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Early data suggested that CC-115, a clinical molecule, already known to

inhibit the mammalian target of rapamycin kinase (TORK) and DNA-

dependent protein kinase (DNA-PK) may have additional targets beyond

TORK and DNA-PK. Therefore, we aimed to identify such target(s) and

investigate a potential therapeutic applicability. Functional profiling of 141

cancer cell lines revealed inhibition of kinase suppressor of morphogenesis

in genitalia 1 (SMG1), a key regulator of the RNA degradation mechanism

nonsense-mediated mRNA decay (NMD), as an additional target of CC-

115. CC-115 treatment showed a dose-dependent increase of SMG1-

mediated NMD transcripts. A subset of cell lines, including multiple mye-

loma (MM) cell lines sensitive to the endoplasmic reticulum stress-inducing

compound thapsigargin, were highly susceptible to SMG1 inhibition. CC-

115 caused the induction of UPR transcripts and cell death by mitochon-

drial apoptosis, requiring the presence of BAX/BAK and caspase activity.

Superior antitumor activity of CC-115 over TORK inhibitors in primary

human MM cells and three xenograft mouse models appeared to be via

inhibition of SMG1. Our data support further development of SMG1 inhi-

bitors as possible therapeutics in MM.
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1. Introduction

Nonsense-mediated mRNA decay (NMD) selectively

degrades mRNAs containing premature termination

codons (PTCs) and controls the expression of a subset

of normal RNAs [1]. NMD is regulated by various types

of cell stress, most of which are dysregulated in cancer

[1–4]. Alternative splicing is a potential source of PTC-

containing transcripts, which can give rise to aberrantly

folded proteins, resulting in the activation of the

unfolded protein response (UPR) [5,6]. Initiation of

UPR restores cellular function by halting protein trans-

lation, degrading misfolded proteins, and activating sig-

naling pathways involved in the production of

molecular chaperones for protein folding. Nonsense-

mediated mRNA decay and UPR have a complex and

reciprocal interaction, which shifts in response to cell

stress [7]. If the UPR is not resolved, then endoplasmic

reticulum (ER) stress prevents recovery of cellular func-

tion, and the apoptotic pathway is initiated [8,9].

Multiple myeloma (MM) is a heterogeneous and

still fatal malignancy of plasma cells. Despite a vari-

ety of recent therapeutical developments, including

immunomodulatory drugs, the development of resis-

tance to proteasome inhibitors and other drugs in MM

remains prevalent, and novel therapeutic targets and

strategies are still warranted [10,11].

CC-115 was identified as an inhibitor of mammalian

Target of Rapamycin Kinase (TORK) and DNA-

dependent protein kinase (DNA-PK) [12–14]. In patients

with solid tumors and hematologic malignancies, CC-115

showed antitumor effects and was relatively safe, with

toxicities similar to those of other TORK inhibitors

[13,15,16]. TORK and DNA-PK belong to the phospho-

inositide 3-kinase-related kinase (PIKK) family, which

includes ataxia-telangiectasia mutated (ATM), ataxia-

and Rad3-related (ATR), suppressor of morphogenesis in

genitalia (SMG1), and transformation/transcription

domain-associated protein (TRRAP) [17]. Generally,

PIKK proteins have prominent roles in the DNA damage

response (DDR) [18], while SMG1 is also a key NMD

factor [19,20]. SMG1 is critical for NMD as its kinase

activity is required for the phosphorylation of UPF1

(UP-frameshift protein 1). UPF1 is an essential compo-

nent of a complex to recognize and initiate the degrada-

tion of PTC-containing transcripts.

Following up on early data suggesting that CC-115

may have additional targets beyond TORK and DNA-

PK, we characterized CC-115 activity in a panel of cell

lines and then profiled the binding activity of CC-115 to

> 200 kinases. In this way, we identified SMG1 as an

additional target of CC-115. The NMD process is highly

complex and also variable, and not all mechanistic

details are elucidated [2]. Nevertheless, inhibition of

SMG1 kinase activity can be expected to stall or prevent

NMD. In order to determine which tumor cells may be

responsive to the SMG1 inhibitory effects of CC-115,

we tested various cancer cell types. MM cell lines were

particularly sensitive to either CC-115 or a more specific

SMG1 inhibitor. SMG1 inhibition by CC-115 decreased

proliferation and survival in most MM cell lines, in pri-

mary MM cells, and in xenotransplant MM models.

Mechanistic studies pointed to a UPR-related mecha-

nism for CC-115-based lethality via SMG1 inhibition,

which is in line with MM cells being sensitive to ER-

stress-induced UPR and cell death. Our data provide

support for further clinical development of SMG1 as a

therapeutic target in cancer.

