
Cyclohexane-1,3-dione Derivatives as Future Therapeutic Agents for
NSCLC: QSAR Modeling, In Silico ADME-Tox Properties, and
Structure-Based Drug Designing Approach
Ossama Daoui,* Souad Elkhattabi,* Mohamed Bakhouch, Salah Belaidi, Richie R. Bhandare,*
Afzal B. Shaik, Suraj N. Mali, and Samir Chtita*

Cite This: ACS Omega 2023, 8, 4294−4319 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The abnormal expression of the c-Met tyrosine
kinase has been linked to the proliferation of several human cancer
cell lines, including non-small-cell lung cancer (NSCLC). In this
context, the identification of new c-Met inhibitors based on
heterocyclic small molecules could pave the way for the develop-
ment of a new cancer therapeutic pathway. Using multiple linear
regression (MLR)-quantitative structure−activity relationship
(QSAR) and artificial neural network (ANN)-QSAR modeling
techniques, we look at the quantitative relationship between the
biological inhibitory activity of 40 small molecules derived from
cyclohexane-1,3-dione and their topological, physicochemical, and
electronic properties against NSCLC cells. In this regard, screening
methods based on QSAR modeling with density-functional theory
(DFT) computations, in silico pharmacokinetic/pharmacodynamic
(ADME-Tox) modeling, and molecular docking with molecular electrostatic potential (MEP) and molecular mechanics-generalized
Born surface area (MM-GBSA) computations were used. Using physicochemical (stretch−bend, hydrogen bond acceptor, Connolly
molecular area, polar surface area, total connectivity) and electronic (total energy, highest occupied molecular orbital (HOMO) and
lowest unoccupied molecular orbital (LUMO) energy levels) molecular descriptors, compound 6d is identified as the optimal
scaffold for drug design based on in silico screening tests. The computer-aided modeling developed in this study allowed us to
design, optimize, and screen a new class of 36 small molecules based on cyclohexane-1,3-dione as potential c-Met inhibitors against
NSCLC cell growth. The in silico rational drug design approach used in this study led to the identification of nine lead compounds
for NSCLC therapy via c-Met protein targeting. Finally, the findings are validated using a 100 ns series of molecular dynamics
simulations in an aqueous environment on c-Met free and complexed with samples of the proposed lead compounds and Foretinib
drug.

1. INTRODUCTION
A significant amount of research has been devoted to medicinal
chemistry, specifically the design and discovery of drugs based
on small molecules derived from heterocyclic compounds. This
is due to their various biological activities, particularly their
anticancer activity. Several findings suggest that the hetero-
cyclic compound containing the radicals pyran, pyrazole,
thiophene, and thiazole has antiparasitic,1 antimicrobial,2

anxiolytic,3 arrhythmic,4 antifungal,5 and anticancer6 activities.
According to an in vitro study carried out by Mohareb et al.,5

heterocyclic compounds bearing pyran, pyrazole, thiophene,
and thiazole radicals are prepared based on the core structure
of cyclohexane-1,3-dione. According to the study carried out
by Mohareb et al., 40 cyclohexane-1,3-dione-based compounds
were synthesized, and then their inhibitory activity was
evaluated against six cancer cell lines, including the non-
small-cell lung cancer (NSCLC) cell lines (H460 and A549),

