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TAGGEDPA B S T R A C T
The role of donor and recipient Coronavirus disease 2019 (COVID-19) immunologic status pre-transplantation has
not been fully investigated in allogeneic hematopoietic stem cell transplantation (HSCT) recipients. Given the
poor immunogenicity to vaccines in this population and the serious outcomes of COVID-19, adoptive transfer of
immunity may offer important insight into improving protection for this vulnerable population. In this study, we
evaluated the role of adoptive transfer of immunity at 1 month post-transplantation and 6 months post-trans-
plantation after vaccination of recipients, based on pre-transplantation severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) vaccination and infection exposures of both recipient and donor. Using banked specimens
from related donor allogeneic HSCT recipients and clinical data from both donors and recipients, anti-Spike (S)
IgG titers were analyzed at 1, 3, and 6 months post-transplantation according to prior SARS-CoV-2 immunologic
exposures. Recipients were excluded if they had received SARS-CoV-2 monoclonal antibodies or had infection in
the first 6 months post-transplantation. Of the 53 recipient-donor pairs, 29 donors and 24 recipients had prior
SARS-CoV-2 immunologic exposure. Recipient-donor pairs with no prior SARS-CoV-2 exposure (D0R0) had signifi-
cantly lower anti-S IgG titers at 1 month compared to those with prior exposures (D1R1) (D0R0: median, 2.43
[interquartile range (IQR), .41 to 3.77]; D1R1: median, 8.42; IQR, 5.58 to 12.20]; P = .008). At 6 months, anti-S IgG
titers were higher in recipients who were vaccinated at 3 months post-transplantation in the D1R1 cohort
(median IgG, 148.34; IQR, 92.36 to 204.33) compared with the D0R0 cohort (median IgG, 38.74; IQR, 8.93 to
119.71). Current strategies should be optimized to enhance SARS-CoV-2 protection for HSCT recipients, including
augmentation of the immune response for both donors and recipients prior to transplantation.

© 2023 The American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc. All rights
reserved.
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TAGGEDH1INTRODUCTION TAGGEDEND
TaggedPRecipients of allogeneic hematopoietic stem cell transplan-

tation (HSCT) have an impaired immune response to severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vacci-
nation, owing to both the underlying hematologic malignancy
and prior chemotherapy and conditioning regimens [1,2]. As a
result, morbidity and mortality due to Coronavirus disease
2019 (COVID-19) are higher in this population [3,4]. These
patients also exhibit increased and prolonged viral shedding,
which likely has public health implications for the develop-
ment of new variants of concern [5,6]. In addition, although
cell populations repopulate after transplantation, early reduc-
tion of T cells and natural killer cells and prolonged humoral
defects occur [7], further compromising the ability to create a
robust and protective immune response to vaccination. New
strategies are urgently needed to improve protection for this
vulnerable population, especially in the context of continued
evolution of variants.TaggedEnd

TaggedPVaccination of donors and recipients prior to HSCT may be
one method for improving protection against COVID-19. This
approach has been examined for other pathogens, with vary-
ing results [8�11]. Both the donor and recipient’s prior immu-
nization history are known to be important, as demonstrated
by potentiated antibody responses against hepatitis B when
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TaggedEndTable 1
Demographics and Treatment Characteristics (N = 53)

Characteristic Value

Female sex, n (%) 19 (35.85)

Age at time of transplant, yr, median (IQR) 58.10 (52.87-66.32)

Disease (indication for HSCT), n (%)

Acute lymphoblastic leukemia 5 (9.43)

Acute myeloid leukemia 18 (33.96)

Chronic myeloid leukemia 2 (3.77)

Hemoglobinopathy 1 (1.89)

Hodgkin lymphoma 4 (7.55)

Myelodysplastic syndrome 11 (20.75)

Myeloproliferative neoplasm 4 (7.55)

Non-Hodgkin lymphoma 3 (5.66)

Other acute leukemia 2 (3.77)

Other leukemia 3 (5.66)

Transplant type, n (%)

Matched related 29 (54.72)

Mismatched related 1 (1.89)

Haploidentical related 23 (43.40)

Conditioning regimen type

Reduced intensity 35 (66.04)

Myeloablative 18 (33.96)

GVHD prophylaxis regimen, n (%)

Cyclophosphamide, mycophenolate
mofetil, tacrolimus

26 (49.06)

Methotrexate, sirolimus, tacrolimus 1 (1.89)

Methotrexate, tacrolimus 24 (45.28)

None* 2 (3.77)

History of acute GVHD, n (%) 23 (43.40)

History of chronic GVHD in first 6 mo, n (%) 3 (5.66)