2. Materials and methods

2.1. Primary cells and cell lines

This study was conducted in accordance with the Decla-

ration of Helsinki and approved by the AMC Medical

Committee on Human Experimentation. Primary MM

cell samples were obtained upon informed consent from

patients diagnosed at the Academic Medical Center,

Amsterdam, The Netherlands. Cell lines were purchased

from American Type Culture Collection (ATCC, Manas-

sas, VA, USA), the Deutsche Sammlung von Mikroor-

ganismen und Zellkulturen (DSMZ, Braunschweig,

Germany), or Horizon Discovery Ltd [Cambridge, UK;

HCT 116 Parental (#HD PAR-082), and HCT 116

DNA-PK�/� (#HD R02-049) cell lines]. Cells were cul-

tured according to the vendor’s recommendation.

2.2. Reagents

CC-115, CC214-1, and CC-223 (TORK inhibitors)

were synthesized in-house (San Diego, CA USA). A

previously described specific SMG1 kinase inhibitor

[21], herein called SMG1i, was synthesized in-house

and also purchased from Bio-Connect (Houston, TX,

USA #QT213620). DNA-PK inhibitor NU7441 was

purchased from Selleckhem (Houston, TX, USA

#S2638), bortezomib was obtained from Janssen-Cilag

(Tilburg, The Netherlands), and bleomycin (bleocin)

was purchased from Merck (Cambridge, MA, USA

#203408). Venetoclax (ABT-199) was purchased from

Active Biochem (Bonn, Germany). Thapsigargin

was purchased from Sigma-Aldrich Co. (St. Louis,

MO, USA #T9033) and the pan-caspase inhibitor

Quinoline-Val-Asp-Difluorophenoxymethylketone (QVD)

was obtained from Bio-Connect (#A1901).
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2.3. KiNativTM assay

Cells were grown to confluence in appropriate media

and treated with indicated concentrations in 0.1%

dimethyl sulfoxide (DMSO) for 1 h. Cells were rinsed

once with ice-cold PBS, scraped off, and transferred to

a 15 mL conical tube and pelleted by centrifugation

and stored at �80 °C. KiNativ profiling of protein

and lipid kinases was performed by ActivX Biosciences

(La Jolla, CA, USA). Briefly, lysates were prepared

from cell pellets and incubated with ADP and ATP

probes. After a tryptic digest, the probe-labeled pep-

tides were characterized and quantified using targeted

liquid chromatography–mass spectrometry (LC–MS).

Comparison of MS signals from treated and untreated

cells identified kinases bound by the compounds.

2.4. Generation of CRISPR/Cas 9 knockouts

BAK, BAX, BID, BIM, NOXA, and PUMA knock-

out cells were generated using CRISPR/Cas9 technol-

ogy. Single-guide RNAs (sgRNAs) were selected using

Deskgen (deskgen.com) or from literature [22]. Each

sgRNA was cloned in the lentiCRISPRv2 puro plas-

mid, a gift from Brett Stringer (Addgene #98290;

Watertown, MA, USA). Lentivirus was produced and

used to infect the cell lines. After selection with puro-

mycin (Sigma #P8833), knockouts were confirmed by

SDS/PAGE. sgRNAs used are listed in Table S1.

2.5. Cell Titer-Glo experiments

For the majority of lines, dose–response data were gen-

erated by spotting increasing concentrations of com-

pound (1.5 nM to 10 lM) via an acoustic dispenser

(EDCATS-100) into an empty 384-well plate. Com-

pound was spotted in a 10-point serial dilution fashion

(3-fold dilution) in duplicate within the plate. The

DMSO concentration was kept constant for a final assay

concentration of 0.1% DMSO. For testing, cells were

diluted to the appropriate densities and added directly

to the compound-spotted 384-well plates. At the time

when compound was added (t0), initial cell number was

assessed using Cell Titer-Glo (Promega, Madison, WI,

USA) by quantifying the level of luminescence generated

by ATP present in viable cells. After 72 h, the cell viabil-

ity of compound-treated cells was assessed using Cell

Titer-Glo. Percent growth was calculated using the for-

mula: (72 h luminescence � t0 luminescence)/t0 lumi-

nescence 9 100. Data were plotted and analyzed in

GRAPHPAD PRISM (Graphpad Software, San Diego, CA,

USA). Results were expressed as GI50 and Emax values.

GI50 is the compound concentration required to inhibit

cell growth in treated cells to 50% of the growth of the

untreated control cells. Emax is the percent growth at

10 lM compound (the maximum concentration of com-

pound used in the assay).

For a minority of cell lines, dose–response data were

generated by using manual dilution series of com-

pound instead of using an acoustic dispenser, and

working in a 96 instead of a 384-well format, but

otherwise, the protocols were the same.