human colorectal cancer cell line (HT29), gastric carcinoma
cell line (MKN-45), malignant glioma cell line (U87MG), and
hepatocellular carcinoma cell line (SMMC-7721). Through in
vitro screening, 19 molecules were selected as the most
cytotoxic candidates against the six targeted cancer cell lines.
On this basis, the inhibitory activity of the 19 selected
molecules against receptor tyrosine kinases (c-Kit, Flt-3,
VEGFR-2, EGFR, PDGFR) was scored. Then, six molecules
were removed because of their half-maximal inhibitory
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concentration (IC50 > 1 nM), and the remaining 13 molecules
were evaluated against the Pim-1 protein kinase. Also, the in
vitro screening of the synthesized cyclohexane-1,3-dione
derivatives revealed a strong correlation between the structure
and activity of these molecules. Variations in the biological
activity of the compounds as a result of the substitutions
introduced on the structure of cyclohexane-1,3-dione translate
this relationship. Overall, in vitro trials reported that the small
molecules derived from cyclohexane-1,3-dione have the
potential to become anticancer agents. This is evidenced by
a more thorough formulation of the candidacy of these agents
in targeted cancer therapy. However, it is difficult to judge if
the hypothesis is likely to be valid or not based on the in vitro
bioactivity screening data alone. Most especially in the absence
of other more important data such as evaluations of
bioavailability (drug-like) properties, pharmacokinetics (ab-
sorption, distribution, metabolism, and elimination), and
pharmacodynamics (toxicity), stability and compatibility
patterns of molecules with target protein receptors and other
critical evaluations are required as part of successful drug
discovery in the early phase of development. However, the
high cost, significant effort, and time required to perform these
evaluations in living models often lead to a halt in the research
at the stage of synthesis and in vitro biological evaluations.
Therefore, it is necessary to search for novel and reliable
methods to enrich the traditional strategies of molecular
screening, introducing the opportunity of molecular modeling
methods as an alternative to develop, screen, and improve
candidate molecules as promising agents for drug design as a
model.

In this regard, advances in X-ray crystallography and
computational power have rapidly improved the progress of
the application of computer-aided drug design (CADD)
methods in the pharmaceutical industry. The application of
CADD approaches has led to the discovery of several marketed
drugs (“saquinavir”, “nelfinavir”, “norfloxacin”, “zanamivir”,
“amprenavir”, “zolmitriptan”, “dorzolamide”),6 leading to a
reduction in the cost of drug discovery and development by
more than 50% compared to the old strategies based on
screening a large number of compounds through experimental
testing.7 This means that experimental strategies are time-
consuming and require large-scale investments. Therefore, the
application of CADD approaches to screening chemical
compounds in the near-early phase of the screening process
will significantly reduce the number of compounds that will be
tested in vitro and in vivo. In our current study, the biological
activity of cyclohexane-1,3-diene derivatives against the six
reported cancer cell lines and the three-dimensional structure
of the receptor tyrosine kinase provided two sufficient insights
for performing the CADD approach based on the ligand-based
and structure-based drug design. This is to rationalize the
screening of cyclohexane-1,3-dione compound candidates for
use as anticancer agents. To this end, a multistage in silico
screening based on advanced molecular modeling techniques
aided in drug design and discovery was performed. This
screening included the structure−activity relationship study of
40 cyclohexane-1,3-dione molecules based on the quantitative
structure−activity relationship (QSAR) and density-functional
theory (DFT) approaches, investigation of the drug-like and
pharmacokinetic properties of the candidate drug molecules,
simulation of protein−ligand interactions via molecular
docking and molecular mechanics-generalized Born surface
area (MM-GBSA) modeling, evaluation of various structural

parameters related to the stability and compatibility of
protein−drug systems via molecular dynamics simulation.

