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N6-methyladenosine (m6A) is one of the most abundant internal modifica-

tions in eukaryotic messenger RNAs (mRNAs) and non-coding RNAs

(ncRNAs). It is a reversible and dynamic RNA modification that has been

observed in both internal coding segments and untranslated regions. Stud-

ies indicate that m6A modifications play important roles in translation,

RNA splicing, export, degradation and ncRNA processing control. In this

review, we focus on the profiles and biological functions of RNA m6A

methylation on both mRNAs and ncRNAs. The dynamic modification of

m6A and its potential roles in cancer development are discussed. Moreover,

we discuss the possibility of m6A modifications serving as potential

biomarkers for cancer diagnosis and targets for therapy.

1. Introduction

RNA modifications were discovered more than 50 years

ago, and over 170 chemical modifications on RNA have

so far been identified [1]. N6-methyladenosine (m6A) is

the most prevalent internal modification on eukaryotic

RNAs including messenger RNA (mRNA) and non-

coding RNA (ncRNA). The N6 position of adenosine

can be reversibly methylated and unmethylated by ‘m6A

writer’ and ‘m6A eraser’ proteins, respectively, and m6A

RNA can be recognized and bound by ‘m6A reader’

proteins [2] (Fig. 1, Table 1, Box 1).
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1.1. m6A writers, erasers and readers

The known m6A writers include METTL3 [3],

METTL14 [3], WTAP [3], METTL16 [4], METTL5

[5], KIAA1429/Virilizer [6], RBM15 [6], ZCCHC4 [7]

and ZC3H13 [8]. An m6A ‘writer’ is an MTase complex

(MTC), which catalyzes m6A deposition by transferring

a methyl group from donor S-adenosylmethionine

Fig. 1. Molecular reaction for m6A methylation and its functions in cancer development. m6A writers (METTL3, METTL14, WTAP, VIRMA,

RBM15, ZC3H13, METTL5, METTL16 and ZCCHC4) and m6A erasers (FTO and ALKBH5) mediate the m6A methylation/demethylation of

RNAs, including mRNA, tRNA, rRNA, snRNA and pre-miRNA. m6A readers (YTHDF1-3, YTHDC1-2, HNRNPs, IGF2BP1-3 and eIF3), locating

in either nucleus or cytoplasm, bind to RNA targets and play different roles in the regulation of RNA behaviors such as RNA processing and

decay. All m6A modulators are involved in cancer growth and metastasis, cancer chemoresistance, cancer immunity and cell metabolism [3–

20].
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Table 1. m6A writers, erasers and readers and their functions in cancers.

Type Protein

Role/effect

Promote Suppress

Writer METTL3 Cancer progression

� CRC: Stabilization of HK2 and SLC2A1 mRNAs [21]
� BC: Feedback loop of HBXIP/let-7g/METTL3/HBXIP [22]
� ESCA: Stabilization of Notch mRNA [23]

Cell differentiation and cell proliferation

� AML: Promotion of the translation of c-MYC, BCL2 and PTEN mRNAs
[24]

Glycolysis and tumorigenesis

� CESC: Promotion of the translation of PDK4 mRNA [25]
� LUAD: Promotion of the translation of ENO1 mRNA [26]

Tumor metastasis

� TNBC: Down-regulation of
COL3A1 mRNA [27]

METTL14 Leukemogenesis

� AML: Regulation of MYB and MYC mRNA [28]

Cancer progression

� BRCA: Stabilization of CXCR4 and CYP1B1 mRNAs [29]
� ESCA: Decreased expression of PHLPP2 and increased expression of
mTORC2 [30]

Tumor metastasis

� PRAD: Increased of PERP mRNA turnover [31]

Tumor malignancy

� CESC: Stabilization of CYP1B1 mRNA [32]

Tumor metastasis

� PRAD: Degradation of SOX4
mRNA [33]

Tumor malignancy

� HCC: Degradation of USP48
mRNA [34]

Cell self-renewal and

tumorigenesis

� BCA: Degradation of Notch1
mRNA [35]

METTL16 Cell proliferation

� GC: Stabilization of CCND1 mRNA [36]

Translation and tumorigenesis

� Promotion of the translation of over 4000 mRNA transcripts [37]

METTL5 Cancer progression

� PRAD: Modulation of the translation of c-Myc mRNA [38]

Cell proliferation

� BC: Promotion of translation initiation [39]

WTAP Cancer progression

� HCC: Post-transcriptional suppression of ETS1 mRNA [40]

KIAA1429 Cancer progression

� HCC: Reduced the interaction between HuR and MMP1 mRNAs [41]

RBM15 Cancer progression

� LSCC: Stabilization of TMBIM6 mRNA [42]

ZC3H13 Cell proliferation and invasion

� CRC: Inactivation of Ras-ERK
signaling [43]

Eraser FTO Leukemogenesis

� AML: Degradation of ASB2 and RARA mRNA [44]

Cancer progression

� BRCA: Degradation of BNIP3 mRNA [45]

Stem cell self-renewal

� OC: Degradation of PDE1C
and PDE4B mRNAs [46]

Tumor metastasis

� CRC: Degradation of MTA1
mRNA [47]

ALKBH5 Tumorigenesis

� MM: Stabilization of TRAF1 mRNA [48]

Cancer progression

� GBM: Enhance expression of FOXM1 mRNA [49]

Tumorigenesis

� PDAC: Enhance expression of
WIF-1 mRNA and mediation of
the Wnt pathway [50]

Reader YTHDF1 Tumorigenesis

� CRC: Enhanced the translation of ARHGEF2 mRNA [51]
� GC: Promotion of the translation of FZD7 mRNA [52]
� HCC: Promotion of the translation of TRFC mRNA [53]

Cancer progression

� OC: Promotion of the translation of EIF3C mRNA [54]

YTHDF2 Stem cell self-renewal

� AML: Degradation of TNFRSF2 mRNA [55]

Cancer progression

� GBM: Stabilization of MYC and VEGFA mRNAs [56]

Tumorigenesis

� OM: Degradation of PER1 and TP53 mRNAs [57]

Cell proliferations

� PRAD: Stabilization of YAP
mRNA and regulation of TGF-b/
Smad signaling [58]
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(SAM) [3]. METTL3 is a 70 kDa protein highly con-

served in eukaryotic cells belonging to class I MTases,

which contains a conserved SAM-binding domain [3]

to recognize the DRACH motif of RNA, whose con-

sensus sequence is D = A/G/U, R = A/G and H = A/

C/U [83]. METTL14 forms a heterodimer with

METTL3, facilitating METTL3 binding with target

RNA in MTC [3]. WTAP is indispensable to the MTC

by binding with the N-terminal helix of METTL3, act-

ing as a regulatory subunit of MTC [84]. In the

absence of WTAP, the RNA binding ability of the

MTC is highly reduced [84]. KIAA1429, also known

as VIRMA, tends to bind the 30UTR, near mRNA

stop codons, recruiting MTC to enhance region-

selective m6A methylation [6]. RBM15/15B, interacts

with METTL3 in a WTAP-dependent manner to sup-

port m6A modification and promote RNA splicing

(Box 2) [6,85]. ZC3H13 is required for the nuclear

localization of the ZC3H13-WTAP-Virilizer-Hakai

complex to facilitate m6A methylation in 30UTR of

targets [8]. METTL5 is a newly discovered m6A writer

of 18S ribosomal RNA (rRNA; Box 1), binding to a

UAACA motif and catalyzing m6A 1832 in 18S rRNA

[5]. METTL16 catalyzes m6A methylation on U6

spliceosomal snRNA, which is associated with the

expression of SAM synthetase [4]; ZCCHC4 deposits

m6A on a subset of mRNAs as well as 28S rRNA [7].

Conversely, ‘erasers’ revert m6A to adenosine on

RNAs. The identified m6A erasers are fat mass and

obesity-associated protein (FTO) [104] and AlkB

Homolog 5 (ALKBH5) [93]. Both FTO and ALKBH5

require ferrum and a-ketoglutaric acid as co-factors to

remove m6A in eukaryotic cells [105]. However, they

demethylate different targets due to their different

structural interaction. FTO contains a C-terminal

domain which is easy to engage in protein–RNA inter-

action, while the isolated N-terminal domain is incom-

petent for catalysis [106]. Regarding m6A in mRNA,

Table 1. (Continued).

Type Protein

Role/effect

Promote Suppress

YTHDF3 Tumorigenesis

� OM: Promotion of the translation of CTNNB1 mRNA [59]

Tumor metastasis

� BC: Promotion of the translation of ST6GALNAC5, GJA1, and EGFR
mRNAs [60]

YTHDC1 Cell proliferations

� AML: Stabilization of MCM4 mRNA and regulation of DNA replication
[61]

Tumorigenesis

� PRAD: Stabilization of mature
miR-30d and inhibition of
aerobic glycolysis [62]

YTHDC2 Cancer progression

� GC: Promotion of the translation of YAP mRNA [63]

Tumor metastasis

� Promotion of the translation of HIF-1a mRNA [64]

Tumorigenesis

� LUAD: Degradation of
SLC7A11 mRNA [65]

IGF2BP1 Cancer progression

� EC: Stabilization of PEG10 mRNA [66]

Stem cell stemness

� BC: Stabilization of c-Myc mRNA [67]

Tumor metastasis

� BC: Stabilization of KRT7-AS/KRT7 mRNA duplex [68]

Cancer progression

� BCA: Degradation of MYC and
FSCN1 mRNAs [69]

IGF2BP2 Cell proliferation

� CRC: Stabilization of HMGA1 mRNA [70]
� HCC: Stabilization of FEN1 mRNA [71]
� PRAD: Activation the PI3K/Akt signaling pathway [72]

Tumor metastasis

� PRAD: Stabilization of IGF1R mRNA [73]

IGF2BP3 Cell proliferation

� BCA: Activation of the JAK/STAT pathway [74]

Angiogenesis

� CRC: Degradation of CCND1 mRNA [75]

Tumor metastasis

� PRAD: Stabilization of HDAC4 mRNA [76]

hnRNPR Cell proliferation and metastasis

� GC: Stabilization of CCNB1 and CENPF mRNAs [77–81]
Cancer progression

� BCA: Mediation of PKM
alternative splicing [82]
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cap m6Am, m1A and m6Am in snRNA are the sub-

strates of FTO in vivo [9]. ALKBH5, which is predom-

inant in the nucleus, can directly bind to RNA

substrates and be a part of the mRNA-bound pro-

teome [93,107].