2.6. Protein lysate preparation

Cell pellets were resuspended in ice-cold Cell Extraction

Buffer (Thermo Fisher Scientific #FNN0011; Waltham,

MA, USA) supplemented with 19 Halt Protease Inhibi-

tor Cocktail (Thermo Fisher Scientific #87785) or lysed

in RIPA sample buffer (150 mM NaCL, 1 mM EDTA,

50 mM Tris–HCL pH 7.4). Pellets were sonicated with

two 5 s bursts under low amplitude (20%) using the

Fisher Scientific 150E Digital Sonic Dismembrator.

Xenograft samples were homogenized using the Retsch

Mixer Mill MM 400 prior to sonication. Lysates were

clarified by centrifugation at 4 °C. Protein concentra-

tions were measured by bicinchoninic acid (BCA) assay

(Thermo Fisher Scientific #23225). Sample protein con-

centrations were normalized in 19 NuPAGE LDS Sam-

ple Buffer (Thermo Fisher Scientific #NP0007) plus 19

NuPAGE Sample Reducing Agent (Thermo Fisher Sci-

entific #NP0009). Samples were denatured by heating to

80 °C for 10 min.

2.7. SDS/PAGE and western blot

Equal amounts of protein were subjected to SDS/PAGE

using 3–8% tris-acetate protein gels (Thermo Fisher Sci-

entific #A03755BOX, for DNA-PK, and vinculin detec-

tion) and 4–12% bis-tris protein gels (Thermo Fisher

Scientific #NP0323BOX, for detection of other pro-

teins). Proteins were electrophoretically transferred to

0.2 lm nitrocellulose membranes (Thermo Fisher Scien-

tific #LC2000) and blocked for 1 h with Odyssey Block-

ing Buffer TBS (LI-COR #927-50000) or 2% bovine

milk. Membranes were incubated overnight with pri-

mary antibody and secondary antibody for 1 h. Mem-

branes were washed with TBST/TBS and scanned on

the Odyssey Infrared Imager (LI-COR). Antibodies

used in this study are listed in Table S2.

2.8. Real-Time PCR and NMD assay

Total RNA was prepared using Qiagen’s RNeasy Mini

kit (#74104; Germantown, MD, USA) or Gene-

EluteTM MammalianTotal RNA Miniprep kit (Sigma-
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Aldrich #RTN70) following the manufacturer’s

instructions. Contaminating gDNA was eliminated by

DNase digestion. RNA was reverse transcribed into

cDNA using Applied Biosystem’s High Capacity

RNA-to-cDNA Kit (#4387406; San Francisco, CA,

USA) or by the M-MuLV Reverse Transcription Sys-

tem (Fermentas Inc., Hanover, MD, USA #EP0451)

using Random Hexamer Primers (Promega #C1181).

cDNA was diluted 109 with nuclease-free H2O and

mixed with a final concentration of 200 nM forward

and reverse primers. Fast SYBR Green master mix

(Applied Biosystems #4385617) or 100 nM Taqman

probe, 19 Taqman PCR master mix was used accord-

ing to the Applied Biosystem protocols. GAPDH and

HPRT1 were used as housekeeping genes. LINREG soft-

ware was used for data processing [23]. Relative

expression was calculated by the comparative DCt

method. In indicated experiments, qPCR results were

normalized to control gene HPRT1 and relative to

DMSO. Primers for NMD transcripts were designed

around exons that were normally subjected to NMD,

using two primer pairs that would detect either the

NMD exon or as a control the two bordering exons.

Primers used in this study are listed in Table S3.

2.9. Cell death assays

Cells were seeded in 96-well plates (40 000 cells per well)

and incubated in the presence of different compounds

for indicated time points. Viability was measured by

0.01 lM Dihexyloxacarbocyanine Iodide (DiOC6, Molec-

ular Probes #D-273; Eugene, OR, USA) after incubation

for 20 min at 37 °C. Prior to analysis, 5 nM TOPRO-3

Iodide (Thermofisher Scientific #T3605) was added. Cry-

opreserved bone marrow mononuclear cells of MM

patients were thawed and rested o/n in the presence of

10 ng�mL�1 rhIL-6. The next day, the cells were seeded

at 100 000 cells per well in a 96-well plate with

10 ng�mL�1 rhIL-6 and treated at indicated time points

and stained with CD38 (BD Biosciences #345807; San

Jose, CA, USA), CD138 (BD Biosciences #341107), and

Annexin V-EGFP (IQ Products; #iqp-120f; Houston,

TX, USA). Prior to analysis, propidium iodide (Sigma

#P4864; PI) was added. The average viability of the

CD38+/CD138+ cells at the time of analysis was 74.7%.

Specific apoptosis was defined as ([% cell death in trea-

ted cells] � [% cell death in medium control])/[% viable

cells medium control] 9 100.

2.10. In vivo studies

All animal studies were performed under protocols

approved by Institutional Animal Care and Use

Committees. Animals were housed and xenograft

studies were performed as previously published [12].

