunter et al, 1948; Woodcock, 1948), but records of fish 

kills going back to at least 1530 (Steidinger et al., 1998) and 1648 (Magaña et al., 2003) 

suggesting that K. brevis has been forming blooms for centuries at least and probably much 

longer in the Gulf of Mexico. Much of the research has been conducted along the west coast 

of Florida (Steidinger, 2009). These blooms have been studied for over 50 years now. We 

now know that K. longicanalis, K. mikimotoi, K. papilionacea, and K. selliformis also exist 

in the Gulf of Mexico (Steidinger et al, 2009; Steidinger, 2009). Cortez-Altamirano et al. 

(1996), Figueroa-Torres and Weiss-Martinez (1999), and Licea et al. (2004) have examined 

blooms of K. brevis in Mexico.

Other species of Karenia have begun forming HABs in other parts of the world such as 

New Zealand, Tasmania, Ireland, Japan, South Africa, Chile, and the Mediterrean Sea. 

These other species of Karenia kill fish and other marine life, but appear to not have the 

same impacts on human health as Karenia brevis has in the Gulf of Mexico. Recently, 

blooms of K. concordia producing brevetoxin have caused NSP in New Zealand (Chang, 

2011). Blooms of K. brevisulcata have also occurred in New Zealand (Wear and Gardner, 

2001; Chang, 1999; Chang and Ryan, 2004). Blooms of K. asterichroma have occurred in 

Tasmania (de Salas et al., 2004b).

12. Population dynamics

Most species of Karenia have only recently been discovered as a result of new sporadic 

blooms. Therefore, we do not have enough data to say much about their population 

dynamics or the processes leading to the blooms. Indeed, most research focuses on blooms 

that cause problems, so most data are collected during and after a bloom, not before as the 

bloom is developing. Recent developments in satellite imagery are beginning to overcome 

this for surface blooms to some extent (Davidson et al 2009, Shutler et al., 2011), but not 

for subsurface populations. The two species for which we have the most long term data are 
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K. brevis and K. mikimotoi. Steidinger (2009) provides an overview of K. brevis along the 

west coast of Florida. Gentien (1998) provides an overview of K. mikimotoi. Honjo (1994), 

Yamaguchi 1994, Ono et al. (1996) and Okaichi (2004) provide overviews of K. mikimotoi 
in the coastal waters of Japan.

While blooms get the most attention, they are actually rather rare over space and time. 

In some instances Karenia blooms can be located in a thin layer in the pycnocline and 

therefore may not be detected during routine sampling (Gentien et al., 2005). Most of the 

time, Karenia cells are sparse, and only become abundant occasionally at certain locations. 

As a result, we really do not know much about the main population dynamics of Karenia 
species. Furthermore, they are treated as planktonic species even though they live primarily 

in relatively shallow coastal waters. We do not know if part of their life cycle is in the 

benthos or perhaps epiphytic. Blooms attract the most attention because it is their high 

biomass that generates the most animal morality and human health problems.

12.1 Blooms

While blooms of K. brevis and K. mikimotoi have been known to occur for many hundreds 

of years and are part of their natural population dynamics, it is not clear if the other, newly 

discovered species of Karenia have always bloomed on occasion and are only now being 

discovered, or if these recent blooms are a new phenomenon, perhaps a result of a changing 

environment.

In terms of species composition, one can find a whole range of examples. Some blooms 

are essentially monospecific (Steidinger and Vargo, 1988). In other cases, other species 

of algae are mixed in with Karenia. It has been recently discovered that many of these 

Karenia blooms actually include several species of Karenia. That several species of Karenia 
would bloom at the same time and place suggests that their basic biology and ecological 

requirements are similar, but that also brings up the question of the competitive exclusion 

principle, and how these different Karenia species coexist if they occupy similar niches.

A fundamental question to be addressed is how Karenia species can develop such a large 

biomass in a bloom. This is a very complex question, and in most instances the involved in 

the development of high biomass blooms are not known but are probably a combination of 

biological and physical factors. Karenia, like most dinoflagellates, replicate very slowly, less 

than once a day. Dinoflagellates are basically the slowest of all the algal taxa. How can they 

outcompete fast growing competitors such as diatoms? How are dinoflagellates different 

from diatoms and other algae in a way that allows them to compete?

While dinoflagellates are among the slowest growing algae, they are the fastest swimmers. 

This allows them to undergo diel vertical migration. This allows them access to higher 

concentrations of nutrients below the pycnocline in stratified waters not available to most 

competing species of algae (Heil, 1986; Kamykowski et al., 1998). In the case of at least 

K. brevis, it can also swim into the sediment pore waters to obtain the even higher nutrient 

concentrations there (Sinclair and Kamykowski, 2008).
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Dinoflagellates in general appear to have a greater ability to utilize organic nutrients in 

addition to inorganic nutrients (Smayda, 1997; Glibert and Legrand, 2006; Burkholder et al., 

2008). Most coastal waters contain much more organic nutrients than inorganic nutrients, so 

this could allow Karenia to ultimately develop a much higher biomass than algae than can 

only use inorganic nutrients.

Karenia species appear to produce a number of allelochemicals that could help 

them outcompete faster growing algae and resist attacks from microbial predators. 

Allelochemicals are generally not effective against large grazers on a microscopic scale 

at low concentrations, but once a bloom has developed, the high concentration of 

allelochemicals may reduce large grazers as well and help maintain or prolong the bloom. 

There is some evidence to support this with K. mikimotoi and diatoms (Gentien et al., 2007).

Diel vertical migration, ability to use organic nutrients, and the production of 

allelochemicals may allow Karenia to outcompete other species, but these factors alone 

do not explain the sporadic distribution in time and space of blooms or predict any specific 

bloom.

Physical factors play an important role for two reasons. First, dilution rate as a result of 

turbulent mixing must be lower than the growth rate of the algae, which is slow in the 

case of Karenia and dinoflagellates in general. This is necessary for both the early growth 

and maintenance of a bloom. Some of the Karenia species bloom in embayments where 

advection out of the water body is low. Examples include Wellington Harbor, New Zealand 

for K. concordia, the high salinity lagoons of Texas (Tester et al., 2004) for K. brevis, and 

Tampa Bay, Florida under high salinity conditions during a drought (Steidinger and Ingle, 

1972) for K. brevis.

In general however, Karenia species tend to bloom in open coastal waters where advection 

and turbulent mixing is stronger. Olascoaga et al. (2006) and Beron-Vera and Olascoaga 

(2009) have argued that persistent Lagrangian Coherent Structures may provide the low 

mixing parcels of water that can act as incubators that allow a bloom to get started 

without excessive mixing dilution. These Lagrangian Coherent Structures can persist for 

approximately two months on the West Florida Shelf, enough time for K. brevis to increase 

its biomass approximately 100,000-fold by cell division alone (assuming no grazing loss). 

