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Evidence of a causal effect of genetic
tendency to gain muscle mass on uterine
leiomyomata

Eeva Sliz 1,2 , Jaakko S. Tyrmi 1,2, Nilufer Rahmioglu3,4, Krina T. Zondervan3,4,
Christian M. Becker 3, FinnGen*, Outi Uimari 5,6,7,72 &
Johannes Kettunen 1,2,72

Uterine leiomyomata (UL) are themost common tumours of the female genital
tract and the primary cause of surgical removal of the uterus. Genetic factors
contribute to UL susceptibility. To add understanding to the heritable genetic
risk factors, we conduct a genome-wide association study (GWAS) of UL in up
to 426,558 European women from FinnGen and a previous UL meta-GWAS. In
addition to the 50 known UL loci, we identify 22 loci that have not been
associated with UL in prior studies. UL-associated loci harbour genes enriched
for development, growth, and cellular senescence. Of particular interest are
the smooth muscle cell differentiation and proliferation-regulating genes
functioning on the myocardin-cyclin dependent kinase inhibitor 1 A pathway.
Our results further suggest that genetic predisposition to increased fat-free
mass may be causally related to higher UL risk, underscoring the involvement
of altered muscle tissue biology in UL pathophysiology. Overall, our findings
add to the understanding of the genetic pathways underlying UL, which may
aid in developing novel therapeutics.

Uterine leiomyomata (UL) are the most common benign tumours of
the female genital tract, with an estimated lifetime incidence of up
to 70%1 and the primary cause of hysterectomy. Female sex hor-
mones stimulate UL growth and, thus, UL are almost exclusively
found in females of reproductive age. UL are present in single or
multiple numbers, with sizes ranging from millimetres to 20 cm or
more in diameter2, and they are composed mostly of smooth mus-
cle cells (SMC) and fibroblasts with a profound component of
extracellular matrix (ECM). In 25–50% of women with ULs, the
enlarged and deformed uterus causes symptoms that reduce the
quality of life, such as heavy or prolonged menstrual bleeding
resulting in anaemia, reduced fertility and pregnancy
complications3.

Until recently, the focus in the genetics of UL has been on somatic
rearrangements, and key driver variations, for example, inMED12 and
HMGA2 have been reported4. Familial aggregation, the disparity in
prevalence between different ethnic groups, and high heritability
estimates obtained in twin studies (h2 up to 69%) suggest, however,
that heritable genetic factorsmodulateUL risk5–8. Todate, 11GWASson
UL have been conducted in populations of European, Japanese, and
African ancestries9–19. In a recent UL meta-GWAS, the SNP-based her-
itability of UL was estimated to be 2.8%12, suggesting that theremay be
other genetic variants contributing to UL susceptibility that are yet to
be discovered.

Significant GWAS findings provide opportunities for testing cau-
sal inferences between UL and traits associated with UL. For instance,
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the causal relationship between UL and excessive menstrual bleeding
has been demonstrated using the Mendelian randomisationmethod12.
The causal inferences between UL and metabolic risk factors, such as
blood lipid levels or body mass index (BMI), however, have not been
extensively studied even if previous cross-sectional studies indicate
that those are associated with UL risk20.

In this work, we conducted two sets of meta-analyses with data
from FinnGen and a previously published UL meta-GWAS12 in order to
add understanding to the UL-related heritable genetic risk factors. We
further utilised the GWAS results to estimate genetic correlations and
causal relationships between UL and metabolic and anthropometric
traits. Our findings provide a different perspective onUL pathobiology
and suggest an involvement of fat-freemass rather than fatmass in the
underlying causal pathway.

Results
22 uterine leiomyomata-associated loci that have not been
described in prior studies
‘META-1’ comprised data from FinnGen and the previous UL meta-
GWAS12 with up to 53,534 cases and 373,024 female controls, and the
analysis was restricted to publicly available 10,000 variants from the
previous study12. ‘META-2’was conducted with data from up to 38,466
cases and 329,437 controls from FinnGen and the genome-wide sum-
mary statistics from the same study by ref. 12. excluding 23andMe data
due to the data usage policy. The study setting is illustrated in Fig. 1.

In META-1, we identified 63 genomic regions located more than
1Mb apart with at least one variant associating with UL at p < 5 × 10−8

(Fig. 2, Table S1, and Supplementary Data 1, 2); of these, 16 had not
been reported in associationwith UL in prior ULGWASs (Table 1) while
the remaining 47were in the proximity of knownUL risk loci. InMETA-
2, we identified 61 genomic regions, out of which six had not been
associated with UL risk in prior GWASs or in META-1 (Fig. 2, Table 1,
Table S2, and Supplementary Data 3). However, the association at
10q24.32-10q25.1 likely spans a region larger than the ±1Mb locus
definition overlapping with a previously reported UL association near
STN1 subunit of CST complex (STN1) and STE20-like kinase (SLK)12.
This expanded association signal appears to be driven by variants
enriched in the Finnish population (Finnish enrichment 46x-198x cal-
culated as a ratio of the Finnish allele frequency and the non-Finnish-
non-Estonian European allele frequency; Table 1). Regional association
plots of the loci that have not been associated with UL risk in prior
studies are presented in Figs. S1–S18, and the regional plot of the large
signal on chr10 is presented in Fig. S19. Genomic inflation factor of
1.105 suggested minor inflation in the test statistics that was most
notably accounted for by a polygenic signal, with the intercept being
close to one21 (1.0066; Fig. S20). There was very little or no hetero-
geneity between the results obtained in FinnGen and the previous
study12 (Table 1 and Fig. S21). We estimated LD score (LDSC)
regression-derived SNP-based heritability to be 0.105 (standard error
[SE] = 0.011) on the liability scale, which corresponds to an ~7.7 per-
centage point increase compared with the LDSC-based estimate
obtained in the previous study12. The SNP-based heritability estimate
obtained additionally using SumHer22 was 0.034 (SE = 0.003).