2. MATERIALS AND METHODS
According to statistics provided by the World Health
Organization in 2020, 10.44 million cancer deaths were
recorded, including 2.26 million cases of breast cancer, 2.21
million cases of lung cancer, 1.93 million cases of colorectal
cancer, 1.41 million cases of prostate cancer, 1.20 million cases
of non-melanoma skin cancer, and 1.09 million cases of gastric
cancer.8 Among these deaths, 50% were due to breast and lung
cancer.9 Due to the high mortality rate caused by these two
types of cancer, which are the most prevalent and deadly to
human health, we focus in our current research on lung cancer
as a model for therapeutic targeting by small molecules derived
from cyclohexane-1,3-dione. Among lung cancer victims,
approximately 85% of lung cancer cases are diagnosed as
non-small-cell lung cancer.10 The cell lines H460 and A549
represent the most popular in vitro models for non-small-cell
lung cancer (NSCLC) assays. In the present study, we
developed QSAR models based on the values of IC50 (μM)
of various molecules against the H460 cell line. The reason for
using this cell line is that the surface of H460 cells contained
over 50% of proteins compared to A549 cells.11 This may be a
factor contributing to the much faster growth of H460 cells
than A549 cells. On the other hand, receptor tyrosine kinases
can be selected as a potential therapeutic choice for non-small-
cell lung cancer cell growth inhibition through the use of
cyclohexane-1,3-dione derivatives. This is due to the inhibitory
effect of cyclohexane-1,3-dione against receptor tyrosine
kinases (c-Kit, Flt-3, VEGFR-2, EGFR, PDGFR, and Pim-
1).5,12 Overexpression of Pim-1 kinase has been reported to be
strongly associated with c-MET expression in the diagnosis of
non-small-cell lung cancer, although its molecular mechanisms
underlying this context remain unclear.13,14 Thus, further
investigation of the molecular interaction’s patterns between
the c-Met receptor kinase and small molecules may provide
insight into mechanisms of cancer therapeutic response.
Following this background and using a structure-based drug
design approach, in the present work, we evaluate suitable
affinity profile conformations of cyclohexane-1,3-dione deriv-
atives for their prospective activity as inhibitors of c-Met kinase
enzymatic activity.

The tyrosine kinase c-Met is considered a suitable pathway
for targeting EGFR-TKD for many cancer therapies, including
NSCLC.15,16 We implemented a comprehensive approach to
search in the PubMed database to identify current research on
c-Met-targeted drugs for lung cancer.17,18 Search results
reflected the prevalence of keywords “non-small-cell lung
cancer”,19 “tivantinib”,20 “crizotinib”,21 “carbozantinib”,22

“foretinib”,23 and “onartuzumab”.24 Mohareb et al.5 examined
the inhibitory effect of cyclohexane-1,3-dione derivatives in
vitro against non-small-cell lung cancer cell lines (H460 and
A549) using the standard drug Foretinib. In this study, we use
the three-dimensional (3D) structure of the c-Met protein
complexed with Foretinib (PDB code: 3LQ8)25 as a
therapeutic target for viral screening across molecular docking,
MM-GBSA, and molecular dynamics simulations. Foretinib
and other c-Met tyrosine kinase inhibitors have shown
promising results in clinical trials for cancer treatment, with
patients having a better chance of survival.26 While the most
serious side effects of these drugs were the lack of a significant
effect on local tumor response and the occurrence of numerous
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side effects in chemotherapy patients.27 As a result, more
research is needed to discover new compounds with structural
properties suitable for safe drug use that are less toxic and
more effective against the growth of cancer cell lines caused by
the enzymatic activity of the c-Met protein than currently
available drugs. For this reason, based on QSAR modeling, in
our current work, we characterize the structures of small
molecules based on cyclohexane-1,3-dione and identify the
most important structural properties of these molecules that
influence their biological activity against NSCLC.28,29 For
QSAR modeling, we used a combination of topological,
physicochemical, and electronic DFT molecular descriptors
that are commonly used for geometrical structural character-
ization.30,31 The DFT computations were used because of their
precision in providing precise indications on the electronic
properties of the studied molecules, allowing for the generation
of confident QSAR models.32−34 Furthermore, the drug-like
and pharmacokinetic absorption, distribution, metabolism,
excretion, toxicity (ADMET) properties of the candidate
drug molecules will be examined.35−37 On the other hand, we
performed molecular docking simulations to evaluate the
binding potential of the examined small molecules toward the
c-Met protein active pocket. This is due to the importance of
this procedure for predicting potential interactions between
ligands and active amino acid residue sites inside the target
protein receptor pocket.38,39 The interactions between the
investigated heterocyclic compounds and c-Met can result in a
strong noncovalent binding between the two ends, which can
provide a strong inhibition of c-Met protein enzymatic activity.
As a result, c-Met activity induction can be inhibited; thus, the
proliferation of cancer cells can be inhibited.40 In parallel, we
perform a detailed validation regarding the stability of
candidate drug molecules in the c-Met active pocket. To this
end, we evaluated MM-GBSA free binding energy (BE),
molecular dynamics, and thermodynamic profiles of protein−
ligand systems.