All animal studies were performed under protocols

approved by the Celgene Institutional Animal Care

and Use Committee (IACUC). Female 6- to 8-week-

old CB17 SCID (severe combined immunodeficiency;

Charles River Laboratories, Wilmington, MA, USA)

mice were housed in a barrier facility in micro-

isolator cages at 10 animals per cage. Mice were fed

with Harlan-Teklad LM-485 Mouse/Rat Sterilizable

Diet and autoclaved water ad libitum and maintained

on a 12-h light/dark cycle. All animals in the study

were tagged with stainless steel metal ear tags. Ani-

mals were acclimatized to the animal housing facility

for a period of 7 days prior to the beginning of the

experiment.

Suspensions of CC-223 were prepared in aqueous

0.5% carboxymethyl cellulose and 0.25% Tween-80.

The formulations were homogenized using a Teflon

pestle and mortar (Potter-Elvehjem tissue grinder). For

multiday studies, the compound was freshly formu-

lated every third day. Between doses, the formulated

compound was stored under constant stirring using a

magnetic stirrer at 4 °C in the dark. The test article

and vehicle were administered by oral gavage.

SCID mice were inoculated subcutaneously with

10 9 106 ANBL-6 cells. When tumors reached

approximately 75–150 mm3, mice were randomized

into various treatment groups and administered PO

with CC-223 or CC-115 once daily at a dose volume

of 5 mL�kg�1. Tumor volumes were determined prior

to the initiation of treatment and were considered as

the starting volumes. Tumors were measured twice a

week for the duration of the study. The long and

short axes of each tumor were measured using a digi-

tal caliper in millimeters. The tumor volumes were

calculated using the formula: width2 9 length/2. The

tumor volumes were expressed in cubic millimeters

(mm3).

Xenograft data are expressed as mean � SEM. Sta-

tistical analyses were performed using GRAPHPAD PRISM.

A one-way analysis of variance (ANOVA) was per-

formed for tumor volume measurements. Post-hoc

analysis was performed using Dunnett’s test where all

treatment groups are compared with the vehicle con-

trol.

The study was designed to compare the antitumor

activity of CC-223 and CC-115. Doses of 10 mg�kg�1

for CC-223 and 5 mg kg�1 for CC-115 were selected

to give similar plasma exposure to both agents

[12,13,24]. Dosing started on day 8 when tumor vol-

umes ranged between 75 and 150 mm3 and continued

until day 36.
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2.11. Statistical analyses

One-way ANOVA, with the Greenhouse–Geisser cor-

rection and Dunnett’s post-hoc test was applied to ana-

lyze differences between more than two groups.

Mann–Whitney U-test was used to analyze differences

between the two groups. A P-value < 0.05 was consid-

ered statistically significant.

3. Results

3.1. Identification of SMG1 as an additional

target of CC-115

Preliminary testing had indicated that CC-115,

described previously as an inhibitor of mTOR kinase

(TORK) and DNA-PK, [12–14] may have additional

specific target(s). Screening of a panel of 141 cancer

cell lines identified stronger activity of CC-115 in a

subset, compared to the specific TORK inhibitor CC-

223 [24] (Table S4). To test the involvement of DNA-

PK, cell lines were treated with CC-223 (alone or in

combination with the established DNA-PK inhibitor

NU7441) or with CC-115 alone, and grouped based

on differential sensitivity (Fig. 1A,B). In several cell

lines, dual inhibition of TORK and DNA-PK by CC-

115 [13,15,16] could not fully explain the activity of

CC-115. The effect of CC-115 on cell growth was

greater than that of CC-223 in numerous cell lines,

including isogenic DNA-PK�/� cell lines (HCT 116

and M059J; Fig. 1C), indicating that CC-115 indeed

had additional target(s) beyond TORK and DNA-PK.

In order to identify other target(s), CC-115- or CC-

223-treated cell lysates were analyzed in the ActivX

KiNativ platform [25]. Evaluation of > 200 kinases

confirmed inhibition of TORK (FRAP) and DNA-PK

by CC-115 and identified SMG1 as an additional tar-

get of CC-115 (Fig. 1D,E and Table S5).