Characterisation of the genome-wide results ofMETA-2 suggested
that the key UL-associated variants were mostly intronic (Fig. 3a and
Supplementary Data 1). We also found enrichment in variants located
on 3′ untranslated regions, 5′ untranslated regions, and upstream
sequences,whereas the proportions of intergenic andnon-codingRNA
variants were lower than expected by chance (Fig. 3a).

In the conditional association tests conductedusing genome-wide
results from META-2, we identified secondary signals in altogether 14
loci (Table S2). Multiple signals were detected in some of the loci,
including thewell-knownUL-risk locus on chr13 near ‘forkhead boxO1’
(FOXO1), in which we observed four secondary signals in addition to
the original association. The lead variants of these secondary signals

were either intronic (rs7986407, rs9548898 and rs6563799) or inter-
genic (rs9576914). Of the UL risk loci that had not been identified in
prior studies, we detected a secondary signal in chr2 near ‘myocardin-
induced smooth muscle cell lncRNA, an inducer of differentiation’
(MYOSLID) where an intronic variant (rs7584910) reached genome-
wide significance (p = 4.75 × 10−8) after conditioning the association to
the original lead variant (Table S2).

The results of fine-mapping on 146 association signals, including
all UL associations in META-1 and META-2 as well as the independent
associations observed in the conditional tests, suggested that 6 signals
(near Meis homeobox 1 [MEIS1], inositol 1,4,5-trisphosphate receptor
type 1 [ITPR1], spectrin repeat containing nuclear envelope protein 1
[SYNE1], forkhead box O1 [FOXO1], tumour protein p53 [TP53] and
minichromosome maintenance 8 homologous recombination repair
factor [MCM8]) had a single variant in the 99% credible set con-
cordantly in both META-1 and META-2 (Tables S3, S4). Of these, the
missense variant rs16991615 inMCM8, the 3′UTR variant rs78378222 in
TP53, and the intron variant rs117245733 in LINC00598 near FOXO1
have been reported previously12. The remaining variants, i.e.
rs17631680 near MEIS1, rs3804984 near ITPR1 and rs58415480 near
SYNE1 are intergenic or intronic variants with no strong evidence of
regulatory consequences according to RegulomeDB23 and, thus, the
association-driving mechanism remains unclear. In addition, 6 sec-
ondary signals were found to have a single variant in the 99% credible
set (Table S5), all of which were intronic/intergenic.

Description of the key loci
Previous GWAS findings have indicated that genetic factors altering
pathways involved in oestrogen signalling, Wnt signalling, transform-
ing growth factor (TGF)-β signalling, and cell cycle progression are
associated with UL risk10–19. The loci identified in this study further
underscore the involvement of pathways regulating SMC proliferation
in the modulation of UL risk. Many of these pathways are interrelated:
for example, both oestrogen and progesterone increase the secretion
of Wnt ligands from myometrial or leiomyoma SMC, which promotes
cell proliferation and tumorigenesis via activation of β-catenin24.
Steroid hormones also influence the production of ECM via signalling
through the TGF-β family of ligands and receptors that are highly
expressed inmultiple fibrotic conditions and contribute to the fibrotic
phenotype seen in UL25. We identified multiple loci with potential
candidate genes functioning in one ormore of these pathways, and, in
the following,wedescribe someof our key findingswith a focus on loci
involved in the regulation of SMC proliferation.

A central finding is an association at 17p12 harbouring myocardin
(MYOCD; Tables S1,S2). Myocardin is a transcription factor expressed in
smooth muscle tissues, including most prominently arteries and colon,
but also theuterus (Fig. S22), and it is required for SMCdifferentiation26.
The expression of myocardin has been shown to be downregulated in
UL tissue compared with normal myometrium27. Also, it has been pro-
posed that the loss ofmyocardin functionmay be a key factor in driving
SMC proliferation in UL27; however, prior to our findings, only one
study9 has reported GWAS association implicatingmyocardin. The lead
variants nearMYOCD are intergenic variants with no strong evidence of
altered regulatory consequences (Table S6), and, thus, a possible
association-driving mechanism remains inconclusive. We identified
another myocardin-related UL risk association at 2q33.3 nearMYOSLID,
a transcriptional target ofmyocardin28 (Fig. S3)—this locus has not been
reported in prior studies. The association lead variant (rs10804157) is a
regulatory variant (Table S7) altering the binding of multiple tran-
scription factors (Table S8), including Fos proto-oncogene (FOS) that
has been shown to be downregulated in UL29. To add yet another
example of a myocardin-related UL risk locus, a well-established asso-
ciation at 22q13.110,12,15,16 locates near ‘myocardin-related transcription
factor A’ (MRTFA; also known as MKL1), a gene interacting with
myocardin.
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Others have suggested that loss of myocardin function may
account for the differentiation defects of human leiomyosarcoma cells
during malignant transformation30: downregulation of myocardin
resulted in lower expression of cyclin-dependent kinase inhibitor 1 A
(CDKN1A; also known as p21), a mediator of cell cycle G1 phase arrest,
which facilitated cell cycle progression. The lead variants of the UL
association at 6p21.29 near CDKN1A locate in an intergenic region with
possible regulatory consequences (Table S9). Previous evidence sug-
gests that CDKN1A is among the genes, the expression of which cor-
relates with UL size31. The UL association at 20q13.319 harbours RNA
binding motif protein 38 (RBM38; Fig. S14) that binds to and regulates
the stability of CDKN1A transcripts32. In this locus, the UL risk-
increasing rs13039273-C is associated with lower RBM38 expression
in the ovary (p = 8.7 × 10−6; Fig. S23; nominal significance in the uterus,
p = 2.2 × 10−3). Interestingly, oestrogen receptor (ER)α has been shown
to inhibit the expression of myocardin27, suggesting that the ability of
myocardin-CDKN1A-signalling to inhibit cell cycle progression may be

impaired in tissues enriched with ERα. Taking together our findings
and previous evidence, it seems highly probable that downregulation
of myocardin-CDKN1A signalling increases the risk of UL.