2.1. Investigated Compound Library. We obtained the
structures of 40 compounds derived from cyclohexane-1,3-
dione and their inhibitory activity values (IC50) against a non-
small-cell lung cancer cell line (H460) from the experimental
study conducted by Mohareb et al.5 The biological inhibitory
activity observed in vitro (pIC50 = −Log10[IC50]) of
cyclohexane-1,3-dione derivatives against the non-small-cell
lung cancer cell line H460 is shown in Table S1 in the
Supporting Information. The structures of the studied
compounds were carefully sketched by GaussView 5.0
software41 and optimized using the following software:
ChemSketch,42 Chem3D,43 and Gaussian 09W,41 respectively,
to calculate the topological, physicochemical, and quantum
chemical molecular descriptors.

2.2. Quantitative Structure−Activity Relationship
Modeling. For the purpose of describing the quantitative
relationship between cyclohexane-1,3-dione derivative struc-
tures and their biological inhibitory activity against the non-
small-cell lung cancer cell line H460, we characterize the
structures of all 40 investigated molecules by two-dimensional
(2D) and 3D molecular descriptors (Table 1). Table 1 shows
the molecular descriptors computed in this study for modeling
the structure−activity relationship of cyclohexane-1,3-dione-
derived small molecules. The values of the molecular
descriptors computed for each individual molecule are listed
in Table S2. The database of calculated molecular descriptors
was screened by the principal component analysis (PCA)
technique to identify molecular descriptors that may correlate
with the pIC50 biological activity of cyclohexane-1,3-dione
derivatives.44 These analyses permit to evaluate the level of
correlation between the molecular descriptors, thanks to the
calculation of the correlation coefficient (R) between each of
the two molecular descriptors.45 Through the PCA analyses, a
correlation matrix (Pearson) is obtained, whereby the data
have been automatically normalized or standardized before the
calculations to avoid exaggerating the effect of variables with
high variances on the output (Table S3).

After improving the developed database and limiting the
number of less related structural descriptors, the data is divided
into two sets (training and test). The training set is used to
develop predictive QSAR models, while the test set is used to
test the performance of the models developed by statistical
modeling. The division of the database in this work was done
by a univariate clustering technique (UV).49,50 After applying
the UV algorithm and adapting it to classify the database into
eight classes, we randomly select one molecule from each class
to form the elements of the test set (20% of the database
elements) while selecting the remaining 80% as inputs for the
training set. The multiple linear regression (MLR)-QSAR
model is generated and validated in terms of internal and
external statistical significance and predictive power using the
multiple linear regression (MLR) technique. This procedure is
carried out in accordance with the principles of the OECD
QSAR model and the Golbraikh and Tropsha criteria (Table
2).51,52 Also, the stability and applicability of the MLR-QSAR
model are evaluated by a Y-randomization test and
applicability domain (AD) techniques.53,54 Fifty iterations of
the Y-randomization test were performed, and the AD of the
proposed model was presented by Williams plots.55 A further
external test was carried out to estimate the adequacy of the
molecular descriptors selected by the MLR-QSAR model to
describe the biological activity (pIC50) of the 40 cyclohexane-
1,3-dione compounds examined. We performed this test using
the feed-forward neural network (FFNN) algorithm to develop

Table 1. Molecular Descriptors Used for QSAR Modeling

descriptors class optimization methods

molecular weight (MW, Da), molar volume (MV, cm3), index of refraction (n), density (d, g/cm3), polarizability
(αe, cm3)

topological 3D optimization available in
ChemSketch46

stretch, bend, stretch−bend (S−B), torsion (Torr), non-1,4 VDW (NVDW), 1,4 VDW (VDW), dipole/dipole (dipole)
(kcal/mol), hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), rotatable bonds (RoB), partition
coefficient (Log P), Connolly accessible area (CAA, Å2), Connolly molecular area (CMA, Å2), mol refractivity (MR),
water solubility (Log S), Balaban index (BI), molecular topological index (MTI), polar surface area (PSA, Å2), total
connectivity (TC), Wiener index (WI)

physicochemical MM2 method force field
method available in
Chem3D47

energy total (ET, eV), dipole moment (DM, eV), energy highest occupied molecular orbital (HOMO) (EHOMO, eV),
energy lowest unoccupied molecular orbital (LUMO) (ELUMO, eV), energy gap (EGap, eV) electronegativity (x, eV),
chemical potential (μ, eV), chemical hardness (η, eV), index of electrophilicity (w, eV)

