Skip to main content
Frontiers in Cellular and Infection Microbiology logoLink to Frontiers in Cellular and Infection Microbiology
. 2023 Jan 19;12:1100044. doi: 10.3389/fcimb.2022.1100044

Two new species of Hymenochaetaceae from tropical Asia and America

Meng Zhou 1, Xiao-Hong Ji 2, Hong-Gao Liu 3, Kurt Miller 4, Yuan Yuan 1,*, Josef Vlasák 5,*
PMCID: PMC9892452  PMID: 36741979

Abstract

Two new species in Hymenochaetaceae, Fulvifomes acaciae and Pyrrhoderma nigra, are illustrated and described from tropical Asia and America based on morphology and phylogenetic analyses. F. acaciae is characterized by perennial, pileate, and woody hard basidiomata when fresh; ash gray to dark gray, encrusted, concentrically sulcate, and irregularly cracked pileal surface; circular pores of 7–8 per mm with entire dissepiments; a dimitic hyphal system in trama and context; absence of setal element and presence of cystidioles; and broadly ellipsoid, yellowish brown, thick-walled, and smooth basidiospores measuring 5–6 μm × 4–5 μm. P. nigra is characterized by perennial and resupinate basidiomata with dark gray to almost black pore surface when fresh; small and circular pores of 7–9 per mm, a monomitic hyphal system with generative hyphae simple septate, hyphoid setae dominant in subiculum but not in tube trama, and absence of cystidia; and ellipsoid, hyaline, thin-walled basidiospores measuring 4–5 μm × 3–3.6 μm. The differences between the new species and morphologically similar and phylogenetically related species are discussed. Keys to Fulvifomes and Pyrrhoderma have also been provided.

Keywords: white rot, Hymenochaetaceae, polypore, taxonomy, wood-decaying fungi

1. Introduction

Fulvifomes is a monophyletic genus in Hymenochaetaceae (Wagner and Fischer, 2002; Wu et al., 2022). However, it has been treated as a synonym of Phellinus Quél. for several decades (Ryvarden and Johansen, 1980; Gilbertson and Ryvarden, 1986–1987a; Larsen and Cobb-Poulle, 1990; Núñez and Ryvarden, 2000). The genus is characterized by basidiomata annual to perennial, effused-reflexed; pileate or substipitate, corky to woody hard; hyphal system monomitic or dimitic; generative hyphae simple septate; setal elements absent; basidiospores subglobose to ellipsoid, yellowish to brown, fairly thick- to thick-walled, smooth; mostly on angiosperms and cause a white rot (Wu et al., 2022a). Recently, molecular analyses have detected new taxa in the genus (2015c; 2022b; Zhou, 2014; Ji et al., 2017; Salvador-Montoya et al., 2018; Wu et al., 2022a). So far, 49 species have been recorded in the genus (Wu et al., 2022a).

Pyrrhoderma Imazeki is another monophyletic genus in Hymenochaetaceae (Wu et al., 2022a) and was erected with Pyrrhoderma sendaiense as the generic type by Imazeki (1966). The genus was emended by Zhou et al. (2018). It is characterized by basidiomata annual to perennial, effused-reflexed, pileate to laterally stipitate, corky to woody hard when dry; pileal surface with a cuticle or crust; hyphal system monomitic; generative hyphae simple septate; hyphoid and hymenial setae present or absent; basidiospores ellipsoid to subglobose, hyaline, thin-walled; on angiosperm wood and cause a white rot. Previously, seven species were accepted in Pyrrhoderma (Wu et al., 2022a).

The pioneer phylogeny of Hymenochaetaceae was made by Wagner and Fischer (2001) based on limited samples, and more phylogenetic analyses were contributed based on more samples (2015b; 2016a; 2016b; Dai, 2010; Zhou, 2015a; Rajchenberg et al., 2015; Wu et al., 2016, 2022; Miettinen et al., 2019). Phylogenies of Fulvifomes were recently analyzed, and many new species were described (Zhou, 2015c; Ji et al., 2017; Tchoumi et al., 2020; Hattori, et al., 2022). Pyrrhoderma is a small genus in Hymenochaetaceae, and Zhou et al. (2018) published a comprehensive phylogeny on the genus.

During an investigation on tropical Asian and American hymenochaetaceous fungi, samples with morphological characteristics fit definitions of Fulvifomes and Pyrrhoderma. Phylogenetically, these have formed two distinct lineages within Fulvifomes and Pyrrhoderma, respectively. Therefore, in the present paper, we described two new species in Hymenochaetaceae.

2. Materials and methods

2.1. Morphological studies

Our studied specimens have been deposited in the herbarium of the Institute of Microbiology, Beijing Forestry University (BJFC), the private herbarium of Josef Vlasák (JV), and the National Museum Prague of Czech Republic (PRM). The sections were prepared in 5% potassium hydroxide (KOH), Melzer’s reagent (IKI), and cotton blue (CB). The following abbreviations are used: KOH, 5% potassium hydroxide; IKI, Melzer’s reagent; IKI–, neither amyloid nor dextrinoid; CB, cotton blue; CB–, acyanophilous; CB+, cyanophilous after 12 h stained with cotton blue; L, mean spore length (arithmetic average of spores); W, mean spore width (arithmetic average of spores); Q, variation in the ratios of L/W between specimens studied; and n, number of basidiospores measured from a given number of specimens. The microscopic procedure follows Dai (2010), and the special color terms follow Petersen (1996) and Anonymous (1969). Sections were studied at magnifications up to ×1,000 using a Nikon Eclipse 80i microscope with phase contrast illumination. Drawings were made with the aid of a drawing tube. Microscopic features, measurements, and illustrations were made from the slide preparations stained with CB. Basidiospores were measured from sections cut from the tubes.

2.2. DNA extraction, amplification, and sequencing

The extraction of total genomic DNA from frozen specimens followed Góes-Neto et al. (2005) using the protocol of Cetyltrimethyl Ammonium Bromide (CTAB) 2%. The CTAB rapid plant genome extraction kit-DN14 (Aidlab Biotechnologies Co., Ltd., Beijing) was used to obtain PCR products from dried specimens, following the manufacturer’s instructions with some modifications (2016; Chen et al., 2015). The internal transcribed spacer (ITS) region was amplified with the primer pairs ITS5 and ITS4 (White et al., 1990). For the large subunit nuclear ribosomal RNA gene (nLSU), the primer pairs LR0R and LR7 (Vilgalys and Hester, 1990) and LR0R and LR5 (White et al., 1990) were used for PCR amplification. The PCR procedure for ITS was as follows: initial denaturation at 95°C for 3 min, followed by 34 cycles of denaturation at 94°C for 40 s, annealing at 54°C for 45 s, and extension at 72°C for 1 min, followed by a final extension at 72°C for 10 min. The PCR procedure for 28S was as follows: initial denaturation at 94°C for 1 min followed by 35 cycles at 94°C for 30 s, 50°C for 1 min, 72°C for 1.5 min, and a final extension of 72°C for 10 min. The PCR products were purified and directly sequenced at Beijing Genomics Institute. The sequence quality was checked following Nilsson et al. (2012).