Enrichment for genes regulating development, growth, and
cellular senescence
In a gene-based association test, we identified 97 genes associated with
UL risk (Fig. 3b and Supplementary Data 1) that were enriched for 50
curated gene sets and/or Gene Ontology (GO) terms (Fig. 3c and
Table S10). These included multiple terms related to developmental
processes such as, most notably, gonad development (‘regulation of
male gonad development’, false discovery rate (FDR)-corrected p value
(pFDR) = 1.78 × 10−7; ‘regulation of gonad development’, pFDR =0.0017;
‘positive regulation of gonad development’, pFDR =0.0065; ‘negative
regulation of gonad development’, pFDR =0.042) but also others,
including the development of kidney, respiratory system, biomineral
tissue, and adrenal gland (‘kidney mesenchyme development’,

Meta-analyses

META-1 (limited to top 10,000 variants)
- 53,534 cases; 373,024 controls

META-2 (genome-wide)
- 38,466 cases; 329,437 controls

Data sets

FinnGen
- Data Freeze 5 (18,060 cases; 105,519 controls)

Gallagher: top 10,000 variants
- WGHS
- NFBC1966
- QIMR
- UKBB
- 23andMe

Gallagher: genome-wide data
- WGHS
- NFBC1966
- QIMR
- UKBB

(3,375 cases; 9,465 controls)
(363 cases; 5,000 controls)
(1,484 cases; 3,701 controls)
(15,184 cases; 205,752 controls)
(15,068 cases; 43,587 controls)

(3,375 cases; 9,465 controls)
(363 cases; 5,000 controls)
(1,484 cases; 3,701 controls)
(15,184 cases; 205,752 controls)

Downstream analyses

Functional annotations,
gene-based associations,
enrichment analyses: FUMA

Gene expression: Coloc, SMR

Causal inferences: TwoSampleMR

Genetic correlations: LDSC

Fine-mapping: SuSiE

Conditional tests: GCTA

Fig. 1 | Study setting. The flow diagram illustrates the data usage and analytical
steps of our study. We conducted a GWAS of uterine leiomyomata (UL) in 18,060
cases and 150,519 female controls from the FinnGen project. Subsequently, we
meta-analysed the FinnGen-based results with summary statistics from a previous
UL meta-GWAS12. META-1 included 53,534 cases and 373,024 female controls and
was restricted to the top 10,000 variants from the previous study12. META-2 was
conducted genome-widely in 38,466 cases and 329,437 female controls, excluding
23andMe data due to the data usage policy. Downstream analyses assessing

functional annotations, gene-based associations, pathway enrichment, conditional
association tests, fine-mapping, and genetic correlations were conducted using
genome-wide summary statistics from META-2. In addition, fine-mapping was also
conducted for the results of META-1. In Mendelian randomisation analyses evalu-
ating causal inferences between UL and other, mostly UKBB-based traits, we
extracted instruments for UL from the FinnGen-based summary statistics to avoid
possible bias from overlapping UKBB samples.

0

15

30

60

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122 23

−l
og

10
(p
−v

al
ue

)

15

30

60

90

Chromosome

M
ET

A-
1

M
ET

A-
2

Fig. 2 | A combined Manhattan plot of uterine leiomyomata (UL) associations
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from the previous study12, and included up to 53,534 UL cases and 373,024 female
controls whereas META-2 (bottom) was conducted genome-widely in 38,466 UL

cases and 329,437 female controls. The purple colour denotes UL risk loci identi-
fied in META-1 that have not been described in prior studies, and the pink color
indicates loci identified inMETA-2 that were not associated previously with UL risk
in prior GWASs or META-1. Black and grey colours indicate odd and even chro-
mosome numbers, respectively. The red dashed lines correspond to the threshold
for genome-wide significance (p < 5 × 10−8).
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pFDR =0.0063; ‘metanephricmesenchymedevelopment’, pFDR =0.0065;
‘cell proliferation involved in metanephros development’, pFDR =0.028;
‘respiratory system development’, pFDR =0.0063; ‘diaphragm develop-
ment’, pFDR =0.0097; ‘regulation of biomineral tissue development’,
pFDR =0.031; ‘adrenal gland development’, pFDR =0.049). UL-associated
genes were also enriched for the regulation of cell cycle and senescence
(‘regulation of cell cycle’, pFDR =0.028; ‘positive regulation of cell cycle’,
pFDR =0.034; ‘cell cycle’, pFDR =0.048; ‘cellular senescence, pFDR =0.031;
‘stress-induced premature senescence’, pFDR =0.049). Enrichment for a
curated gene set ‘RUNX3 regulates CDKN1A transcription’ (pFDR =0.049)
provided further evidence thatCDKN1A-related signallingmay play a key
role in UL. In addition, four of the terms, namely ‘positive regulation of
hearth growth’ (pFDR =0.0052), ‘positive regulation of organ growth’
(pFDR =0.028), ‘regulation of hearth growth’ (pFDR =0.041), and ‘organ
growth’ (pFDR =0.049) indicated enrichment for genes that function in
processes activating growth rate and increasing the size or mass of
organs and heart in particular.

Gene expression colocalization and mediation effects
Expectedly, the strongest positive relationships between the expres-
sionofUL-associated genes anddisease-gene associationswere seen in
the uterus and cervix (Fig. S24). We found evidence of the colocali-
zation of UL signals with gene expression of 16 genes in one or more
of the four studied tissues (posterior probability (PP) for a shared

