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Abstract

The minor allele of rs373863828, a missense variant in CREB3 Regulatory Factor, is associated 

with several cardiometabolic phenotypes in Polynesian peoples. To better understand the variant, 

we tested the association of rs373863828 with a panel of correlated phenotypes (body mass index 

[BMI], weight, height, HDL cholesterol, triglycerides, and total cholesterol) using multivariate 

Bayesian association and network analyses in a Samoa cohort (n=1,632), Aotearoa New Zealand 

cohort (n=1,419), and combined cohort (n=2,976). An expanded set of phenotypes (adding 

estimated fat and fat-free mass, abdominal circumference, hip circumference, and abdominal-hip 

ratio) was tested in the Samoa cohort (n=1,496). In the Samoa cohort, we observed significant 

associations (log10 Bayes Factor≥5.0) between rs373863828 and the overall phenotype panel 

(8.81), weight (8.30) and BMI (6.42). In the Aotearoa New Zealand cohort, we observed 

suggestive associations (1.5<log10BF<5) between rs373863828 and the overall phenotype panel 

(4.60), weight (3.27), and BMI (1.80). In the combined cohort, we observed concordant signals 

with larger log10BFs. In the Samoa-specific expanded phenotype analyses, we also observed 

significant associations between rs373863828 and fat mass (5.65), abdominal circumference 

(5.34), and hip circumference (5.09). Bayesian networks provided evidence for a direct association 

of rs373863828 with weight and indirect associations with height and BMI.

Keywords

Bayesian association analyses; Bayesian network analyses; Pacific Islander; Māori; Samoan

1. INTRODUCTION

A missense variant in the CREB3 Regulatory Factor (CREBRF) gene, rs373863828, has 

been associated with higher body mass index (BMI) in Samoan adults, with each copy 
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of the minor allele associated with a 1.4 kg/m2 increase in BMI (Minster et al., 2016). 

This association has been replicated in a Saipanese and Guamanian (Micronesian) cohort, 

a Tongan cohort, a Māori and Pacific Island (Polynesian) cohort from Aotearoa New 

Zealand, and a Native Hawaiian cohort (Hanson et al., 2019; Krishnan et al., 2018; 

Lin et al., 2020; Naka et al., 2017). The rs373863828 variant has also been associated 

with greater average body fat percentage, abdominal circumference, hip circumference, 

and height (Carlson et al., 2020; Lin et al., 2020; Metcalfe et al., 2020; Minster et al., 

2016) as well as favorable lipid profiles (Minster et al., 2016; Ohashi et al., 2018) and a 

decreased odds of diabetes (Minster et al., 2016). Little is understood about these complex 

relationships. While this allele is exceedingly rare in populations of non-Pacific ancestry 

(Genome Aggregation Database minor allele frequency [MAF] < 3×10−4), it is common 

in Samoan and other Polynesian populations (MAF = 0.10 to 0.26) (Gudmundsson et al., 

2021; Karczewski et al., 2020, 2021). Given the disproportionate burden of global obesity 

and related cardiovascular/inflammatory diseases (e.g., dyslipidemia, gout, chronic kidney 

disease) observed in Polynesian groups, an improved understanding of rs373863828 is still 

needed.

Of note, anthropometric and lipid phenotypes are highly correlated, making them 

problematic for statistical analyses, particularly in genetic association studies. Specifically, 

the web of correlation structures both between phenotypes and between genotypes and 

phenotypes can be difficult to untangle through marginal analyses (i.e., statistical modeling 

of a single phenotype/outcome) alone. Even more problematic for rs373863828, specifically, 

are the paradoxical associations observed. As highlighted above, the minor allele is 

simultaneously a risk factor for obesity but protective against diabetes and unfavorable lipid 

profiles (Minster et al., 2016). Traditional marginal analyses considering a single phenotype 

simply cannot support a full understanding of the phenotypic complexity of rs373863828.