2.3. Phylogenetic analyses

The phylogenetic trees were constructed using sequences obtained in this study and additional sequences downloaded from GenBank ( Tables 1 , 2 ). Both ITS and 28S datasets were aligned within MAFFT version 7 (Katoh et al., 2019) and ClustalX (Thompson et al., 1997), followed by manual proofreading in BioEdit (Hall, 1999). Ambiguous regions were deleted, and gaps were manually adjusted to optimize alignment before phylogenetic analyses. Phellinus betulinus (Murrill) Parmasto and P. populicola Niemelä were used as outgroups in the phylogeny of Fulvifomes (Wu et al., 2022a; Figure 1 ). Oxyporus populinus (Schumach.) Donk was used as an outgroup in the phylogeny of Pyrrhoderma (Zhou et al., 2018; Figure 2 ). Each data matrix was edited in Mesquite version 3.70 (Maddison and Maddison, 2021).

Table 1.

Taxa, voucher specimens, and GenBank accession numbers of sequences used in the phylogeny of Fulvifomes.

Species Sample no. Locality GenBank accessions Reference
ITS nLSU
Fomitiporella caryophylli CBS 448.76 India AY558611 AY059021 Jeong et al., 2005
Fulvifomes acaciae JV 2203/71-J Costa Rica OP828594 OP828596 This study
F. acaciae JV 0312/23.4 USA OP828595 OP828597 This study
F. azonatus Cui 8452 China MH390417 MH390396 Wu et al., 2022a
F. azonatus Dai 17470 China MH390418 MH390395 Wu et al., 2022a
F. azonatus Dai 17203 China MH390419 MH390397 Wu et al., 2022a
F. caligoporus Dai 17668 China MH390420 MH390390 Wu et al., 2022a
F. caligoporus Dai 17660 China MH390421 MH390391 Wu et al., 2022a
F. centroamericanus JV 0611/III Guatemala KX960763 KX960764 Ji et al., 2017
F. centroamericanus JV 0611/8P USA KX960757 N/A Ji et al., 2017
F. costaricense JV 1407/87 Costa Rica MH390412 MH390387 Wu et al., 2022a
F. costaricense JV 1408/14 Costa Rica MH390413 MH390385 Wu et al., 2022a
F. costaricense JV 1607/103 Costa Rica MH390414 MH390386 Wu et al., 2022a
F. dracaenicola Dai 22097 China MW559800 MW559805 Du et al., 2021
F. dracaenicola Dai 22093 China MW559799 MW559804 Du et al., 2021
F. elaeodendri CMW 47808 South Africa MH599093 MH599131 Wu et al., 2022a
F. elaeodendri CMW 47825 South Africa MH599094 MH599134 Wu et al., 2022a
F. elaeodendri CMW 47909 South Africa MH599096 MH599132 Wu et al., 2022a
F. elaeodendri CMW 48154 South Africa MH599097 MH599135 Wu et al., 2022a
F. elaeodendri CMW 48610 South Africa MH599095 MH599133 Wu et al., 2022a
F. fastuosus LWZ 20140731-13 Thailand KR905674 KR905668 Zhou, 2015c
F. fastuosus LWZ 20140718-29 Thailand KR905673 N/A Zhou, 2015c
F. fastuosus Dai 18292 Vietnam MH390411 MH390381 Wu et al., 2022a
F. floridanus JV 0904/65 USA MH390422 N/A Wu et al., 2022a
F. floridanus JV 0312/23.1 USA MH390423 N/A Wu et al., 2022a
F. floridanus JV 0904/76 USA MH390424 MH390388 Wu et al., 2022a
F. grenadensis JV 1212/2J USA KX960756 N/A Ji et al., 2017
F. grenadensis 1607/66 Costa Rica KX960758 N/A Ji et al., 2017
F. hainanensis Dai 11573 China KC879263 JX866779 Zhou, 2014
F. halophilus XG 4 Thailand JX104705 JX104752 KC879259
F. halophilus JV 1502/4 USA MH390427 MH390392 Wu et al., 2022a
F. imbricatus LWZ 20140728-16 Thailand KR905677 KR905670 Zhou, 2015c
F. imbricatus LWZ 20140729-25 Thailand KR905678 N/A Zhou, 2015c
F. imbricatus LWZ 20140729-26 Thailand KR905679 KR905671 Zhou, 2015c
F. indicus Yuan 5932 China KC879261 JX866777 Zhou, 2014
F. indicus O 25034 Zimbabwe KC879262 KC879259 Wu et al., 2022a
F. jouzaii JV 1504/16 Costa Rica MH390425 MH390400 Wu et al., 2022a
F. jouzaii JV 1504/39 Costa Rica MH390426 N/A Wu et al., 2022a
F. kawakamii CBS 428.86 USA N/A AY059028 Wagner and Fischer, 2002
F. krugiodendri JV 0904/1 USA KX960762 KX960765 Ji et al., 2017)
F. krugiodendri JV 0312/24.10J USA KX960760 KX960766 Ji et al., 2017)
F. krugiodendri JV1008/21 USA KX960761 KX960767 Ji et al., 2017)
F. lloydii Dai 10809 China MH390428 MH390378 Wu et al., 2022a
F. lloydii Dai 9642 China MH390429 MH390379 Wu et al., 2022a
F. lloydii Dai 11978 China MH390430 MH390380 Wu et al., 2022a
F. luteoumbrinus CBS 296.56 USA AY558603 AY059051 Wagner and Fischer, 2002
F. merrillii Dai 12094 China MH390415 MH390382 Wu et al., 2022a
F. merrillii Kout-6 Thailand MH390416 MH390383 Wu et al., 2022a
F. nakasoneae JV 1109/62 USA MH390407 MH390376 Wu et al., 2022a
F. nakasoneae JV 0904/68 USA MH390408 MH390373 Wu et al., 2022a
F. nakasoneae JV 1109/77 USA MH390409 MH390374 Wu et al., 2022a
F. nakasoneae JV 0312/22.11 USA MH390410 MH390375 Wu et al., 2022a
F. nilgheriensis CBS 209.36 USA AY558633 AY059023 Wagner and Fischer, 2002
F. nilgheriensis URM 3028 Brazil MH390431 MH390384 Wu et al., 2022a
F. rhytiphloeus JV 1704/71 Costa Rica MZ506738 MZ505207 Wu et al., 2022a
F. rhytiphloeus JV 1808/76 French Guiana MZ506739 MZ505208 Wu et al., 2022a
F. rhytiphloeus JV 1809/10 French Guiana MZ506740 MZ505209 Wu et al., 2022a
F. rigidus Dai 17496 China MH390432 MH390398 Wu et al., 2022a
F. rigidus Dai 17507 China MH390433 MH390399 Wu et al., 2022a
F. rimosus M 2392655 Australia MH628255 MH628017 Wu et al., 2022a
F. robiniae CBS 211.36 USA AY558646 AF411825 Wagner and Ryvarden, 2002
F. robiniae Unknown Unknown EF088656 N/A GenBank
F. siamensis XG 2 Thailand JX104709 JX104756 Zhou, 2014
F. siamensis Dai 18309 Vietnam MH390434 MH390389 Wu et al., 2022a
F. sp. PM 950703-1 Unknown EU035311 N/A GenBank
F. sp. PM 950703-1 Unknown EU035312 N/A GenBank
F. sp. PM 950703-1 Unknown EU035313 N/A GenBank
F. squamosus USM 250536 Peru MF479268 MF479265 Salvador-Montoya et al., 2018
F. squamosus USM 258349 Peru MF479269 MF479264 Salvador-Montoya et al., 2018
F. subindicus Dai 17743 China MH390435 MH390393 Wu et al., 2022a
F. subindicus Cui 13908 China MH390436 MH390394 Wu et al., 2022a
F. submerrillii Dai 17911 China MH390405 MH390371 Wu et al., 2022a
F. submerrillii Dai 17917 China MH390406 MH390372 Wu et al., 2022a
F. thailandicus LWZ 20140731-1 Thailand KR905672 KR905665 Zhou, 2015c
F. xylocarpicola MU 8 Thailand JX104676 JX104723 Zhou, 2014
Inocutis tamaricis CBS 384.72 Turkmenistan AY558604 MH872221 Vu et al., 2018
Inonotus hispidus S 45 Spain EU282482 EU282484 GenBank
Phellinus betulinus (Outgroup) CBS 122.40 USA MH856059 MH867554 Wu et al., 2022a
P. populicola (Outgroup) CBS 638.75 Finland MH860960 MH872729 Wu et al., 2022a