variant ≥0.8; Fig. 4a and Supplementary Data 1, 4). At 16q12.1, a well-
known UL risk locus, the UL association signal colocalized with the
expression of HEATR3 in all studied tissues (PPcultured fibroblasts = 0.92;
PPskeletal muscle = 0.90; PPuterus = 0.93; PPwhole blood = 0.95; Fig. 4b–e). Of
the loci that had not been described in association with UL in prior
studies, the association signal at 5q31.1 colocalizedwith the expression
of heat shock protein family A (Hsp70) member 4 (HSPA4) in cultured
fibroblasts (PP = 0.98) and skeletal muscle (PP = 0.93; Fig. 4f, g). Pre-
vious studies have shownHSPA4 to associatewith ERα and thus to play
a role in oestrogen signalling33 as well as to enhance the angiogenesis
ability of vessel endothelial cells in placenta accreta, a condition where
the placenta grows too deeply in the uterine wall34. Both oestrogen
signalling35 and angiogenic growth factor dysregulation36 are also
involved in UL, which makes HSPA4 a highly plausible candidate to
drive the UL association at 5q31.1. We further tested if the UL-risk
associations are mediated by gene expression in the significant loci.
The results of the mediation tests were mostly inconclusive, and we
found no genome-wide significant mediation effects that would have
passed the test for heterogeneity in dependent instruments (HEIDI;
pHEIDI ≥0.05) (Supplementary Data 5−8). In our study, the previously
reported result suggesting that the expression ofHEATR3mediates UL
risk association at 16q12.111 reached genome-wide significance inwhole
blood (p = 1.49 × 10−9), skeletal muscle (p = 4.78 × 10−9), and trans-
formed fibroblasts (p = 3.21 × 10−8) but none of the mediation effects
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Fig. 3 | Variant summary and gene set-based results using genome-wide sum-
mary statistics from META-2. a The proportions of ‘independent genome-wide
significant variants’ and ‘variants in LDwith independent significant variants’having
corresponding functional annotation. Bars are coloured according to
−log2(enrichment) relative to all variants in the reference panel. P values are
obtained using Fisher’s exact test (two-sided). b A Manhattan plot of the gene-
based test computed by MAGMA51. The input variants were mapped to 19,920

protein-coding genes and, thus, significancewas considered at p < 2.51 × 10−6 (0.05/
19,920). Purple and pink colours indicate odd and even chromosome numbers,
respectively. Thirty-seven gene symbols are omitted. c MAGMA51 gene-set enrich-
ment analysis was performed for curated gene sets and GO terms available at
MsigDB52. The plot shows the results for significantly enriched pathways
(pFDR < 0.05). All data plotted in Fig. 3a–c were produced using FUMA49.
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passed the HEIDI test (respective p values: pHEIDI.whole.blood =
2.71 × 10−27, pHEIDI.skeletal.muscle = 2.51 × 10−25, pHEIDI.transformed.fibroblasts =
5.71 × 10−10).

Genetic correlations with metabolic and anthropometric traits
We used LDSC software21 to evaluate the genetic correlations (rg) of
UL with 20 metabolic and anthropometric traits (Fig. 5a, Table S11,
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Fig. 4 | Colocalizations between UL-GWAS signals and eQTL signals. We esti-
mated approximate Bayes factor colocalizations of UL association signals from
META-2 and gene expression in GTEx v862 (cultured fibroblasts, skeletal muscle,
uterus, and whole blood) using coloc.abf function from the coloc R library54.
Altogether 92 genes, including the genes closest to the association lead variant at
each UL-associated locus and biologically plausible candidate genes, when

different from the closest genes, were included in the analysis (Table S2). The figure
illustrates a all genes, the expression of which colocalizes with UL signal (posterior
probability for a single causal variant [PP4] >0.8) in at least one of the studied
tissues, as well as colocalization signals for HEATR3 in b cultured fibroblasts,
c skeletal muscle, d uterus, and e whole blood, and for HSPA4 in f cultured fibro-
blasts, and g skeletal muscle.
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and Supplementary Data 1). In line with previous observational
studies reporting associations between cardiometabolic risk factors
and UL risk20,37, we found UL to show a positive genetic correlation
with serum triglyceride level (rg = 0.161, pFDR = 1.10 × 10−7), waist
circumference (rg = 0.101, pFDR = 1.23 × 10−4), diastolic blood pres-
sure (rg = 0.098, pFDR = 2.76 × 10−4), waist-to-hip ratio (rg = 0.095,
pFDR = 0.020), body mass index (BMI; rg = 0.091, pFDR = 7.63 × 10−4),
systolic blood pressure (rg = 0.061, pFDR = 0.020), whole-body fat
mass (rg = 0.057, pFDR = 0.026), and hip circumference (rg = 0.051,
pFDR = 0.048), and negative genetic correlation with concentrations
of high-density lipoprotein cholesterol (HDL-C; rg = −0.139,
pFDR = 1.48 × 10−7) and apolipoprotein A-I (ApoA-I; rg = −0.110,
pFDR = 1.13 × 10−4). Somewhat unexpectedly, we found UL to be clo-
sely genetically correlated with basal metabolic rate (rg = 0.084,
pFDR = 0.002), whole-body water mass (rg = 0.083, pFDR = 0.002),
andwhole-body fat-freemass (rg = 0.083, pFDR = 0.003). Compatible
with these findings, UL showed a negative genetic correlation
with the impedance of whole-body (rg = −0.130, pFDR = 1.04 × 10−5)
(i.e. a bioelectrical measure used for estimating body composition;
higher muscle mass leads to lower impedance). Compared
with whole-body fat mass, the genetic correlations of UL with these
anthropometric traits indicating good physical health (i.e.
basal metabolic rate, water mass, and fat-free mass) tended to
be more robust in terms of both larger rg values and smaller
p values.

Causal evidence underscores the involvement of altered muscle
tissue biology
To further evaluate the causal relations between UL and the same 20
metabolic and anthropometric traits, we applied bi-directional two-
sample Mendelian randomisation. Regarding circulating lipids, we
found higher HDL-C to be causally associated with a lower risk of UL
(inverse variance-weighted [IVW]method-basedodds ratio [OR] = 0.89
[0.82, 0.97], pFDR = 0.037; Fig. 5b, Table S12, and Supplementary
Data 1). Therewas no evidence of a causal relationshipbetweenUL and
blood triglyceride level (Fig. 5b) even if, among the studied traits,
triglycerides showed the most robust genetic correlation with UL in
terms of both rg and p value (Fig. 5a). Likewise, atherogenic cholesterol
measures, total-C and low-density lipoprotein (LDL)-C, and apolipo-
protein B (ApoB) concentration were not causally related to UL
risk (Fig. 5b).