* Participants were in a clinical trial to study immunosuppression-free reg-
ulatory T cell graft-engineered haploidentical HSCT.
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both the donor and recipient were immunized with hepatitis B
vaccine prior to transplantation but no difference in antibody
responses when only the donor was previously immunized
[12]. Post-transplantation antibody-level enhancement is also
dependent on the type of vaccine. A greater potentiation effect
has been observed for highly immunogenic vaccine antigens,
such as tetanus toxoid, with a reduced effect seen for less
immunogenic vaccines, such as pneumococcal polysaccharide
vaccines [11].TaggedEnd

TaggedPWe sought to examine the effects of vaccination in the allo-
geneic HSCT recipient population with the mRNA platform,
which is highly immunogenic, to evaluate the adoptive trans-
fer of immunity post-transplantation for SARS-CoV-2 specifi-
cally. A prior study has suggested that pre-HSCT donor
vaccination may have an impact on the post-HSCT humoral
response to SARS-CoV-2 vaccination after transplantation,
although the sample size was relatively small, and the data
require further validation [13]. Current recommendations sug-
gest restarting the COVID-19 mRNA vaccine primary series
(which consists of 3 doses for immunocompromised patients)
at 3 months post-transplantation [14]; however, the data to
support this recommendation are minimal and do not take
into account prior exposures pre-transplantation. Further-
more, as new mRNA COVID-19 vaccines are developed and
implemented that target specific variants, such as the bivalent
ancestral/Omicron vaccine [15,16], guidelines on vaccination
for HSCT recipients become even more opaque. In the present
study, using banked specimens from allogeneic HSCT recipi-
ents, we evaluated how donor and recipient COVID-19 immu-
nologic status pre-transplantation impacts recipient SARS-
CoV-2 antibody response post-transplantation. TaggedEnd

TAGGEDH1METHODS TAGGEDEND
TaggedPThe study was approved by the Institutional Review Board

at the Dana-Farber Cancer Institute (DFCI). Adult patients who
underwent allogeneic HSCT with related donors between Jan-
uary 1 and December 31, 2021 were identified and selected
using available cryopreserved plasma samples that had been
collected for a biospecimen repository research protocol at 1
month, 3 months, and 6 months post-transplantation. Since
the COVID-19 vaccines were approved under Emergency Use
Authorization (EUA) from December 2020 to February 2021
and initially prioritized only for high-risk individuals, and the
first full licensure occurred in August 2021 [17], selecting the
year 2021 allowed us to capture both individuals who had
been vaccinated and those who had not been vaccinated prior
to harvest. In accordance with current recommendations,
recipients were vaccinated or revaccinated at the oncology
clinic at 100 days post-transplantation with either the mRNA-
1273 (Moderna; 100 g) or BNT162b2 (Pfizer; 30 mg) vaccine
series. Using the single-molecule array (Simoa) technology
[1,18], quantitative detection of anti-Spike (S; full spike
protein) and anti-Nucleocapsid (N) IgG was assessed for the
recipients at 1 month, 3 months, and 6 months post-transplan-
tation measured in normalized average enzymes per bead
(nAEB). Donor and recipient COVID-19 histories and vaccina-
tions were extracted using the electronic medical record and
clinical database associated with the tissue bank. Donors and
recipients were categorized based on their SARS-CoV-2 immu-
nologic exposure prior to transplant: SARS-CoV-2 vaccination
and/or SARS-CoV-2 infection (defined by documented SARS-
CoV-2 PCR in the electronic medical record, reported history of
SARS-CoV-2, or positive anti-N IgG). HSCT recipients who
received SARS-CoV-2 monoclonal antibodies during the study
period were excluded, as well as recipients who tested positive
for SARS-CoV-2 from the time of transplant through six
months. T aggedEnd

TaggedPDescriptive and graphical summaries were performed.
Fisher’s exact tests (categorical characteristics) and Mann
Whitney U tests (continuous characteristics) were used, with
two-sided P-values <0.05 considered statistically significant
after accounting for multiple comparisons using false discov-
ery rate (FDR) control. All analyses were conducted in R ver-
sion 4.1.2 (https://www.R-project.org/). TaggedEnd
TAGGEDH1RESULTS TAGGEDEND
TaggedH2Demographic, Disease, and Treatment Characteristics TaggedEnd