New taxon is in bold.

N/A, Not applicable.

Table 2.

Taxa, voucher specimens, and GenBank accession numbers of sequences used in the phylogeny of Pyrrhoderma.

Species Sample no. Locality GenBank accession no. Reference
ITS nLSU
Coniferiporia qilianensis Yuan 6424 China NR158318 NG060411 Zhou et al., 2016a
Cylindrosporus flavidus Dai 13213 China KP875564 KP875561 Zhou, 2015a
Inonotus rigidus Dai 17496 China MH390432 MH390398 GenBank
I. rigidus Dai 17507 China MH390433 MH390399 GenBank
Onnia tomentosa Niemela 9079 Finland MF319075 MF318931 GenBank
Phellinidium ferrugineofuscum Cui 10042 China KR350573 KR350559 Zhou et al., 2016a
Porodaedalea chinensis Cui 10252 China KX673606 MH152358 Dai et al., 2017
P. pini BRNM 737548 (CFMR) Turkey JQ772470 N/A Tomsovsky and Kout, 2013
P. adamantinum Cui 6088 Jiangxi, China MF860783 N/A Zhou et al., 2018
P. adamantinum Cui 6105 Jiangxi, China MF860784 MF860733 Zhou et al., 2018
P. adamantinum Cui 8114 Yunnan, China MF860785 MF860734 Zhou et al., 2018
P. adamantinum Cui 10056 Jilin, China MF860786 N/A Zhou et al., 2018
P. adamantinum Dai 7957 Hainan, China MF860787 N/A Zhou et al., 2018
P. adamantinum Dai 12138 Hunan, China MF860788 N/A Zhou et al., 2018
P. adamantinum Dai 13084 Yunnan, China MF860789 MF860735 Zhou et al., 2018
P. adamantinum Dai 13832 Yunnan, China MF860790 MF860736 Zhou et al., 2018
P. adamantinum Dai 17592 Yunnan, China MF860791 MF860737 Zhou et al., 2018
P. adamantinum Dai 17593 Yunnan, China MF860792 MF860738 Zhou et al., 2018
P. adamantinum MN 1094 Japan N/A AY059031 Wagner and Fischer, 2002
P. adamantinum Q 23 China KC414229 N/A GenBank
P. adamantinum xsd 08129 China FJ481040 N/A GenBank
P. hainanense Cui 6395 Hainan, China MF860793 N/A Zhou et al., 2018
P. hainanense LWZ 20150530-1 Hainan, China MF860794 MF860739 Zhou et al., 2018
P. lamaoense Dai 16227 Hainan, China MF860802 MF860743 Zhou et al., 2018
P. lamaoense Dai 16292 Hainan, China MF860803 MF860744 Zhou et al., 2018
P. lamaoense Dai 17500 Yunnan, China MF860804 MF860748 Zhou et al., 2018
P. lamaoense Dai 17877 Singapore MF860805 MF860749 Zhou et al., 2018
P. lamaoense LWZ 20140617-4 Guangxi, China MF860806 MF860746 Zhou et al., 2018
P. nigra Cui 6308 Hainan, China N/A MF860757 Zhou et al., 2018
P. nigra Cui 8546 Yunnan, China MF860816 MF860758 Zhou et al., 2018
P. nigra Dai 13594 Yunnan, China N/A MF860759 Zhou et al., 2018
P. nigra Dai 17745 Hainan, China N/A MF860760 Zhou et al., 2018
P. nigra Dai 17895 Singapore N/A MF860761 Zhou et al., 2018
P. nigra JV1504/29 Costa Rica MF860817 MF860762 Zhou et al., 2018
P. nigra JV1704/41 Costa Rica MF860818 MF860763 Zhou et al., 2018
P. nigra JV 2208/97A-J French Guiana OP824782 N/A This study
P. nigra LWZ 20140801-3 Thailand MF860819 MF860764 Zhou et al., 2018
P. nigra LWZ 20150601-1 Hainan, China MF860820 MF860765 Zhou et al., 2018
P. nigra MO 489730 Puerto Rico OP605521 N/A This study
P. sublamaensis (P. noxium) Cui 10958 Hainan, China MF860807 N/A Zhou et al., 2018
P. sublamaensis (P. noxium) Dai 9250 Hainan, China MF860808 N/A Zhou et al., 2018
P. sublamaensis (P. noxium) Dai 10292 Hainan, China KX058573 HQ328532 Dai, 2010
P. sublamaensis (P. noxium) Dai 17754 Hainan, China MF860809 MF860752 Zhou et al., 2018
P. sublamaensis (P. noxium) LWZ 20150601-3 Hainan, China MF860810 MF860750 Zhou et al., 2018
P. sublamaensis (P. noxium) LWZ 20150601-6 Hainan, China MF860811 MF860751 Zhou et al., 2018
P. thailandicum LWZ 20140731-17 Thailand MF860812 MF860753 Zhou et al., 2018
P. yunnanense Cui 8566 Yunnan, China MF860813 N/A Zhou et al., 2018
P. yunnanense Cui 8590 Yunnan, China N/A MF860754 Zhou et al., 2018
P. yunnanense LWZ 20140719-12 Yunnan, China MF860814 MF860755 Zhou et al., 2018
P. yunnanense LWZ 20140719-13 Yunnan, China MF860815 MF860756 Zhou et al., 2018
Oxyporus populinus (Outgroup) Dai 8908 China KY131887 KT203323 Wu et al., 2017

New taxon is in bold.

N/A, Not applicable.

Figure 1.

Figure 1

Maximum likelihood tree illustrating the phylogeny of Fulvifomes based on the combined dataset of ITS+28S sequences. Phellinus betulinus (MH856059; MH867554) and P. populicola (MH860960; MH872729) were used as outgroups. The maximum likelihood bootstrap values (≥50) and Bayesian posterior probability values (≥0.90) are indicated above the branches. The new species is in bold.