Olascoaga (2010) found that the three areas in the Gulf of Mexico with the lowest mixing 

activity in her analysis to be off the coast of Florida, Texas, and Mexico, precisely where 

K. brevis forms the most blooms. In general, it appears that many Karenia blooms occur in 

stratified waters where turbulent mixing is low.

A second factor that is quite likely to be important is a physical concentrating mechanism. 

In many if not most cases, blooms appear to increase in size faster than the dinoflagellates 

can grow. This implies a physical concentrating mechanism. As a result of diel vertical 

migration, K. brevis tends to aggregate at the surface during the day. This can concentrate 

cells by only about one order of magnitude however (cells in a 10 m water column 

swimming to the surface and becoming concentrated in the upper 1 m, for example). 

Langmuir circulation cells can also aggregate cells in convergence zones on a small scale. 
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These mechanisms might concentrate Karenia enough for their allelochemicals to become 

more effective. Other mechanisms are needed for the much greater concentrations observed 

over larger scales. The most obvious case is downwelling, in which cells at the surface from 

a large area are transported to the downwelling site and accumulate there as they swim 

upward to counteract the downward movement of the water. Over time, this mechanism can 

generate very high concentrations of organisms (Hetland and Campbell, 2007).

12.2 Nutrients for blooms

While a large amount of nutrients are needed to generate a large bloom biomass, high 

concentrations of nutrients are not necessary, and nutrients may not necessarily play a major 

role in initiating a bloom. Low concentrations of nutrients can generate low concentrations 

of Karenia over a large area. A physical concentrating mechanism can then aggregate these 

cells into a bloom that contains far more nutrients than would be in the water parcel they 

occupy.

While nutrients are clearly a factor in generating many algae blooms in certain areas around 

the world, they may be less important in the initiation of a Karenia bloom. A sudden pulse 

of inorganic nutrients is more likely to give diatoms a competitive advantage over Karenia. 

Nutrient sources that could give Karenia an advantage over diatoms and other algae are 

those below the pycnocline or in the sediments that they can migrate to, or organic nutrients 

that they can more easily assimilate than other algae. In addition to the large pool of organic 

nutrients in seawater and freshwater runoff, dieoff of diatom blooms, benthic biota, fish, or 

excretion by organisms such as Trichodesmium could provide a source of nutrients.

It is important to distinguish new and old nutrients, as new nutrients will generate more 

plant biomass, while old nutrients will not. For an individual species, such as Karenia, 

this distinction needs to be modified. For example, if upwelled inorganic (new) nutrients 

generate a diatom bloom which subsequently dies and release nutrients to Karenia, those 

recycled nutrients are technically old nutrients, but act as new nutrients to generate new 

biomass of Karenia. The same would be true for new nutrients taken up by macroalgae or 

seagrasses that subsequently die and release their nutrients to Karenia.

It is also important to distinguish nutrient sources that help initiate a bloom and those that 

are important in increasing its biomass and sustaining it over time. Many nutrient sources 

are potentially available to increase the Karenia biomass. It is more difficult to identify a 

nutrient source that can explain when and where blooms have first developed. Most nutrient 

sources appear to be more widespread than the blooms.

12.3 K. brevis in the Gulf of Mexico

The species that has the largest impact on human health and has been investigated in more 

detail is K. brevis. It appears to live in the oligotrophic waters of the oceanic regions 

of the Gulf of Mexico in low concentrations, at somewhat higher concentrations on the 

continental shelves, and occasionally bloom to extremely high concentrations closer to the 

coast (Geesey and Tester, 1993). Further evidence that it is adapted to relatively oligotrophic 

conditions is the fact that it can survive being transported by the Gulf Stream out of the Gulf 
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of Mexico and up the east coast of North America (Murphy et al., 1975; Tester et al, 1989; 

Tester and Stumpf, 1991; Tester and Steidinger, 1997).

Blooms of K. brevis are most frequent along the west coast of Florida, between Tampa 

Bay and Sanibel Island (Brand and Compton, 2007). This is where tidal mixing is at a 

minimum (He and Weisberg, 2002) and a transport barrier reduces mixing between inshore 

and offshore waters (Yang et al, 1999; Olascoaga et al. 2006; Olascoaga, 2010). In Florida, 

Texas, and Mexico, K. brevis is most likely to form blooms in the fall months (Tester and 

Steidinger, 1997; Steidinger et al, 1998; Brand and Compton, 2007; Hetland and Campbell, 

2007). Hetland and Campbell (2007) have shown that downwelling during the fall months 

along the Texas coast can lead to a 1000-fold concentration of K. brevis cells, making it 

a likely factor in the development of blooms there. On the west coast of Florida however, 

winds in the fall tend to favor upwelling (Stumpf et al., 1998, 2008; Yang and Weisberg, 

1999; He and Weisberg, 2003; Walsh et al., 2006; Weisberg et al., 2009). This has led to 

many studies hypothesizing that K. brevis in bottom waters is carried inshore to frontal 

boundaries (He and Weisberg, 2003; Walsh et al., 2006; Stumpf et al., 2008; Milroy et al., 

2008; Weisberg et al., 2009; Schaeffer et al., 2009). But upwelling alone will not concentrate 

the cells, only bring deep dwelling cells closer to the coastline. Once they upwell to the 

surface, surface currents will carry them back offshore. Some studies (Vargo et al., 2004; 

Stumpf et al., 2008; Weisberg et al., 2009) indicate that the upwelling occurs in frontal 

regions, where some unknown mechanism will concentrate the cells rather than let them 

be transported back offshore. This mechanism has not been identified. One scenario could 

be a low salinity plume overlaying the upwelling region, with the Karenia cells advecting 

under the plume then migrating up into it, generating a bloom along the salinity front. Such 

a mechanism has been described for dinoflagellate blooms in the Gulf of Maine (Hetland 

et al., 2002). Alternatively, Lanerolle, et al. (2006) suggest that a complex sequence of both 

upwelling and downwelling may be responsible for concentrating the cells.

Another problem with the upwelling hypothesis is that few data have shown significant 

amounts of K. brevis in bottom water on the West Florida Shelf. Most data show higher 

concentrations in surface waters than deep water. In this situation, the upwelling circulation 

will lead to a net flux of cells offshore. A mechanism is needed to trap and concentrate the 

cells inshore. The very broad West Florida Shelf could provide a large seed population even 

if sporadic and in low concentrations, but the source has not been identified (Walsh et al., 

2002). It is not clear if the seed population is planktonic or benthic, from the inner or outer 

shelf, or throughout the shelf.

During the fall months when K. brevis blooms are most likely, other factors interact with 

this general upwelling circulation pattern (deep waters moving inshore and surface waters 

moving offshore). It is at this time that vertical stratification weakens and breaks down 

(Weisberg et al., 2001). Winds increase and upwelling increases in the fall (Stumpf et al., 

1998). This is the time that alongshore currents shift from northward to southward (Yang 

and Weisberg, 1999; Carlson and Clarke, 2009). This is also the time that shallow waters in 

the north cool down and send plumes of cold water southward along the coast, generating 

thermal fronts (He and Weisberg, 2003). This is also the peak of the wet season and land 

runoff in South Florida (Brand and Compton, 2007), when salinity fronts are generated 
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along the coastline. It is suspected that the interaction of the shoreward movement of the 

bottom waters containing low concentrations of K. brevis with these thermal and salinity 

fronts at a time of weakening vertical stratification may provide a mechanism (still not 

understood) for concentrating K. brevis.