‘m6A readers’ are executers to exert functions of

m6A and play important roles in epigenetics, including

YTH family proteins, HNRNPs, IGF2BPs, eIF3 and

Prrc2a [108]. Among them, YTH family proteins are

the most studied m6A readers, including YTHDF1,

YTHDF2, YTHDF3, YTHDC1 and YTHDC2 [109].

Among them, YTHDF1-3 paralogs have been reported

to mediate the major effects of m6A on RNA regula-

tions [110]: YTHDF1 enhances mRNA translation

[10]; YTHDF2 accelerates the decay of m6A-modified

transcripts [11]; YTHDF3 enhances both mRNA

translation and degradation (Box 2, Fig. 2) [12]. Aside

from YTH conserved domain, YTHDC1 and

YTHDC2 are not related to paralogs proteins and

play different roles in cells [13]: YTHDC1 is the only

known m6A reader in the nucleus, regulating RNA

splicing and translocation [14], while YTHDC2

enhances translation of target RNAs by recruiting

other protein complexes [15]. Additional m6A reader

proteins have been identified such as the HNRNP

family containing hnRNPA2/B1, HNRNPC and

HNRNPF involved in promoting primary microRNA

processing [111], mRNA alternative splicing, process-

ing of target transcripts and interaction of m6A-rich

long non-coding RNA (lncRNA; Box 1) [16]. m6A

readers in the IGF2BPs family include IGF2BP1,

IGF2BP2 and IGF2BP3. The binding of m6A-

methylated mRNA with IGF2BPs protein resulted in

the up-regulation of mRNA stability (Box 2) [17].

Recently, Prrc2a was identified as a novel m6A reader

binding to GGACU motif in the CDS region of

mRNAs via an m6A-dependent manner, which then

stabilized m6A-modified mRNAs [18].

1.2. m6A profiles of RNAs

m6A modifications can be found in mRNA, rRNA

and various ncRNAs, such as lncRNA, long intergenic

non-coding RNA (lincRNA), microRNA (miRNA),

promoter-associated RNA (paRNA), enhancer RNA

(eRNA) and circular RNA (circRNA) (Box 1–4) [112].
The sites of m6A marks on an RNA molecule seem to

affect RNA biogenesis, processing, localization, trans-

lation and metabolism [113] (Figs 1 and 2; Box 2–4).
m6A is the most abundant internal modification in

mammalian mRNA [114]. There are more than 7000

human transcripts that contain m6A [115,116] and over

12 000 m6A sites are identified in the RRACH motif,

with 70% and 30% frequency of -G-m6A-C and -A-

m6A-C, respectively [117]. m6A has been widely

observed in the CDS (~ 50%), 30UTR (~ 40%) near the

stop codons [116], 50UTR (> 7%) and intronic regions

(> 2%) [116]. The enriched m6A observed near the stop

codon and in the 30UTR suggests a definite functional

role of m6A [116]. In addition, over 54% of mRNAs

containing at least two m6A sites are frequently clus-

tered in the adjacent regions of transcripts [116], sug-

gesting a potential role of m6A in RNA processing.

In rRNA, two conserved m6A sites, m6A1832 in 18S

rRNA and m6A4220 in 28S rRNA, have been identi-

fied in X. laevis and mammalians [118,119]. Human

rRNA modifications are introduced during ribosome

biogenesis [7], where m6A 1832 in 18S rRNA is depos-

ited in one of the last steps in 40S maturation. Both

m6A modifications in rRNAs tend to localize in the

functionally important regions of rRNAs, playing roles

in the promotion of protein synthesis [7,39,120], but

Box 1. RNAs and m6A-related proteins.

rRNA: ribosomal ribonucleic acid is the component of ribosomes to process protein synthesis. lncRNAs: are longer

than 200 nucleotides that do not encode proteins, including both intergenic and genic non-coding RNA. lincRNA:

long intergenic non-coding RNAs are longer than 200 nucleotides which constitute more than half of lncRNA tran-

scripts in humans. LincRNAs are non-coding RNA transcripts that make up most of the lncRNAs. miRNA: is a 21-

25nt single-stranded non-coding RNA. It plays a role in RNA silencing and post-transcriptional regulation of gene

expression. paRNA: promoter-associated RNAs is a type of lncRNA, which could influence promoter activity of

other genes. eRNA: enhancer RNA is a type of lncRNA transcribed from the DNA sequence of enhancer regions. cir-

cRNA: is a type of single-stranded RNA formed into continuous loop. It also shows potential to code for proteins.

m6A writer: is a methyltransferase complex (MTC), which catalyzes m6A deposition through transferring a methyl

group from donor S-adenosylmethionine (SAM) and includes METTL3, METTL14, WTAP, METTL16, METTL5,

KIAA1429/Virilizer, RBM15, ZCCHC4 and ZC3H13; m6
A eraser: is a demethylase which reverts m6A to adenosine

on RNAs, including FTO and ALKBH5; m6A reader: is executer to exert functions of m6A and plays important roles

in epigenetics, including YTH family proteins, HNRNPs, IGF2BPs, eIF3 and Prrc2a.
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has no impact on overall processing or maturation of

rRNA [5,7].

m6A modifications have been identified in other

ncRNAs. Over 700 lncRNAs with m6A methylation

were identified [121], which is widespread in the entire

body of lncRNAs and tends to be present in lncRNAs

undergoing alternative splicing [122]. Over 1400 cir-

cRNAs, accounted for 54% of total circRNAs,

Box 2. Functional consequences of m6A modification on mRNA.

mRNA transcription: mRNA transcription can be regulated by chromosome-associated regulatory RNAs (carRNAs).

carRNAs can be modified by m6A methylation. Reduction of m6A in selected carRNAs elevates carRNAs levels and

promotes an open chromatin state and downstream transcription [86]. Moreover, YTHDC1 recruits the H3K9me2

demethylase KDM3B to m6A-associated chromatin region, where H3K9me2 demethylation initiates gene expression

[87]. Finally, m6A methyltransferase complex promotes RNAP II pause release and affects nascent RNA transcription

[88] (Fig. 2A).

Splicing: m6A participates in pre-mRNA processing and regulation of alternative splicing [89]. Early m6A was depos-

ited near the splice junctions (SJs) and introns of nascent RNA, whilst these signals disappeared in mature RNAs

[90]. Early co-transcriptional m6A deposition near SJs promotes fast splicing, and the presence of m6A modifications

in introns is associated with long, slowly processed introns and alternative splicing events. In addition, YTHDC1 can

recognize m6A on alternative exons, which recruits the splicing factor serine and arginine-rich splicing factor 3

(SRSF3) but restricts binding with exon-skipping factor SRSF10, resulting in exon inclusion during alternative splic-

ing [14] (Fig. 2B).

mRNA structure: RNA secondary structure is formed by nucleotide bases paired within its sequence via hydrogen

bonding, forming the scaffold and the folding of RNA three-dimensional structures [91]. m6A can weaken the A/U

pairings, leading to the alterations of RNA secondary structure and thermostability of RNA duplexes. These struc-

tural changes would influence the interaction of related regulatory proteins, such as hnRNP and HNRNPs, leading

to the inhibition of RNA-protein interactions [16] (Fig. 2C).

mRNA export: m6A might act as export signals for mRNAs. Treatment with methylase inhibitor S-

tubercidinylhomocysteine reduces m6A level and attenuates mRNA export [92]. ALKBH5 knockdown leads to m6A-

modified mRNA accumulation in cytoplasm [93], whereas YTHDC1 knockdown extends residence time for nuclear

m6A-containing mRNAs, with an accumulation of transcripts in the nucleus and accompanying depletion within the

cytoplasm [94] (Fig. 2D).

Alternative polyadenylation (APA): APA is an important post-transcriptional regulation mechanism that targets the

30end of pre-mRNA during mRNA maturation in eukaryotic cells. As a result of APA, there are multiple transcripts

for over half of human genes [95]. Bioinformatic analysis suggests a possible connection of m6A to polyA site choices

in mRNA: m6A is preferentially located within 30UTRs containing multiple APA and regulates proximal APA choice

[96]. As APA regulates the stability, translation and location of mRNAs, m6A might also regulate mRNA behaviors

indirectly via modulation of APA choice (Fig. 2E).