Figure 2.

Figure 2

Maximum likelihood tree illustrating the phylogeny of Pyrrhoderma based on the combined dataset of ITS+28S sequences. Oxyporus populinus (KY131887; KT203323) was used as an outgroup. The maximum likelihood bootstrap values (≥50) and Bayesian posterior probability values (≥0.90) are indicated above the branches. The new species is in bold.

Phylogenetic analyses were conducted using maximum likelihood (ML) and Bayesian Inference (BI) based on ITS+28S aligned datasets using RAxML version 8.2.12 (Stamatakis, 2014) and MrBayes version 3.2.6 (Ronquist et al., 2012). Sequence alignments were deposited at TreeBase (http://purl.org/phylo/treebase; submission ID 29762 and 29862).

GTR+I+G was estimated as the best-fit evolutionary model for the resulting alignments from these two datasets with jModelTest (Guindon and Gascuel, 2003; Posada, 2008). RAxML version 8.2.12 (Stamatakis, 2014) was applied in the ML analysis. All parameters in the ML analysis were kept at default settings.

The BI was calculated with MrBayes version 3.2.6 (Ronquist et al., 2012) in two independent runs, each of which had four chains for 1.5 million generations that were initiated using random trees. Trees were sampled every 100 generations. The first 25% of the sampled trees were discarded as burn-in, whereas other trees were used to construct a 50% majority consensus tree and for calculating Bayesian posterior probabilities (BPPs).

The two methods constructed nearly congruent topologies for each alignment. Therefore, only the topology generated from the ML analysis is presented along with the bootstrap support for ML (BS) values and BPPs, simultaneously at the nodes. Phylogenetic trees were visualized using FigTree version 1.4.4 (Rambaut, 2018). Branches that received bootstrap support for ML (BS) and BPPs (≥75% for BS and 0.95 for BPPs) were considered as significantly supported.

3. Results

3.1. Phylogeny

Permission in the phylogenetic analysis of Fulvifomes ( Figure 1 ), 79 fungal collections representing 37 taxa of Fulvifomes were included in the phylogenetic analyses and two samples of genus Phellinus were used as outgroups. The final alignment comprised a total of 1,922 base pairs (bp), including 1,032 bp of ITS and 890 bp of 28S. The best model for the combined ITS+28S dataset was estimated and applied in the Bayesian analysis: GTR+I+G, lset nst = 6, rates = invgamma; prset statefreqpr = dirichlet (1,1,1,1). Bayesian analysis resulted in an average standard deviation of split frequencies as 0.009512. As both ML and BI trees resulted in similar topologies, only the topology from the ML analysis is presented along with statistical values from the ML (≥50%) and BPP (≥0.9) algorithms ( Figure 1 ).

In the phylogenetic analysis of Pyrrhoderma ( Figure 2 ), the ITS+28S sequences from 51 fungal collections representing 15 species were used. The final alignment comprised a total of 1,686 bp, including 814 bp of ITS and 872 bp of 28S. The best model for the combined ITS+28S dataset was estimated and applied in the Bayesian analysis: GTR+I+G, lset nst = 6, rates = invgamma; prset statefreqpr = dirichlet (1,1,1,1). Bayesian analysis resulted in an average standard deviation of split frequencies = 0.006184. Both ML and BI trees resulted in similar topologies; thus, only the topology from the ML analysis is presented along with statistical values from the ML (≥50%) and BPP (≥0.9) algorithms ( Figure 2 ).

3.2. Taxonomy

Fulvifomes acaciae Meng Zhou, Yuan & Vlasák, sp. nov. Figures 3 , 4 .

Figure 3.

Figure 3

A basidiomata of Fulvifomes acaciae (holotype, JV 2203/71-J). Scale bar: 1 cm.

Figure 4.

Figure 4

Microscopic structures of Fulvifomes acaciae (JV 0312/23.4-J). (A) Basidiospores. (B) Basidia and basidioles. (C) Hyphae from context. (D) Hyphae from tube trama.

MycoBank: MB xxxxxx

Type. Costa Rica, Mt. Rincon, Guachipelin, on living tree of Acacia, March 2022, JV 2203/71-J (isotype, BJFC).

Etymology. Acaciae (Lat.): referring to the species growing on Acacia.

Fruiting body. Basidiomata perennial, pileate, solitary, without distinctive odor or taste and woody hard when fresh, light in weight when dry. Pilei ungulate, projecting up to 20 cm and 15 cm wide and 7 cm thick at base. Pileal surface ash gray to dark gray when dry, encrusted, rough, concentrically sulcate, irregularly cracked; pileal margin dark gray, obtuse. Pore surface umber, glancing; sterile margin distinct, fulvous, up to 3 mm wide; pores circular, 7–8 per mm; dissepiments thick, entire. Context fulvous, woody hard, zonate, up to 5 mm thick. Tubes concolorous with context, woody hard, up to 6.5 cm long, tube layers indistinctly stratified.

Hyphal structure. Hyphal system dimitic in trama and context; generative hyphae simple septate; tissue becoming blackish brown in KOH.

Context. Generative hyphae hyaline to pale yellow, thin- to thick-walled, rarely branched, frequently simple septate, 2–3 μm in diameter; skeletal hyphae dominant, yellowish to golden yellow, thick-walled with a narrow to wide lumen, unbranched, aseptate, more or less straight, regularly arranged, 3–4 μm in diameter.

Tubes. Generative hyphae hyaline to pale yellow, thin- to slightly thick-walled, rarely branched, frequently simple septate, 2–3.5 μm in diameter; skeletal hyphae frequent, yellowish to golden yellow, thick-walled with a narrow to wide lumen, unbranched, aseptate, more or less straight, subparallel along tubes, 3–4.5 μm in diameter. Setae or setal hyphae absent; cystidioles absent; basidia barrel-shaped, with four sterigmata and a simple basal septum, 10–12 μm × 5–6 μm; basidioles in shape similar to basidia, slightly smaller than basidia. Big rhomboid crystals present in hymenia and trama.

Spores. Basidiospores broadly ellipsoid, yellowish brown, thick-walled, smooth, some collapsed, IKI–, CB–, (4.9–)5–6(–6.1) μm × (3.9–)4–5(–5.1) μm, L = 5.26 μm, W = 4.35 μm, Q = 1.19–1.23 (n = 60/2).

Additional specimen (paratype) examined. USA, Florida, Florida Keys, Key Largo, John Pennekamp Coral Reef State Park, December 2003, Josef Vlasák leg., on fallen trunk of Acacia, JV 0312/23.4-J (BJFC032898).

Pyrrhoderma nigra Meng Zhou, Yuan Yuan & Vlasák, sp. nov. Figures 5 , 6

Figure 5.

Figure 5

A basidiomata of Pyrrhoderma nigra (MO 489730). Scale bar: 1 cm.

Figure 6.

Figure 6

Microscopic structures of Pyrrhoderma nigra (holotype, Cui 8546). (A) Basidiospores. (B) Basidia and basidioles. (C) Hyphae from subiculum. (D) Hyphae from tube trama.

MycoBank: MB xxxxxx.