In contrast, multivariate Bayesian approaches can provide more information about the 

statistical dependencies within a complete disease system as it considers many phenotypes 

simultaneously through a more realistic complex “web” of relationships (Lewis & Ward, 

2013). By considering the correlation structure between variables, multivariate approaches 

focus on data-driven structure discovery and can provide novel insights into both previously 

established and unknown relationships, including the likelihood of direct and indirect effects 

amongst variables of interest (Lewis & Ward, 2013). This information provides great value 

for understanding biology and disease processes, which can lead to the design of better 

disease control and prevention programs in future public health translation.

As such, the purpose of this study was to characterize the associations of rs373863828 with 

a panel of correlated anthropometric phenotypes and a set of lipid profile measurements 

through a powerful Bayesian multivariate framework in cohorts of individuals of Polynesian 

descent from Samoa and Aotearoa New Zealand.
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2. MATERIALS AND METHODS

2.1 Design

This was a secondary analysis of cross-sectional, observational data collected from 

individuals of Polynesian descent from Samoa and Aotearoa New Zealand.

2.2 Cohorts

The Samoa cohort consisted of 3,102 individuals of Samoan ancestry recruited in 2010 

from 33 villages located across the two main islands of the Independent State of Samoa 

– ‘Upolu and Savai’i. Details of sample selection, genome-wide genotype and phenotype 

data collection, and data quality checking methods have been previously reported (N. L. 

Hawley et al., 2014; Minster et al., 2016). The overall objective of the original study was 

to understand the genetic architecture and behavioral/environmental moderators of adiposity 

and related phenotypes among adults in Samoa (N. L. Hawley et al., 2014) which led to the 

discovery of rs373863828 (Minster et al., 2016).

For this secondary data analysis, a maximally unrelated set of 1,829 individuals was selected 

from the Samoan cohort using PRIMUS software (Staples et al., 2014) based on a second-

cousin kinship threshold to remove any potential confounding effects of kinship on the 

analysis. An additional 169 individuals were removed due to missingness within their 

phenotype panels (as the statistical approaches taken in this study require complete data 

for all phenotypes of interest) and 28 individuals were removed following data screening 

for normality and outliers (described below). The final sample size for primary multivariate 

analyses was 1,632 individuals (Table S1). Following identical filtering steps, the final 

sample size for the expanded phenotype analysis (described below) was 1,496 participants 

(Table S1).

The Aotearoa New Zealand cohort consisted of 2,335 individuals of Polynesian ancestry 

relating to nine Island Nation groups: New Zealand Māori, Cook Island Māori, Samoan, 

Tongan, Pukapukan, Niuean, Tahitian, Tokelauan, and Tuvaluan. This cohort was recruited 

across the North and South Islands of Aotearoa New Zealand, including 270 (predominantly 

Māori) participants recruited from the Tairāwhiti region (East Coast, North Island) in 

collaboration with the Ngāti Porou Hauora Charitable Trust. Details of sample selection, 

genome-wide genotype and phenotype data collection, and data quality checking have been 

previously described (Krishnan et al., 2018). Participants were recruited to better understand 

the genetics of gout, diabetes, and kidney disease (Krishnan et al., 2018; Phipps-Green et al., 

2016).

Following removal of 395 individuals due to missingness within their phenotype panels, 490 

individuals due to relatedness (using the same second-cousin kinship threshold approach 

as above), and 31 individuals due to data screening for normality and outliers (described 

below), a subset of 1,419 individuals remained for multivariate analysis in the Aotearoa New 

Zealand cohort (Table S1).
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2.3 Phenotypes of Interest

A common set of six anthropometric and lipid profile phenotypes composed of BMI (kg/

m2), height (m), weight (kg), HDL cholesterol (HDL-C, mg/dL), triglycerides (TG, mg/dL), 

and total cholesterol (Chol., mg/dL) were used within both the Samoa cohort and the 

Aotearoa New Zealand cohort. Cohorts were first analyzed separately, followed by a mega 

analysis of the combined Samoa and Aotearoa New Zealand data using the common subset 

of traits.