Translation: m6A modulates translational dynamics by potentially influencing the progress of different stages. 50UTR

m6A promotes cap-independent translation by directly binding to eIF3 [97]; CDS m6A acts as a barrier to tRNA

accommodation to regulate translation-elongation dynamics [98]; 30UTR m6A facilitates the translation by METTL3-

eIF3h-mediated mRNA circularization [99]. m6A might also play roles in both translation initiation and elongation:

CDS m6A can enhance mRNA translation by relieving ribosome stalling [100] or trigger polysome-mediated transla-

tion in the case of Snail mRNA [101]; Conversely, decrease m6A promoted eIF4E3-mediated cap-independent transla-

tion of b-catenin [102]. Whilst m6A deposition in transcripts may regulate mRNA translation, a complete picture of

how translation is regulated is currently lacking (Fig. 2F).

mRNA stability: m6A modification has been shown to regulate mRNA stability, dependent on its bound m6A readers.

m6A-containing mRNAs underwent two distinct pathways of rapid degradation: deadenylation via YTHDF2-CCR4/

NOT (deadenylase) complex or YTHDF2-HRSP12-RNase P/MRP (endoribonuclease) complex [103]. m6A-modified

mRNAs can also be targeted toward an opposite fate. For instance, IGF2BP proteins can increase the half-lives of

m6A-containing mRNAs [17] (Fig. 2G).
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contain m6A modification [123]. m6A is also isolated

from tRNAVal [19]. Despite the consensus reports

show that m6A methylation exists on tRNA, scientists

usually hard to find m6A abundance details on tRNA

[24]. In lincRNA, the most frequent consensus motif

for m6A deposition is GG/A(m6A)CH, which is

slightly different from that in mRNAs [124]. Com-

pared with unmodified lincRNAs, m6A-modified

lincRNAs tend to be alternatively spliced [122]. In

miRNA, m6A modification can influence the matura-

tion of miRNAs [125,126]. Our previous study indi-

cated that METTL3 can increase the splicing of

precursor miR-143-3p to facilitate its biogenesis [127].

In addition, m6A could indirectly regulate the biologi-

cal functions of miRNAs [112]: (a) m6A interferes with

miRNA-mRNA interactions by altering the RNA sec-

ondary structure of alternative polyadenylation (APA)

choice in 30UTR of targets (Box 2) [128]; (b) m6A

could stabilize lncRNAs to act as ceRNA to regulate

the activity and function of miRISC, resulting in the

modulation of gene expression (Box 3) [129] and (c)

miRNAs can also affect the m6A of targets via occu-

pying the 30UTR m6A site of mRNAs [130].

As a result, m6A methylation is involved in various

cellular functions [142]. Increasing evidence supports

that m6A levels are often up-regulated in RNA mole-

cules isolated from various cancers, and this RNA

modification appears to have roles in tumorigenesis

and cancer progression [143,144]. Therefore, targeting

m6A methylation might act as a potential approach

for cancer treatment. Meanwhile, alteration of m6A

level is being considered as a predictive biomarker for

cancer diagnosis [143,145,146].

In this review, we first review the changes of m6A

methylation modification and the alteration of gene

expression of m6A writers, erasers and readers in dif-

ferent types of cancers. Next, we examine how m6A

methylation is associated with tumorigenesis and can-

cer progression, and the possible mechanisms through

which m6A methylation of mRNA and ncRNA targets

affects tumor cell proliferation, metastasis, chemoresis-

tance, cancer microenvironment and cancer metabo-

lism. In addition, we discuss the potential of targeting

m6A modifications for cancer diagnosis and therapy

and highlight future challenges. In addition, we have

shown the functional consequences of m6A modifica-

tion on mRNA in Box 2.

2. Regulation of m6A writers in
cancers

2.1. METTL3

As the major RNA m6A writer, the expression of

METTL3 is closely associated with the genesis and

development of cancers. In TCGA datasets, METTL3

is overexpressed in a variety of cancers and shows high

mutations in bladder cancer (BCA), endometrioid

cancer (EOC) and colon cancer. In pancreatic adeno-

carcinoma (PAAD), cigarette smoke condensate

induces hypomethylation of METTL3 promoter and

Fig. 2. Functions of m6A modification on mRNA. A schematic image of the roles of m6A on mRNA. m6A modification on mRNA plays

different roles in nucleus and cytoplasm. (A) Regulation of transcription, (B) regulation of splicing, (C) alteration of RNA structure,

(D) facilitation of mRNA export, (E) determination of APA, (F) regulation of translation and (G) regulation of mRNA stability.
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excessively maturates miR-25 to promote cancer pro-

gression [147]. In CRC, butyrate, a classical intestinal

microbial metabolite, can down-regulate the expression

of METTL3 to inhibit CRC development [148]. In

GC, P300-mediated H3K27 acetylation activation in

the promoter region of METTL3 induces its mRNA

transcription (Box 2) to promote tumor angiogenesis

[149]. In lung cancer (LC), SUMOylation of METTL3

significantly represses its m6A MTase activity, resulting

in the enhancement of tumorigenesis [150]. We previ-

ously identified the TATA-binding protein can tran-

scriptionally increase the expression of METTL3 in

cervical cancer cells via binding to its promoter [25].

In addition, miRNAs including miR-186 [151], miR-

4429 [152], miR-600 [153] and let-7g [22], are proposed

to bind with METTL3 mRNA to regulate its expres-

sion. METTL3 function in cancer is shown in Table 1.

2.2. METTL14

METTL14 expression is dysregulated in cancers through

different mechanisms. In breast cancer (BC), METTL14

can be stabilized by AURKA by inhibiting proteasomal-

dependent degradation [154]. In AML, METTL14

expression is negatively regulated by SPI1 [28]. In CRC,

KDM5C mediated demethylation of H3K4me3 in the

promoter region of METTL14 to inhibit its transcription

[33]. In addition to expression dysregulation, METTL14

can be directly recruited by LNC942 to promote cancer

progression of BC [29]. Interestingly, Lang et al. [155]

revealed that viral-encoded latent oncoprotein EBNA3C

activated transcription of METTL14 and directly inter-

acted with METTL14 to enhance its stability in viral-

associated tumorigenesis. METTL14 function in cancer

is shown in Table 1.

2.3. WTAP

WTAP, which is mainly regulated by ncRNAs in can-

cers, is commonly up-regulated in many cancer types

[156,157]. In osteosarcoma, SNHG10 up-regulates

WTAP through decreasing miR-141-3p expression

[158]. In BCA, circ0008399 binds to WTAP to pro-

mote the formation of MTC [159]. In diffuse large B-

cell lymphoma (DLBC), piRNA-30473 up-regulates

WTAP to promote tumorigenesis [160]. Intriguingly,

METTL3 regulates the homeostasis of WTAP protein

via an m6A-dependent manner [161]. Interestingly,

m6A modification can stabilize WTAPP1 RNA, which

further bound its protein-coding counterpart WTAP

mRNA and recruited more eIF3 translation initiation

complex to promote WTAP translation [162],

Box 3. Functional consequences of m6A for lncRNA.

Structure switch and RNA stability: m6A may alter the lncRNA structure switch via interfering with the base pairing

and therefore affecting its stability [131]. m6A methylation of A2577 and A2515 in lncRNA MALAT1 promote its

binding to HNRNPC and HNRNPG, and loss of METTL3 reduces the accessibility of MALAT1 to HNRNPC/

HNRNPG [16,132]. A high level of m6A modification increases the stability of the lncRNA FAM225A [133] and

METTL3 increases the stability of LINC00958 [134] and lncRNA RMBP [135] via decreasing the RNA degradation

rate. In addition, m6A modification of DIAPH1-AS1 enhances its stability by relying on the IGF2BP2-dependent

pathway [136].

Regulation of competitive endogenous RNA (ceRNA): lncRNAs can act as miRNA sponges and mediate ceRNA to

regulate the biological functions of miRNAs. On one hand, m6A increases the stability of lncRNAs to promote

‘sponging’ miRNAs to regulate their gene expression. For instance, LINC00958 sponges miR-3619-5p to increase

hepatoma-derived growth factor (HDGF) expression [134] and MALAT1 acts as ceRNA to abolish the gene silencing

function of miR-1914-3p [137]. On the other hand, m6A affects RNA-RNA interactions via RRACU m6A sequence

motifs interfering binding efficiency. For instance, knockdown of METTL3 suppresses the binding between linc1281

and let-7 miRNA, thus sequestering let-7 functions and regulating the differentiation of hESCs [138].

Gene silencing and protein binding potential: Silencing of gene transcription on the X chromosome is mediated by the

lncRNA X-inactive specific transcript (XIST). m6A deposition has been identified in XIST, which is necessary for

XIST-mediated transcriptional repression of X-linked genes, such as Gpc4 and Atrx, and X chromosome inactivation

[139]. In addition, methylation of lncRNA Pvt1 transcripts stabilizes the MYC protein by enhancing the Pvt1-MYC

interaction in epidermal progenitor cells [140].

Subcellular localization: m6A modulates the subcellular localization of lncRNA. For instance, m6A methylation

involves in the up-regulation of RP11 by increasing its nuclear accumulation due to the m6A-enhancing interaction of

RP11 with hnRNPA2B1 [141].
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suggesting a close crosslink between m6A and WTAP.

WTAP function in cancer is shown in Table 1.

2.4. Other m6A writers

Less research has been done on the regulation of other

m6A writers in cancers. For instance, Wu et al. [163]

reported that ZC3H13 could be down-regulated by

miR-362-3p/miR-425-5p in hepatocellular carcinoma

(HCC). Tran et al. [5] showed that METTL5 formed a

heterodimeric complex with TRMT112 to gain meta-

bolic stability. Substantial efforts are required to pro-

mote our understanding of how other m6A writers are

modulated in cancers. Other m6A writers function in

cancer are shown in Table 1.

Dysregulation of m6A writers is widely observed in

different types of cancers, which has been considered

to be one of the most important factors for the devel-

opment of cancers. Both mRNA and ncRNA are com-

monly targeted by m6A writers in cancers, and the

effects of m6A writers seems complex, since it can act

as either promoter or suppressor to modulate the

development of cancers via various mechanisms.

3. Regulation of m6A erasers in
cancers

3.1. FTO

As the first identified RNA m6A demethylase, FTO is

the most studied and found to be frequently dysregu-

lated in its expression, localization, post-translational

modification and functions in various types of cancers.

