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Abstract

Gene therapy is the manipulation of gene expression patterns in specific cells to treat genetic 

and pathological diseases. This manipulation is accomplished by the controlled introduction 

exogenous nucleic acids into target cells. Given the size and negative charge of these 

biomacromolecules, the delivery process is driven by the carrier vector, of which is dominated by 

the usage of viral vectors. Taking into account the limitations of viral vectors, nonviral alternatives 

have gained significant attention due to their flexible design, low cytotoxicity and immunogenicity, 

and their gene delivery efficacy. That stated, the field of nonviral vectors has been dominated 

by research dedicated to overcoming barriers in gene transfer. Unfortunately, these traditional 

nonviral vectors have failed to completely overcome the barriers required for clinical translation 

and thus, have failed to match the delivery outcomes of viral vector. This has consequently 

encouraged the development of new, more radical approaches that have the potential for higher 

clinical translation. In this review, we discuss recent advances in vector technology and nucleic 

acid chemistry that have challenged the current standing of nonviral systems. The diversity of 

these approaches highlights the numerous alternative avenues for overcoming innate and technical 

barriers associated with gene delivery.

Introduction

Gene therapy has emerged as a viable therapeutic option due to its capacity to address the 

causative factors of various disorders at the genetic level. Gene therapy is broadly defined 

as the delivery of genetic-based material (e.g., DNA or RNA) to specific cells to modify 

expression patterns (Figure 1). Manipulation of cellular gene expression patterns can be 

utilized in genetic vaccines, for example, to provide protection against difficult to treat 

ailments, such as cancer or AIDS, by enabling expression of associated disease markers to 

provoke an immune response.

A critical part of this process involves the choice of delivery mechanism, which greatly 

influences the type, duration, and outcome of the specific treatment. Furthermore, successful 

delivery of the genetic cargo requires both successful uptake and correct translocation to 
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respective active sites (most often, DNA is transported to the nucleus and RNA to the 

cytoplasm). Traditionally, delivery has been facilitated using either physical administration 

techniques such as electroporation (i.e., the use of electrical current to render desired cells 

permeable to genetic material) or by vector-mediated delivery. Various gene delivery vectors 

have been developed that are generally divided into two classes: viral or nonviral systems. 

Historically, viral-based technologies have represented the standard for gene delivery due 

to their unsurpassed transfection efficiency (Jones et al., 2013a; Jones et al., 2014a). 

Despite delivery efficacy, viral vectors possess limitations including complex formulation, 

storage-related difficulties, and off-target effects (e.g., undesired toxicity, immunogenicity, 

and tumorigenicity) (Baum et al., 2006; Musacchio & Torchilin, 2013; Nayerossadat et al., 

2012; Seow & Wood, 2009). Nonviral gene delivery vectors stand as alternatives and feature 

extensive design strategies; however, nonviral approaches have thus far failed to match the 

efficacy of their viral counterparts. This has consequently encouraged the development 

of new, more radical approaches (Pack et al., 2005). For example, vectors have been 

redesigned to deviate from various established delivery paradigms pertaining to formulation, 

storage, administration, circulation and cell targeting, and genetic processing. To describe 

the emerging shift from traditional nonviral vectors, the accompanying text will highlight 

alternative approaches being developed to overcome specific barriers associated with gene 

delivery.

Biologically-derived vectors

In a general sense, the extent of gene therapy using transfection is determined by the 

mechanism chosen to facilitate the delivery of the desired genetic cargo. Over the past 

few years, unique classes of delivery vectors have been developed that can influence gene 

delivery outcomes in ways that are unachievable using traditional approaches.