LDL cholesterol data estimated with the Friedewald formula (Friedewald et al., 1972) were 

also available. However, this marker was ultimately excluded from the analysis because (1) 

Friedewald-derived LDL cholesterol is linearly dependent on measured HDL, TG, and total 

cholesterol values and (2) the Friedewald formula is invalid for high levels of TG (Martin 

et al., 2013). Therefore, inferring LDL cholesterol in this manner would have resulted in a 

substantial sample size reduction.

While hypolipidemic medication use was not collected for the Samoa cohort, individuals 

who self-reported use of heart disease medication (n=17) were excluded based on prior 

sensitivity analyses which revealed significant associations with cholesterol levels (Minster 

et al., 2016). In contrast, for the Aotearoa New Zealand cohort, heart disease medication 

information was not collected, but statin and diuretic medication usage was collected. 

To assess the impact of medication usage on the multivariate approach, we performed a 

sensitivity analysis using the subset of individuals from the Aotearoa New Zealand cohort 

who were not on statin and diuretic medication.

In addition to the phenotypes above, additional anthropometric phenotypes – fat mass (FM, 

kg), fat-free mass (FFM, kg), abdominal circumference (Abd C, cm), hip circumference 

(Hip C, cm), and abdominal-hip ratio (AHR), were available only in the Samoa cohort 

and were used in an expanded Samoa cohort analysis. Fat mass and fat-free mass were 

estimated from age, sex, height, weight, and bioelectrical impedance resistance using 

equations derived from direct body composition studies of Polynesian peoples living in 

Aotearoa New Zealand using duel-energy X-ray absorptiometry (DXA) scans as described 

elsewhere (Keighley et al., 2006; Swinburn et al., 1999). Of note, fat mass estimated in this 

matter has nearly perfect correlation with DXA-derived fat mass (r2=0.97) in a subset of 

individuals from the Samoa cohort (n=425), demonstrating the validity of these equations in 

our sample (Heinsberg et al., Submitted).

2.4 Statistical Analysis

We used R statistical software as the framework for data preparation, analysis routine 

calling, and result reporting (Team, 2018). Within both cohorts, we adjusted phenotypes 

for age and sex (validated by genotyping) using ordinary linear regression models. In the 

Aotearoa New Zealand cohort, we also adjusted phenotypes using each individual’s first 

four principal components derived from genome-wide genotype data to correct for potential 

confounding effects of population structure between different Polynesian population sub-

groups (Krishnan et al., 2018). Principal components adjustment was not necessary in 

the Samoa cohort as all participants self-reported having four Samoan grandparents (N. 
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L. Hawley et al., 2014); homogeneous Samoan ancestry was analytically confirmed 

via principal components analysis of genome-wide single nucleotide polymorphism data 

(Minster et al., 2016).

2.4.1 mvBIMBAM—The association of rs373863828 with the panel of phenotypes was 

performed using the Bayesian multivariate mvBIMBAM framework (Stephens, 2013, 2019). 

In this framework, a global null model representing no association between phenotypes and 

genotype is compared with an exhaustive combination of alternative models, in which all 

different combinations of phenotypes are associated with the genotype. For the alternative 

models, the methodology splits phenotypes into all possible partitions of U, D, and I, 
each representing ‘unassociated’, ‘directly’, and ‘indirectly’ associated. Both directly and 

indirectly associated phenotypes are associated with genotype, but indirectly associated 

phenotypes are conditionally independent of the genotype given the presence of a directly 

associated phenotype in the model. The evidence against the null hypothesis is the sum of 

Bayes factors (BF) (log10 scale) of all partitions weighted by a diffuse prior (Shim et al., 

2015; Stephens, 2013, 2019). Strong evidence of association is defined as log10 BF > 5; 

suggestive evidence is defined as 1.5 < log10 BF < 5; and negligible evidence is defined 

as log10 BF < 1.5. Marginal posterior probabilities of association (MPPA) are calculated by 

summing the marginal posterior probabilities of direct and indirect association.

The sensitivity of the Bayesian multivariate mvBIMBAM framework to outlier values 

and non-normality necessitated the normalization of phenotypes (Stephens, 2013, 2019). 