In CRC, hypoxia could decrease FTO expression via

increasing its ubiquitin-mediated protein degradation

[47]. In EOC, the nuclear localization of FTO

increases and then enhances cancer progress via the

mTOR signaling pathway [164]. As to the post-

translational of FTO, p62 negatively regulates FTO

stability via directly binding with FTO to facilitate the

degradation of FTO protein via autophagy [165]. In

AML, FTO promotes the stability of MYC/CEBPA

transcripts and leads to the enhancement of relevant

pathways [166]. Additionally, a recent study discovered

that zinc finger protein 217 [167] and nicotinamide

adenine dinucleotide phosphate [168] uncovered roles

Box 4. Functional consequences of m6A for circRNA.

Biogenesis: circRNA biogenesis requires the back splicing, which occurs at the m6A-enriched sites for a subset of cir-

cRNAs. These m6A-enriched sites are usually located around the start and stop codons in linear mRNAs [222]. A

recent study also revealed that METTL3 and YTHDC1 could regulate the biogenesis of circ-ZNF609 via regulating

circ-ZNF609 level [223].

Degradation and stability: Deposition of m6A on circRNA have dual effect on the regulation of circRNA stability:

promotes degradation and enhances stability. m6A in circRNA can be recognized by YTHDF2, which recruits the

RNase R/MRP complex to cleave circRNA, and therefore promotes the degradation of circRNA [224]. Conversely,

m6A stabilizes the expression of circCUX1 [225] and circRNA-SORE [226]. It is likely that the m6A-regulated cir-

cRNA stability is dependent on the recognition of different m6A readers or the deposition location of m6A in cir-

cRNA.

Initiation of extensive translation: Most of the circRNAs are ncRNAs, which fail to recruit translation initiation com-

plexes due to a lack of 50UTR and m7G cap. However, some circRNAs can be m6A modified and recognized by

YTHDF3, which therefore recruit the pre-initiation complex to circRNAs. This m6A-mediated extensive translation

of circRNAs is cap-independent. Nowadays, over a hundred peptides produced by circRNAs have been identified in

germ cells [227]. YTHDF3 and eIF4G2 are physically associated with endogenous circ-ZNF609 and are essential for

its translation driven by m6A [223].

Cytoplasmic export: m6A-modified circRNA, circNSUN2, could be recognized by YTHDC1 and facilitate its export

to cytoplasm [213]. Cytoplasmic circNSUN2 can form an RNA-protein ternary complex with IGF2BP2 and high

mobility group protein 2 (HMGA2), which stabilizes HMGA mRNA and promotes metastasis of CRC [213].

Regulation of biological functions: circRNAs often act as miRNA ‘sponges’. m6A on circRNA influences the binding

between circRNA and miRNA, thereby affecting the miRNA-silencing functions on target mRNAs [123] or seques-

tering target miRNAs in the cytoplasm [228]. m6A depositions on circRNA can be used as markers to identify ‘self’

and ‘foreign’ circRNA during viral defense [229]. For instance, circE7 from the HPV virus can be modified by m6A

and labeled as ‘self’ circRNA, which facilitates the virus’s escape from the host antiviral immune response [229].
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in FTO-dependent adipogenic regulation. FTO func-

tion in cancer is shown in Table 1.

3.2. ALKBH5

Increasing research has focused on exploring the mecha-

nisms responsible for the dysregulation of ALKBH5 in

cancers: Hypoxia: ALKBH5 is a direct target of HIF-1a,
indicating that ALKBH5 may be involved in the regula-

tion of cellular responses to hypoxia [169]. In addition,

ALKBH5 is significantly up-regulated under hypoxic

conditions, while knockdown of HIF-1a and/or HIF-2a
abrogates this effect in human BC cells [170]. Histone

modifications: Wang et al. [171] found that histone

demethylase KDM4C regulated ALKBH5 expression via

increasing chromatin accessibility of ALKBH5 locus, by

reducing H3K9me3 levels and promoting the recruitment

of MYB and Pol II in AML. Qu et al. [172] identified that

the highly expressed ALKBH5 was induced by HBx-

mediated H3K4me3 modification of ALKBH5 promoter

in a WDR5-dependent manner after HBV infection. Hao

et al. [173] showed that EP300-induced H3K27 acetyla-

tion increased ALKBH5 expression in uveal melanoma

(UVM). Transcription factors: Guo et al. [174] described

that p53 interacted with the ALKBH5 promoter, tran-

scriptionally activating ALKBH5 and indirectly reducing

m6A amounts in PAAD. ncRNAs: The lncRNA

FOXM1-AS enhanced ALKBH5 binding to FOXM1

nascent mRNA in glioblastoma (GBM) cells [49]. Cir-

cRNA cIARS regulates ferroptosis in HCC cells through

physically interacting with ALKBH5 [175]. ALKBH5

function in cancer is shown in Table 1.

The effect of m6A erasers on cancer development

has been studied extensively. Similar to m6A writers,

both m6A erasers play essential roles during cancer

development. It’s noteworthy that the expression of

m6A erasers is sensitive to the extracellular environ-

ment such as hypoxia, hinting that m6A erasers might

be a potential therapeutic target to increase the effi-

ciency of novel cancer treatments such as hyperbaric

oxygen therapy. In addition, expression of m6A erasers

is commonly associated with the transcription of RNA

targets and the transduction of cellular signaling,

showing the global effect of m6A erasers in cells.

4. Regulation of m6A modification
readers

4.1. YTH-containing proteins

The expressions of YTH domain-containing proteins

in cancers are regulated by different mechanisms.

Smoking and hypoxia conditions were demonstrated

to closely correlate with the expression level of YTH

proteins. YTHDC2 was significantly reduced in both

LC cells and cigarette smoke-exposed cells [176]. Hyp-

oxia induces YTHDF2 overexpression via activation

of the mTOR/AKT axis during the progression of lung

squamous cell carcinoma [177]. Hypoxia can also

induce a specific switch in the YTHDC1 expression

pattern toward the two non-protein coding mRNA

variants [178]. HIF1a can on one hand promote the

transcription activity of the YTHDF2, and on the

other hand bind to the 5’UTR of YTHDF2 mRNA

[179]. In ocular melanoma, transcription of YTHDF2

is activated by histone acetylation [57]. It has been

reported that Musashi-1 (MSI1) up-regulated

YTHDF1 by stabilizing YTHDF1 mRNA in GBM

cells [180]. In addition, microRNAs including miR-

139-5p [181], miR-145 [182,183], miR-3436 [184], miR-

376c [185], miR-454-3p [186], miRNA-495 [187] have

been proposed to suppress YTH proteins by targeting

their mRNAs in various cancers. YTHDF1-3 and

YTHDC1-2 functions are shown in Table 1.

In addition, YTH proteins are also regulated by

post-translational modification. Fang et al. [188]

showed that EGFR/SRC/ERK signaling phos-

phorylated YTHDF2 at Serine-39 and Threonine-381,

therefore stabilizing YTHDF2 protein to promote

cholesterol dysregulation and invasive growth of

GBM. In contrast, Xu et al. [189] unveiled that FBW7

counteracted the tumor-promoting effect of YTHDF2

by inducing proteasomal degradation of YTHDF2 in

ovarian cancer (OV).

4.2. IGF2BPs

IGF2BP1: IGF2BP1 was found to be commonly and

significantly up-regulated in almost all cancer cell lines

(Fig. 3) [190–192]. In HCC and GC, lncRNA HCG11

can interact with IGF2BP1 and enhance its physical

interaction with c-Myc mRNA to promote tumorigene-

sis [193,194]. In human intrahepatic cholangiocarci-

noma, miR-885-5p promotes the down-regulation of

IGF2BP1 to inhibit cell proliferation and metastasis

[195]. IGF2BP2: HMGAs are crucial for the expression

of IGF2BP2. HMGA1 suppressed the expression of

IGF2BP2, which in turn bound and stabilized HMGA1

mRNA to promote cell proliferation [196]. HMGA2

can also promote IGF2BP2 transcription by binding to

the AT-rich region of the IGF2BP2 gene in cooperation

with NF-jB [197]. In addition, Lai et al. [198] unveiled

that IGF2BP2 activity could be mediated by mTOR, a

major effector downstream of PI3K/Akt signaling.

IGF2BP3: Similar to IGF2BP1, a major mechanism of
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IGF2BP3 regulation is based on its complex interaction

with the ncRNA machinery. For example, hsa_-

circ_0003258 is physically bound to IGF2BP3 in the

cytoplasm to activate ERK signaling pathway in pros-

tate cancer (PRAD) [76]. circIGHG directly binds with

miR-142-5p and consequently elevates IGF2BP3 activ-

ity in oral squamous cell carcinoma [199]. IGF2BP1-3

function are shown in Table 1.

4.3. hnRNPCs

hnRNPCs including hnRNPA2/B1, HNRNPC,

HNRNPE and HNRNPH are found to be prevalently

and significantly up-regulated expression in a variety

of tumors associated with cancer cells metastasis [77–
80]. hnRNPA2/B1 and HNRNPC: both hnRNPA2/B1

and HNRNPC are up-regulated in tumors [201]. How-

ever, their up-regulated mechanisms remain to be elu-

cidated [80]; hNPNPCs could directly bind with

oncogenes to control tumorigenesis, including regulat-

ing RNA splicing, RNA exportation, RNA expres-

sion, RNA stability and translation (Box 2)

[78,202,203]. HNRNPE: For instance, Breege et al.

[79] demonstrated that E3 ubiquitin ligase ARIH1

could regulate hnRNP-E1 to promote BC cells inva-

sion. HNRNPH: HNRNPH could interact with a

(A)

(B)

(C)
(D)

(E)

(F)

(G)

(H)

Fig. 3. Abundances of RNA modifiers in human cancers. Comparison of expression abundance among m6A modifiers in different types of

cancers. (A) The construction of the human body considered in different types of tumors. (B) The gene expression levels of m6A modifiers.