Type. China, Yunnan Province, Mengla County, Wangtianshu Forest Park, 2 November 2009, Bao-Kai Cui leg., on fallen angiosperm trunk, Cui 8546 (BJFC 007035).

Etymology. Nigra (Lat.): referring to having black pore surface when fresh.

Fruiting body. Basidiomata perennial, resupinate, firmly attached to the substrate, separable, up to 30 cm long, 16 cm wide and 8 mm thick at center, without odor or taste when fresh, woody hard and brittle when dry. Pore surface dark gray to almost black when fresh, becoming grayish brown when dry, glancing; sterile margin very narrow to almost absent, dark brown; pores mostly circular, 7–9 per mm; dissepiments thick, entire. Subiculum chestnut, woody hard, up to 3 mm thick. Tubes deep olive, woody hard to brittle, up to 3 mm long.

Hyphal structure. Hyphal system monomitic; generative hyphae simple septate; tissue darkening but otherwise unchanged in KOH.

Subiculum. Subicular hyphae yellowish to golden yellow, thick-walled with a wide lumen, occasionally branched, frequently simple septate, interwoven, some encrusted with fine crystals, 4–5.5 µm diameter; hyphoid setae dark brown, distinctly thick-walled with a narrow lumen, straight, apex obtuse and not encrusted, up to a few hundreds of µm long, 5–8 µm diameter.

Tubes. Tramal hyphae pale yellowish to yellow, thin- to thick-walled with a wide lumen, gelatinized, frequently branched, frequently simple septate, parallel along the tubes, 3–4.5 µm diameter; hyphoid setae frequent, but not dominant, dark brown, distinctly thick-walled with a narrow lumen, straight, apex obtuse or pointed, and sometimes encrusted with fine hyaline crystals, frequently projecting out of hymenium, up to a few hundreds of micrometers long, 8–12 µm diameter; cystidia and cystidioles absent; basidia barrel-shaped, with four sterigmata and a simple septum at the base, 7–9 µm × 4–4.5 µm; basidioles more or less pyriform, slightly smaller than basidia.

Spores. Basidiospores ellipsoid, hyaline, thin-walled, some with a big guttule, IKI–, CB–, 4–5 μm × 3–3.6(–4) μm, L = 4.43 µm, W = 3.34 µm, Q = 1.33 (n = 30/1).

Additional specimens (paratypes) examined. China: Hainan Province, Ledong County, Jianfengling National Nature Reserve, on fallen angiosperm trunk, 1 June 2015, LWZ 20150601-1 (IFP 019170). Costa Rica, Golfito, Playa Cacao, 19.IV.2015, JV 1504/29 (JV), Playa Nicuesa, 18.IV.2017, JV 1704/41(JV). French Guiana, Roura, Camp Cayman, 27.VIII.2018, JV 1808/107 (BJFC032959), St. Laurent du Maroni, Gite Moutouchi, on fallen angiosperm trunk, 31.VIII.2022, JV 2208/97A-J. (JV, BJFC) Puerto Rico, Mayagüez, Miradero, Papaya House, on fallen mango trunk, 4.8.2022, Kurt Miller MO 489730 (JV, BJFC).

4. Discussion

Macromorphologically, Fulvifomes krugiodendri has perennial, solitary, ungulate basidiomata; its pileal surface is dark gray, encrusted, concentrically sulcate with narrow zones, cracked with age; its pores as 7–9 per mm with thick and entire dissepiments. Microscopically, it has a dimitic hyphal system in both context and tube trama. Morphologically, F. krugiodendri is similar to F. acaciae, and both species are also closely related in our phylogeny ( Figure 1 ). However, F. krugiodendri differs from F. acaciae by its subglobose basidiospores measuring 4.3–5 μm × 4–4.5 μm, L = 4.6 μm, W = 4.21 μm, Q = 1.08–1.09, interwoven tramal hyphae, and the absence of rhomboid crystals, and it lives on Krugiodendron (Ji et al., 2017). In addition, the nucleotide difference of ITS sequences between the two species is 3%.

Morphologically, Pyrrhoderma nigra is very similar to the resupinate Pyrrhoderma lamaoense (Murrill) L.W. Zhou & Y.C. Dai and P. sublamaensis (Lloyd) Y.C. Dai & F. Wu, but the latter two species have effused-reflexed to pileate basidiomata, the presence of cystidia, especially thinner basidiospores (2–2.4 μm vs. 3–3.6 µm, Wu et al., 2022). P. nigra and Pyrrhoderma thailandicum L. W. Zhou & Y.C. Dai share similar basidiospores (4–5 µm × 3–3.6 µm vs. 4–4.5 µm × 3–3.5 µm), but the latter differs from the former by annual basidiomata, bigger pores (3–5 per mm vs. 7–9 per mm) and the absence of setal elements.

Most species of Fulvifomes and Pyrrhoderma have been recorded in the tropics (Wu et al., 2022). The two new species described in the present study were found from tropical Asia and America. Similar to other polypores, species of Hymenochaetaceae is very rich in the tropics (Dai et al., 2021). So far, 50 and 8 species of Fulvifomes and Pyrrhoderma, respectively, have been identified, and identification keys to the species in the two genera are given below.

Key to species of Fulvifomes

1. Basidiocarps annual ..........................................................................2

1. Basidiocarps perennial .....................................................................5

2. Pores 4–5 per mm ....................F. indicus (Massee) L. W. Zhou

2. Pores 7–10 per mm ..........................................................................3

3. Basidiocarps resupinate; basidiospores ellipsoid...........................................F. rigidus (B.K. Cui & Y.C. Dai) X.H. Ji & Jia J. Chen

3. Basidiocarps pileate; basidiospores globose to subglobose......... 4

4. Pileal surface without a black cuticle; hyphal system dimitic........ F. aureobrunneus (J.E. Wright & Blumenf.) Y.C. Dai & F. Wu

4. Pileal surface with a black cuticle; hyphal system monomitic.............................F. luteoumbrinus (Romell) Y. C. Dai et al.

5. Chlamydospores present.................................................................. 6

5. Chlamydospores absent.....................................................................9

6. Basidiospores 5–8 µm long............................................................... 7

6. Basidiospores 4–5 µm long............................................................... 8

7. Pilei ungulate, tube layers separated by a thin context layer..... F. scaber (Berk.) Y.C. Dai & F. Wu

7. Pilei globose, tubes indistinctly stratified without context layer..........F. kravtzevii (Schwarzman) Y.C. Dai & F. Wu

8. Basidiocarps imbricate, pileal surface with a cuticle....................F. kawakamii (M.J. Larsen et al.) T. Wagner & M. Fisch.