Residualized phenotypes were order quantile-normalized using the OrderNorm function 

from the R package bestNormalize (Peterson & Cavanaugh, 2019). We removed 

observations in violation of multivariate normality at an α = 0.01 level based on 

Mahalanobis distance-based test statistics following a χd
2 null distribution corresponding 

to a d-dimensional multivariate phenotype panel.

For the mega analysis, we combined the cohort-specific residuals and quantile normalized 

them jointly. As justified above, the Samoa cohort was adjusted for age and sex, and 

the Aotearoa New Zealand cohort was adjusted for age, sex, and the first four principal 

components estimated based on genome-wide genotype data. The residualized values were 

then quantile normalized jointly once again. This normalization procedure allowed for 

the preservation of relative ranks of observations across the two cohorts while ensuring 

multivariate normality.

We calculated 95% confidence intervals for BFs and association category posterior 

probabilities (i.e., those for unassociated, direct association, indirect association category) 

via bootstrapping. This was done by sampling with replacement and repeating the 

mvBIMBAM analyses 1,000 times. We reported final multi-model point estimates as the 

median of the bootstrap distribution, as well as the 95% confidence intervals.

In a post hoc exploratory analysis, we performed sex-specific mvBIMBAM analyses.

2.4.2 Bayesian Network Analyses—We further explored the relationships between 

rs373863828 and the phenotypes in the quantile normalized datasets with Bayesian networks 
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learned with the R package bnlearn (Nagarajan et al., 2014; Scutari, 2010). A constrained 

learning algorithm based on conditional independence testing (semi-interleaved HITON-PC) 

based on Scutari et al (Scutari, 2015) was used to infer association and structure within the 

network (Aliferis et al., 2010; Scutari, 2015, 2017). Phenotypes and the rs373863828 were 

modeled as nodes with edges representing associations between nodes. We restricted the 

analyses so that rs373863828 could have only outgoing edges connecting to phenotypes.

The strength and directionalities of the edges of the Bayesian networks were inferred 

through a bootstrapped process resulting in networks that varied slightly between runs. 

As such, representative networks were plotted, but the quantitative strength (Es) and 

direction (Ed) of each edge that summarized results across the total number of bootstrapped 

realizations was labeled on each plot. Edge strength is a measure of confidence of that edge 

while fixing the rest of the network structure and is defined as the empirical frequency 

a specific edge is observed over a set of networks learned from bootstrapped samples 

(i.e., the number of times the edge was present out of the total number of bootstrapped 

realizations). An edge was included in the network graph if its strength was larger than a 

significance threshold learned from the bootstrapped samples. Edge direction represents the 

probability of the edge’s direction conditional on the edge’s presence within the network 

(i.e., the number of times the edge traveled in a specific direction out of the total number 

of bootstrapped realizations in which it was present in either direction). While Markov 

networks are undirected and may be cyclic, Bayesian networks are directed/acyclic and are 

designed to support causal interpretation via a set of potentially unverifiable assumptions 

(Briganti et al., 2022; Nagarajan et al., 2014). Despite this, arrow direction depicts statistical 

dependencies, not molecular dependencies. Paired with the cross-sectional observational 

nature of the data, arc direction in this study should be interpreted with caution (Lewis & 

Ward, 2013).

For complete analytical details, refer to documented example analysis code in the GitHub 

repository https://github.com/lwheinsberg/mvCREBRF.

3. RESULTS

3.1 mvBIMBAM

Using the Bayesian multivariate mvBIMBAM framework, we found that in the Samoa 

cohort the association with rs373863828, while taking the multivariate correlation structures 

between phenotypes (Figures S1–S2) into account, was strong for the overall phenotype 

panel, along with the individual phenotypes weight and BMI (log10 BF overall = 8.81, 

weight = 8.30, BMI = 6.42, Table 1). There was suggestive evidence for an association with 

height (log10 BF = 2.02, Table 1) and negligible evidence for an association with HDL-C, 