Almost certainly, physical factors are very important in the development of Karenia blooms, 

but so far we have no models that can predict exactly when or where a bloom will develop.

12.4 Nutrient sources on the west coast of Florida

To generate the large biomass in a Karenia bloom, large amount of nutrients are needed. 

There are many potential sources of nutrients available to the Karenia blooms along the west 

Florida coastline, but it is not clear if any of them can be the major source and/or explain the 

early development of the blooms and their eventual size.

Surface waters of the West Florida Shelf have low concentrations of nutrients, particularly 

nitrogen (Vargo, 2009). This may be why K. brevis, which appears to be adapted for 

surviving the oligotrophic waters of the central Gulf of Mexico, survives on the West Florida 

Shelf as well. These low nutrient concentrations do not necessarily indicate low nutrient 

inputs however. Because the wide West Florida Shelf is rather shallow, much of it is within 

the photic zone, so much of the nutrient inputs are probably rapidly taken up by the benthic 

plant community (macroalgae, seagrasses, sedimentary microalgae). Benthic chlorophyll 

on the West Florida Shelf is much higher than in the water column above (Walsh and 

Steidinger, 2001).

A number of researchers have noted a rough correlation between land runoff and K. brevis 
blooms (Gunter et al., 1947; Slobodkin, 1953; Odum et al., 1955; Finucane, 1964; Steidinger 

and Joyce, 1973; Dixon and Steidinger, 2004). Some have even suggested an iron index as 

an indicator of land runoff (Ingle and Martin, 1971). One also observes a general correlation 

on a seasonal basis, with K. brevis blooms most likely during the fall months when land 

runoff is at its peak (Brand and Compton, 2007). Rounsefell and Nelson (1966) summarized 

much of the earlier research on this topic. In all cases, these are only general correlations, 

and there are many exceptions, e.g., blooms during droughts and no blooms during large 

runoff events. Though rare, blooms have developed during the spring dry season, and some 

years have no obvious blooms during the wet season.

A perusal of the 50 year monitoring data collected by the State of Florida shows a number 

of cases in which blooms of K. brevis first appear near the mouth of rivers. Olascoaga 

et al. (2008) document a bloom in 2004 that appears to originate near the mouth of the 

Caloosahatchee River, and Yentsch et al. (2008) do the same for a bloom in 2005 near the 

mouth of the Caloosahatchee River. Vargo et al. (2004) observed elevated concentrations of 

silica in all four blooms he examined, indicating the blooms were in water masses with land 

runoff influences.

Brand and Compton (2007) argued that land runoff nutrients were significant in increasing 

K. brevis biomass because the biomass is larger inshore in lower salinity water than offshore 

in higher salinity water. They also argued that K. brevis biomass has increased significantly 
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over the past 50 years, during a time that land runoff nutrients have increased significantly 

but offshore nutrients have not.

It should be noted that even if there is a strong correlation between blooms and land 

runoff, it would not necessarily be the result of nutrients. The increased salinity fronts 

generated during land runoff might help set up concentrating mechanisms for generating 

high concentrations of the slow growing Karenia.

In addition to surface water runoff from land, groundwater inputs to coastal waters must 

also be considered. Miller et al. (1990) showed the importance of groundwater in Charlotte 

Harbor and Hu et al. (2006) argued that groundwater could be a major source of nutrients to 

the West Florida Shelf. As a result of various human activities on land, groundwater nutrient 

concentrations have increase dramatically in recent decades (Scott et al., 2006). Related to 

this is the possibility that K. brevis could migrate down into the sediments to take advantage 

of higher nutrient concentrations in the porewaters (Sinclair and Kamykowski, 2008). The 

higher nutrient concentrations there are reflected in the fact that chlorophyll concentrations 

are higher in the sediments than the water column above (Walsh and Steidinger, 2001).

Other early studies focused on upwelling of nutrient rich deep water onto the shelf and its 

transport across the shelf to the coastal region (Steidinger and Haddad, 1981; Tester and 

Steidinger, 1997; Lanerolle et al., 2006; Janowitz and Kamykowski, 2006; Weisberg et al., 

2009). The overall estuarine circulation of the shelf with bottom water flowing inshore more 

than offshore (Weisberg et al., 2001), certainly will tend to generate a net flux of nutrients 

inshore, allowing the shelf to act as a nutrient trap to some degree. While this certainly 

supplies some nutrients to the blooms, Walsh et al. (2003) concluded that the amount of 

nutrients transported by this mechanism is insufficient to support the blooms observed.

A somewhat unique characteristic of the West Florida Shelf is the presence of large 

phosphate deposits along the west coast of Florida and presumably on out onto the 

shelf (Compton, 1997; Brand 2002; Walsh et al., 2006). This generates low N/P ratios 

and an ecosystem that is nitrogen limited (Brand, 2002; Walsh et al., 2006; Brand and 

Compton, 2007). As a result, inorganic nitrogen concentrations are usually very low on 

much of the West Florida Shelf, even inshore. Any input of nitrogen is quickly taken up by 

phytoplankton that have sufficient phosphorus and are starved for nitrogen. This situation 

provides a selective advantage to nitrogen-fixing cyanobacteria.

Some researchers have noted an apparent correlation between blooms of the nitrogen –

fixing Trichodesmium and K. brevis (Gunter et al., 1948; Geesey and Tester, 1993). It has 

been shown that Trichodesmium excretes organic nitrogen that can then be taken up by 

K. brevis (Havens et al., 2004; Mulholland et al., 2004, 2006). Cyanobacteria , especially 

nitrogen-fixers, need more iron than eukaryotic algae (Rueter et al., 1990; Brand, 1991; 

Paerl et al., 1994). Lenes et al. (2001), Walsh and Steidinger (2001), and Walsh et al. (2006) 

have hypothesized that iron limits the growth of Trichodesmium on the West Florida Shelf, 

and iron-rich dust from Africa is a major source of iron and may serve as a stimulant for 

blooms of Trichodesmium, which could then lead to blooms of K. brevis. Biegalski and 
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Villareal (2005) observed higher input of atmospheric iron during a bloom of K. brevis along 

the Texas coast.

While inshore waters probably get more iron from land runoff, atmospheric dust is probably 

the major source of iron offshore. It seems quite plausible that this iron is enhancing the 

growth of Trichodesmium and augmenting the nitrogen pool of the West Florida Shelf that is 

available to K. brevis. Whether or not atmospheric dust input is the major factor stimulating 

blooms of K. brevis is less clear. An examination of the timing of atmospheric dust input, 

Trichodesmium, and K. brevis blooms shown in Walsh and Steidinger (2001) and Berg et al. 