8. Basidiocarps solitary, pileal surface without a cuticle.................F. durissimus (Lloyd) Bondartseva & S. Herrera

9. Basidiospores oblong-ellipsoid.......................................................10

9. Basidiospores ellipsoid, broadly ellipsoid, ovoid, subglobose or globose.......................................................................................................11

10. Pores 5–6 per mm; basidiospores 4.2–5.1 µm long....... F. collinus (Y.C. Dai & Niemelä) Y.C. Dai

10. Pores 7–8 per mm; basidiospores 3–3.6 µm long.......................F. fushanianus (T.T. Chang) Y.C. Dai & F. Wu

11. Tramal hyphae monomitic...........................................................12

11. Tramal hyphae dimitic..................................................................14

12. Basidiospores ellipsoid, <4 µm wide............................................F. caligoporus Y.C. Dai & X.H. Ji

12. Basidiospores ovoid or subgolobose, >4 µm wide....................13

13. Context without a granular core, pores 5–7 per mm.....F. lloydii (Cleland) Y.C. Dai & X.H. Ji

13. Context with a granular core, pores 3–4 per mm......................F. resinaceus (Kotl. & Pouzar) Y.C. Dai & F. Wu

14. Hyphae monomitic in context.....................................................15

14. Hyphae dimitic or subdimitic in context....................................25

15. Pileal surface uncracked................................................................16

15. Pileal surface cracked or rimose...................................................20

16. Hyphae at pileal surface with thin-walled and septate tips; on Newtonia buchananii; African species.................................F. newtoniae (Niemelä & Mrema) Y.C. Dai & F. Wu

16. Hyphae at pileal surface without thin-walled and septate tips; on an angiosperm other than Newtonia; Asian or American species............................17

17. Basidiospores >5.5 μm long...................................F. mangrovicus (Imazeki) T. Hatt.

17. Basidiospores <5.5 μm long..........................................................18

18. On Dracaena................................................F. dracaenicola Z.B. Liu & Y.C. Dai

18. On an angiosperm other than Dracaena....................................19

19. Pore surface not glancing; basidiospores CB+; Asian species.......F. subindicus Y.C. Dai & X.H. Ji

19. Pore surface glancing; basidiospores CB–; American species........F. floridanus Y.C. Dai & Vlasák

20. Pileal surface squamose with long scales.........F. squamosus Salvador-Montoya & Drechsler-Santos

20. Pileal surface glabrous or tomentose without long scales........21

21. Basidiospores globose, >5 µm wide...............................F. cedrelae (Murrill) Murrill

21. Basidiospores ovoid, broadly ellipsoid to subglobose, <5 µm wide..........................................................................................................22

22. Pileal surface with a black crust....................................................23

22. Pileal surface without crust...........................................................24

23. Pores 4–7 per mm; basidiospores 3–4 µm wide.................F. grenadensis (Murrill) Murrill

23. Pores 7–8 per mm; basidiospores 4–5 µm wide......................F. siamensis T. Hatt. et al.

24. Pore surface dull chocolate brown, pores 4–5 per mm................F. rimosus (Berk.) Fiasson & Niemelä

24. Pore surface yellowish to reddish brown, pores 7–8 per mm.....................F. robiniae (Murrill) Murrill

25. Pileal surface azonate.....................................................................26

25. Pileal surface concentrically zonate.............................................28

26. Basidiospores 4.5–6 μm wide........................................F. crocatus (Fr.) Y.C. Dai & F. Wu

26. Basidiospores 3–4 μm wide..........................................................27

27. Pore surface not glancing, pores 7–9 per mm...........F. azonatus Y.C. Dai & X.H. Ji

27. Pore surface glancing, pores 5–7 per mm................F. swieteniae Murrill

28. Pileal surface cracked.....................................................................29

28. Pileal surface uncracked................................................................37

29. Pores 7–11 per mm.........................................................................30

29. Pores 4–7 per mm...........................................................................32

30. Pilei triquetrous, pore surface dark brown, not glancing.........F. minutiporus (Bond. & Herrera) Y.C. Dai & F. Wu

30. Pilei ungulate, pore surface grayish brown to umber, glancing............31

31. Basidiospores subglobose, 4.3–5 μm × 4–4.5 μm......................F. krugiodendri Y.C. Dai et al.

31. Basidiospores subglobose broadly ellipsoid, 5–6 μm × 4–5 μm................................................................................................................................ F. acaciae

32. Growing on Pseudocedrela or Elaeodendron; African species..............................................................................................33

32. Growing on an angiosperm other than Pseudocedrela and Elaeodendron; Asian and American species............................................34

33. Context with a black line; on Elaeodendron croceum...............F. elaeodendri Tchotet et al.

33. Context without a black line; on Pseudocedrela kotschyi.........F. yoroui Olou & F. Langer

34. Basidiospores mostly 5–6 μm wide......................F. coffeatoporus (Kotl. & Pouzar) Y.C. Dai & F. Wu

34. Basidiospores mostly 3.5–5 μm wide..........................................35

35. Pore surface not glancing; American species.............................F. nakasoneae Y.C. Dai & Vlasák

35. Pore surface glancing; Asian species...........................................36

36. Pileal surface matted, not encrusted; cystidioles absent...........F. xylocarpicola T. Hatt. et al.

36. Pileal surface encrusted; cystidioles present........F. thailandicus L.W. Zhou

37. Pores 3–4 per mm.................................F. hainanensis L.W. Zhou

37. Pores 4–11 per mm.........................................................................38

38. Cystidioles present.........................................................................39

38. Cystidioles absent...........................................................................41

39. A thin black line present........................................between context and substrate F. allardii (Bres.) Bondartseva & S. Herrera

39. A thin black line absent.................................................................40

40. Pores 4–5 per mm; basidiospores ellipsoid to reniform..........F. merrillii (Murrill) Baltazar & Gibertoni

40. Pores 6–7 per mm; basidiospores ellipsoid...........F. submerrillii X.H. Ji & Jia J Chen

41. Growing on Abies; context very thin to almost lacking............F. acontextus (Ryvarden) Y.C. Dai & F. Wu

41. Growing angiosperm wood; distinct context present..............42

42. Basidiocarps usually effused-reflexed to pileate........................43

42. Basidiocarps distinctly pileate......................................................44

43. Pileal surface dark brown to black; growing exclusively on Xylocarpus........................................................F. halophilus T. Hatt. et al.

43. Pileal surface luteous brown; growing on an angiosperm other than Xylocarpus..........................................F. mcgregorii (Bres.) Y.C. Dai

44. Basidiospores 5–6 µm long...........................................F. fastuosus (Lév.) Bondartseva & S. Herrera

44. Basidiospores 4–5 µm long...........................................................45

45. Basidiospores globose..............................................F. rhytiphloeus (Mont.) Camp.-Sant. & Robledo

45. Basidiospores broadly ellipsoid to subglobose..........................46

46. Pilei ungulate; basidiospores <3.7 μm wide...................F. jouzaii Y.C. Dai & F. Wu

46. Pilei applanate, dimidiate or semicircular; basidiospores >3.7 μm wide.........................................................................................................47