3.2. Multiple myeloma cells are sensitive to

SMG1 kinase inhibition

Similar to other PIKK, SMG1 can phosphorylate ser-

ine (S) or threonine (T) residues in the context of the

SQ/TQ motif [20,26]. SQ/TQ phosphorylation of

UPF1 was decreased in a dose-dependent manner by

CC-115 and also by another SMG1 inhibitor (SMG1i),

but not by CC-223 in HCT 116 parental and HCT 116

DNA-PK�/� cells (Fig. 2A). SMG1i had no effect on

bleomycin-induced DNA-PK phosphorylation

(Fig. S1) or TORK (using downstream markers phos-

phorylation of S6 and phosphorylation of 4EBP1;

Fig. 2A). As expected, knockdown of SMG1 decreased

phosphorylation of UPF1 and showed an increase of

NMD-sensitive transcripts (Fig. 2B,C). Both CC-115

and SMG1i, but not CC-223, caused a dose-dependent

increase in the expression of NMD transcripts

(Fig. 2D). To confirm that cell death correlated with

SMG1 inhibition, A549 and isogenic HCT 116 cell

lines (parental and DNA-PK�/�) were treated with

CC-115, CC-223, and SMG1i. In these cell lines,

SMG1i blocked proliferation and survival to the same

extent as CC-115 (Fig. 3A).

We tested the effects of CC-115 and SMG1i on

various human cancer cell lines, focusing on hemato-

logical malignancies, as Kinome-wide RNAi studies

included SMG1 in a list of active kinases in MM

models [27]. Differential responses were found in Bur-

kitt’s lymphoma (BL), chronic lymphocytic leukemia

(CLL), mantle cell lymphoma (MCL), and multiple

myeloma (MM). These analyses demonstrated that

MM cell lines and the BL cell line RAMOS were

particularly sensitive to CC-115 (Fig. 3B). Burkitt or

MCL cell lines displayed both sensitive or resistant

phenotypes, while CLL cell lines PGA, CII, or MEC-

1 were all relatively resistant. In an extension of pre-

vious work on primary CLL cells (Thijssen et al.

[15]), we tested whether CC-115 was synergistic with

the Bcl-2 inhibitor Venetoclax in these cell lines,

which was indeed the case (Fig. S2). This suggests

that these cell lines need Bcl-2 to protect them

against CC-115-induced cell death. Comparison of

CC-115 vs. specific inhibitors of TORK and DNA-

PK confirmed that cell death induction was predomi-

nantly due to SMG1 inhibition (Fig. 3C and

Fig. S3). Effects of CC-115 and SMG1i on SMG1

were measured by examining pUPF1, using phospho-

rylation of pATM/ATR substrate as in Fig. 2A. As

shown in Fig. 3D, in insensitive (Jiyoye) as well as

sensitive (L363, JEKO-1, Ramos) cell lines both inhi-

bitors blocked UPF-1 phosphorylation. This indicates

that although inhibition of UPF phosphorylation was

apparent in all lines tested, this does not necessarily

lead to cell death. Cell death induction by CC-115 or

the more specific SMG1 inhibitor was comparable in

all cell lines tested (Fig. 3E). Importantly, primary

MM cells from patients (n = 7) were also highly sen-

sitive to CC-115 and the more specific SMG1 inhibi-

tor (Fig. 3F).

3.3. Inhibition of SMG1 induces UPR transcripts

and apoptosis in MM cells

MM cells are responsive to ER stress, which then acti-

vates different branches of the unfolded protein
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response (UPR) [28]. Recent studies have described an

interplay between the UPR and NMD [7]. Therefore,

involvement of the UPR, or similarity in terms of

responses, appeared logical, and we explored a possi-

ble overlap or correlation in response pathway(s).

CC-115 clearly increased RNA levels of ATF4,

ATF3, and CHOP, but not so much HSPA5 or sXBP1

across the MM cell line panel. These effects were due

to SMG1 inhibitory activity, as ATF4, ATF3, and

CHOP were upregulated by CC-115, but not by the

TORK inhibitor CC214-1 (Fig. 4A and Fig. S4). As a

positive control, MM cell lines were exposed to estab-

lished inducers of ER stress, such as thapsigargin (TG)

and bortezomib, which induced a similar upregulation

of ATF4, ATF3, and CHOP (Fig. 4B). Sensitivity to

CC-115 correlated with TG sensitivity across cell lines

(Fig. 4C).

Cell death via CC-115 was inhibited by the pan-

caspase inhibitor QVD (Fig. 4D,E), indicating that cell

death occurred via caspase-mediated apoptosis. CC-

115 treatment resulted in increased expression of the

pro-apoptotic genes PUMA and NOXA (Fig. 4F–I).
An increase in Noxa protein in some but not all cell

lines could be observed (data not shown). A discrep-

ancy between Noxa transcript and protein levels has

been noted before and was ascribed to its rapid pro-

tein turnover [29,30]. In contrast, for PUMA, a consis-

tent protein increase across the cell lines was clear

(Fig. 4J). Various BH3-only members have been impli-

cated in cell death by ER stress [28,31,32]. Single

knockout (KO) of BID, BIM, or NOXA by CRISPR/

Cas9 each modestly decreased sensitivity to CC-115,

while deletion of PUMA, BAK, or BAX had no effect

(Fig. 4K,L and Fig. S5). In contrast, KO of BAX and

BAK together completely prevented CC-115-induced

death (Fig. 4L).