One such class includes hybrid delivery vectors that consist of biologically derived vectors 

(e.g., bacteria or viral alternatives) actively interfaced with biocompatible materials. A 

prominent example of this strategy is the synergistic combination of invasive (innate or 

engineered) bacteria with rationally designed biomaterial agents (Akin et al., 2007; Jones et 

al., 2015; Jones et al., 2014b). Both components of these hybrid vectors have been evaluated 

independently for their gene delivery efficacy, thus, the combination of these technologies 

enables the application of vector-specific engineering opportunities towards overcoming 

notoriously difficult delivery barriers.

Independently, bacterial vectors have demonstrated the ability to deliver diverse genetic 

cargo including plasmid DNA (pDNA) (Grillot-Courvalin et al., 2002; Jones et al., 2013b; 

Larsen et al., 2008; Parsa et al., 2008a; Parsa et al., 2008b; Schaffner, 1980), RNA-based 

constructs (Kruhn et al., 2009; Xiang et al., 2006; Xu et al., 2009), and larger genetic 

elements (Cheung et al., 2012; Laner et al., 2005). Additionally, bacterial vectors possess 

the potential to incorporate powerful genomic integration technologies, to be described 

below, that can impart permanent changes currently only achievable with viral delivery 

vectors. This potential arises from bacterial properties such as ideal sizing for uptake into 

antigen presenting cells (APCs; i.e., macrophages and dendritic cells), general cellular 

uptake through invasive properties, adjuvant-like compositional makeup, genetic cargo 
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maintenance capability (removing a need to manufacture and purify genetic material), no 

theoretical limit to genetic cargo size, the ability to deliver both genetic and protein cargo, 

and evolutionarily-optimized and/or protein-based endosomal escape mechanisms. However, 

despite the demonstration of safe in vivo cytotoxicity panels (Chart el al., 2000; Jones el 

al., 2014b), concerns over biosafety impede widespread clinical translation relative to other 

non-biological vector formats.

Gene delivery vectors comprised of biomaterials include an expansive list of 

compositionally unique constructs that can be predominantly divided into two classes, 

polymers and lipids. Regardless of the material selected, this class of vectors can be readily 

synthesized and tailored to address application-specific problems and mediate delivery 

through physically-driven phenomena. Specifically, after packaging the genetic cargo 

(through electrostatically-driven complexation or physical encapsulation), these particulate 

systems are internalized through endocytosis by host cells (Jones et al., 2013a). Following 

cellular uptake, endosomal escape is required to ensure gene expression. An important 

design consideration is the manner in which endosomal escape is achieved, which differs 

significantly depending on the specific biomaterial vector. The most common escape 

mechanisms involve either the “proton sponge effect” or lipid mixing, which are mediated 

by cationic polymers or lipid-based systems, respectively (Khatri et al., 2012; Miller, 

2013; Schlenk et al., 2013). However, biomaterial vectors possess potential limitations such 

as prohibitive scale-up costs, reduced genetic cargo capacity, limited colloidal stability, 

cytotoxicity, immunogenicity, and sub-biological endosomal escape and gene transfer 

efficacy (Jones et al., 2013a; Pack et al., 2005; Yin et al., 2014).

Taken together, the combination of the aforementioned technologies enables the formulation 

of hybrid vectors that retain vector-specific advantages while compensating for their 

individual limitations. For example, our group developed a class of hybrid biosynthetic 

gene delivery vectors composed of an Escherichia coli inner-core and a cationic polymer 

outer-core (Jones et al., 2015; Jones et al., 2014b) which enabled APC cellular outcomes 

significantly improved relative to individual component vectors or commercially-available 

vectors in both in vitro and in vivo models. Although the current gene delivery platform 

was tailored for APC-specific activity, other studies have demonstrated that E. coli can be 

applied to various non-phagocytic cell lines through the expression of invasive proteins such 

as invasin (Critchley-Thorne et al., 2006; Critchley et al., 2004).