TG, and total cholesterol (log10 BF < 1.5, Table 1). The evidence of association was weaker 

in the Aotearoa New Zealand cohort with suggestive associations between rs373863828 and 

the overall phenotype panel, weight, and BMI (log10 BF overall = 4.60, weight = 3.27, BMI 

= 1.80, Table 1), and negligible evidence for an association with height, HDL-C, TG, and 

total cholesterol (log10 BF < 1.5, Table 1).
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When we performed a sensitivity analysis using the subset of Aotearoa New Zealand 

individuals who were not on statin or diuretic medication, a similar pattern of association 

between rs373863828 and the phenotype panel was observed, with the strongest effects 

noted with weight and BMI (log10 BF weight = 1.46, BMI = 0.90, Table S2), although all 

Bayes factors were below the cut-off for suggestive association (log10 BF < 1.5).

Within the mega analysis of the combined cohort, the evidence of association of 

rs373863828 with the overall phenotype panel, weight, and BMI was even greater than 

among the Samoa or Aotearoa New Zealand cohorts alone (log10 BF overall = 12.37, weight 

= 11.86, BMI = 8.06, Table 1). The association with height remained suggestive (log10 BF = 

3.16), and evidence for all other associations remained negligible (log10 BF < 1.5, Table 1).

Within the expanded anthropometric panel in the Samoa cohort, there was strong evidence 

for an association between rs373863828 and the overall phenotype panel, weight, BMI, fat 

mass, abdominal circumference, and hip circumference (log10 BF overall = 8.05, weight 

= 7.26, BMI = 5.75, fat mass = 5.65, abdominal circumference = 5.34, hip circumference 

= 5.09, Table 2). There was suggestive evidence for an association with height (log10 BF 

= 1.58) and fat-free mass (log10 BF = 1.85) and negligible evidence for associations with 

abdominal-hip ratio, HDL-C, TG, or total cholesterol (log10 BF < 1.5, Table 2). Sex-specific 

mvBIMBAM results are presented in Tables S3–S4.

3.2 Bayesian Network Analyses

Bayesian networks were trained for the Samoa cohort (Figure 1), the Aotearoa New Zealand 

cohort (Figure 2), the combined cohort (Figure S3), and the expanded phenotype panel 

analysis in the Samoa cohort (Figure 3). As stated above, the strength and directionalities of 

the edges of the Bayesian networks were inferred through a bootstrapped process resulting 

in networks that varied slightly from run to run, thus representative networks are presented 

with quantitative edge strength:direction values that summarize results across the total 

number of bootstrapped realizations. In this approach, edges with high strength and strong 

directionality are more likely to appear in any single realization of a network, while edges 

with weaker directionalities may change direction across different realizations.

The networks from both cohorts and the combined cohort suggested a direct association 

between rs373863828 and weight, indirect associations between rs373863828 and both 

height and BMI through weight, and a web of associations between lipid and other 

anthropometric traits (Figures 1–2, Figure S3). These results aligned with the evidence 

from mvBIMBAM, which suggested the association between rs373863828 and weight was 

more likely to be direct than indirect (probability 90% direct, 10% indirect in the combined 

cohort, Table 1). The inferred Bayesian networks were also consistent with mvBIMBAM 
results in the Samoa cohort, which suggested greater likelihood of indirect associations 

between rs373863828 and both height (probability 42% direct, 56% indirect, Table 1) and 

BMI (probability 46% direct, 54% indirect, Table 1). This was not the case in the Aotearoa 

New Zealand cohort, however, which resulted in more likely direct than indirect effects 

between rs373863828 and height (probability 62% direct, 29% indirect, Table 1) and BMI 

(probability 65% direct, 29% indirect, Table 1). Of note, the edge metrics for many of the 

relationships across all networks presented were 1:1 (i.e., consistent presence/direction in 
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100% of bootstrapped realizations), indicating very high statistical confidence in the strength 

and directions of effect (Figures 1–3, Figure S3).