We found multiple causal associations between anthropometric
traits and UL risk (Fig. 5b). Of the traits commonly linked with com-
promised health, waist circumference (OR = 1.19 [1.05,1.35],
pFDR = 0.033) and BMI (OR = 1.13 [1.03–1.24], pFDR = 0.037) were cau-
sally associated with UL risk. Compared with these, the causal asso-
ciations between UL and traits implying good physical health were
somewhat more robust (basal metabolic rate: OR = 1.24 (1.08, 1.43],
pFDR = 0.020; whole-body water mass: OR = 1.22 [1.06, 1.40],
pFDR = 0.033; whole-body fat-free mass: OR = 1.24 [1.08, 1.42],
pFDR = 0.020; impedance of whole body: OR =0.79 [0.69, 0.91],

Fig. 5 | Genetic correlations and causal relationships between uterine leio-
myomata and metabolic and anthropometric traits. We estimated a genetic
correlations (rg) between uterine leiomyomata (UL) and 20 metabolic and
anthropometric traits using UL-GWAS data from META-2 (n = 367,903) and sum-
mary statistics for other traits as provided by the MRC Integrative Epidemiology
Unit (IEU) GWAS database (n ranges from 33,231 to 757,601; the trait-specific
sample sizes are provided inTableS11). The analysis softwarewasLDSC21. Todissect
the causal relationships, we performed bi-directional two-sample Mendelian ran-
domisation (MR) implemented in the TwoSampleMR R library60,63; the plots (b, c)
show the causal estimates obtained using the inverse variance-weighted (IVW)
method. We further estimated d the multivariable effects of whole-body fat-free
mass, whole-body fat mass, and estradiol level on UL risk using the same Two-
SampleMR R library60,63. In sensitivity analyses, we derived causal estimates using
eMR Egger (as implemented in TwoSampleMR), f outlier-corrected MR-PRESSO43,

and gMRMix44 methods for the traits showing a significant IVW-based causal effect
on UL. For all MR analyses, genetic instruments for UL were extracted from the
GWAS completed in FinnGen (n = 123,579) and for other,mostly UKBB-based, traits
from the MRC IEU GWAS database (n ranges from 33,231 to 757,601; Table S11)
except for estradiol, for which the instruments were extracted from a study by
ref. 61. (n = 206,927). In all Mendelian randomisation analyses, LD pruning was
completed using a European population reference, the threshold of r2 = 0.001, and
a clumping window of 10 kb. False discovery rate (FDR)-corrected64 p values <0.05
were considered significant in primary analyses (a–c). Multivariable MR and sen-
sitivity analyses (d–g) were considered exploratory, and no multiple testing cor-
rection was applied. The error bars represent the corresponding 95% confidence
intervals (CI). Numerical details are provided in Tables S12–S15, and scatter plots
and the results of the leave-one-out analyses are shown in Figs. S25, 26 and S28–35,
respectively.
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pFDR = 0.020). When considering the null causal effect of whole-body
fat mass on UL risk (pFDR = 0.712), it seems apparent that the causal
effect of BMI on UL arises from the increased lean body mass rather
than fat mass.

Taken together, it seems that obesity-related cardiometabolic risk
factorsmay not play a causal role in the pathophysiology of UL even if
those are associatedwithUL risk on a population level20,37. Ourfindings
are in line with a previous report suggesting obesity to be causal for
uterine endometrial cancer, but not for the other four studied
gynaecologic diseases, including UL38. Of note, the causal relationship
between UL and diastolic blood pressure remained inconclusive as the
causal estimate was significant in both directions (Fig. 5b, c and Sup-
plementary Data 1).

UL are considered oestrogen-dependent, and UL have higher ERα
expression compared with normal uterine myometria35. ERs are
expressed in a variety of tissues, including allmusculoskeletal tissues39.
In females, muscle mass and strength are closely coupled with oes-
trogen status: girls begin to gain muscle mass after the onset of
puberty40, whereas in older age, during perimenopausal and post-
menopausal periods, muscle strength declines considerably41. If oes-
trogen enhances muscle growth42, the observed causal relationship
between fat-free mass and UL risk could arise secondary to high oes-
trogen contributing to muscle growth. Therefore, we further tested
the multivariable effects of whole-body fat-free mass, whole-body fat
mass, and estradiol on UL risk. The results of the multivariable model
(Fig. 5d and Table S13) indicate that, among the three traits, only
whole-body fat-free mass has a nominally significant causal effect on
UL risk (p =0.018) and, thus, support the original findings.

We note that the results of Mendelian randomisation should be
interpreted with caution: although we did not observe horizontal
pleiotropy (Table S12), the causal estimates were typically heterogenic
(Table S12; scatter plots in Figs. S25, 26). Funnel plots did not suggest
major asymmetry indicative of directional pleiotropy; however, minor
asymmetry due to outliers was present for some exposures (Fig. S27).
We further obtained outlier-corrected estimates using MR-PRESSO43

(Table S14) and an outlier-robust MRMix method44 (Table S15). The
results were highly matching to the original findings (Fig. 5f, g), thus
providing assurance of the validity of the evidence obtained in the
primary analyses. Also, in the leave-one-out sensitivity analyses
(Figs. S28–35), all causal estimates were consistently positive (higher
fat-free mass was causally associated with a higher risk of UL; Fig. S34)
or negative (higher impedance was causally associated with a lower
risk ofUL; Fig. S32) suggesting that there isno single variant driving the
causal associations.