The expression levels of modifiers are compared between cancer and normal tissues. Differences of which over 1.5-fold are marked. Red

plots annotated modifiers are highly expressed in tumor compared with the normal tissues, whereas green plots annotated modifiers are

low expressed in tumor compared with the normal tissues. Grey plots represent that there is not enough data to identify the expression in

indicated cancers. The source of the data is from the GEPIA database [200].
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broad of target to act as splicing factor in tumor pro-

gression. The functions of hnRNPRs are shown in

Table 1.

m6A readers are the executors of m6A marks, lead-

ing to various regulatory effects on targets and, there-

fore, affecting the cellular events. It is worth to

notice that the relationship between m6A readers and

RNAs are not straightforward. On the one hand,

m6A readers can modulate the expression and/or bio-

logical functions of RNAs such as via RNA-RNA

interaction. On the other hand, the activity or expres-

sion of m6A readers can be regulated by RNAs.

Although increasing studies show the importance of

m6A readers in the development of cancers, the

detailed mechanisms of m6A readers and the coopera-

tions among different m6A readers need to be further

explored.

5. The m6A modification in cancer
cell proliferation

5.1. Regulation via m6A on mRNAs

METTL3 can promote the cell proliferation of esopha-

geal squamous cell carcinoma (ESCC) by decreasing

APC expression mediated by APC mRNA m6A-

dependent YTHDFs binding (Fig. 4A) [204].

METTL14 can promote PRAD cell proliferation by

inhibiting THBS1 via an m6A-YTHDF2-dependent

mechanism (Fig. 4B) [205]. FTO targets and suppresses

the expression of ASB2 and RARA mRNA to promote

cell proliferation and viability in AML (Fig. 4C) [44].

ALKBH5 demethylates the nascent transcripts of

FOXM1 mRNA to enhance its expression, leading to

the promotion of proliferation and tumorigenesis of

GBM stem-like cells (Fig. 4D) [49]. YTHDF1 mediates

cell growth and metastasis of BC through regulating

PKM2 mRNA to affect glycolysis (Fig. 4E) [206].

IGF2BP2 regulates the proliferation/migration of GC

by recognizing the m6A modification sites of SIRT1

mRNA (Fig. 4F) [207].

5.2. Regulation via m6A on ncRNAs

Wu et al. [208] showed that m6A-induced lncRNA

MEG3 suppressed the proliferation, migration and

invasion of HCC cells through miR-544b/BTG2 sig-

naling (Fig. 4G). Wu et al. [209] determined that

METTL3-mediated m6A modification up-regulated

circDLC1 expression and promoted CTNNBIP1 tran-

scription by sponging miR-671-5p, thus repressing the

malignant proliferation of GBM (Fig. 4H).

The relationship between m6A modification and can-

cer cell proliferation has been drawing attention in

recent years. The regulation and/or role of m6A in cell

proliferation appears to be cancer type-dependent.

Furthermore, the regulatory effects of m6A on cell

proliferation can be achieved through different

mRNAs or ncRNAs, which could be positive or nega-

tive, mainly dependent on the m6A targets. Neverthe-

less, YTHDFs play more essential roles in the

regulation of cell proliferation than other m6A readers.

6. The m6A modification in metastasis

6.1. Regulation via m6A on mRNAs

We previously highlighted that m6A was critical in the

progress of epithelial–mesenchymal transition (EMT)

since Snail could be modified by m6A in the CDS region

and METTL3/YTHDF1 could mediate the expression

and translation of Snail mRNA to regulate cancer cells

growth and metastasis (Fig. 5A) [101]. Zou et al. [210]

demonstrated that FTO suppressed PRAD cell prolifer-

ation and metastasis by reducing the degradation of

CLIC4 mRNA in an m6A-dependent manner (Fig. 5B).

Hu et al. [211] found that ALKBH5 suppressed the

invasion of GC via PKMYT1 m6A modification

(Fig. 5C). IGF2BP2 increased the expression of IGF1R

by identifying m6A modification sites in IGF1R mRNA,

thus activating the RhoA-ROCK pathway to promote

GC metastasis (Fig. 5D) [212]. YTHDF3 induced the

translation of m6A-enriched gene transcripts such as

ST6GALNAC5 and GJA1 to promote metastasis of BC

in the brain (Fig. 5E) [60].

6.2. Regulation via m6A on ncRNAs

Lang et al. [73] showed that m6A-modified lncRNA

PCAT6 stabilized IGF2BP2/IGF1R to promote

PRAD bone metastasis and tumor growth (Fig. 5F).

We previously identified that m6A-induced lncRNA

RP11 triggered the dissemination of CRC cells via up-

regulation of Zeb1 (Fig. 5G) [141]. We found that

m6A-induced miR-143-3p promoted the brain metasta-

sis of LC via regulation of VASH1 (Fig. 5H) [127].

Chen et al. [213] elucidated that m6A modification of

circNSUN2 modulated the cytoplasmic export and sta-

bilized HMGA2 to promote liver metastasis of CRC

(Fig. 5I, Box 4). Furthermore, m6A-modified

circCPSF6 triggered the metastasis of HCC cells via

activation of YAP1 (Fig. 5J) [214] (Table 2).

Metastasis is a major cause of cancer mortality,

but its molecular mechanisms are severely
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understudied. Increasing research reveals the link

between m6A and metastasis, showing that m6A may

help modulate metastasis in cancer progression via

different mechanisms. Among them, promotion of

translation seems to be the major effect of m6A on

the metastasis process, since YTHDF1/3 and

IGF2BP2/3 are commonly involved. Despite mRNA,

ncRNA including circRNA, lncRNA and miRNA

are contributed to the regulation of metastasis, most

of them are related to the up-regulation of targets

that promote metastasis.

7. The m6A modification in
chemoresistance

7.1. Regulation via m6A on mRNAs

Wei et al. [230] showed that METTL3 enhanced the sta-

bility of TFAP2C mRNA by m6A modification in semi-

noma to potentiate resistance to cisplatin (Fig. 6A). Lin

et al. [231] found that ZC3H13-mediated m6A modifica-

tion of CENPK mRNA promoted cervical cancer

(A)

(B)

(C)

(D)

(E)

(F)

(G)
(H)
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(J)

Fig. 4. Mechanism of m6A on cancer proliferation. m6A modulates the proliferation via various mechanisms in cancers. (A) METTL3-

mediated deposition of m6A decreases APC expression with YTHDFs binding in ESCC cells [204]. (B) METTL14-mediated m6A modification

on THBS1 mRNA promotes YTHDF2-mediated THBS1 decay in PRAD cells [205]. (C) FTO-mediated m6A modification on both ASB2 and

RARA mRNA suppresses their expression in AML [44]. (D) ALKBH5 removes m6A on lncRNA FOXM1-AS facilitating the interaction between

FOXM1 30UTR and ALKBH5 to promote the expression of FOXM1 in GBM stem-like cells [49]. (E) tumor hypoxia induces HIF-1a and

decreases miR-16-5p level, resulting in the up-regulation of YTHDF1 to promote the YTHDF1-mediated PKM2 expression in BC cells [206].

(F) IGF2BP2 recognizes m6A on SIRT1 mRNA and stabilizes SIRT1 in GC cells [207]. (G) METTL3 deposits m6A on lncRNA MEG3, down-

regulating MEG3 levels and up-regulating miR-544 and, therefore, regulates BTG2 expression to represses proliferation of HCC cells [208].

(H) METTL3-mediated m6A upregulates circDLC1 expression and the interaction between circDLC1 and miR-671-5p and, therefore, pro-

motes CTNNBIP1 expression in GBM cells [209].
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stemness and chemoresistance (Fig. 6B). We previously

found that m6A can trigger the splicing of precursor

ESRRG mRNA to confer chemoresistance of cancer

cells through up-regulation of ABCB1 and CPT1B

(Fig. 6C) [232]. Fukumoto et al. [233] elucidated that

down-regulation of ALKBH5 and FTO increased m6A

modified of FZD10 mRNA contributed to PARP inhib-

itors resistance in BRCA-deficient epithelial ovarian

cancers cells via up-regulation of Wnt/b-catenin path-

way (Fig. 6D). YTHDF1 modulates E2F8 mRNA sta-

bility to promote BC cell growth, DNA damage repair

and chemoresistance (Fig. 6E) [234].