TaggedPA total of 93 allogeneic related donor HSCTs were per-
formed at Dana-Farber Cancer Institute during 2021. Of those,
55 individuals had banked recipient plasma samples identified
from the biospecimen repository. Among these, 53 were
included for analysis; 1 was excluded due to SARS-CoV-2
exposure and receipt of monoclonal antibodies post-trans-
plantation, and 1 was excluded because the individual under-
went a second transplantation (from an unrelated donor)
during the study period. The recipients had a median age of
58.10 years (IQR, 52.87 to 66.32 years), and 19 (35.85%) were
female (Table 1). Several disease types were represented, with
acute myeloid leukemia and myelodysplastic syndrome the
main indications for transplantation (33.96% and 20.75%,
respectively). Additional characteristics including transplant
type, conditioning regimen, graft-versus-host-disease (GVHD)
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prophylaxis, and occurrence of GVHD in the first 6 months
post-transplantation are described in Table 1. TaggedEnd

TaggedH2COVID-19 Immunologic Exposures TaggedEnd
TaggedPTwenty-eight of the 53 donors (52.83%) were vaccinated

prior to stem cell harvest, with a median of 122 days (IQR, 58.5
to 159.0 days) from the last vaccine dose to transplantation,
and 1 donor had a history of SARS-CoV-2 infection prior to
transplantation (Table 2). Twenty-two recipients (41.51%)
were vaccinated prior to transplantation, with a median of
140 days (IQR, 97 to 181 days) from the last vaccine dose to
transplantation. Four recipients (7.55%) had an infection prior
to transplantation, with 2 of these recipients also receiving
vaccination prior to transplantation. The donor (D) and recipi-
ent (R) pairs based on immunologic status (0, no prior SARS-
CoV-2 vaccine or infection; 1, prior SARS-CoV-2 vaccine or
infection) included D0R0 (n = 17), D1R1 (n = 18), D0R1 (n = 7),
D1R0 (n = 7), and D1Runknown (n = 4). Vaccination types and
number of doses are described in Supplementary Table S1.TaggedEnd

TaggedH2Anti�S IgG Antibody Titers in Recipients Post-Transplant TaggedEnd
TaggedPAnti-S IgG titers were measured in recipients at approxi-

mately 1-, 3-, and 6-months post-transplantation. There was
evidence of passive antibody transfer or retention at month
one in some recipients, followed by antibody decay for the
subsequent 2 months and an increased titer at 6 months after
COVID-19 vaccination at 3 months post-transplantation
(Figure 1A). No recipients had a documented COVID-19 history
or positive anti-N values from the time of transplantation to 6
months post-transplantation, although 4 recipients had a his-
tory of COVID-19 prior to transplantation (accounted for in the
immunologic status). TaggedEnd

TaggedH2Passive Antibody Transfer or Retention at 1 Month TaggedEnd
TaggedPTo further evaluate the effects of donor and recipient SARS-

CoV-2 immunologic exposure on passive antibody transfer or
retention, anti-S IgG titers in recipients were evaluated at 1
month post-transplantation and stratified by exposure history
(Figure 1B). Recipients in the D0R0 group had significantly
lower anti-S IgG titers compared to those in the D1R1 group
(D0R0: median, 2.43 [IQR, .41 to 3.77]; D1R1: median, 8.42;
IQR, 5.58 to 12.20]; P = .008). There was no significant differ-
ence in 1-month anti-S IgG titers between the D0R0 group and
the D0R1 group (median, 4.25; P = .058) or D1R0 group
(median, 1.71; P = .788) (Supplementary Figure S1). TaggedEnd

TaggedH2Vaccine Response at 6 Months Post-Transplantation TaggedEnd
TaggedPAnti-S IgG titers were measured at 6 months post-trans-

plantation in recipients who were vaccinated at 3 months
post-transplantation (n = 28). To determine whether donor or
recipient memory B cells were present with a recall response,
TaggedEndTable 2
Donor and Recipient COVID-19 Immunologic Exposures (Vaccination or Infection) Pre-

Parameter Donor SARS-CoV-2
Exposures (N = 53)

Recipient
Exposure

Vaccination, n (%) 28 (52.83) 22 (41.5

No vaccine, n (%) 24 (45.28) 25 (47.1

Infection, n (%) 1 (1.87) 4 (7.55

Vaccine status unknown, n (%) 0 (0) 4 (7.55

Time from last vaccine dose to
transplant, d, median (IQR)