47. Pileal surface encrusted.................................................................48

47. Pileal surface not encrusted..........................................................49

48. Basidiospores 3.9–4.5 μm long; Central American species......F. centroamericanus Y.C. Dai et al.

48. Basidiospores 4.6–5.1 μm long; Asian species.......F. imbricatus L.W. Zhou

49. Pores 9–11 per mm..................F. costaricense Y.C. Dai & Vlasák

49. Pores 7–9 per mm.....................................F. nilgheriensis (Mont.) Bondartseva & S. Herrera

Key to species of Pyrrhoderma

1. Hyphoid setae absent.........................................................................2

1. Hyphoid setae present........................................................................3

2. Pores 5–6 per mm; basidiospores 6–7 μm long...........................P. adamantinum (Berk.) Imazeki

2. Pores 3–5 per mm; basidiospores 4–4.5 μm long........................P. thailandicum L.W. Zhou & Y.C. Dai

3. Pores 2–4 per mm; dissepiments lacerate...............P. luteofulvum (Cleland & Rodway) Y.C. Dai & F. Wu

3. Pores 6–9 per mm; dissepiments entire..........................................4

4. Hymenial setae present..............................................P. yunnanense L.W. Zhou & Y.C. Dai

4. Hymenial setae absent........................................................................5

5. Basidiocarps annual.....................................................P. hainanense L.W. Zhou & Y.C. Dai

5. Basidiocarps perennial.......................................................................6

6. Basidiospores 3–3.6 µm wide................................................P. nigra

6. Basidiospores 2–2.4 μm wide............................................................7

7. Contextual hyphae interwoven, basidiospores oblong-ellipsoid, 3.2–4.3 μm long...............P. lamaoense (Murrill) L.W. Zhou & Y.C. Dai

7. Contextual hyphae regularly arranged, basidiospores ellipsoid, 2.6–3.3 μm long.....................P. sublamaensis (Lloyd) Y.C. Dai & F. Wu

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/supplementary material.

Author contributions

MZ, YY and JV coordinated the project and designed the experimental plan. MZ and YY analyzed the data with help from XHJ and JV. MZ, YY, HGL, KM and JV collected the samples from the field. MZ, X-HJ and YY writing the original draft preparation. MZ, X-HJ, YY and JV review and editing the manuscript. YY and JV acquire funding. All authors contributed to the article and approved the submitted version.

Acknowledgments

We thank Prof. Bao-Kai Cui (Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University) for allowing us to studying his specimens.

Funding Statement

The research was financed by National Natural Science Foundation of China (Project Nos. 32161143013 and 32011540380) and by the institutional support of the Academy Sciences of the Czech Republic (RVO: 60077344).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