(2004) shows only partial correlation, as also noted by Stumpf et al. (2008). Furthermore, 

atmospheric dust will tend to cover large areas of the West Florida Shelf, but the blooms 

generally start in relatively small areas. Atmospheric iron probably increases the biomass of 

Trichodesmium and K. brevis, but it is not clear if it can explain when or where K. brevis 
blooms will occur.

The dieoff of other organisms and the release of their nutrients is another potential source 

of nutrients. Some have considered decomposition of dead fish (Vargo et al., 2008; Walsh 

et al., 2009). Once a bloom is dense enough to kill fish, nutrients from decomposing fish 

could certainly help sustain a bloom of K. brevis, especially if it dominates the community. 

It is less clear if fish kills from some other cause could be an important factor in initiation 

of the sporadic blooms of K. brevis. Another possibility is the dieback of benthic plants on 

the shelf, particularly in the deeper water where the plants are near their compensation point. 

The fall months are when benthic plants are under the greatest energy balance stress – when 

temperatures are still high (keeping respiration rates high) but light intensity and daylength 

are declining. This is typically the time of year that dieoffs of seagrass and macroalgae are 

observed. Bottom temperature and water clarity above vary spatially and temporally due to 

hydrography and other factors. They would be factors in determining the extent to which 

benthic plants might die and release nutrients slowly to K. brevis. If a benthic population 

of K. brevis exists, it would also be under energy balance stress, perhaps stimulating it 

to migrate to the surface. For example, bottom temperatures could actually increase in the 

fall when the advection of cold bottom water from offshore stops and stratification breaks 

down. This increase in temperature at a time of reduced light could either stimulate a benthic 

population of K. brevis to migrate up into the surface waters and/or lead to the death of 

macroalgae and seagrasses and subsequent release of nutrients to K. brevis.

Dying diatom blooms are another potential source of nutrients. Many seasonal sequences 

throughout the world start with diatom blooms utilizing upwelled inorganic nutrients. As 

the diatom blooms die, they release nutrients and dinoflagellates become more dominant. It 

seems likely that K. brevis may get most of its nutrients only after recycling through diatoms 

and other parts of the food web; and inorganic nutrients from bottom water or land runoff 

simply enhances that food web.

Whatever the initial source of nutrients, the blooms are typically much larger inshore than 

offshore (Brand and Compton, 2007). This suggests that even if land runoff is not an 

important factor in initiating blooms, it is probably important for the eventual buildup of 
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larger biomass. Upwelling of offshore nutrients, atmospheric iron, and dead fish as nutrient 

sources cannot explain this inshore-offshore gradient.

12.5 K. concordia in New Zealand

Beyond the Gulf of Mexico, another location that has experienced significant human health 

problems (along with animal mortalities) from Karenia is New Zealand (Chang, 1995). The 

first significant blooms of Karenia were in January (summer) 1993 along the northeast coast 

(Bay of Plenty) of the North Island of New Zealand. The newly identified species was 

K. concordia and it apparently produces toxins similar to K. brevis (Chang et al., 1998). 

Hundreds of people ended up with NSP and respiratory distress (Chang, 1995; Trusewich 

et al., 1996; Chang et al., 1998), as there was no monitoring program in place because 

there had been no problems previously. Another bloom of K. concordia developed along 

the northeast coast (Hauraki Gulf) of the North Island in October (spring) 2002 (Chang 

and Ryan, 2004; Chang et al., 2008). In this case, no human effects were observed, but 

widespread mortality of fish and abalone occurred. Although one bloom occurred in the 

summer and the other in the spring, both were in years of El Nino, in which upwelling 

favorable winds were stronger than normal. The 2002 bloom occurred after the winds died 

down and a warm tongue of offshore water was transported inshore over the cold upwelled 

water (Chang and Ryan, 2004; Chang et al., 2008). It is known that low concentrations of 

K. brevisulcata, K. concordia , and K. mikimotoi occur in the warm offshore waters (Chang 

and Ryan, 2004). It is thought that the transport of the warm water over the upwelled water 

brought K. concordia into Hauraki Gulf and its diel vertical migration behavior allowed it 

to take advantage of the nutrient rich water below. There is less information on the 1993 

bloom, but Chang et al. (1996) noted that the temperature was lower and the salinity was 

higher than normal when the bloom developed in the Bay of Plenty, suggesting a similar set 

of circumstances.

12.6 K. brevisulcata in New Zealand

A different species, K. brevisulcata, bloomed January to March (summer) 1998 along 

the south coast of the North Island of New Zealand and in Wellington Harbor on the 

north coast of the South Island (Chang, 1999; Wear and Gardner, 2001; Truman et al., 

2005). Humans experienced respiratory distress and skin irritations. Animal mortality was 

extremely widespread, including zooplankton, benthic invertebrates, and both benthic and 

pelagic fish (Wear and Gardner, 2001). It was noted that the water was unusually warm and 

stratified at the time of the bloom.

12.7 K. cristata and K. bicuneiformis in South Africa

Along the southwest coast of South Africa, blooms of Karenia have developed in the 

fall months of numerous years (Botes et al., 2003a, b). K. cristata has bloomed in 1988, 

1989, 1995, and 1996. Humans experienced respiratory effects and skin irritation during 

those blooms. Mortality of abalone has also been observed. Blooms of K. bicuneiformis 
have occurred in 1995 and 1997. No human effects or animal mortalities were observed 

associated with this species. It appeared that these blooms in the fall were associated with 

periods of calm weather followed by winds generating surface movements to the shoreline 

and downwelling (Botes et al., 2003a, b).
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12.8 K. mikimotoi

Blooms of K. mikimotoi have occurred in many parts of the world, causing major fish 

kills, particularly since the 1960s. In Europe anecdotal evidence suggest that this species 

was blooming off the south west coast of Ireland as early as the late 1800s (http://

ioc-unesco.org/hab/index.php?option=com_oe&task=viewDocumentRecord&docID=4605). 

In Europe, the first major bloom of K. mikimotoi occurred in the fall 1966 along the 

Norwegian coast (Braarud and Heimdal, 1970). Blooms usually occur during the summer or 

fall when the water is stratified. In Europe, blooms are observed in coastal waters, but are 

believed to develop in more offshore areas between fronts of different water masses (Pingree 

et al., 1975, Tangen 1977, Lindahl 1986, Gentian 1998, Gentian et al., 2005, Davidson et 

al., 2009). Pingree et al. (1978) has argued that surface blooms occur where pycnocline 

populations in stratified waters meet frontal boundaries where the water is mixed or at times 

when stratified waters become mixed. Gentien (1998) has suggested that K. mikimotoi tends 

to reside in the pycnocline if it is strong and undergo diel vertical migration if the pycnocline 

is relatively weak. Blooms may be enhanced by anoxia in the bottom waters. At the present 

time, there is no mechanistic model that can fully explain or predict when and where blooms 

of K. mikimotoi occur.

