Table 4.
Main dataset | ||||||||
---|---|---|---|---|---|---|---|---|
Training | Validation | |||||||
Classifier | Sensitivity | Specificity | Accuracy | AUROC | Sensitivity | Specificity | Accuracy | AUROC |
DT | 92.269 | 92.556 | 92.413 | 0.962 | 97.059 | 91.000 | 94.059 | 0.982 |
RF | 95.262 | 95.533 | 95.398 | 0.989 | 98.039 | 97.000 | 97.525 | 0.994 |
LR | 96.010 | 96.030 | 96.020 | 0.988 | 98.039 | 96.000 | 97.030 | 0.990 |
XGB | 95.761 | 95.782 | 95.771 | 0.987 | 98.039 | 93.000 | 95.545 | 0.995 |
KNN | 95.262 | 95.285 | 95.274 | 0.986 | 97.059 | 96.000 | 96.535 | 0.991 |
GNB | 93.017 | 98.263 | 95.647 | 0.976 | 93.137 | 98.000 | 95.545 | 0.990 |
ET | 96.010 | 96.030 | 96.020 | 0.991 | 98.039 | 96.000 | 97.030 | 0.995 |
SVC | 95.761 | 95.782 | 95.771 | 0.987 | 97.059 | 96.000 | 96.535 | 0.991 |
Alternate dataset | ||||||||
Training | Validation | |||||||
DT | 92.537 | 92.570 | 92.557 | 0.968 | 94.059 | 99.379 | 97.328 | 0.990 |
RF | 97.015 | 97.368 | 97.233 | 0.995 | 98.020 | 97.516 | 97.710 | 0.998 |
LR | 96.269 | 96.285 | 96.279 | 0.990 | 97.030 | 96.273 | 96.565 | 0.987 |
XGB | 97.015 | 97.059 | 97.042 | 0.992 | 99.010 | 93.168 | 95.420 | 0.998 |
KNN | 95.771 | 95.975 | 95.897 | 0.992 | 98.020 | 95.652 | 96.565 | 0.995 |
GNB | 92.537 | 97.059 | 95.324 | 0.977 | 96.040 | 96.273 | 96.183 | 0.983 |
ET | 97.512 | 97.523 | 97.519 | 0.995 | 98.020 | 98.137 | 98.092 | 0.999 |
SVC | 97.015 | 96.904 | 96.947 | 0.993 | 98.020 | 96.894 | 97.328 | 0.996 |
# DT, Decision tress; RF, Random Forest; LR, Logistic regression; XGB, XGBoost; KNN, k-nearest neighbour; GNB, Gaussian naïve base; ET, Extra tree classifier; SVC, support vector classifier.