In conclusion, MM cells are particularly sensitive to

SMG1 inhibition by CC-115 and SMG1i, which causes

an integrated stress response and apoptosis.

3.4. CC-115 inhibits SMG1 kinase in vivo and

blocks MM xenograft tumor growth

Effects of SMG1 inhibition were tested in in vivo mod-

els, using CC-115 as it has already been tested in

humans in advanced solid and hematologic malignan-

cies [15], and SMGi compound cannot be applied

in vivo. The ability of CC-115 to inhibit SMG1 and

thus NMD in vivo was confirmed in an early stage of

the project by qPCR analysis of HCT 116 xenograft

tumors after treatment of mice with CC-115 (Fig. S6).

The effect of CC-115 vs. TORK inhibition was tested

in three MM xenograft models, including the ANBL6

cell line, which is transcriptionally similar to patient

MM samples [33]. In mice treated with CC-115 tumors

were 177 � 25 mm3 at the end of the study

(P < 0.0001), close to their starting tumor volume of

75–150 mm3. In contrast, treatment with the TORKi,

CC-223, decreased tumor size ~29 relative to vehicle-

treated mice (987 � 114 vs. 2354 � 225 mm3, respec-

tively, Fig. 5A). The widely used RPMI8226 cell line

was tested at two doses of CC-115 and CC-223 and

also showed clear tumor volume reduction, to below

starting volume for 4 mg�kg�1 CC-115 (Fig. 5B). H929

cells also showed a statistically significant higher

reduction in tumor volume after treatment with CC-

115 (Fig. 5C). Of note, the cell lines showed intrinsic

differences in response to the drugs, yet the advantage

of CC-115 over CC-223 remained clear. In all cases,

CC115 was well tolerated, as body weight was not

affected (Fig. S7). In conclusion, CC-115 showed supe-

rior efficacy over CC-223 and was well tolerated in

three MM in vivo models.

4. Discussion

In the present study, we identified SMG1 as a novel

target of CC-115, in addition to its known targets,

TORK and DNA-PK. Inhibition of SMG1,

Fig. 1. CC-115 has another target, beyond TORK and DNA-PK. (A) Schematic of cell line grouping based on cellular response to TORK inhibi-

tors CC-223 or CC-115 (Table S1). For a subset of cell lines at Emax (the percent growth at 10 lM compound), CC-115 activity was greater

than CC-223, and CC-115 activity was greater than that of an inhibitor of TORK (CC-223) plus an inhibitor of DNA-PK (NU7441). (B) Dose–re-

sponse growth curves of cell lines representative of groups 1, 2A, and 2B after 72-h incubation with increasing concentrations of compound

(1.5 nM to 10 lM). Depending on the growth speed of the cell lines, seeding density was either 2000 or 5000 cells per well. Cell viability of

control and compound-treated cells was assessed using cell titer-Glo. Error bars are �SEM of three independent experiments. (C) Dose–re-

sponse growth curves for isogenic DNA-PK knockout cell lines HCT 116/HCT 116 DNA-PK�/� and M059K/M059J DNA-PK�/� treated with

CC-115 or CC-223. Error bars are �SEM of three independent experiments. (D, E) Results from ActivX KiNativ analysis comparing different

doses of CC-115 or CC-223 in four different group 2B cell lines. Results for (D) 0.3 lM dose or (E) 1.0 lM dose. Treated samples were in

duplicate; control samples were in duplicate or quadruplicate. Color coding refers to the amount of competitive binding observed (dark red

> 90%, red 75–90%, orange 50–75%, yellow 35–50%, and green no change or peptide was not detected for the particular proteome/probe).

The percent changes in mass spectrometry signals being reported are statistically significant (student’s t-test P < 0.04). Results for the total

KiNativ dataset including all other kinases are shown in Table S5.
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independent of TORK and DNA-PK, appeared to be

the prime mode of CC-115-induced caspase and BAX-

and BAK-dependent cell death in certain tumor cells.

Among B-cell malignancies, MM appeared exqui-

sitely sensitive to SMG1 inhibition. In line with our

results, a Kinome-wide RNAi screen in MM cells listed
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Fig. 2. CC-115 is an inhibitor of SMG1-mediated NMD. (A) Western blot analysis for markers of TORK inhibition (pS6 and p4EBP1) and

SMG1 inhibition (pATM/ATR substrate band colocalizing with UPF1) in isogenic HCT 116 cell lines (parental and DNA-PK�/�). Treatment time

for this western was 4 h. cofilin is a low MW loading control. The reduction of cofilin in the 3.5 lM CC-115 treated HCT 116 parental is due

to less protein being loaded in this lane. Total UPF1 and GAPDH were run on a different gel. (B) SMG1 western blot confirming siRNA

knockdown of SMG1 and reduction in phospho-UPF1 in HCT-116 parental cells. (C) qPCR analysis of NMD transcripts in siSMG1 transfected