In the Bayesian network analysis of the Samoa cohort with the expanded phenotype panel, 

an edge between rs373863828 and total cholesterol was also inferred with an edge strength 

of 0.68 (present in 68% of the bootstrapped realizations, Figure 3). The mvBIMBAM results 

suggested a similar probability of direct association with total cholesterol (84%), though 

the evidence of association was negligible (log10 BF = 0.98, Table 2). This rs373863828-

cholesterol edge was not observed in Bayesian network analyses of the two cohorts with the 

reduced phenotype panel (Figures 1–2) nor in the analysis of the combined cohort (Figure 

S3).

4. DISCUSSION

When correlation structures were considered, multivariate Bayesian analyses provided 

strong evidence of the pleiotropic effects of rs373863828 including associations with 

weight, BMI, fat mass, abdominal circumference, and hip circumference (Tables 1, 2). Of 

note, rs373863828 was first discovered in a genome-wide association study of BMI (Minster 

et al., 2016). Most variants that associate with increased BMI are typically associated 

with increased weight, but not height. Because rs373863828 is associated with increased 

weight (Minster et al., 2016), height (Carlson et al., 2020), and BMI (Minster et al., 2016) 

in marginal analyses, the Bayesian approach taken here is uniquely positioned to offer 

probabilities of direct vs. indirect effects of rs373863828.

To that end, the strongest and most persistent direct association presented here was observed 

between rs373863828 and weight using both mvBIMBAM (log10 BF = 3.3 to 11.9, Tables 

1–2) and bnlearn (Figures 1–3, Figure S3). Specifically, in the combined cohort there 

was strong evidence (log10 BF = 11.86) for an 90.25% probability of a direct effect 

of rs373863828 on weight. These results aligned with the relationships learned from the 

Bayesian networks in which 100% of bootstrapped realizations found a direct association 

between rs373863828 and weight across all cohorts.

The signal for association between rs373863828 and height was more varied with suggestive 

evidence of association in the Samoa and combined cohorts (log10 BF = 1.58 to 3.16, Tables 

1–2) but negligible evidence of association in the Aotearoa New Zealand cohort (log10 BF 

= 0.87). In contrast to weight, in the combined cohort, the association between rs373863828 

and height was equally as likely to be direct or indirect in mvBIMBAM results, while it 

was clearly favored as an indirect relationship in bnlearn results (i.e., 100% of bootstrapped 

realizations suggested an indirect association between variant and height, through weight). 

Considered together, these results suggest that, despite the variant’s trait-specific marginal 

associations with both weight and height, any difference in BMI due to rs373863828 

genotype is most attributable to the variant’s effect on weight.

In the expanded phenotype panel analyses in the Samoa cohort, we observed strong evidence 

of association between rs373863828 and hip and abdominal circumference phenotypes 

(log10 BF abdominal circumference = 5.34, hip circumference = 5.09, Table 2), both 
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of which are highly correlated with weight. Further, we observed stronger evidence of 

association between rs373863828 and estimated fat mass compared to fat-free mass (log10 

BF of 5.65 vs 1.85, respectively, Table 2). Upon exploring this finding further in the 

sex-stratified analyses (Table S4), we observed that this association had strong support 

only in females, which is consistent with prior observations (N. Hawley et al., In Press). 

While the sex-stratified analyses should be interpreted with caution due to the reduced 

sample sizes, other potentially interesting sex-specific results included stronger associations 

between the variant and weight, BMI, abdominal circumference, and hip circumference in 

females (particularly in the Samoan cohort) and stronger associations between the variant 

and height in Samoan males (Tables S3–S4).

Despite the many strengths of this study, including the large sample size, complementary 

Bayesian analytical approaches, and focus on a historically understudied group, there are 

some limitations that should be acknowledged. Given that the analytical approach applied 

here only accepts quantitative, normally distributed traits, we were unable to include some 

important phenotypes that have been associated with rs373863828, including type 2 diabetes 

diagnosis (Minster et al., 2016). While we considered analyzing a related phenotype such 

as fasting glucose, the addition was complicated by a substantial reduction in sample size 

based on the exclusion of participants by diabetes diagnosis (Russell et al., 2022) and 

heterogeneity of medication use and adherence (LaMonica et al., 2022). Therefore, as 

with all studies, there were unmeasured/unaccounted for factors which could impact the 

conclusions (e.g., arc direction, direct vs. indirect determinations) (Stephens, 2013, 2019). 