DFT-based quan-
tum chemical
descriptors

B3LYP hybrid three-parame-
ter Lee−Yang−Parr−Becke
method using 6-31G(d,p)
basis available in Gaussian
09W software48
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a nonlinear artificial neural network (ANN)-QSAR model
using the same strategy employed in our previous work.32 In
this study, ANN is used to improve the accuracy of predicting
the biological activity of the compounds studied based on the
molecular descriptors selected using the MLR method. This is
done to show that the MLR-QSAR model can predict the
activity of exogenic molecules containing the scaffold cyclo-
hexane-1,3-dione. In this case, a three-layer feed-forward neural
network algorithm (input layer, hidden layer, and output layer)
was used. To train and test the ANN-QSAR model, the
Levenberg−Marquardt training function was used in the input
layer, which contains the eight molecular descriptors, the
sigmoid transfer function in the hidden layer, and the linear
transfer function in the output layer.32

In this work, XLSTAT 2019 software is used to perform
PCA analyses, partition the database, and develop a linear
MLR-QSAR model.56 MATLAB R2015a software is used to
scope the MLR-QSAR model applicability domain as well as to
develop an ANN-QSAR model.57

2.3. In Silico Pharmacokinetic−Pharmacodynamic
Modeling. The in silico screening of a drug candidate’s
bioavailability, pharmacokinetics, and pharmacodynamic tox-
icity profiles (ADME-Tox) is a critical step before synthesis
and in vivo/clinical trials.58,59 The implementation of
experimental in vitro tests as part of a real screening strategy
often leads to a large margin of error between the in vitro
evaluations and the desired in vivo results.60,61 This makes the
success rate of screened molecules as medicinal agents
relatively low. The main problems that may be encountered
include: (1) the structural properties of the molecule are not
compatible with the bioavailability properties of the drug, (2)
failure to achieve appropriate pharmacokinetics, (3) occur-
rence of undesirable side effects, (4) lethal dose concentration,
(5) risk of toxicity, and (6) inability to achieve the therapeutic
goal and biological response. Thus, to avoid these potential
difficulties that could disrupt the process of drug discovery, it is
necessary to perform pharmacophore-based virtual screening
of candidate drug molecules before proceeding to in vivo trials.
At this point in our research, we have focused on determining

whether the candidate molecules’ drug-like properties are
compatible with oral bioavailability using Lipinski, Veber, and
Egan’s bioavailability rules.62 In addition, the pharmacokinetic
and pharmacodynamic properties (ADME-Tox) of the
candidate drug molecules are assessed. This study used the
SwissADME and pkCSM web servers to implement
pharmacophore-based virtual screening.63,64

2.4. Molecular Electrostatic Potential (MEP) and
Molecular Docking Simulations. Using the molecular
electrostatic potential (MEP) visualizations,65,66 we identified
the reactive sites favorable for electrophilic and nucleophilic
actions at the structure surface of the template compound
(6d). 3D contour map analysis of the MEP simulation results
was performed using GaussView 5.0 software. Furthermore, we
performed molecular docking simulations to investigate
prospective binding patterns between the examined molecules
and the active amino acid residues inside the c-Met protein
pocket and also to characterize the structural properties of
cyclohexane-1,3-dione derivatives favorable to achieve non-
covalent interactions inside the c-Met active pocket. In this
work, molecular docking and MEP modeling are used to
develop a deep insight into the conformations of the ligand
with optimal binding affinity and structural compatibility
toward the c-Met protein candidate for targeting cancer.