Another delivery strategy gathering momentum is the application of bacterial outer 

membrane vesicles (OMVs). These vectors are generated from the natural or induced 

budding of proteoliposomes from Gram-negative bacteria (Unal et al., 2011). Particles 

range in size from 50-250 μm and can be designed to display targeting ligands and 

additional application-specific proteins on the OMV surface using traditional molecular 

biology tools (Avila-Calderon et al., 2015; Gujrati et al., 2014). Despite wide usage in 

vaccination regimes, OMVs retain substantially smaller genetic cargo loads and require 

complex purification schemes prior to use. Similarly to OMVs, non-denatured, hollowed cell 

envelopes from Gram-negative bacteria, termed bacterial ghosts (BGs), can act as natural 

scaffolds for genetic cargo loading. BGs are produced by the heterologous expression of 

lytic proteins from bacteriophages (Paukner et al., 2005; Vilte et al., 2012). These vectors 
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possess the intrinsic properties of OMVs while requiring simpler purification and possessing 

higher loading capacities (completed after purification) (Acevedo et al., 2014). Although 

OMVs and BGs have demonstrated success in both in vitro and in vivo models and 

possesses an accessible tool-set for vector engineering, biomaterial-functionalization has 

yet to be demonstrated.

Nontraditional biomaterial vectors

Biomaterial particle-based delivery vectors have been the standard of gene delivery 

research (Yin et al., 2014). Successful constructs have been generated using a myriad 

of biocompatible materials that can be readily tuned to fully engage desired cellular 

pathways. An underlying theme of this research is the search for compositional-driven 

solutions to current particulate-based limitations, that is, developing new synthetic schemes 

and reactions for tuning particular biophysical properties (i.e., degradation rates, solubility, 

and colloidal stability) for desirable outcomes. Studies surveying specifics of designing 

traditional biomaterial gene delivery vectors are reviewed in detail elsewhere (Jones et al., 

2013a; Pack et al., 2005; Yin et al., 2014).

A limitation of using compositionally-driven approaches to overcome gene delivery barriers 

is the resulting biomaterial systems will ultimately be hindered by the innate properties 

of the chosen material and/or delivery strategy, meaning that certain drawbacks associated 

with biomaterial systems can only be mitigated, but not eliminated, when using current 

technology. Regardless, several studies have provided a foundation for new directions in 

biomaterial delivery systems. These studies range from re-tooling of biomaterial vectors 

away from traditional particulate-based systems to biomimicry technology. Specifically, by 

using a modified microneedle strategy (termed “polymer tattooing”), Irvine and coworkers 

developed skin biodegradable DNA delivery vectors capable of continuous and sustained in 
situ polyplex formation (DeMuth et al., 2013). This method utilized a layer-by-layer (LBL) 

formation approach for loading microneedles with releasable polymer films containing 

alternating layers of pDNA, polymer, and adjuvants. Since its advent, LBL patterning has 

been widely adapted and serially optimized (Bechler & Lynn, 2012; Flessner et al., 2011; 

Li et al., 2014; Santos et al., 2012; Saurer et al., 2010; Zou et al., 2014). A similar 

approach involves the application of particle replication in nonwetting templates (PRINT) 

technology for gene delivery, developed by DeSimone and coworkers (Xu et al., 2013). 

The technology results in highly conserved and reproducible batches of cylindrical particles 

by mixing the genetic cargo with bovine serum albumin (BSA), lactose, and glycerol in 

a PRINT mold. After heating, the particles can be complexed with either commercial 

transfection reagents or a mixture of lipids to provide an endosomal escape mechanism. 

The novelty associated with this class of delivery vectors is the particle uniformity and 

associated potential as a standardized research platform. Unlike most biomaterial-based 

agents, experimental variation (from researcher to researcher) is significantly reduced, 

facilitating more reproducible studies.

Another contemporary biomaterial approach is the development of delivery vectors that 

adopt and employ properties displayed by living organisms. This class of delivery 

vectors, termed biomimetic vectors, utilizes entirely biomaterial-based vectors that mimic 
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biophysical properties (size, shape, immunogenic signals, and surface antigens) in the 

context of gene delivery (e.g., the mimicry of viral particles) (He et al., 2014; Kang 

et al., 2013; Xu et al., 2002). This strategy is marked by the assembly of biomaterial 

elements into viral-like structures that contain the appropriate decoration of viral proteins. 