HCT-116 parental cells (qPCR to normalized control gene HPRT1 and relative to siGAPDH). Error bars are �SEM of two independent experi-

ments. * = NMD. (D) CC-115 or SMG1i, but not CC-223, induced the expression of NMD transcripts in a dose-dependent manner in HCT

116 parental cells at 4 h after treatment (qPCR normalized to control gene HPRT1 and relative to DMSO). Error bars are �SEM of two inde-

pendent experiments. * = NMD transcript.
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Fig. 3. Multiple myeloma cells are sensitive to SMG1 kinase inhibition. (A) 50% growth inhibition (GI50) curves for a group 2B cell line (A-

549) and isogenic HCT 116 cell lines (parental and DNA-PK�/�) treated with CC-115, CC-223, or SMG1i for 72 h with increasing concentra-

tions of compound (1.5 nM to 10 lM). Error bars are �SEM of three independent experiments. (B) Effect of CC-115 on viability (48 h) mea-

sured by flow cytometry with DIOC6/TOPRO-3 staining in cell lines from B-cell malignancies: Burkitt’s lymphoma, chronic lymphocytic

leukemia (CLL), mantle cell lymphoma (MCL), and multiple myeloma (MM). Error bars are �SEM of three independent experiments (BL and

CLL) or two independent experiments (MM). (C) Representative MM cell line (RPMI8226) in which CC-115 had more activity than the com-

bination of a TORK inhibitor (CC214-1) with a DNA-PK inhibitor (NU7441). Cells were treated for 48 h and stained with DIOC6/TOPRO-3.

Shown is the mean � SEM of five biologically independent experiments, one-way ANOVA with Dunnett’s post-hoc test compared to CC-

115. (D) Western blot analysis for SMG1 inhibition (pATM/ATR substrate band colocalizing with UPF1) in various B cell lines, after 16-h treat-

ment with indicated concentrations of CC-115 or SMG1i. (E) Effect of SMG1 inhibition by SMG1i on viability (48 h) measured by DIOC6/

TOPRO-3 staining in comparison with CC-115 in five different cell lines. Shown is the mean � SEM of two independent experiments. (F)

Effect of CC-115 or CC214-1 on specific apoptosis in primary MM cells (N = 7). Cells were treated for 72 h and stained with AnnexinV/PI.

Specific apoptosis is plotted to correct for variability in background apoptosis in these clinical samples. Error bars are �SEM, one-way

ANOVA with Dunnett’s post-hoc test compared to CC214-1, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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SMG1 as a promising novel target [27]. The serine/thre-

onine kinase AKT is upregulated in MM [34] and active

AKT signaling has been linked to hyperactivation of

NMD [35], indicating the dependency of MM cells on

NMD activity. Moreover, whole genome sequencing

identified UPR proteins as frequently mutated in MM

[36] and plasma cells, which are characterized by high

protein secretion, rely on the UPR for survival [37].

Previous reports indicate that NMD and UPR are

functionally linked, showing that NMD prevents the

activation of UPR by increasing the threshold for

apoptosis [5,6,8,31]. UPR activation via SMG1 inhibi-

tion displayed similarities with TG and bortezomib.

CC-115 and TG increased ATF4 mRNA, which fits

with the observation that inhibition of NMD stabilizes

ATF3 and ATF4 transcripts [7,38]. An aspect which

requires further investigation is that despite clear indi-

cations that cell death by CC-115 occurs by the mito-

chondrial pathway of apoptosis, and correlates with

induction of Puma and/or Noxa expression, we could
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Fig. 5. CC-115 inhibits MM tumor growth in vivo. (A) Antitumor activity of CC-223 and CC-115 in multiple myeloma xenograft model with

once daily (QD) dosing. Groups of (n = 10 per each treatment group) mice with ANBL6 tumors were treated PO with vehicle, CC-223 or CC-

115. (B, C) similar experiments with RPMI8226 and H929 cell lines using two doses of CC-115 and CC-223 (n = 9 mice per group). Each

data point represents the mean tumor volume of each treatment group. Error bars are �SEM. P-values were calculated by using one-way

ANOVA with Dunnett’s post-hoc test compared to vehicle at end of the study.