The structure of the c-Met protein complexed with the
standard drug Foretinib served as the foundation for the
structure-based drug design strategy used in this study. The 3D
shape of the c-Met−Foretinib complex was obtained using the
PDB database (code: 3LQ8) (Figure 1).67

Several missing fragments (such as hydrogens, side chains, a
portion of the backbone chain, similar side chain alignments,
non-protein entities, a lack of ligand identification, etc.) may
require adjustment of the protein structure extracted from a
PDB database, so the input file must be meticulously prepared
before molecular docking modeling can initiate. Using the
Discovery Studio 2016 software package, the structure of the c-
Met protein was optimized and refined via the CHARMM
force field, which was sufficient to prepare the protein for
molecular docking simulations.68 Meanwhile, ligand candidates
were prepared as inputs for molecular docking with c-Met after
optimizing their geometries via DFT(B3LYP)/6-31G(d,p),
SYBYL force field optimization geometry.69 Thus, we obtained
optimal ligand conformations perfect for molecular docking.

Table 2. Golbraikh and Tropsha Acceptable Model
Criteriaa

parameters calculation model threshold

R2
R 1 Y Y

Y Y
2 ( )

( )
abs calc

2

obs obs
2= >0.6

Radj
2

R N R p
N padj

2 ( 1)
1

2
= | |

>0.6

MSE MSE 1 Y Y
N

( )Calc Obs= low value

Ftest F Y Y

Y Y

N p
ptest

( )

( )

1Calc Calc
2

Obs Calc
2= × high value

(>0.3)

Rtest
2

R 1 Y Y

Y Ytest
2 ( (test) (test))

( (test) (train))
Calc Obs

2

Obs Obs
2= >0.6

Qcv
2

Q 1 Y Y

Y Ycv
2 ( )

( )
Calc Obs

2

Obs Obs
2= >0.5

RRand
2 RRand

2 average over 50 random iterations <R2

Qcv LOO(Rand)
2 Qcv loocv

2 average over 50 random iterations <Qcv
2

cRp
2

cR R R R R( ( (average ) )p
2 2 2

rand
2= × >0.5

aYobs and Ycalc: observed and predicted pIC50 values. Yobs and Ycalc
average of observed and predicted pIC50 values. N: number of
individual (compound) datasets and p: number of selected
descriptors. Rand refers to the values obtained by the Y-random-
ization test.

Figure 1. Model of the c-Met protein complexed with inhibitor
Foretinib (PDB code: 3LQ8).
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Recognition of the active pocket of the c-Met protein where
the standard drug Foretinib interacts was fulfilled using the
AUTOGRID algorithm available in AutoDockTools-1.5.6,70

the coordinates defined (x = 0.20 Å, y = 4.04 Å, z = 28.96 Å
with a distance of 0.375 Å and a size of 30 × 20 × 20 Å3) as a
grid box for ligand binding. The molecular docking results
related to 2D and 3D interactions were visualized using
Discovery Studio 2016. Molecular docking simulations were
performed using AutoDock Vina software, docking was set to
record the binding energies of the first 10 conformations with
the active site of c-Met, and all other parameters were adapted
to the default settings of AutoDock Vina.71 Molecular docking
results and protein−ligand interaction profiles obtained from
the molecular docking simulations were generated by
Discovery Studio 2016.

2.5. Molecular Mechanics-Generalized Born Surface
Area (MM-GBSA). In this work, the molecular mechanics-
generalized Born surface area (MM-GBSA) approach was used
to rescale the docking patterns obtained by molecular docking
simulation.72 We perform this procedure to assess the free
binding energies of ligands toward the active pocket of c-Met.
This was done to estimate the binding ability of the proposed
drug ligands and the target receptor (c-Met) and also to
predict the most favorable interactions to achieve the lowest
free binding energy (ΔGbind). The prime MM-GBSA
simulation was carried out by minimizing the energies of the
complexes using the OPLS3e force field and the VSGB solvate
model at pH 7 ± 2 through the MM-GBSA Prime package in
Schrodinger 2020-3.73 During this setup, the energy of the
protein−ligand complexes, as well as that of the ligands, is
minimized. As a result, the free binding energy (ΔGbind) of the
examined systems can be calculated. The binding energy
(ΔGbind) of the complexes can be calculated according to eq
174,75