Pingree et al. (1975) documented a bloom at a front at the western entrance to the English 

Channel in 1975. He argues that K. mikimotoi resides in the pycnocline of the stratified 

waters of the Atlantic Ocean and form a surface bloom at the front where the stratified 

water meets the mixed waters of the English Channel (Pingree et al., 1978). Similar 

blooms occurred in July in 1977 and 1978, and in September in 1980 and 1981 at fronts 

between inshore mixed waters and offshore stratified waters along the coast of Scotland 

(Gowen, 1987). The blooms in 1980 and 1981 killed large numbers of fish (Jones et al, 

1982; Davidson et al., 2009). Davidson et al. (2009) have also documented blooms of K. 
mikimotoi in the Orkney Islands in 1999 and 2003, the Shetland Islands in 2003 and a large 

bloom in northern Scotland that started on the west coast in July 2006 and moved along 

the coastline to the east coast. This bloom killed large numbers of benthic invertebrates 

and some fish. K. mikimotoi blooms have also been observed in Ireland, sometimes with 

devasting impacts on farmed fish (Raine et al., 2001, Silke et al., 2005). In this area, thermal 

jets are believed to play a role transporting the bloom along the Irish coast (Raine et al., 

2010). Blooms have occurred in the summer at fronts along the Atlantic coast of France in 

1984 and 1987 (Gentian et al., 1998). In July 1995, a similar bloom expanded to the entire 

coastline of western France.

In Scandinavian waters blooms of K. mikimotoi have been associated with offshore inflow 

into the Skaggerak (Lindahl, 1986). The relationship between land run off and K. mikimotoi 
blooms is complex. Blooms have been observed along the southern coast of Norway after 

heavy freshwater input (Dahl et al., 1987), however in some instances the amount of 

nitrogen needed to sustain a K. mikimoti in coastal areas is not associated with land run off 

but with nutrients from more offshore areas or physical processes (Lindahl, 1986). This was 

also observed in Scottish waters in 2006 where the number of K. mikimotoi cells in Scapa 

Bay in the Orkney islands could not be supported by the nitrogen entering the system from 

land based sources (Davidson et al., 2009). In September 1982, blooms developed along a 
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front between the higher salinity North Sea and lower salinity Skagerrak (Lindahl, 1983, 

1993; Richardson and Kullenberg, 1987). A similar bloom developed in the late summer 

and fall 1987 as a pycnocline residing population of K. mikimotoi surfaced at a front in the 

Skagerrat (Richardson and Kullenberg, 1987).

The other major area that gets frequent blooms of K. mikimotoi is Japan (primarily the 

Seto Inland Sea), Hong Kong, and Korea. Although some blooms of K. mikimotoi occurred 

earlier in Japan (Oda, 1935; Honjo, 1994; Okaichi, 2004), major blooms leading to mortality 

of fish and pearl oysters began in 1965 and have continued with great frequency since then 

(Partensky et al., 1988; Okaichi, 1989; Honjo, 1994; Dahl and Tangen, 1993; Kimura et 

al., 1999). Most of these blooms occur in the Seto Inland Sea, but also occur elsewhere 

along the coasts of Japan (Matsuoka et al., 1989). They occur primarily in the summer when 

the water is stratified (Kimura et al., 1999). The increase in blooms after 1965 has been 

attributed to anthropogenic eutrophication, and a decline in these blooms in the 1980s and 

1990s has been attributed to environmental regulation reducing that eutrophication (Prakesh, 

1987; Kimura et al., 1999). The blooms appear to be associated with high rainfall and land 

runoff (Yanagi et al., 1992, 1995; Kimura et al., 1999). Imai et al. (2006) have argued that 

blooms of K. mikimotoi in the Seto Inland Sea occurred prior to the period of eutrophication 

in the 60s and 70s and thus it is considered an ‘inherent red tide species from ancient 

times’. Honjo et al. (1990) and Kimura et al. (1999) argued that the blooms are more 

prevalent where the bottom waters have gone anaerobic and it is shallow enough that the 

dinoflagellates can migrate to the bottom on a diel basis.

Lam and Ho (1989) document the large increase in HABs in Tolo Harbor, Hong Kong, 

some of which are K. mikimotoi. Blooms of K. mikimotoi typically occur around September 

to December (Wong, 1989). Interestingly, K. mikimotoi tends to bloom in the winter or 

spring in Port Shelter, Hong Kong (Wong, 1989), which suggests an effect of the interaction 

of seasonal changes in the wind direction and the orientation of the water bodies. The 

best documented bloom occurred in March and April 1998, killing large number of fish 

(Hodgkiss and Yang, 2001; Hodgkiss et al., 2001). The bloom included some K. digitata 
mixed in with the dominant K. mikimotoi (Lu and Hodgkiss, 2004). The bloom produced 

very thick mucus, which interfered with fish respiration (Dickman, 2001). It was associated 

with heavy rainfall (Yang and Hodgkiss, 2001). Wong (1989) suggested that the blooms 

were stimulated by organic compounds produced by fish cages in the area.

K. mikimotoi bloomed for the first time in Korea in the summer and fall of 1981 and killed 

a large amount of shellfish (Park et al., 1989; Kim et al., 1995). This bloom was composed 

of several algal species, of which K. mikimotoi was one. In 1984, another bloom of K. 
mikimotoi occurred in Korea (Partensky et al., 1988).

While the most blooms of K. mikimotoi appear to occur in Europe, Japan, and Hong 

Kong, sporadic blooms have occurred elsewhere. Mahoney et al. (1990) blooms that 

developed along the coast of New Jersey, USA in the late summer of both 1984 and 

1985 when the weather was calm and water was stratified. Invertebrates were killed and 

humans experienced nausea, throat and eye irritation, and lung congestions. The blooms 
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were densest at the coastline but extended offshore two to eight kilometers at lower 

concentrations.

A K. mikimotoi bloom was observed in the pycnocline in October (spring) 1988 off the 

coast of Argentina south of the Plata River (Negri, 1992), but no animal mortalities were 

observed.

12.9 K. selliformis in New Zealand, Chile and Kuwait

In 1994, and bloom of K. selliformis developed along the south coast of the South Island 

of New Zealand, leading to the death of many fish and shellfish (de Salas et al., 2005). K. 
selliformis formed monospecific blooms in the coastal waters of southern Chile around 

the Chiloe Archipelago in March and April (fall) 1999, killing large numbers of fish 

and shellfish (Clement et al., 2001; Carreto et al., 2001; Uribe and Ruiz, 2001). It was 

thought that this bloom started with low concentrations offshore that then greatly increased 

in abundance as the population was carried inshore. It was noted that temperatures were 

unusually high and rainfall was greatly reduced from normal at the time of the bloom. 

Blooms of K. selliformis killed large numbers of fish in Kuwait Bay in August and 

September 2001 (Heil et al., 2001). This developed only a few weeks after similar blooms 

developed upstream in the coastal waters of Iran. A large increase in nutrients was observed 

right before the bloom developed.

