Skip to main content
. 2023 Jan 19;14:1056101. doi: 10.3389/fimmu.2023.1056101

Table 4.

The performance of machine learning classifiers on AAC based features on main and alternate dataset.

Main dataset
Training Validation
Classifier Sensitivity Specificity Accuracy AUROC Sensitivity Specificity Accuracy AUROC
DT 92.269 92.556 92.413 0.962 97.059 91.000 94.059 0.982
RF 95.262 95.533 95.398 0.989 98.039 97.000 97.525 0.994
LR 96.010 96.030 96.020 0.988 98.039 96.000 97.030 0.990
XGB 95.761 95.782 95.771 0.987 98.039 93.000 95.545 0.995
KNN 95.262 95.285 95.274 0.986 97.059 96.000 96.535 0.991
GNB 93.017 98.263 95.647 0.976 93.137 98.000 95.545 0.990
ET 96.010 96.030 96.020 0.991 98.039 96.000 97.030 0.995
SVC 95.761 95.782 95.771 0.987 97.059 96.000 96.535 0.991
Alternate dataset
Training Validation
DT 92.537 92.570 92.557 0.968 94.059 99.379 97.328 0.990
RF 97.015 97.368 97.233 0.995 98.020 97.516 97.710 0.998
LR 96.269 96.285 96.279 0.990 97.030 96.273 96.565 0.987
XGB 97.015 97.059 97.042 0.992 99.010 93.168 95.420 0.998
KNN 95.771 95.975 95.897 0.992 98.020 95.652 96.565 0.995
GNB 92.537 97.059 95.324 0.977 96.040 96.273 96.183 0.983
ET 97.512 97.523 97.519 0.995 98.020 98.137 98.092 0.999
SVC 97.015 96.904 96.947 0.993 98.020 96.894 97.328 0.996

# DT, Decision tress; RF, Random Forest; LR, Logistic regression; XGB, XGBoost; KNN, k-nearest neighbour; GNB, Gaussian naïve base; ET, Extra tree classifier; SVC, support vector classifier.