7.2. Regulation via m6A on ncRNAs

Wang et al. [235] found that the lncRNA ANRIL

splicing is m6A modification-related, which is mediated

by SRSF3 and leads to the gemcitabine-resistance of

PRAD (Fig. 6F). Pan et al. [236] reported that

METTL3-dependent m6A methylation increased miR-

181d-5p expression, then inhibited the 5-Fluorouracil

sensitivity of CRC cells by targeting neurocalcin d
(Fig. 6G). Duan et al. [237] demonstrated that m6A-

modified circMAP3K4 could encode a novel peptide

to prevent apoptosis in HCC (Fig. 6H; Table 2)
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Fig. 5. Mechanism of m6A on cancer metastasis. m6A modulates metastasis via various mechanisms in cancers. (A) METTL3 deposits m6A

on CDS of Snail mRNA and then targeted by YTHDF1 to increase its translation to mediate metastasis in liver cancer [101]. (B) FTO-

mediated demethylation of m6A on CLIC4 mRNA decreases its stability, resulting in the repression of metastasis in PRAD cells [210]. (C)

IGF2BP3 helps stabilize the mRNA stability of PKMYT1 via an ALKBH5-dependent manner to regulate metastasis in GC cells [211]. (D)

IGF2BP2 recognize m6A on IGF1R mRNA and increase its expression to activate RhoA-ROCK pathway and therefore promote metastasis in

GC cells [212]. (E) YTHDF3 promotes metastasis by inducing the translation of ST6GALNAC5, GJA1, EGFR and VEGFA mRNAs in BC cells

[60]. (F) METTL3 promotes metastasis by methylating lncRNA PCAT6, which recognized by IGF2BP2 to stabilize IGF2BP2/IGF1R interaction

in PRAD cells [73]. (G) m6A-modificed lncRNA RP11 forms complex with hnRNPA2B1, accelerating the mRNA degradation of Siah1 and Fbx-

o45 to mediate metastasis by targeting of Zeb1 in CRC cells [141]. (H) m6A-modificed miR-143-3p binds to the 30UTR of VASH1 to promote

metastasis in LC cells [127]. (I) YTHDC1 recognizes m6A-modified circNSUN2 to enhance the circNSUN2/ HMGA2/IGF2BP2 interaction to

promote metastasis in CRC cells [213]. (J) ALKBH5-mediated demethylation of circCPSF6 promotes metastasis by activating YAP1 in HCC

cells [214].
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Cancer cells gradually develop resistance to progressive

chemotherapy, resulting in treatment failure that has

become a serious clinical problem in cancer therapy. m6A

modification has been reported to be involved in cancer

cells developing drug resistance by regulating target

either transcript level or translation. Unlike the dual

effect of m6A modification on cell proliferation, m6A

commonly promote the chemoresistance of cancer cells,

(A)
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(C) (D)

(E)

(F)

(G)

(H)

(I)
(K)
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Fig. 6. Mechanism of m6A on cancer cell drug resistance. m6A modulates cancer cell drug resistance via various mechanisms in cancers.

(A) METTL3 methylates TFAP2C, which enhances the stability of TFAP2C to increase chemoresistance in seminoma [230]. (B) ZC3H13

targets m6A on CENPK to activates Wnt/p53 signaling and therefore enhances chemoresistance in cervical cancer [231]. (C) m6A-modified

ESRRG mRNA upregulates protein expression of both ABCB1 and CPT1B to enhance chemoresistance in BC, LC and HCC cells [232]. (D)

Down-regulation of either ALKBH5 or FTO promotes m6A deposition on FZD10 mRNA, which activates Wnt/b-catenin pathway to enhance

chemoresistance in BRCA cells [233]. (E) YTHDF1 recognize m6A on E2F8, modulating E2F8 mRNA stability to enhance chemoresistance in

BC cells [234]. (F) Upregulation of SRSF3 promotes ANRIL splicing and m6A modification of ANRIL in PRAD cells. ANRIL-208 (one of the

ANRIL spliceosomes) can enhance DNA homologous recombination repair (HR) capacity by forming a complex with Ring1b and EZH2, which

enhances chemoresistance [235]. (G) METTL3-dependent m6A modification of pri-miR-181d promotes miR-181b-5p process by DiGeorge

Syndrome Critical Region 8 (DGCR8). miR-181b-5p directly targets neurocalcin d (NCALD) to enhance chemoresistance in CRC cells [236].

(H) IGF2BP1 recognized the circMAP3K4 m6A modification and promotes its translation into a novel peptide, which interacts with AIF to pre-

vent cisplatin-induced apoptosis in HCC [237].
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since up-regulation of METTL3 and down-regulation of

FTO/ALKBH5 are frequently observed in drug resis-

tance cancer cells, hinting that targeting m6A might be a

feasible direction for drug resistant cancer therapy.

8. The m6A modification and the
tumor microenvironment

8.1. Regulation via m6A on mRNAs in immune

cells

METTL3 in CD4+ T cells stabilizes Tcf7 mRNA to pre-

vent their differentiation and functional maturation,

further inhibiting the antibody response of B cells

(Fig. 7A) [238]. METTL3 can also inhibit T-cell homeo-

static proliferation and differentiation by stabilization

of the mRNAs of SOCS pLfamily, which are the STAT

signaling inhibitory proteins (Fig. 7B) [239]. During the

induced neuroinflammation, ALKBH5 deficiency in

CD4+ T cells decreases the mRNA stability of IFN-c
and CXCL2, thereby alleviating experimental autoim-

mune encephalomyelitis (Fig. 7C) [240]. YTHDF1

enhances the translation of mRNAs that encode lysoso-

mal proteases, which can degrade antigens in lysosomes

to down-regulate the anti-tumor immune responses of

dendritic cells (Fig. 7D) [241]. YTHDF2 knockdown

increases MAP2K4 and MAP4K4 expression levels via

stabilizing mRNA transcripts, which activates MAPK

and NF-jB signaling pathways to promote the expres-

sion of proinflammatory cytokines (Fig. 7E) [242]. On

the other hand, when it comes to non-immune cells,

METTL3 knockdown inhibits osteogenic differentiation

and alternative splicing of VEGFA in bone marrow

mesenchymal stem cells (Fig. 7I) [243]. ALKBH5 can

modulate Mct4/Slc16a3 expression and lactate content

of the tumor microenvironment to regulate the composi-

tion of tumor-infiltrating Treg and myeloid-derived sup-

pressor cells (Fig. 7J) [244].

8.2. Regulation via m6A on ncRNAs in immune

cells

Expression of ALKBH5 can be regulated by lncRNA-

miRNA network containing miR-4732-5p, miR-193a-

3p and miR-362-3p, which can recruit the M2 macro-

phage to glioma cells (Fig. 7F) [245]. circNDUFB2

inhibits the progression of NSCLC via destabilizing

IGF2BPs to activate anti-tumor immunity (Fig. 7G,

Box 4) [246]. Cai et al. [247] found that CircRHBDD1

restricted PD-L1 immunotherapy efficacy via m6A

modification in HCC (Fig. 7H). In terms of non-

immune cell m6A regulation such as bone marrow

mesenchymal stem cells, Yan et al. [248] demonstrated

that METTL3 controlled the osteogenic potential of

bone marrow-derived mesenchymal stem cells by m6A

methylation of precursor-miR-320/RUNX2 (Fig. 7K).

The underlying effects of regulation of m6A on

ncRNAs in the TME should be further explored.

(Table 2)

The tumor microenvironment consists mainly of an

immune microenvironment dominated by immune cells

and a non-immune microenvironment dominated by

fibroblasts, formed by the combined action of malig-

nant tumor cells and non-transformed cells [249].

Roles of the m6A modification in both immune cells

and non-immune cells in the cancer microenvironment

have been studied. However, the regulatory effects of

Table 2. Non-coding RNA influenced by m6A and its function in cancers.

Type Name Effect Mechanisms

circRNA circ0008399 Promotes cell cisplatin resistance (BCA) Up-regulation of TNFAIP3 [159]

circ_104075 Stimulates YAP-dependent tumorigenesis (HCC) Up-regulation of YAP by absorbing miR-582-3p [215]

circDLC1 Inhibits MMP1-mediated cancer progression (LC) Interaction with HuR and down-regulation of MMP1 [41]

miRNA miR-25-3p Promotes cancer progression (PRAD) Activation of AKT-p70S6K signaling [147]

miR-96 Promotes cancer occurrence and progression (CRC) Regulation of AMPKa2-FTO-m6A/MYC axis [216]

miR-143-3p Promotes lung cancer brain metastasis (LC) Inhibition of VASH1 [127]

miR-320b Inhibits cancer angiogenesis and tumor growth (LC) Inhibition of HNF4G, IGF2BP2 and TK1 [217]

miR-135 Inhibits cell epithelial–mesenchymal transition (BC) Regulation of miR-135/ZNF217/METTL3/NANOG axis [218]

lncRNA FAM225A Promotes tumorigenesis and metastasis (NPC) Adsorption of miR-590-3p and miR-1275 and up-regulation

of ITGB3 [133]

LCAT3 Promotes tumorigenesis (LC) Activation of c-MYC [219]

LINC00278 Inhibits cell apoptosis (ESCC) Down-regulation of YY1BM [220]

GAS5 Inhibits cancer progression (CRC) Phosphorylation and degradation of YAP [221]

rRNA 28S Inhibits cell proliferation (HCC) Reduction of global translation [7]

18S Promotes cell proliferation (BC) Promotion of translation initiation [39]
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m6A on cancer microenvironment is controversial,

especially for the roles of METTL3 and ALKBH5 in

immune cells and non-immune cells. Since cancer

microenvironment is special and complex, the multiple

effect/roles of m6A modification requires further

exploration.