To reduce this burden, and provide more complete/causal conclusions, future directions of 

this work include the application of multivariate methods that allow other variable types 

(e.g., binary, categorical, or nonparametric) (Hackinger & Zeggini, 2017). Relatedly, we 

examined total cholesterol, which included both detrimental LDL cholesterol and favorable 

HDL cholesterol. While it would be ideal to examine these values separately, the use of LDL 

cholesterol would have reduced our sample size substantially as described in the methods. 

Given the association between the rs373863828 minor allele and decreased fasting glucose 

(Russell et al., 2022), enhanced early insulin release (Burden et al., 2021), and favorable 

lipid profiles (Minster et al., 2016; Ohashi et al., 2018), it will be important to examine these 

more analytically complex traits in the future.

In conclusion, we used two complementary Bayesian approaches to explore how 

rs373863828 was associated with a panel of correlated adiposity-related phenotypes when 

considered in a multivariate context. There was strong evidence for an association between 

rs373863828 and weight, BMI, fat mass, abdominal circumference, and hip circumference 

(Tables 1, 2), providing additional evidence of rs373863828’s pleiotropic effects. Most 

notably, both multivariate approaches highlighted a strong direct effect only on weight 

(Table 1, Figures 1–3, Figure S3), suggesting that rs373863828-specific interventions 

focused directly on reducing body weight might be most effective at improving other 

measures of adiposity and lipid profiles. In future work, it will be interesting to further 

examine these patterns in the context of more precise measurements of body composition 

and energy metabolism, as well as glucose levels, insulin release/sensitivity, and detailed 

lipid panels.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Samoa Bayesian Network. Nodes are shape coded by type (circle = anthropometric, 

diamond = lipids, square = the variant). Shading correspond to log10BF 0 (white) to 5 

or greater (black). Edge labels represent strength:directionality; edge strength represents the 

number of times the edge was present out of the total number of bootstrapped realizations 

(proportion); edge direction represents the number of times the edge traveled in a specific 

direction out of the total number of bootstrapped realizations in which it was present in 

either direction (proportion); edges with strength less or equal to 0.90 are dashed. BMI, body 

mass index; Chol, cholesterol; TG, triglycerides; HDL-C, HDL cholesterol.
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Figure 2. 
Aotearoa New Zealand Bayesian Network. Nodes are shape coded by type (circle = 

anthropometric, diamond = lipids, square = the variant). Shading correspond to log10BF 

0 (white) to 5 or greater (black). Edge labels represent strength:directionality; edge strength 

represents the number of times the edge was present out of the total number of bootstrapped 

realizations (proportion); edge direction represents the number of times the edge traveled 

in a specific direction out of the total number of bootstrapped realizations in which it was 

present in either direction (proportion); edges with strength less or equal to 0.90 are dashed. 

BMI, body mass index; Chol, cholesterol; TG, triglycerides; HDL-C, HDL cholesterol.
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Figure 3. 
Samoa cohort Bayesian network with expanded phenotype set. Nodes are shape coded by 

type (circle = anthropometric, diamond = lipids, square = the variant). Shading correspond 

to log10BF 0 (white) to 5 or greater (black). Edge labels represent strength:directionality; 

edge strength represents the number of times the edge was present out of the total number 

of bootstrapped realizations (proportion); edge direction represents the number of times the 

edge traveled in a specific direction out of the total number of bootstrapped realizations 

in which it was present in either direction (proportion); edges with strength less or equal 

to 0.90 are dashed. BMI, body mass index; Chol, cholesterol; TG, triglycerides; HDL-C, 

HDL cholesterol; Abd Circ, abdominal circumference; Hip Circ, hip circumference; AHR, 

abdominal-hip ratio; FM, fat mass; FFM, fat-free mass.
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