Strengths and limitations
Compared with the previous UL GWASs, our study had a larger sample
size, which facilitated discoveries ofmultiple association signals at loci
that had not been described in prior studies and also confirmed a high
number of previously reported UL risk loci. Importantly, careful
manual curation of the biological function of the genes in the UL-
associated loci was highly beneficial in providing an understanding of
UL-related biology. Due to the limitations in data availability, we nee-
ded to conduct twodistinctmeta-analyses tomaximise the sample size
in META-1 (including 23andMe but limited to the top 10,000 variants
from theprevious study12) and to obtain genome-wide results inMETA-
2 (including genome-wide data from the previous study12 but exclud-
ing 23andMe). Multiple analyses conducted downstream of the GWAS
provided further insights into the key geneticpathways.We foundonly
minimal evidence suggesting that the UL risk associations would be
mediated by gene expression; it must be acknowledged, however, that
the currently available gene expression data is limited in terms of the
number of relevant tissue samples (the number of samples with gen-
otype data is only 129 for the uterus in GTEx Analysis Release V8) and
the low statistical power may interfere the discovery of significant

effects. Regarding the multivariable Mendelian randomisation, the
genetic instruments for estradiol are weaker than the instruments for
body composition measures, which may contribute to poor statistical
power to detect a causal effect—it would be beneficial to reassess the
multivariable effects once a larger estradiol GWAS, preferably con-
ducted in females, will be available potentially providing stronger
instruments for MR. Given that our work only includes computational
approaches, further functional studies would be warranted to provide
molecular evidence for our findings. Finally, the replication of our
findings in other non-European ethnicities would be of high value.

Discussion
The numerous UL risk loci identified in the present study provide
valuable insights into the architecture of heritable genetic risk factors
in UL. Multiple aspects of our study, including the results of gene-
based enrichment analyses and LDSC regression-derived genetic cor-
relations, indicate altered muscle tissue biology in UL. Most notably,
Mendelian randomisation-based evidence suggesting a causal rela-
tionship between genetic tendency to accumulate fat-freemass andUL
risk provides an alternative perspective on UL-related pathophysiol-
ogy. When considering the oestrogen-dependency of UL, it remains
possible that the oestrogen-rich environment, due to sexual maturity,
may trigger excess SMC growth resulting in UL in women who are
genetically inclined to build up muscle.

Currently, the only essentially curative treatment for UL is hys-
terectomy, which underscores the high demand for the development
of alternative effective therapies2. The herein presented results pro-
vide several potential targets for translational research to develop
pharmacologic interventions for UL. Therapies targeted at myocardin-
CDKN1A signalling or, considering the causal evidence, other factors
regulating muscle growth may hold the greatest potential.

Methods
Our research complies with all relevant ethical regulations. FinnGen
participants provided written informed consent for biobank research,
based on the Finnish Biobank Act. Alternatively, older research
cohorts, collected before the start of FinnGen (in August 2017), were
collected based on study-specific written informed consents and later
transferred to the Finnish biobanks after approval by Fimea, the
National Supervisory Authority for Welfare and Health. Recruitment
protocols followed the biobank protocols approved by Fimea. The
Coordinating Ethics Committee of the Hospital District of Helsinki and
Uusimaa (Helsingin ja Uudenmaan Sairaanhoitopiiri, HUS) approved
the FinnGen study protocol Nr HUS/990/2017. The FinnGen study is
approved by Finnish Institute for Health and Welfare (Terveyden ja
hyvinvoinnin laitos, THL), approval number THL/2031/6.02.00/2017,
amendments THL/1101/5.05.00/2017, THL/341/6.02.00/2018, THL/
2222/6.02.00/2018, THL/283/6.02.00/2019, THL/1721/5.05.00/2019,
Digital and population data service agency VRK43431/2017−3, VRK/
6909/2018-3, VRK/4415/2019-3 the Social Insurance Institution (Kan-
saneläkelaitos, KELA) KELA 58/522/2017, KELA 131/522/2018, KELA 70/
522/2019, KELA 98/522/2019, and Statistics Finland TK-53-1041-17. The
Biobank Access Decisions for FinnGen samples and data utilised in
FinnGen Data Freeze 5 include THL Biobank BB2017_55, BB2017_111,
BB2018_19, BB_2018_34, BB_2018_67, BB2018_71, BB2019_7, BB2019_8,
BB2019_26, Finnish Red Cross Blood Service Biobank 7.12.2017, Hel-
sinki Biobank HUS/359/2017, Auria Biobank AB17-5154, Biobank Bor-
ealis of Northern Finland_2017_1013, Biobank of Eastern Finland 1186/
2018, Finnish Clinical Biobank Tampere MH0004, Central Finland
Biobank 1-2017 and Terveystalo Biobank STB 2018001.

Study populations
FinnGen (www.finngen.fi/en) is a public-private partnership project
launched in 2017 with an aim to improve human health through
genetic research. The project utilises genome information from a
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nationwide network of Finnish biobanks that are linked with digital
health records from national hospital discharge (available from 1968),
death (1969-), cancer (1953-) and medication reimbursement (1995-)
registries using the unique national personal identification codes.
Ultimately, the data resource will cover roughly 10% of the Finnish
population. We studied data from 123,579 female participants (18,060
UL cases and 105,519 female controls) fromFinnGenPreparatory Phase
Data Freeze 5. UL cases were required to have an entry of ICD-10: D25,
ICD-9: 218, or ICD-8: 21899, and participants who had no records of
these entries were deemed as controls. The mean age at the diagnosis
was 46.8 years.

FibroGENE is a consortiumof conventional, population-based and
direct-to-consumer cohorts that was assembled to replicate and
identify UL risk variants. In the study by Gallagher et al., they studied
data from 35,474 UL cases and 267,505 female controls, including
participants from four population-based cohorts (Women’s Genome
Health Study, WGHS; Northern Finland Birth Cohort, NFBC; QIMR
Berghofer Medical Research Institute, QIMR; the UK Biobank, UKBB)
and one direct-to-consumer cohort (23andMe). Detailed descriptions
of cohorts and sample selections are available in Supplementary
Methods of the original publication12.