(A)

(B)

(C) (D)

(E)

(F)

(G)

(H)(I)

(J)

Fig. 7. Mechanism of m6A on immune cells and non-immune cells. m6A is involved in immunity via various mechanisms in cancers. (A)

METTL3 methylates and stabilizes Tcf7 mRNA to enhance TCF-1 level, which promotes TFH cell differentiation/function maturation to inhibit

the antibody response of B cells in CD4+ T cells [238]. (B) Deficiency of METTL3 stabilizes SOCS family expression, which inhibits IL-7-

mediated STAT5 activation and T-cell homeostatic proliferation and differentiation in CD4+ T cells [239]. (C) ALKBH5 deficiency decreases

IFN-c and CXCL2 expression to alleviate experimental autoimmune encephalomyelitis in CD4+ T cells [240]. (D) YTHDF1 downregulates the

anti-tumor immune responses by enhancing the translation of lysosomal proteases related mRNA in Dendritic cells [241]. (E) YTHDF2 knock-

down increases the expression and stability of MAP2K4 and MAP4K4 mRNAs and, therefore, activates MAPK and NF-jB signaling path-

ways to promote the expression of proinflammatory cytokines and aggravate the inflammatory response in LPS-stimulated RAW 264.7 cells

[242]. (F) lncRNA-miRNA network such as miR-4732, miR-193a-3p and miR-362-3p regulates ALKBH5 expression to recruit the M2 macro-

phage to glioma cells [245]. (G) m6A-modified circNDUFB2 inhibits the progression of NSCLC via destabilizing IGF2BPs to activate anti-

tumor immunity [246]. (H) circRHBDD1 recruits YTHDF1 to the m6A-modifed PIK3R1 mRNA and accelerates its translation to restrict anti-

PD-1 therapy via activation of PI3K/AKT signaling in HCC [247]. (I) METTL3 knockdown decrease VEGFA expression especially two tran-

scripts vegfa-164 and vegfa-188 to inhibit osteogenic differentiation in bone marrow mesenchymal stem cells [243]. (J) ALKBH5 targets

MCT4 to modulate Mct4/Slc16a3 expression to regulate the composition of tumor-infiltrating Treg, level of lactate and myeloid-derived sup-

pressor cells [244]. (K) METTL3 targets both RUNX2 and precursor-miR-320 to increase their expression, which controls the osteogenic

potential of bone marrow–derived mesenchymal stem cells [248].
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9. The m6A modification and cancer
metabolism

9.1. Regulation via m6A on mRNAs

We previously showed that METTL3-modified 50UTR

of PDK4 mRNA could positively regulate the glycoly-

sis and ATP generation in cervical and liver cancer

cells (Fig. 8A) [25]. METTL3 enhanced GLUT1

mRNA translation in an m6A-dependent manner to

promote glucose uptake and lactate production in

CRC (Fig. 8B) [250]. WTAP enhances the stability of

HK2 mRNA through binding with its 30UTR m6A

site, leading to the promotion of GC cell proliferation

and glycolytic capacity (Warburg effect) (Fig. 8C)

[251]. Down-regulated FTO in LC cells promoted the

translation of MYC mRNA and increased glycolysis

and cancer progression (Fig. 8D) [252]. YTHDF1

could regulate the translation of TFRC mRNA by

binding its 30 and 5’UTR to enhance iron metabolism

in hypopharyngeal squamous cell carcinoma (Fig. 8E)

[53]. YTHDF2 could directly bind to the 30UTR of

6PGD mRNA to promote its translation, therefore

enhancing the activity of the pentose phosphate path-

way (PPP) flux in LC cells (Fig. 8F) [253].

9.2. Regulation via m6A on ncRNAs

METTL3 mediated the up-regulation of lncRNA

LINC00958 through stabilizing its transcript and

increasing lipogenesis, which could act as a nanothera-

peutic target in HCC (Fig. 8G, Box 3) [134]. Liu et al.

[254] found that METTL3-stabilized lncRNA SNHG7

accelerated glycolysis in PRAD via the SRSF1/c-Myc

axis (Fig. 8H). YTHDC1 promoted the maturation of

miR-30d to suppress aerobic glycolysis by binding

RUNX1, regulating SLC2A1 and HK1 expression,

thus attenuating the Warburg effect to inhibit tumor

progression in pancreatic ductal adenocarcinoma

(Fig. 8I) [62]. circRHBDD1 was revealed to augment

aerobic glycolysis in HCC (Fig. 8K) [247].

Recently, the relationship between m6A modification

and cancer metabolism has received attention. Increas-

ing reports suggest that m6A modification is exten-

sively involved in the metabolic regulation of tumors.

Compared with m6A erasers, m6A writers, especially

METTL3, plays more critical roles in the regulation of

cancer metabolism. In addition, m6A-promoted trans-

lation is important for the glycolysis of cancer cells.

On one hand, it hints that glycolysis of cancer cells

could be regulated by multiple pathways. On the other

hand, targeting the m6A-modifed translation may be a

potential approach to inhibit cancer metabolism, and

therefore achieving efficient treatment of cancers.

10. m6A modifications as diagnostic
and therapeutic targets

m6A is commonly up-regulated in several cancers and

promotes tumorigenesis. Targeting m6A is emerging as

a new trend for cancer diagnosis and therapy due to

the specific induction of m6A by cancer tissues and the

critical effects of m6A on cancer development. Here,

we summarized the development of potential cancer

diagnosis and therapy methods by targeting m6A.

10.1. m6A as biomarkers for cancer diagnosis

10.1.1. Total m6A

m6A level in blood/serum could be measured as simply

noninvasive biomarkers for cancers. For instance, Pei

et al. [145] found that leukocyte m6A was significantly

elevated in non–small cell lung cancer (NSCLC)

patients, which was suitable for NSCLC monitoring

and diagnosis. In GC patients, we found that the level

of m6A in peripheral blood RNA increased signifi-

cantly. The sensitivity of for m6A, estimated by the

value of area under the curve (AUC), in the GC group

was 0.929 (95% confidence interval (CI), 0.88–0.96),
which was markedly greater than the AUCs for carci-

noembryonic antigen (CEA; 0.694) and carbohydrate

antigen 199 (CA199; 0.603). It indicated that the level

of m6A in peripheral blood RNA was a promising

noninvasive diagnostic biomarker for GC [143]. Simi-

larly, the m6A levels in peripheral blood leukocytes

could be a noninvasive biomarker for both NSCLC

[145] and CRC [146].

10.1.2. type="main">m6A-related RNAs

Over 138 m6A-related transcripts were identified to be

potential prognostic biomarkers so far, such as

NMPM1 in lung adenocarcinoma [255], SNRPC in

HCC [256], GLUT1 in esophageal cancer [257], BATF2

in GC [258], PGM1 and ENO1 in BCA [259], NUF2/

CDCA3/KIF14 in clear cell renal cell carcinoma [260].

m6A-associated miRNAs are also used for developing

new cancer biomarkers. Zhang et al. [261] demon-

strated that the m6A-miRNA signatures showed supe-

rior sensitivities in each cancer type and presented a

satisfactory AUC in identifying LC, GC and HCC;

m6A-related lncRNAs have also been identified as can-

cer biomarkers. For instance, 12 m6A-related lncRNAs
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in lung adenocarcinoma (LUAD) [262] and 6 m6A-

related lncRNAs in BC [263] were identified as promis-

ing predictive biomarkers. In addition, specific

lncRNAs including circ3823 and circ1662 in CRC

[264,265], LINC00022 in ESCC [266],

circRNA_104075 in HCC [215] and MIR497HG/

FENDRR/RP1-199J3 in LUAD [267] were suggested

for diagnosis.

10.1.3. m6A regulators

The abundance of m6A-related writers, erasers and

readers could be candidates for tumor diagnosis. For

instance, METTL3 is suggested to be a prognostic and

immune-related biomarker in BCA [268], while

METTL14 is correlated with prognosis in rectal cancer

patients and immune infiltration level [269]. Demethy-

lase ALKBH5 is up-regulated in several solid tumors

and can be a biomarker for some malignant tumor

prognosis, such as NSCLC and CRC [245]. Similarly,

FTO [270], WTAP [271], KIAA1429 [272], RBM15

[273], ZC3H13 [274], METTL5 [275], METTL16 [274],

ZCCHC4 [276], HNRNPC [276] YTHDF1 [277],

YTHDF2 [278,279], YTHDF3 [280,281], YTHDC1

[282], YTHDC2 [56], IGF2BP1 [283,284], IGF2BP2

[285,286], IGF2BP3 [287] have been reported to be

potential biomarkers for prognosis in different

cancers.

(A)
(E)

(F)

(G)

(B)

(C)

(D)

Fig. 8. Mechanism of m6A on cancer cell metabolism. m6A modulates metabolism via various mechanisms in cancers. (A) METTL3-

modified m6A on 50UTR of PDK4 is recognized by YTHDF1/eEF-2 and IGF2BP3 to promote the glycolysis and ATP generation in both cervi-

cal and liver cancer cells [25]. (B) METTL3 targets GLUT1 to increase its mRNA, which actives mTORC1 pathway to promote glucose uptake

and lactate production in CRC cells [250]. (C) WTAP targets 30UTR of HK2 to enhance its stability, which is recognized by YTHDF1 to pro-

mote glycolytic capacity in GC cells [251]. (D) FTO downregulation promotes the YTHDF1-medicated translation of MYC, which increases

glycolysis in LC cells [252]. (E) YTHDF1 recognizes both 50UTR an 30 UTR m6A of TFRC, promoting its translation to enhance iron metabo-

lism in hypopharyngeal squamous cell carcinoma [53]. (F) YTHDF2 binds to 6PGD mRNA to facilitate its translation, which enhances the

activity of the PPP flux in LC cells [253]. (G) METTL3 increases HDGF-involved lipogenesis by upregulating lncRNA LINC00958 in HCC cells

[134]. (H) METTL3 targets lncRNA SNHG7 to increase its mRNA level. SNHG7 regulated c-Myc via interacting with SRSF1 to promote gly-

colysis via SRSF1/c-Myc axis in PRAD cells [254]. (I) YTHDC1 promotes the maturation of miR-30d to increase its expression, which further

regulates the expression of RUNX1, SLC2A1 and HK1 and therefore attenuates the Warburg effect in pancreatic ductal adenocarcinoma

cells [62]. (J) circRHBDD1 recruits YTHDF1 to the m6A-modifed PIK3R1 mRNA and accelerates its translation to augment aerobic glycolysis

via activation of PI3K/AKT signaling in HCC [247].
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These studies indicate that the m6A level in blood/

serum reflects the abnormal RNA methylation in the

body, which may have potential to be a specific and

sensitive biomarker for cancer diagnosis. Total m6A

levels in blood samples, m6A-related RNAs and m6A

modifiers can be associated with tumor development

and may constitute promising approaches in cancer

prognosis.