12.10 K. umbella and K. asterichroma in Tasmania

Along the southeast coast of Tasmania, a bloom composed of a mixture of K. umbella, K. 
asterichroma, and three unidentified species of Karenia developed in May (late fall) 2003, 

killing large number of fish (de Salas et al., 2004a, b).

12.11 K. digitata and K. longicanalis in Hong Kong and Japan

Blooms of K. digitata developed in the coastal waters of Hong Kong and western Japan in 

the summers of 1995 and 1996, causing large fish kills (Yang et al., 2000). In May 1998, 

a bloom of K. digitata developed in Hong Kong and it was followed two weeks later by a 

bloom of K. longicanalis (Yang et al., 2001). Both species were associated with large fish 

kills.

K. brevis blooms frequently in the Gulf of Mexico and K. mikimotoi blooms frequently 

in Europe, Japan, and Hong Kong. Blooms of the other species of Karenia appear to be 

very infrequent. This suggests that these species normally exist at very low concentrations, 

and form blooms only under very unusual circumstances. Blooms of all the Karenia species 

except K. brevis and K. mikimotoi have first appeared only in the past few decades. Were 

all these Karenia species simply overlooked in the past or have environmental conditions 

changed to support their occasional blooming?

12.13 Increase of Karenia blooms?

On a global scale, there is widespread agreement that Harmful Algal Blooms in general are 

increasing (Smayda, 1990, 2008; Hallegraeff, 1993; Glibert et al., 2005a, b; Anderson et 
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al., 2002, 2008; Glibert and Burkholder, 2006; Heisler et al, 2008) and that anthropogenic 

nutrients are a major cause in many cases. Is this the case for Karenia?

Brand and Compton (2007) examined the monitoring data collected by the State of Florida 

(Florida Fish and Wildlife Research Institute, 2002) on K. brevis and concluded that its 

abundance had increased dramatically over the past 50 years. They argued that the only 

plausible source of the increased nutrients needed for this increased biomass was land runoff 

from anthropogenic sources. This increase parallels the increase in groundwater nutrients 

(Scott et al., 2006), coastal nutrients (Turner et al., 2006) and macroalgae (Lapointe and 

Bedford, 2007) observed along the west coast of Florida in recent decades. Kuhar et al. 

(2009) concluded that both scientists and the public believe that K. brevis blooms are 

increasing in frequency, geographic distribution, and persistence over time. Magaña et al. 

(2003) stated that there is a perception that K. brevis blooms along the Texas coast have 

increased as well.

Prakesh (1987) and Kimura et al. (1999) have argued that there has been a substantial 

increase in blooms of K. mikimotoi in the Seto Inland Sea of Japan that is related to 

eutrophication.

In the past two decades, a number of new species have been discovered, primarily as a 

result of mass mortality events and improved identification and molecular techniques. As a 

result, more species are likely to be described as a result of improving molecular techniques. 

Botes et al. (2003a) showed that K. cristata first bloomed in South Africa in 1988, killing 

large amounts of shellfish. De Salas et al. (2004a) describes new blooms of K. umbella 
in Tasmania, and other species of Karenia in Norway, Japan, New Zealand, Chile, and 

Hong Kong. Zingone et al. (2006) have documented the recent appearance of numerous 

toxic species of algae, including 5 species of Karenia that were not seen decades ago in 

the Mediterranean Sea. Heil et al. (2001) described a fish kill by a new Karenia species 

in Kuwait Bay. While many of these species may have lived in those ecosystems at low 

concentrations unnoticed, large blooms and fish kills are less likely to go unnoticed. In 

some cases, the spread of aquaculture and high concentrations of fish in cages might be a 

factor. In other cases, it seems plausible that anthropogenic eutrophication could be a factor 

leading to higher concentrations of these species that now cause problems and get noticed. 

As aquaculture expands and eutrophication increases, it is possible that Karenia blooms and 

associated fish kills could increase.

The development of Karenia blooms is obviously complex and poorly understood at this 

time. Because of their sporadic nature, it is difficult to determine if blooms have in fact 

increased over time, either in frequency or magnitude. Nutrients are only one of many 

factors that may be involved. Eutrophication may be involved in the increase of some 

Karenia blooms, but certainly not all.

13. Detection systems.

The primary goal of HAB detection and early warning is to prevent human illness. In the 

case of K. brevis blooms, to prevent NSP, the consumption of intoxicated shellfish, effective 
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monitoring measures require closure of shellfish harvesting if K. brevis abundance exceeds a 

threshold level. Re-opening shellfish harvesting is based on toxicity testing of contaminated 

shellfish. Consequently, sensitive and specific methods are needed for both cell abundance 

and brevetoxin detection.

13.1 Cell abundance and species-specific detection

The federal regulatory standard in the US for the closure of shellfish harvesting during 

Karenia brevis blooms is set at 5 × 103 cells L−1. Direct counts of water samples by 

light microscopy has been the primary method for detection and enumeration of K. brevis. 

This standard approach, however, is now complicated by observations that blooms may 

consist of multiple species, along with the inherent highly variable morphology of an 

individual species, which makes positive identifications by light microscopy difficult (Heil 

& Steidinger, 2009)

New technologies for Karenia detection include pigment based, optical, molecular, 

and imaging methods. Monitoring using pigment analysis by high performance liquid 

chromatography (HPLC) has been proposed based on the biomarker pigment gyroxanthin-

diester (Richardson & Pickney, 2004). This pigment is found in other closely related 

gymnodinoid species of Karenia, as well as Karlodinium and Takayama (de Salas et al., 

2003; 2005), so does not provide species-specific detection.

The Optical Plankton Detector (OPD, BreveBuster), developed for K. brevis, also relies 

on the unique absorption of spectrum of K. brevis to detect its presence in a mixed 

phytoplankton community (Kirkpatrick et al., 2000). Using stepwise discriminant analysis 

based on 4th – derivative normalized absorption spectra, the OPD has been deployed on 

an automated underwater vehicle to provide greater spatial resolution for early detection of 

blooms (Robbins et al., 2006).

To improve taxonomic specificity and limit of detection, molecular techniques have 

proven to be invaluable. For example, nucleic acid sequence-based amplification (NASBA) 

approaches have been developed for K. brevis (Casper et al., 2004; 2007) and K. mikimotoi 
(Ulrich et al., 2010). Cell-based fluorescent in situ hybridization (FISH) assays have been 

developed for K. brevis (e.g. Mikulski et al., 2005) and cell-free hybridization assays 

for K. brevis, K. mikimotoi, K. selliformis, and K. papilionacea (Goodwin et al., 2005; 

Haywood et al., 2007). A multiplexed flow cytometric approach was carried on using the 

Luminex 100 platform and XMap technology to detect simultaneously 14 different species 

of dinoflagellates. This bead array method is based on color coded microspheres, which 

are conjugated to probes designed for each single species (Scorzetti et al., 2009). Recently 

the same technology was used with locked-nuclei acid modified capture probes for the 

detection of K. brevis and K. mikimotoi (Diaz et al., 2010). This flow cytometry-based 

technology has the potential for detection and quantification of multiple (up to 100) RNA 

targets simultaneously (Scorzetti et al., 2009; Diaz et al., 2010).