For example, liposomes have been synthesized that self-assemble into multi-center lamellar 

nanostructures encapsulating pDNA and possessing surface decoration with transferrin (Xu 

et al., 2002). A different approach utilizes pH-sensitive nanogel systems to mimic a viral 

capsid-like structure through the use of hydrophobic cores protected by two accompanying 

layers of a hydrophilic shell with the surface grafting of serum albumin-linked poly(ethylene 

glycol) (Lee et al., 2008). Unlike the first viral mimicry strategy, these hydrogels have 

an additional endosomal escape mechanism via pH-sensitive swelling that occurs after 

the transition from physiological (pH 7.4) to endosomal (pH 6.4) conditions. To date, 

the majority of biomimicry vector studies have been conducted in vitro and their in vivo 
efficacy has not been well-established. However, by combining available biomaterial tool-

sets and flexibility with the innate properties of viral structures, numerous opportunities can 

be envisioned in the development and modification of gene delivery strategies using this 

approach.

Genetic cargo engineering strategies

In its simplest form, development of gene delivery strategies can be divided into two areas: 

the design and synthesis of a delivery vector and the type of genetic cargo to be delivered. 

Conventional gene therapy applications are predicated on the delivery of temporarily-active 

molecules such as pDNA, siRNA, shRNA, miRNA, and larger genetic constructs. While 

apt in vaccine-based applications, a shared limitation of all the aforementioned genetic 

cargo is their native expression brevity. One solution gathering attention is the delivery of 

genome editing systems using nonvrial vectors to enable the permanent correction of genetic 

disease markers such as point mutations and deletions (Figure 2). This has been achieved 

through the use of sequence-specific zinc-finger-proteins (ZFPs), transcription activator-like 

effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats 

(CRISPRs)-Cas systems. ZFPs and TALENs can be designed to target specific genomic 

sequences through modification of their DNA-binding domains (Boch et al., 2009; Moscou 

& Bogdanove, 2009; Urnov et al., 2010). Distinct from these strategies, the bacterial-derived 

CRISPR-Cas system can recognize and induce genomic modification through a synthetic 

guide RNA that hybridizes with target sequences (Cho et al., 2013; Mali et al., 2013). The 

RNA-guided nature of this strategy enables faster and simpler implementation than either 

ZFNs or TALENs and has the potential to simultaneously modify multiple genomic sites 

with a single administration. Due to the potential of the CRISPR-Cas system, significant 

efforts have been invested to improve specificity and efficiency and to reduce off-target 

effects (Farboud & Meyer, 2015; Ran et al., 2013; Sanjana et al., 2014).

Alternatively, in the context of expression-based gene therapy (i.e., pDNA), techniques have 

been developed to substantially extend the duration of expression compared to that of a 

typical expression vector (Figure 3) (Dietz et al., 2013; Kay et al., 2010; Keeney et al., 

2013; Lu et al., 2013). One such approach involves removing extraneous genetic elements 

outside the transcriptional unit (Lu et al., 2012). For example, minicircle DNA (MC) vectors 
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are one class of plasmids that are completely devoid of the normally-associated bacterial 

plasmid backbone and have demonstrated in vivo sustained efficacy in quiescent tissue as 

compared to regular pDNA (Chen et al., 2003; Lu et al., 2013). Even though protocols and 

manufacturing have been established for MC vectors (Kay et al., 2010), their production 

is still substantially more tedious and complicated as compared to traditional pDNA. To 

overcome manufacturing-related problems, Kay and co-workers developed an expression 

vector, termed the mini-intronic plasmid (MIP), which locates the bacterial origin of 

replication and antibiotic-free selection markers to an intron inside the transgene expression 

cassette (Lu et al., 2013). By preserving the extraneous elements required for bacterial 

propagation, but in a concealed manner, the resulting vector demonstrated improved efficacy 

over both pDNA and MC vectors in in vivo studies.