Genotyping, imputation, and quality control
In FinnGen, genotyping of the samples was performed using Illumina
and Affymetrix arrays (Illumina Inc., San Diego, and Thermo Fisher
Scientific, Santa Clara, CA, USA). Sample quality control (QC) was
performed to exclude individuals with high genotype missingness
(>5%), ambiguous gender, excess heterozygosity (±4 SD) and non-
Finnish ancestry. Regarding variant QC, all variants with low
Hardy–Weinberg equilibrium (HWE) p value (<1e-6), high missingness
(>2%) andminor allele count (MAC) <3were excluded. Chip genotyped
samples were pre-phased with Eagle 2.3.5 with the number of con-
ditioning haplotypes set to 20,000. Genotype imputation was carried
out by using the Finnish population-specific SISu v3 reference panel
with Beagle 4.1 (version 08Jun17.d8b) as described in the following
protocol: dx.doi.org/10.17504/protocols.io.nmndc5e. In post-
imputation QC, variants with imputation INFO <0.6 were excluded.

Genotyping and subsequent imputation and QC procedures
conducted in the previous study have been described in detail
elsewhere12. Shortly, in four of the study populations, namely WGHS,
NFBC, QIMR and 23andMe, genotyping was performed using Illumina
or Affymetrix platforms, and individuals with a genotyping call rate
<0.98 were excluded from the study. Imputation was performed using
the reference panel from the 1000 Genomes Project European data
Phase 3. In variant QC, variants with call rates of <99%orwith deviation
from HWE equilibrium (p < 1 × 10−6) were excluded. UKBB data QC and
imputation were performed centrally and are described elsewhere45.
Additional QC filters were applied to exclude poorly imputed (r2 < 0.4)
and rare (minor allele frequency [MAF] <1%) variants12.

Genome-wide associations
The UL GWAS in FinnGen was completed using the Scalable and
Accurate Implementation of Generalised (SAIGE) software version
0.36.3.246. The association models were adjusted for age, the first ten
genetic principal components, and genotyping batch, and only var-
iants with a minimum allele count of five were included in the analysis.

Meta-analyses
Two sets of fixed-effect, inverse variance-weighted meta-analyses
(implemented in METAL47 V.2011-03-25) were performed: the results
obtained in FinnGen weremeta-analyzed with (1) the top 10,000most
significant variants associatingwithUL in a publishedGWAS12 (META-1)
and (2) the genome-wide summary statistics of the same study12. Sta-
tistical significance was considered at the standard genome-wide sig-
nificance level (p < 5 × 10−8). The genomic inflation factor was

estimated using an automated LD score (LDSC) regression pipeline48

using the genome-wide results from META-2.

Characterisation of association signals
We used a web-based platform, FUMA49 (accessed on 05/18/2022), to
perform functional annotations of the GWAS results: we completed
functional gene mapping and gene-based association and enrichment
tests using the genome-wide UL associations from META-2 and pre-
defined lead variants as reported in Table S2. FUMA identifies variants
showing genome-wide significant association (p < 5 × 10−8) with the
study trait and, among the significant variants, identifies variants in low
LD (r2 < 0.6) as ‘independent significant variants’ and further identifies
variants in LD (r2 > 0.6) with the ‘independent significant variants’;
ANNOVAR50 annotations are performed for all these variants to obtain
information on the functional consequences of the key variants.
MAGMA51, also implemented in FUMA, was used to perform gene-
based association testing and gene-set enrichment analyses: gene-
based p values were computed for protein-coding genes by mapping
variants to genes and subsequent enrichment analyses were per-
formed for the significant genes using 4728 curated gene sets and 6166
GO terms as reported in MsigDB52.

To further identify the potential UL candidate gene(s) with bio-
logically relevant functions, we annotated all genes within a 1Mb
window from the association lead variant. We explored information
provided byGenBank32 andUniProt53 to determine the functions of the
genes. To complement the information available in these databases, a
broad literature search was performed to identify previous work
published regarding the genes of interest.

We further tested the colocalization of UL association signals and
gene expression in GTEx v8 (accessed on 05/19/2022). To do this, we
used genome-wide UL associations fromMETA-2 and gene expression
data (significant variant-gene pairs) from four tissues: cultured fibro-
blasts,muscle (skeletal), uterus, andwhole blood. Colocalizationswere
performed per gene for altogether 92 genes covering the gene closest
to the association lead variant at each UL-associated locus and biolo-
gically plausible candidate genes if different from the closest genes
(Table S2). Approximate Bayes Factor (ABF) analyses were completed
using ‘coloc.abf’ from the ‘coloc’ R library (5.1.0.1)54 with default priors
(i.e., p1 = p2 = 1 × 10−4, p12 = 1 × 10−5). Colocalizations with posterior
probability >0.8 for a shared causal variant were considered sig-
nificant. To test if altered gene expression mediates UL risk associa-
tions, we used a method proposed by ref. 55 as implemented in
Complex Traits Genetics Virtual Lab (CTG-VL; beta-0.4)56; we per-
formed these tests using genome-wide UL results from META-2 and
tissue-specific gene expression data (GTEx, V7) for cultured fibro-
blasts, skeletal muscle, uterus, and whole blood. We further used
RegulomeDB (2.0.3)23 to discover regulatory elements overlapping
with the intergenic variants in the genome-wide significant UL risk loci
that had not been associated with UL risk in prior studies.

To assess if the UL-associated loci harbour secondary association
signals, we performed conditional association tests using Genome-
wide Complex Trait Analysis (GCTA) software (1.93.0 beta Linux)57 and
genome-wide summary statistics from META-2. Here, FinnGen was
used as a reference sample to estimate linkage disequilibrium (LD)
corrections. The associations were first conditioned on the most sig-
nificant variant (i.e. the variant with the smallest p value) at each
genome-wide significant locus, and conditioning was continued until
no variant attained p < 5 × 10-8. Using GCTA, we also conditioned the
associations on a nearly 6Mb region on chromosome 10 to estimate if
the association signalnear STN1 spans a genomic region larger than the
±1Mb locus definition.

To further characterise the loci, we fine-mapped each locus dis-
covered in the two meta-analyses, including all independent associa-
tion signals discovered in the conditional analyses. We first extracted
the summary statistics of each locus, and then applied the FinnGen
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fine-mapping pipeline (available at https://github.com/FINNGEN/
finemapping-pipeline, accessed on 2/2/2022) with default para-
meters. In brief, the pipeline calculates linkage disequilibrium within
the regions of interest with LDstore258 using FinnGen samples, gen-
erates 99% credible sets using the SUm of Single Effects (SuSiE)59 and
provides a summary of the results.