In addition, microsatellite markers have been developed for K. brevis (Henrichs et al., 

2008; Renshaw et al. 2006) and K. mikimotoi (Nishitani et al., 2009). These hypervariable 
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molecular markers are used to assess genetic diversity within and among bloom populations 

and to infer the relationship between populations.

One of the most promising new technologies for early warning of HABs is imaging-in-

flow cytometry. This approach, using the Imaging Flow Cytobot (Olson & Sosik, 2007; 

Sosik & Olson, 2007) has provided valuable early warning capabilities for HABS, such as 

Dinophysis ovum (Campbell et al. 2010a) and K. brevis in the Gulf of Mexico (Campbell 

et al., 2010b). Although automated image classification is possible at the species-specific 

level in some cases, currently identification of Karenia is at the genus level. The variation 

in morphology, as discussed above, has limited the ability of the automated classifier (Sosik 

and Olson, 2007) to reliably distinguish among species of Karenia; however, the continuous 

and automated approach has permitted timely and successful early warning.

13.2 Satellite imagery of blooms

To assess the extent of Karenia blooms, data are needed at spatial and temporal scales not 

attainable by routine monitoring of cell counts. Satellite imagery was an obvious choice for 

HAB detection and has been used to detect blooms of Karenia worldwide for a number of 

years. Beginning in the 1970s, the Coastal Zone Color Scanner (CZCS) provided data for 

the Gulf of Mexico (Steidinger and Haddad, 1981). Subsequently the Sea-Viewing Wide 

Field-of-View Sensor/OrbView-2 (SeaWiFS), and most recently fluorescence data from 

Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite have been 

used (Hu et al., 2005; Vanhoutte-Brunier et al., 2008; Carvalho et al., 2010).

Satellite imagery for detection is limited, however, to surface (1 optical depth) and is 

obscured if clouds are present. More importantly, detection of chl a is not specific, as 

all phytoplankton contain chl a, and in coastal waters the signal can be influenced by 

resuspended sediments, colored dissolved organic material (CDOM) and bottom reflectance 

(Cannizzaro et al., 2008). Based on laboratory experiments, estimated detection for Karenia 
is limited to concentrations above 5 × 104 Karenia cells l−1 (Tester et al., 1998), so is not 

capable of early detection of bloom initiation. With the availability of SeaWIFS ocean 

color measurements, Stumpf proposed the chlorophyll anomaly method, which detects 

increases between a single image and the mean for the previous two months, as an 

index of K. brevis blooms (Stumpf et al., 2003; Tomlinson et al. 2004). Corrections for 

false positive predictions due to resuspension of benthic algae were developed by Wynne 

et al. (2005). Based on field observations of bio-optical properties, Cannizzaro et al. 

(2008) found the backscatter (bb(λ)): chl a ratio was significantly lower for K. brevis, so 

proposed a classification scheme based on high chlorophyll and low backscatter to detect 

K. brevis. They also introduced the use of fluorescence line height (FLH) parameter from 

MODIS data. The combination of these approaches together with ancillary data from field 

observations (time series of abundance, winds, current and sea surface temperature) have 

been shown to improve ocean color forecasting (Hu et al., 2008). NOAA’s Harmful Algal 

Bloom Operational Forecast System (HAB-OFS) provides a weekly HAB Bulletin http://

tidesandcurrents.noaa.gov/hab/bulletins.html) that uses daily ocean color satellite imagery 

together with field observations of cell counts and optical properties, buoy data, forecasted 

wind and current data to predict the location, development and extent of blooms. Evaluation 
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of remote sensing techniques (Tomlinson et al., 2009), use of several satellite ocean color 

algorithms (Carvalho et al., 2011) and the capabilities of the HAB operational forecast 

system (Stumpf et al., 2009) have been reviewed recently.

Earth observation data have been used with some success in a study of a K. mikimotoi 
bloom in Scottish waters during 2006 (Davidson et al., 2009, Shutler et al., 2011) and 

provided complimentary information to support field measurements and cell counts about 

the origins and progress of the bloom. The data showed some potential to classify the bloom 

as K. mikimotoi and more work is needed to refine this tool so it can be implemented as a 

monitoring tool (Davidson et al., 2009, Shutler et al., 2011).

13.3 Toxins

To re-open commercial shellfish harvesting affected by K. brevis blooms, toxicity testing is 

required to verify toxin levels have returned to acceptable levels. The traditional method, 

the mouse bioassay (MBA) was first used by McFarren et al. (1965) to estimate risk to 

humans from consuming oysters contaminated with brevetoxin. A number of limitations of 

the MBA, including lack of specificity and sensitivity, as well as on ethical grounds (Plakas 

and Dickey 2010) have led to the search for a replacement.

Alternative methods for quantification of brevetoxin include both pharmacological and 

structural approaches (Baden and Adams, 2000; Poli, 2008). In shellfish, brevetoxins are 

extensively metabolized, so identification and determination of the toxicity of metabolites 

is also essential (Abraham et al., 2008; Plakas and Dickey, 2010). Pharmacological based 

assays include cytotoxicity, based on the activity of voltage gated sodium channel (e.g. 

Plakas et al., 2002; David et al., 2003; Wang et al., 2004), and receptor binding assays, based 

on the affinity of brevetoxin for sodium channels (Trainer and Poli, 2000; Van Dolah et al., 

1994). Toxin detection based on structure of the compounds includes both immunological, 

such as the competitive ELISA to detect brevetoxins in K. brevis (Naar et al., 2002), or 

electrochemiluminescence (Poli et al., 2007), and LCMS (Poli et al., 2000; Errera et al., 

2010). The advantages and disadvantages of these methods are reviewed by Plakas and 

Dickey (2010, and references therein).

Over the last decade, structural methods using LCMS have become essential for 

confirmation and increasingly for quantification (e.g. Errera et al., 2010). Although 

instrumentation was too expensive and of limited sensitivity just a decade ago (Baden and 

Adams, 2000), current instruments have increased sensitivity by orders of magnitude. As 

additional toxins are discovered and identified in new Karenia species, the importance of 

standards will continue to be an important concern.

14. Conclusions

Many of the Karenia species are known to live in offshore waters. It is hypothesized that 

focused research may reveal a higher diversity of Karenia species offshore and a wider 

global distribution of many of these species. When blooms have been examined carefully 

using species specific molecular techniques, they have been found to be composed of more 

than one species of Karenia. It is hypothesized that the use of molecular techniques to test 
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for the presence of many Karenia species will reveal that most or all blooms are composed 

of more than one Karenia species. If so, our current attribution of animal and human health 

effects to particular toxins and species is probably overly simplistic. Many new toxins 

produced by Karenia species have been discovered in recent years and we can expect these 

new discoveries to continue.