10.2. m6A as targets for cancer therapy

10.2.1. Targeting m6A-associated regulators

In the past decades, small molecule chemicals were the

most explored as inhibitors to target m6A-related pro-

teins. As the first identified demethylase, inhibitors for

FTO were most studied. Over ten FTO-targeted small

molecule inhibitors were developed against cancers,

such as Rhein [288], meclofenamic acid [289], quercetin

[290], entacapone [291], FB23 and FB23-2 [292]. We

recently developed two FTO inhibitors named 18077

and 18097, which can significantly suppress in vivo

growth and lung colonization of BC cells [293].

Regarding FTO, inhibitors targeting other m6A-related

enzymes were being explored. For example, Yankova

et al. [294] described that a catalytic inhibitor of

METTL3, named STM2457, could be a potential ther-

apeutic drug against AML due to its oral activity. Sab-

nis et al. [295] developed new compounds as ALKBH5

inhibitors (IC50 = 0.84 lM) for cancer treatment. In

addition, a number of natural inhibitors are being dis-

covered continuously, including quercetin for

METTL3 [296], betaine for METTL14 [297], clausine

for FTO [298], curcumin for ALKBH5 [299] and fusa-

ric acid for YTHs [300,301]. A list of candidate com-

pounds targeting m6A regulators for cancer therapy is

presented in Table 3.

Targeting the expression of m6A-related proteins is

another strategy for cancer therapy. RNA interference

and CRISPR/Cas9 are techniques that target m6A-

related proteins to suppress their expression. The

CRISPR system can also be used to identify potential

targets that modulate the expression of m6A-related

proteins through a genome-wide CRISPR screen [317].

10.2.2. Single-site editing of m6A-modified RNAs

Given specific m6A modifications on particular RNA

molecules can have different effects, modulating single-

site m6A on transcript targets may affect the expres-

sion of target genes such as oncogenes. We have devel-

oped a PspCas13b-ALKBH5-based tool named

dm6ACRISPR for the targeted demethylation of speci-

fic mRNAs [318]. Targeting m6A modifications of

oncogenes such as EGFR and MYC can significantly

suppress their expression and the proliferation of can-

cer cells [318]; demethylating metabolic gene PDK4

can reduce its expression and glycolysis of cancer cells

[25]. Similarly, Qian’s lab has devised an RNA-

targeting-dCas9 system for site-specific methylation or

demethylation via fusion with a truncated METTL3-

METTL14 heterodimer or full-length ALKBH5/FTO,

respectively [319]. The m6A site-specific manipulation

has been summarized recently [320]. The discovery of

more potent Cas derivatives, such as Cas13bt, Cas13X,

Cas13Y and ABE8, will further improve the CRISPR-

based RNA editing systems and have great potential

for applications in various genetic diseases including

cancers [320].

Since the oncogenic roles of m6A modification have

been identified in various types of cancers, studies

investigating the potential roles of m6A as biomarkers

for cancer diagnosis have been performed. In general,

levels of total m6A, m6A-related RNAs and m6A regu-

lators can be used as diagnostic biomarkers for multi-

ple cancers. The relationship between m6A/m6A-

related markers and cancer progression is satisfactory.

Nevertheless, combining m6A and clinical used

biomarkers can further increase the diagnostic sensitiv-

ity of cancer [142], showing a potential application of

m6A in cancer diagnosis. In addition to the application

in diagnosis, targeting m6A may serve as a novel direc-

tion for cancer therapy due to its effect on tumorigene-

sis. Nowadays, therapeutic strategies targeting m6A

mainly include inhibition of enzyme activity and/or

expression, and targeted inhibition based on m6A edit-

ing of specific RNAs. Both in vitro and in vivo trials

show satisfactory results of cancer cell inhibition via

either inhibitors or single-site editing tools. It suggests

that targeting m6A is a potential and powerful

approach for cancer therapy.

11. Challenges and perspectives

m6A modification is widely distributed in almost all

RNA species and has a far-reaching biological

impact. Increasing evidence shows that m6A has

important regulatory roles in the process of tumorige-

nesis and cancer development, which can be achieved

by the changes in m6A-related protein expression,

reader protein activity or the biological functions of

m6A related-mRNA and/or ncRNAs. As a matter of

fact, m6A is expected to become a potential bio-

marker for cancer diagnosis by monitoring overall

m6A, m6A-related RNAs and m6A modifiers. Since
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total m6A in peripheral blood shows great potential

as a biomarker for gastric [143], lung [145] and col-

orectal [146] cancers, its specific roles in cancer diag-

nosis warrant further investigation. Moreover,

whether m6A can be used as a biomarker to distin-

guish the early stage of cancer patients and healthy

people, and whether the levels of m6A can be used as

a biomarker for prediction or monitoring therapy effi-

ciency remains unclear. In addition, it is reasonable

to hypothesize that m6A-methylated transcripts such

as mRNAs, ncRNAs and even the RNA fragments

may be associated with tumorigenesis and cancer

development [321]. However, the potential roles of

specific m6A-methylated transcripts in cancer diagno-

sis need further investigation.

Targeting regulators of DNA and histone methyla-

tion have been proven as clinically applicable and

important therapeutic strategies [322]. Increasing evi-

dence shows that RNA methylation is a new target for

cancer therapy. Developing inhibitors/activators of

m6A-related proteins has become a hot spot in the

field of anti-cancer epigenetic drugs. At present, the

small molecule candidate drug STM2457 targeting

METTL3 is expected to enter the clinical trial stage,

which has a significant possibility to become the first

RNA epigenetic drug for cancer therapy. However,

whether the global methylation/demethylation effect

induced by inhibitors/activators of m6A-related pro-

teins would cause unexpected side effects or toxic

effects remains up to further investigation. In addition

to global demethylation, m6A site-specific editing to

target-specific RNA has gradually become a novel

direction of cancer treatment. Similar to CRISPR/

Cas9 system targeting DNA, CRISPR proteins

Table 3. Candidate compounds targeting m6A regulators for cancer therapy.

Target Compound IC50 (lM) Functions

METTL3 Adenosine 2 8.7 METTL3 inhibitor [302]

METTL3 UZH1a 7 METTL3 inhibitor, reduces the m6A/A ratio in mRNAs of three AML cell lines [303]

METTL3 STM2457 0.0169 METTL3 inhibitor, reduces AML growth and increases differentiation and apoptosis

[294]

FTO Rhein 21 FTO inhibitor, exhibits good inhibitory activity on m6A demethylation inside cells [288]

FTO MO-I-500 8.7 FTO inhibitor, shows anti-convulsant activity [304]

FTO Meclofenamic acid 8 FTO inhibitor [289]

FTO CHTB 39.24 FTO inhibitor [305]

FTO R-2HG 133.3 FTO inhibitor, exerts a broad anti-leukemic activity in vitro and in vivo [166]

FTO FB23-2 2.6 FTO inhibitor, suppresses proliferation and promotes the differentiation/apoptosis of

human AML cell lines [292]

FTO Entacapone 3.5 FTO inhibitor, mediates metabolic regulation through FOXO1 [291]

FTO CS1 0.14 FTO inhibitor, suppresses cancer stem cell maintenance and immune evasion [306]

FTO CS2 2.6 FTO inhibitor, suppresses cancer stem cell maintenance and immune evasion [306]

FTO Saikosaponin-d 0.46 FTO inhibitor, shows a broadly suppressed AML cell proliferation and promoted

apoptosis and cell-cycle arrest both in vitro and in vivo [307]

FTO Dac51 0.4 FTO inhibitor, blocks FTO-mediated immune evasion, and synergizes with checkpoint

blockade for better tumor control [308]

FTO FTO-4 3.4 FTO inhibitor, prevents neurosphere formation in patient-derived GBM stem cells

[309]

FTO 18097 0.64 FTO inhibitor, shows anti-cancer activities both in vitro and in vivo [310]

ALKBH5 MV1035 / ALKBH5 inhibitor, shows an inhibitory effect on GBM [311]

ALKBH5 ALK-04 / ALKBH5 inhibitor, enhances the efficacy of cancer immunotherapy [244]

ALKBH5 2-[(1-hydroxy-2-oxo-2-

phenylethyl)sulfanyl]

acetic acid

0.84 ALKBH5 inhibitor, suppresses cell proliferation at low micromolar concentrations in

AML [312]

ALKBH5 4-[(furan-2-yl)methyl]amino-

1,2-diazinane-3,6-dione

1.79 ALKBH5 inhibitor, suppresses cell proliferation at low micromolar concentrations in

AML [312]

ALKBH5 Compound 20m 0.021 ALKBH5 inhibitor [313]

IGF2BP1 BTYNB 5 IGF2BP1 inhibitor, targes c-Myc and inhibits melanoma and ovarian cancer cell

proliferation [314]

IGF2BP1 7773 30.45 IGF2BP1 inhibitor, represses Kras and a pro-oncogenic phenotype in LUAD [315]

IGF2BP2 Benzamidobenzoic acid

class and

ureidothiophene clas

/ IGF2BP2 inhibitors, show anti-cancer activities both in vitro and in vivo [316]
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targeting RNA (such as Cas13b, CasRx) combined

with m6A-related proteins can achieve site-specific

deposition and demethylation of m6A, leading to the

degradation, translation and other effects of specific

targets [319]. Compared with CRISPR/Cas9, CRISPR

targeting RNA does not affect the DNA, which can

circumvent mutations caused by off-target effects being

passed down to the next generation. Therefore, a site-

targeting m6A-editing method would be a promising

direction for tumor treatment. Remarkably, numerous

challenges need to be overcome before the clinical

application of a targeted m6A-editing method, such as

ways to achieve sufficient delivery in vivo, approaches

to target tumor cells specifically, means to reduce off-

target effects, and more. An in-depth study of m6A

distribution, functions and biological impact will

broaden our understanding of RNA epigenetic regula-

tion of tumor development. We therefore believe that

an increasing number of novel, specific, effective and

promising methods targeting m6A modifications could

be developed, being a new direction for both cancer

diagnosis and targeted therapy.
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