Fig. 4. CC-115 treatment induces UPR transcripts and apoptosis in multiple myeloma cell lines. (A) Bar plots representing the log2 fold

change of ATF3, ATF4, CHOP, HSPA5, and sXBP1 mRNA levels (determined by qPCR; DDCt with DMSO treatment as control) after 16-h

incubation with CC-115 (1 lM) in the presence of quinoline-Val-asp-Difluorophenoxymethylketone (QVD; 5 lM) with GAPDH as reference

gene. Shown is the mean � SEM of two independent experiments. (B) Effect of CC-115 on ATF4 mRNA expression in comparison with

TORK and/or DNA-PK inhibition. Cells were incubated in the presence of the UPR inducing agents bortezomib (20 nM), thapsigargin (TG;

20 nM), TORK inhibition by CC214-1 (1 lM), DNA-PK inhibition by NU7441 (1 lM), the combination NU7441 (1 lM) + CC214-1 (1 lM), CC-115

(1 lM), or equal concentration of DMSO. Bars represent relative mRNA expression of four independent experiments and error bars repre-

sent SD, one-way ANOVA with Dunnett’s post-hoc test compared to DMSO, *P < 0.05, ***P < 0.001. (C) Correlation plot of cell death

induced by CC-115 (1 lM) vs. cell death induced by thapsigargin (100 nM; 24 h) for cell lines used in Fig. 3B. Correlation was determined by

a spearman rho test. (D) Effect of QVD treatment on cell death after 48-h treatment with CC-115 in MM cell line RPMI8226 measured by

flow cytometry via DIOC6/TOPRO-3 staining. Shown is the mean � SEM of three experiments. (E) Effect of QVD (5 lM) on cell death

induced by 0.35 lM CC-115 (24 h) in different MM cell lines. Cell death was calculated via difference in viability (DIOC6+/TOPRO-3�)
between DMSO and drug treatment. Shown is the mean � SEM of two independent experiments. (F–I) Bar plots representing the effects

of CC-115 (16 h; 1 lM) on PUMA (F) and NOXA transcription (G) and the effect of CC214-1 (1 lM), NU7441 (1 lM), NU7441 (1 lM) + CC214-

1 (1 lM), CC-115 (1 lM), or equal concentrations of DMSO on PUMA (H) and NOXA transcription (I) determined by qPCR. For qPCR experi-

ments, cells were incubated in the presence of QVD (5 lM) and GAPDH was used as housekeeping gene. Shown is the mean � SEM of

two independent experiments. (J) Effect of bortezomib (Bor; 1 lM), thapsigargin (TG; 3 lM), or CC-115 (16 h; 1 lM) on PUMA determined by

western blotting in six different MM cell lines. (K, L) Effect of CRISPR/Cas9 knockout of BID, BIM, NOXA, PUMA (K), BAK, BAX, and BAX/

BAK double knockout (L), on cell death by CC-115 (24 h) in RPMI8226 cells measured by flow cytometry via DIOC6/TOPRO-3 staining.

Shown is the mean � SEM of seven independent experiments for mock, BAK, and BAX knockout cell lines and four independent experi-

ments for other cell lines.
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not pinpoint a specific BH3-only protein to be respon-

sible. In a recent study, GSPT1 degradation by new

thalidomide analogs resulted in an activated integrated

stress response and TP53-independent cell death [39].

Similarly, we could not correlate TP53 mutation status

with sensitivity to SMG1 inhibition, suggesting clinical

activity of SMG1 inhibition in high-risk cancers.

Future studies beyond the scope of the current article

are directed toward further elucidating the cell death

mechanism, and the differences between CC-115 sensi-

tive and resistant cell lines in terms of cell death.

The observed in vivo efficacy and tolerability of

CC-115 in three MM xenotransplant models raises

the possibility that CC-115 could have clinical effi-

cacy with limited toxicity. Earlier studies of CC-115

were performed under the assumption that DNA-PK

inhibition by CC-115 is synthetically lethal in ATM-

deficient cells [16]. Phase I trials were enriched for

CLL patients with del(11q)/ATM defects and no MM

patients were included [15,16,40]. In our hands, CLL

cell lines were relatively insensitive and seemed to be

protected by high BCL-2 expression, as combination

therapy of CC-115 with the BCL-2 inhibitor veneto-

clax showed synergy in three investigated CLL cell

lines (Fig. S2).

5. Conclusion

Based on current knowledge, MM might be further

exploited for the clinical treatment of cancer with SMG1

inhibitors. In addition to cell-autonomous effects of

inhibition of SMG1/NMD, inhibition of NMD may

increase tumor antigens and immunogenicity of tumors,

thereby potentially stimulating an antitumor immune

response [4,41,42]. SMG1 inhibition can increase activa-

tion of the innate immune response via its effect on the

maturation of dendritic cells [43]. Thus, rational combi-

nations for an SMG1 inhibitor might include

immunomodulatory agents and T-cell activating drugs

such as immune checkpoint inhibitors. Furthermore,

SMG1 inhibitors might be effective in other malignan-

cies that depend on the UPR for survival such as

Waldenstr€om’s macroglobulinemia, acute myeloid leu-

kemia (AML), as well as other solid tumor types.
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