  1. Anonymous (1969). Flora of British fungi. colour identification chart (London: Her Majesty’s Stationery Office; ), 1–3. [Google Scholar]
  2. Chen J. J., Cui B. K., Dai Y. C. (2016). Global diversity and molecular systematics of Wrightoporia s.l. (Russulales, basidiomycota). Persoonia 37, 21–36. doi:  10.3767/003158516X689666 [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen J. J., Cui B. K., Zhou L. W., Korhonen K., Dai Y. C. (2015). Phylogeny, divergence time estimation, and biogeography of the genus Heterobasidion (Basidiomycota, russulales). Fungal Divers. 71, 185–200. doi:  10.1007/s13225-014-0317-2 [DOI] [Google Scholar]
  4. Dai Y. C. (2010). Hymenochaetaceae (Basidiomycota) in China. Fungal Divers. 45, 131–343. doi:  10.1007/s13225-010-0066-9 [DOI] [Google Scholar]
  5. Dai S. J., Vlasak J., Tomsovsky (2017). Porodaedalea chinensis (Hymenochaetaceae, basidiomycota) - a new polypore from China. Mycospere 8, 986–993. doi: 10.5943/mycosphere/8/6/2 [DOI] [Google Scholar]
  6. Dai Y. C., Yang Z. L., Cui B. K., Wu G., Yuan H. S., Zhou L. W., et al. (2021). Diversity and systematics of the important macrofungi in Chinese forests. Mycosystema 40, 770–805. [Google Scholar]
  7. Du P., Cao T. X., Wu Y. D., Zhou M., Liu Z. B. (2021). Two new species of Hymenochaetaceae on Dracaena cambodiana from tropical China. MycoKeys 80, 1–17. doi:  10.3897/mycokeys.80.63997 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilbertson R. L., Ryvarden L. (1986–1987. a). North American polypores 1-2. Oslo: Fungiflora, 1–885. [Google Scholar]
  9. Góes-Neto A., Loguercio-Leite C., Guerrero R. T. (2005). DNA Extraction from frozen field-collected and dehydrated herbarium fungal basidiomata: performance of SDS and CTAB-based methods. Biotemas 18, 19–32. [Google Scholar]
  10. Guindon S., Gascuel O. (2003). A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst. Biol. 52, 696–704. doi:  10.1080/10635150390235520 [DOI] [PubMed] [Google Scholar]
  11. Hall T. A. (1999). Bioedit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98. [Google Scholar]
  12. Hattori T., Ota Y., Sotome K. (2022). Two new species of Fulvifomes (Basidiomycota, hymenochaetaceae) on threatened or near threatened tree species in Japan. Mycoscience 63, 131–141. doi: 10.47371/mycosci.2022.04.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Imazeki R. (1966). The genus Pyrrhoderma imazeki. Trans. Japan Mycol. Soc 7, 3–11. [Google Scholar]
  14. Jeong W. J., Lim Y. W., Lee J. S., Jung H. S. (2005). Phylogeny of Phellinus and related genera inferred from combined data of ITS and mitochondrial SSU rDNA sequences. J. Microbiol. biot 15, 1028–1038. doi:  10.1007/s10295-005-0024-9 [DOI] [Google Scholar]
  15. Ji X. H., Wu F., Dai Y. C., Vlasák J. (2017). Two new species of Fulvifomes (Hymenochaetales, basidiomycota) from America. MycoKeys 22, 1–13. doi:  10.3897/mycokeys.22.12380 [DOI] [Google Scholar]
  16. Katoh K., Rozewicki J., Yamada K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings Bioinf. 20, 1160–1166. doi:  10.1093/bib/bbx108 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Larsen M., Cobb-Poulle L. A. (1990). Phellinus (Hymenochaetaceae). a survey of the world taxa. Synopsis Fungorum 3, 1–206. doi:  10.2307/3760175 [DOI] [Google Scholar]
  18. Maddison W. P., Maddison D. R. (2021)Mesquite: A modular system for evolutionary analysis (Accessed 4 October 2021).
  19. Miettinen O., Larsson K. H., Spirin V. (2019). Hydnoporia, an older name for Pseudochaete and Hymenochaetopsis, and typification of the genus Hymenochaete (Hymenochaetales, basidiomycota). Fungal Syst. Evol. 4, 77–96. doi:  10.3114/fuse.2019.04.0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nilsson R. H., Tedersoo L., Abarenkov K., Ryberg M., Kristiansson E., Hartmann M., et al. (2012). Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys 4, 37–63. doi:  10.3897/mycokeys.4.3606 [DOI] [Google Scholar]
  21. Núñez M., Ryvarden L. (2000). East Asian Polypores 1. ganodermataceae and hymenochaetaceae. Synopsis Fungorum 13, 1–168. [Google Scholar]
  22. Petersen J. H. (1996). The Danish mycological society’s colour-chart. Greve: Foreningen til Svampekundskabens Fremme, 1–6. [Google Scholar]
  23. Posada D. (2008). jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256. doi:  10.1093/molbev/msn083 [DOI] [PubMed] [Google Scholar]
  24. Rajchenberg M., Pildain M. B., Bianchinotti M. V., Barroetaveña C. (2015). The phylogenetic position of poroid hymenochaetaceae (Hymenochaetales, basidiomycota) from Patagonia, Argentina. Mycologia 107, 754–767. doi:  10.3852/14-170 [DOI] [PubMed] [Google Scholar]
  25. Rambaut A. (2018)Molecular evolution, phylogenetics and epidemiology. FigTree ver. 1.4.4 software (Accessed October 2022).
  26. Ronquist F., Teslenko M., van der Mark P., Ayres D., Darling A., Höhna S., et al. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. doi:  10.1093/sysbio/sys029 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ryvarden L., Johansen I. (1980). A preliminary polypore flora of East Africa. Fungiflora, 1–636. doi:  10.2307/3759822 [DOI] [Google Scholar]
  28. Salvador-Montoya C. A., Popoff O. F., Reck M., Drechsler-Santos E. R. (2018). Taxonomic delimitation of Fulvifomes robiniae (Hymenochaetales, basidiomycota) and related species in America: F. squamosus sp. nov. Plant Syst. Evol. 304, 445–459. doi:  10.1007/s00606-017-1487-7 [DOI] [Google Scholar]
  29. Stamatakis A. (2014). RAxML version 8: A tool for phylogenetic analyses and post analyses of large phylogenies. Bioinformatics 30, 1312–1313. doi:  10.1093/bioinformatics/btu033 [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tchoumi J. M. T., Coetzee M. P. A., Rajchenberg M., Roux J. (2020). Poroid hymenochaetaceae associated with trees showing wood-rot symptoms in the garden route national park of south Africa. Mycologia 112, 722–741. doi: 10.1080/00275514.2020.1753160 [DOI] [PubMed] [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. (1997). The clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882. doi:  10.1093/nar/25.24.4876 [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tomsovsky M., Kout J. (2013). Porodaedalea cedrina (Basidiomycota, agaricomycetes, hymenochaetaceae) - a new polypore from the Mediterranean area. Nova Hedwigia 96, 419–426. doi: 10.1127/0029-5035/2013/0087 [DOI] [Google Scholar]
  33. Vilgalys R., Hester M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several cryptococcus species. J. Bacteriol. 172, 4238–4246. doi:  10.1128/jb.172.8.4238-4246.1990 [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vu D., Groenewald M., De V. M., Gehrmann T., Stielow B., Eberhardt U., et al. (2018). Large-Scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 92, 135–154. doi:  10.1016/j.simyco.2018.05.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wagner T., Fischer M. (2001). Natural groups and a revised system for the European poroid hymenochaetales (Basidiomycota) supported by nLSU rDNA sequence data. Mycol. Res. 105, 773–782. doi:  10.1017/S0953756201004257 [DOI] [Google Scholar]
  36. Wagner T., Fischer M. (2002). Proceedings towards a natural classification of the worldwide taxa phellinus s.l. and inonotus s.l., and phylogenetic relationships of allied genera. Mycologia 94, 998–1016. doi:  10.1080/15572536.2003.11833156 [DOI] [PubMed] [Google Scholar]
  37. Wagner T., Ryvarden L. (2002). Phylogeny and taxonomy of the genus Phylloporia (Hymenochaetales). Mycol. Prog. 1, 105–116. doi:  10.1007/s11557-006-0009-8 [DOI] [Google Scholar]
  38. White T. J., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR protocols: A guide to methods and applications. Eds. Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. (New York, NY: Academic Press; ), 315–322. doi:  10.1016/B978-0-12-372180-8.50042-1 [DOI] [Google Scholar]
  39. Wu F., Chen J. J., Ji X. H., Vlasák J., Dai Y. C. (2017). Phylogeny and diversity of the morphologically similar polypore genera Rigidoporus, physisporinus, oxyporus and Leucophellinus . Mycologia 109, 749–765. doi:  10.1080/00275514.2017.1405215 [DOI] [PubMed] [Google Scholar]
  40. Wu F., Man X. W., Tohtirjap A., Dai Y. C. (2022. b). A comparison of polypore funga and species composition in forest ecosystems of China, north America, and Europe. For. Ecosyst. 9, 100051. doi:  10.1016/j.fecs.2022.100051 [DOI] [Google Scholar]
  41. Wu F., Zhou L. W., Dai Y. C. (2016). Neomensularia duplicata gen. et sp. nov. (Hymenochaetales, basidiomycota) and two new combinations. Mycologia 108, 891–898. doi:  10.3852/16-020 [DOI] [PubMed] [Google Scholar]
  42. Wu F., Zhou L. W., Vlasák J., Dai Y. C. (2022. a). Global diversity and systematics of hymenochaetaceae with poroid hymenophore. Fungal Divers. 113, 1–192. doi: 10.1007s13225-021-00496-4 [Google Scholar]
  43. Zhou L. W. (2014). Fulvifomes hainanensis sp. nov. and F. indicus comb. nov. (Hymenochaetales, basidiomycota) evidenced by a combination of morphology and phylogeny. Mycoscience 55, 70–77. doi:  10.1016/j.myc.2013.05.006 [DOI] [Google Scholar]
  44. Zhou L. W. (2015. a). Cylindrosporus flavidus gen. et comb. nov. (Hymenochaetales, basidiomycota) segregated from Onnia . Phytotaxa 219, 276–282. doi:  10.11646/phytotaxa.219.3.7 [DOI] [Google Scholar]
  45. Zhou L. W. (2015. b). Four new species of Phylloporia (Hymenochaetales, basidiomycota) from tropical China with a key to Phylloporia species worldwide. Mycologia 107, 1184–1192. doi:  10.3852/14-254 [DOI] [PubMed] [Google Scholar]
  46. Zhou L. W. (2015. c). Fulvifomes imbricatus and F. thailandicus (Hymenochaetales, basidiomycota): Two new species from Thailand based on morphological and molecular evidence. Mycol. Prog. 14, 1–8. doi:  10.1007/s11557-015-1116-1 [DOI] [Google Scholar]
  47. Zhou L. W., Ji X. H., Vlasák J., Dai Y. C. (2018). Taxonomy and phylogeny of Pyrrhoderma: A redefinition, the segregation of Fulvoderma gen. nov. and four new species. Mycologia 110, 872–889. doi:  10.1080/00275514.2018.1474326 [DOI] [PubMed] [Google Scholar]
  48. Zhou L. W., Vlasák J., Dai Y. C. (2016. a). Taxonomy and phylogeny of Phellinidium (Hymenochaetales, basidiomycota): A redefinition and the segregation of Coniferiporia gen. nov. for forest pathogens. Fungal Biol. 120, 988–1001. doi:  10.1016/j.funbio.2016.04.008 [DOI] [PubMed] [Google Scholar]
  49. Zhou L. W., Vlasák J., Decock C., Assefa A., Stenlid J., Abate D., et al. (2016. b). Global diversity and taxonomy of the Inonotus linteus complex (Hymenochaetales, basidiomycota): Sanghuangporus gen. nov., Tropicoporus excentrodendri and T. guanacastensis gen. et spp. nov., and 17 new combinations. Fungal Divers. 77, 335–347. doi:  10.1007/s13225-015-0335-8 [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/supplementary material.


Articles from Frontiers in Cellular and Infection Microbiology are provided here courtesy of Frontiers Media SA

RESOURCES