G E E

E

(minimized) (minimized)

(minimized)

bind complexe ligand

receptor

= +

(1)

2.6. Molecular Dynamics Simulations. We perform
molecular dynamics simulations to evaluate the molecular
dynamics and stability of the c-Met protein in an aqueous
environment. This procedure is due to its great interest in the
analysis of the chemical and physical basis of the molecular
structure and its functional property variations in terms of
time.76−78 In this study, the stability of proposed drug
compounds in the c-Met pocket was examined by evaluating
a set of dynamics parameters such as root-mean-square
deviation (RMSD), root-mean-square fluctuation (RMSF)
timelines, protein−ligand contact, ligand properties, and
thermodynamic properties. The time course of MD simulation
was fixed in 100 ns using the Desmond package of Schrödinger
2020-3 software.79 The examined systems were solvated using
the orthorhombic single point charge (SPC) explicit water
model.74,75 To improve and regenerate the protein−ligand
systems, the optimized potentials for liquid simulations
extended (OPLSe) force field was used.74,80 By adding sodium
and chloride ions to the total complexes explored, the charge
was neutralized. In addition, the energies of the systems were
minimized by 2000 steps before running the MD simulation
along a 100 ns path in the NPT ensemble.81 In parallel, the
particle mesh Ewald (PME) function was adapted to take into
account and preserve long-range electrostatic interactions in
the 0.8 Å grid.75 The Nose−Hoover thermal algorithm and the

Martyna−Tobias−Klein method were used to generate slow
heating of the systems under 300 K and 1.013 bar pressure.82,83

The Simulation Interaction Diagram tool was used in the
Desmond package to extract and analyze the detailed
interactions between the target protein 3LQ8 and proposed
ligands, and the simulation quality analysis package imple-
mented in Desmond was used to generate and analyze all of
the thermodynamic properties of the systems such as total and
potential energies, temperature, pressure, and volume as a
function of time.84 The thermodynamic properties of the
systems investigated were evaluated by the Simulation
Interaction Diagram tool in the Desmond package, as the
latter is a powerful tool for computing energies and force fields
compatible with various force field models used in biochemical
and quantum research, including CHARMM, AMBER, and
OPLS.79

3. RESULTS AND DISCUSSION
Based on the correlation matrix obtained from the PCA
analyses (Table S3), the 11 molecular descriptors [index of
refraction (n), stretch−bend (S−B), hydrogen bond acceptor
(HBA), Connolly molecular area (CMA), polar surface area
(PSA), total connectivity (TC), energy total (ET), dipole
moment (DM), energy HOMO (EHOMO), energy LUMO
(ELUMO), and electrophilicity index (w)] are selected as the
best outputs that show the lowest correlation with each other
(R < 0.5). Therefore, we use these descriptors as entry data for
QSAR modeling of cyclohexane-1,3-dione derivatives.

Using the multiple linear regression (MLR) technique
applied to the optimized database, we try to find the molecular
descriptors that affect the biological inhibitory activity (pIC50)
of the studied molecules. For this, we aim to develop the
optimal MLR-QSAR model in which the relationship (pIC50 =
f(molecular descriptors)) can be defined. To achieve this goal,
we split the database into two sets (training and test) using the
univariate analysis method. Table 3 shows the split results

obtained. Based on the structural diversity and pIC50 range of
the 40 molecules investigated, we extracted the eight molecules
(6b, 6d, 10a, 10c, 12b, 19b, 20a, and 22b) as components of
the test set of QSAR models. However, the remaining 32
molecules were selected as components of the training set of
QSAR models.