SNP-based heritability and genetic correlations
The SNP-based heritability (h2

SNP) of UL was estimated using LDSC
regression implemented in LDSC software (v1.0.1)21 and genome-wide
summary statistics from META-2. A population prevalence of 0.30 (as
in ref. 12) and a sampleprevalenceof0.11wereused to estimate h2

SNP on
the liability scale. In addition, SNP-basedheritabilitywasalsoestimated
using SumHer22 software (ldak5.2.linux), genome-wide summary sta-
tistics from META-2, the pre-computed UK Biobank-based BLD-LDAK
model (–tagfile bld.ldak.hapmap.gbr.tagging), and population and
sample prevalences of 0.30 and 0.11 as above. The–check-sums option
was set to ‘NO’, because only ~2% of the variants present in the tagfile
weremissing from theMETA-2 summary statistics. To use the same set
of variants in both heritability estimations, insertions and deletions
were excluded from these analyses, as SumHer analyses only single
nucleotide variations.

We further applied LDSC to estimate genetic correlations (rg) of
UL with 20 metabolic and anthropometric traits extracted from the
GWAS database provided by the MRC Integrative Epidemiology Unit
(IEU) (https://gwas.mrcieu.ac.uk/). The 20 traits and their corre-
sponding GWAS-IDs at the MRC IEU database were as follows: apoli-
poprotein A-I (ApoA-I; ieu-b-107), apolipoprotein B (ApoB; ieu-b-108),
basalmetabolic rate (ukb-b-16446), body fat percentage (ukb-b-8909),
body mass index (BMI; ukb-b-19953), C-reactive protein (CRP; bbj-a-
14), diastolic blood pressure (ieu-b-39), fasting blood glucose adjusted
for BMI (ebi-a-GCST007858), high-density lipoprotein cholesterol
(HDL-C; ieu-b-109), hip circumference (ukb-b-15590), an impedance of
whole body (ukb-b-19921), low-density lipoprotein cholesterol (LDL-C;
ieu-b-110), systolic blood pressure (ieu-b-38), total cholesterol (ieu-a-
301), triglycerides (ieu-b-111), waist circumference (ukb-b-9405), waist-
to-hip ratio (ieu-a−72),whole-body fatmass (ukb-b-19393),whole-body
fat-freemass (ukb-b-13354) andwhole-bodywatermass (ukb-b-14540).

Mendelian randomisation
To test for causal inferences between UL and the above-described 20
metabolic and anthropometric traits, weperformedbi-directional two-
sample Mendelian randomisation. These analyses were completed
using ‘TwoSampleMR’ R library (0.5.6)60 (https://mrcieu.github.io/
TwoSampleMR/). To avoid possible bias fromoverlapping samples, we
extracted genetic instruments for UL from the GWAS results obtained
in FinnGen, and for other, mostly UKBB-based traits from the GWAS
database provided by the MRC IEU and integrated them into Two-
SampleMR. LD pruning was completed using European population
reference, a threshold of r2 = 0.001, and a clumpingwindowof 10 kb, as
set as default in ‘clump_data’ function; the numbers of SNPs available
for the analyses are listed in Table S12. The inverse variance-weighted
(IVW) method was considered the primary analysis. In sensitivity ana-
lyses, we derived causal estimates using MR Egger (implemented in
TwoSampleMR), MR-PRESSO (1.0)43, and MRMix (0.1.0)44 methods for
the traits showing FDR-significant causal effects on UL in the primary
analysis. The sensitivity analyses were conducted using the same sets
of instruments that were used in the primary IVW analysis using an
identical LD pruning approach. The estimates obtained in the sensi-
tivity analyseswere required to be in amatching directionwith the IVW
estimates to conclude a reliable causal effect. Egger intercepts were
evaluated to assess horizontal pleiotropy. Cochran’s Q statistics were
derived using ‘mr_heterogeneity’ function to test for heterogeneity. To
screen for highly influential variants that could drive the association,
for example, due to horizontal pleiotropy, we performed leave-one-

out analyses using ‘mr_leaveoneout’ function. We also estimated the
multivariable effects of fat-freemass, fatmass, BMI, and estradiol level
on UL risk using TwoSampleMR. LD pruning was conducted with the
same settings as described above. We used data from FinnGen to
extract variant associationswithUL, from theMRC IEUGWASdatabase
to extract variant associations with fat-free mass, fat mass, and BMI,
and from a Study by ref. 61. to extract variant associations with
estradiol.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The individual-level data are available under restricted access for legal
and ethical reasons. Formal approval for the researchers is required to
access thedata: please seehttps://www.finngen.fi/en/access_results for
more details. Access to FinnGen GWAS summary statistics can be
applied through an online form at https://elomake.helsinki.fi/
lomakkeet/102575/lomake.html. Access to individual-level data and
genotype data is managed by the Finnish Biobank Cooperative at the
Fingenious portal [https://site.fingenious.fi/en/]). The expected
response timeframe for access requests to individual-level data is 1-2
months, and the planned account termination date is December 31,
2027. The results ofMETA-1 (UL associations limited to the top 10,000
variants from the previous study) are provided in Supplementary
Data 2 and the results limited to the top 10,000 variants fromMETA-2
are provided in Supplementary Data 3. The genome-wide association
data generated in this study (META-2) have been deposited in the
NHGRI-EBI GWAS Catalogue database under accession code
GCST90239856. The summary-level data other than the genetic asso-
ciations generated in this study are provided in the Supplementary
Information. The genome-wide data from the previous UL-GWAS by
Gallagher et al. used in this study are available in the NHGRI-EBI GWAS
Catalogue database under accession code GCST009158. The genome-
wide data of the 20 metabolic and anthropometric traits used in cal-
culating genetic correlations and causal inferences are available at the
MRC IEU GWAS database [https://gwas.mrcieu.ac.uk/] (the trait-
specific data can be extracted using the trait IDs listed in Table S11).
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