Many descriptive studies show an association between Karenia blooms and frontal 

regions between inshore and offshore waters. It is hypothesized that source populations 

of Karenia may be offshore, and the highly sporadic inshore blooms occur only when 

rather unusual and unique sequences of events occur. While inshore transport, downwelling-

upwelling, stratification-destratification, frontal regions, atmospheric iron, nitrogen fixation 

by Trichodesmium, and land runoff all appear to be associated with the development of 

blooms, it is clear that no one factor or simple combination or sequence of factors can 

explain the highly sporadic spatial and temporal distribution of Karenia blooms. Karenia 
blooms are most common during late summer and fall, but blooms occasionally occur in 

spring as well. Most attempts to explain the occurrence of particular blooms do not also 

explain why blooms do not also occur elsewhere along the coastline with similar situations 

or in other years under similar conditions. Furthermore, most explanations given for blooms 

of Karenia would work for most dinoflagellates, not just Karenia. We really do not know 

how Karenia might outcompete other dinoflagellate species.

Karenia species would appear to be adapted primarily for taking up recycled nutrients 

(from Trichodesmium, dying fish, dying diatoms, or other biota), rather than taking up 

new inorganic nutrients from upwelling or land runoff. New nutrients generate biomass of 

other species, which only later may release nutrients to Karenia and its competitors. Such 

biological complexity may account for it highly sporadic and unpredictable distribution. 

Many nutrient sources occur over large areas, but most blooms start in relatively small, 

localized areas. Karenia blooms appear to often be associated with frontal regions, but the 

detailed mechanism for how it helps generate Karenia blooms has yet to be described.

It is hypothesized that, as a broad generalization, physical factors are primarily responsible 

for moving and concentrating Karenia cells inshore, and inshore nutrients, including 

anthropogenic ones, determine how large the blooms become. If this generalization is 

correct, blooms of Karenia may remain highly sporadic and unpredictable, but larger and 

more devastating blooms may occur under certain physical conditions where anthropogenic 

eutrophication releases more nutrients into coastal waters. These blooms can have major 

impacts on marine ecosystems, including fisheries and aquaculture. Animal mass mortalities 

and toxic aerosols can also impact aesthetics and tourism along coastlines. At least some 

Karenia species are a serious hazard to human health.
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Table 1.

Species within the genus Karenia
1

Species (synonyms) First Described 
(location/citation)

Toxins Human 
Impacts

Animal Impacts

Karenia asterichroma Tasmania, Australia
de Salas et al. 2004a

not characterized none known mortality of fish 
(aquaculture)

Karenia bicuneiformis
(K. bidigitata)

South Africa
Botes et al. 2003a;
New Zealand
Haywood et al. 2004

brevetoxin by ELISA
2

(unconfirmed)

none known none known

Karenia brevis (Davis 1948) 
G. Hansen & Moestrup
(Gymnodinium breve, 
Gymnodinium brevis, 
Ptychodiscus brevis)

Florida, USA
Davis 1948 brevetoxins

3

brevisamide
4

brevisin
4

brevenal
5

hemolysins
6

O,O-dipropyl(E)-2-(1-
methyl-2-oxopropylidene) 
phosphoro-hydrazidothioate-

(E)oxime[L1]
7

NSP, respiratory 
distress

mortality of fish, 
invertebrates, birds, 
turtles, and mammals

Karenia brevisulcata (F.H. 
Chang, 1999) G. Hansen & 
Moestrup, 2000)
(Gymnodinium 
brevisulcatum)

New Zealand
Chang 1999

allelochemicals, compounds 

that affect sodium channels
8

respiratory 
distress

mortality of fish and 
invertebrates

Karenia concordia (K. cf. 
brevis)

New Zealand
Chang & Ryan 2004

allelochemicals, hemolysins, 

cytotoxic compounds
8

NSP-like 
symptoms

mortality of fish and 
abalone

Karenia cristata South Africa
Botes et al. 2003a

not characterized respiratory 
distress

mortality of abalone

Karenia digitata Japan, Hong Kong
Yang et al. 2000

not characterized none known mortality of fish

Karenia longicanalis Hong Kong
Yang et al. 2001

not characterized none known mortality of fish

Karenia mikimotoi 
(Gymnodinium mikimotoi 
Miyake & Kominami ex Oda, 
1935)
(Gymnodinium mikimotoi, 
Gymnodinium nagasakiense, 
Gymnodinium aureloum, 
Gyrodinium aureolum)

Japan Oda 1935
gymnocin-A

9

gymnocin-B
10

hemolysin
6

PUFA
7, 11

none known mortality of fish and 
invertebrates

Karenia papilionacea New Zealand
Haywood et al. 2004

brevetoxin by ELISA 

(unconfirmed)
2

PUFA
7

none known none known

Karenia selliformis New Zealand
Haywood et al. 2004 gymnodimine

12,13

brevetoxin by ELISA 

(unconfirmed)
2

none known mortality of fish and 
shellfish

Karenia umbrella Tasmania
de Salas et al. 2004a PUFA

7 none known salmon farm mortality

1
Guiry, M.D. & Guiry, G.M. 2011. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://

www.algaebase.org; searched on 30 May 2011.

2
 Haywood et al. 2004 
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3
Baden et al. 1979.

Baden, D.G., Mende, T.J., Block, R.E., 1979. Two similar toxins isolated from Gymnodinium breve. In: Taylor, D.L., Seliger, H.H. (Eds.), Toxic 
Dinoflagellate Blooms. Elsevier, New York, pp. 327–334; Baden, D.G., 1989. Brevetoxins: unique polyether dinoflagellate toxins. Faseb J. 3, 
1807–1817.

4
 Wagoner et al. 2010 

Van Wagoner, R.M., Satake, M., Bourdelais, A.J., Baden, D.G., Wright, J.L.C., 2010. Absolute Configuration of Brevisamide and Brevisin: 
Confirmation of a Universal Biosynthetic Process for Karenia brevis Polyethers. J. Nat. Prod. 73(6), 1177–1179.

5
Bourdelais et al. 2005;

6
Neeley & Campbell 2006; Prince et al 2010;

7
 Mooney et al. 2007 

8
 Chang et al 2008 

9
Satake, M., Shoji, M., Oshima, Y., Naoki, H., Fujita, T. & Yasumoto, T. 2002. Gymnocin-A, a cytotoxic polyether from the noxious red tide 

dinoflagellate, Gymnodinium mikimotoi. Tetrahedr. Lett. 43: 5829–5832

10
 Satake et al., 2005 

11
Parrish et al., 1994

12
Miles, C.O., Wilkins, A.L., Stirling, D.J. & Mackenzie, L. 2000. new analogue of gymnodimine from a Gymnodinium species. J. Agric. Food 

Chem. 48: 1373–1376

13
Seki, T., Satake, M., Mackenzie, L., Kaspar, H. F. & Yasumoto, T. 1995. Gymnodimine, a new marine toxin of unprecedented structure isolated 

from new-zealand oysters and the dinoflagellate, gymnodinium sp. Tetrahedron Letters 36:7093–96.
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