122 (58.5, 159) 140 (97, 1

N/A indicates not applicable.
* Two recipients had both vaccination and infection prior to transplantation.
anti-S IgG titers were compared by immunologic exposure
(Figure 1C). The D1R1 group (n = 2) had the highest median
anti-S response at 148.34 (IQR 92.36-204.33), although this
was nonsignificant compared with the D0R0 group (n = 7;
median anti-S IgG, 38.74; IQR, 8.93 to 119.71), possibly related
to the small sample size. These findings should be further
explored with a larger sample size. Of note, the median titer of
anti-S IgG in the D1R1 group exceeded that in allogeneic HSCT
recipients and in healthy adults at 1 month after the initial 2-
dose series (20.27 nAEB versus 65.70 nAEB, respectively), as
we described previously [1], which suggests a possible aug-
mented effect. There was no significant difference in the
median antibody titer between D0R0 and D0R1 (median anti-
S, 1.45; IQR, 1.45 to 1.45) or D1R0 (median anti-S, 1.21; IQR,
.74 to 44.27) (Supplementary Figure S2).TaggedEnd
TAGGEDH1DISCUSSION TAGGEDEND
TaggedPOverall, our study demonstrates both passive anti-S IgG

transfer from donors to recipients and retention of antibodies
in recipients with prior SARS-CoV-2 exposure at 1 month post-
transplantation. Our data suggest that optimizing vaccination
for both the donor and recipient prior to transplantation may
aid the development of antibodies that can be protective in
vulnerable individuals 3 months after transplantation. Further-
more, for the recipients vaccinated at 3 months post-trans-
plantation, recipients were able to produce an immune
response, as evidenced by the 6-month post-transplantation
titers, regardless of prior immunologic exposure for either the
donor or the recipient. These data support the current guide-
lines recommending revaccination at around 100 days post-
transplantation. Although there was no significant difference
in anti-S titer values between the D0R0 and D1R1 groups at 6
months in recipients who were vaccinated post-transplanta-
tion, there was a trend toward a higher magnitude of anti-S
IgG in the D1R1 group. However, this is an underpowered
observation that should be explored further with a larger sam-
ple population. TaggedEnd

TaggedPSimilar to other studies that have investigated transfer of
immunity to HSCT recipients, our study reports on immunoge-
nicity, which is not necessarily reflective of protection against
infection 19. Future studies should examine clinical efficacy in
the context of donor and/or recipient transfer of immunity.
Interestingly, low-level antibody positivity was seen in some
recipients at 1 month post-transplantation in the D0R0 group.
This may be due to cross-reactivity with other coronaviruses
or to asymptomatic SARS-CoV-2 infections in donors or recipi-
ents that were not reported. In addition, the transfer of B cell-
mediated immunity likely is dependent on many factors,
including the timing and type of vaccination, GVHD therapies,
and prior chemotherapy and immunomodulatory treatments
received, which our study was not powered to describe.
transplantation

SARS-CoV-2
s (N = 53)

Recipient Vaccination or Infection
Between 3 and 6 mo Post-Transplantation) (N = 53)

1) 28 (51.85)

7) 25 (48.15)

)* 0 (0)

) 0 (0)

81) N/A



TaggedFigure

Figure 1. (A) Anti-S IgG titers, in nAEB, in all recipients (n = 53) at 1, 3, and 6 months post-transplantation. The arrow indicates the approximate time of vaccination
post-transplantation (»3 months). (B) Anti-S IgG titers were analyzed at 1 month post-transplantation by immunologic status (D, donor; R, recipient; 0, no prior
SARS-CoV-2 vaccination or infection before transplantation; 1, prior SARS-CoV-2 vaccination and/or infection before transplantation) for D0R0 (n = 14) and D1R1
(n = 14). The median titer was significantly higher for the D1R1 group compared with the D0R0 group (P = .008). (C) The anti-S IgG titers for recipients who were vac-
cinated between 3 and 6 months post-transplantation are represented by COVID-19 immunologic status, D0R0 (n = 7) or D1R1 (n = 2). Anti-S titers are shown at 6
months post-transplantation. No significant difference is observed between the D0R0 and D1R1 groups (P = .5). Values are median and IQR, and the dotted line at
1.07 nAEB represents the assay cutoff. TaggedEnd

TaggedEnd337.e4 A.C. Sherman et al. / Transplantation and Cellular Therapy 29 (2023) 337.e1�337.e5
Although we suspect that the healthy donors likely had robust
responses to SARS-CoV-2 mRNA vaccination, the titer of anti-S
IgG or memory B cells at the time of transplantation was not
known in this study. Our pilot study highlights additional areas
that should be explored in a larger population of HSCT donor-
recipient pairs. TaggedEnd

TaggedPOur results provide valuable insight into the complex
dynamics of donor and recipient immunity with regard to the
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COVID-19 mRNA vaccines. The unique immunologic properties
of the donor-recipient pair in HSCT may offer another method
to augment SARS-CoV-2 immunity. Determining the optimal
timing of vaccination pre-transplantation for both donors and
recipients and identifying other factors that can improve
immune response and durability will be essential next steps. TaggedEnd
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