However, the continuous presence of heterologous genetic content is associated with 

potential side-effects. As such, in some applications, the desired cellular response falls 

in a range between typical transient expression vectors and the permanent genome editing 

strategies detailed above. Recently, proof-of-concept studies demonstrated the development 

of an expression construct that contains a CRISPR-based self-cleaving mechanism (Figure 

4) (Moore et al., 2015). Specifically, upon delivery, Cas9 activity is directed against 

strategically placed targets thereby inactivating a co-expressed gene of interest. Thus, by 

combining various tools, one can envision extended expression with a controllable self-

destruction mechanism in order to provide gene therapy outcomes across any time scale.

In summary, these genetic-based delivery strategies improve and expand upon current gene 

therapy technologies. Considering the current limitations associated with nonviral delivery 

vectors, universal usage is currently not feasible. However, by combining delivery and 

expression vector advancements, gene therapy, as a field, is becoming better equipped to 

systemically overcome notoriously difficult disease-specific barriers.

Conclusion

The field of gene therapy has historically been predicated on the use of both viral and 

nonviral delivery vectors to achieve systemic outcomes. However, due to various innate 

and technical limitations, few traditional delivery strategies have been utilized clinically. 

Moreover, recent advancements in various areas related to gene therapy have enabled 

the development of novel nonviral delivery vectors that allow new genetic outcome 

opportunities. From the re-envisioning of current biomaterial principles to the recapitulation 

of biological phenomena, these approaches collectively highlight the transition from 

standard particulate vectors to delivery platforms that are better equipped to traverse 

the barriers associated with achieving clinical relevancy. In addition, the development of 

advanced genetic cargo should increase the safety and scope of gene therapy to treat a wider 

range of adverse maladies. That stated, fulfillment of the immense therapeutic potential of 

these contemporary approaches in gene delivery remains on the horizon.
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Figure 1. 
Generalized process for gene therapy. Nonviral vectors can be used to facilitate the delivery 

of DNA and RNA molecules by first mediating cellular uptake through endocytosis 

mechanisms. The vectors also provide protection to the genetic cargo and prompt 

compartmental escape as the endosome gradually acidifies. Once in the cytosol, siRNA-and 

miRNA-based cargo must be loaded into the RNA-induced silencing complex (RISC); 

whereas, mRNA must bind to cellular ribosomes to promote translation. Conversely, DNA 

requires translocation to the nucleus.
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Figure 2. 
Genome editing systems. Clustered regularly interspaced short palindromic repeat-Cas9 

(CRISPR-Cas), zinc-finger nuclease (ZFNs), and transcription activator-like effector 

nucleases (TALENs) are systems that can manipulate mammalian genomes with high 

precision and high efficiency by mediating double-strand breaks or single nicks (one strand) 

in a targeted sequence. The double-stand breaks are repaired by either homology-directed 

recombination, if a genetic donor template is available, or non-homologous end-joining.
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Figure 3. 
Generational changes of plasmid expression systems. Traditional plasmid DNA (pDNA) 

design usually contains two regions, one dedicated to plasmid propagation and the other to 

genetic cargo activity. However, in second generation plasmids, the vector is propagated and 

then processed with nucleases and ligated to remove the bacterial backbone. Alternatively, in 

third generation plasmids, no additional processing is required, as the plasmid propagation 

region is located to the intron in the transcriptional unit.
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Figure 4. 
CRISPR-Cas mediated plasmid self-destruct mechanism. Internal production of Cas9 and 

guide RNA (gRNA) target DNA in the transcriptional unit. By self-cleaving, the plasmid 

will moderate outcomes in the host cell.
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