Table 3. Univariate Clustering

results by class

class 1 2 3 4 5 6 7 8

sum of wts 2 5 9 1 11 5 4 3

observation
6b 6d 10a 10c 12b 19b 20a 22b
14 6a 10b 5d 5a 21b 21a

3b 12a 10d 5c 22a 21c
6c 16b 16a 17b 22c
3a 16c 17d 5b

17a 17f
17c 19a
17e 8a
20b 19c

8b
20c
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3.1. MLR-QSAR Modeling. Equation 2 signifies the MLR-
QSAR model obtained from the training set of 32 molecules
and 11 molecular descriptors used as inputs. The power of
prediction of the resulting model is examined using the
external test set of eight molecules.

E

E E

pIC S B HBA

CMA PSA
TC

0.93 10 1.58 0.95

5.73 10 5.07 10
1.28 1.07 10

0.74 0.44

50
2

3 2

4
T

HOMO LUMO

= × + × + ×

× × × ×
× × ×
× + × (2)

N R R R

F Pr

Q R

32, 0.92, 0.85, 0.81,

MSE 0.04, 13.357, 0.0001,

0.65, 0.82

2
adj
2

2
test
2

= = = =

= = <
= =

Through eq 2, we can notice that the biological inhibitory
activity (pIC50) correlated with eight molecular descriptors
(physicochemical and electronic) that are stretch−bend (S−
B), hydrogen bond acceptor (HBA), Connolly molecular area
(CMA), polar surface area (PSA), total connectivity (TC),
energy total (ET), energy HOMO (EHOMO), and energy
LUMO (ELUMO). This means that the physicochemical and

electronic structural features of heterocyclic compounds
derived from cyclohexane-1,3-dione are closely related to
their biological inhibitory activity against NSCLC cell lines.
This strong correlation can be confirmed by high values of the
correlation coefficient (R = 0.92, R2 = 0.85, Radj

2 = 0.81, Q2 =
0.65, Rtest

2 = 0.82, and F = 13.357) and low values of the MSE
(0.04) and P-value (<0.0001). The high value of the
correlation coefficient (R = 0.92) indicates the strong
concordance between the observed pIC50 values and those
predicted by the MLR-QSAR model. This is confirmed by the
regular linear distribution of observed versus predicted pIC50
values, as shown in Figure 2A.

3.1.1. Performance of MLR-QSAR Modeling. The high level
of coefficient of determination of leave-one-out cross-
validation (loocv) (Q2 = 0.65 > 0.5) obtained means that
the developed MLR-QSAR model is more stable and is not
affected by the loocv process. Also, the high value of the
coefficient of determination (Rtest

2 = 0.82) obtained by the
external test indicates that the selected MLR-QSAR model has
high predictive power. From Table S4, the Y-randomization
indicates that the values of the correlation coefficients (RRand

2

and QRand
2 ) obtained by the Y-randomization test are lower

than those obtained by the original MLR-QSAR model. Also,
the significant gap between the coefficients of correlation of the

Figure 2. (A) Distribution of observed and predicted pIC50 values. (B) William plot of standard residuals versus leverage.

Figure 3. (A) FFNN architecture (8-3-1). (B) Observed pIC50 values versus those predicted by the ANN-QSAR model.
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original and randomized model (cRp
2 = 0.70 > 0.5) indicates the

good stability of the proposed MLR-QSAR model. This means
that the predictive power of the MLR-QSAR model developed
in this study is not random but rather that there is a logical
correlation between the structure of each molecule and its
interpreted biological activity. To complement the internal and
external test indicators that confirmed the performance of the
MLR-QSAR model, we performed another test related to the
applicability domain (AD) of this model. This last test is
performed to identify molecules that are probably outside the
applicability domain of the MLR-QSAR model. In this work,
the purpose of this test is to avoid the adoption of a molecular
structure that is outside the applicability domain of the QSAR
model during the design of novel compounds. Figure 2B
presents the Williams plot of the applicability domain of the
MLR-QSAR model developed in this work. Figure 2B shows
that all molecules of the training and test sets did not violate
the leverage threshold (h* = 2.5 × (k + 1)/n = 0.7), where k =
8 and n = 32. Similarly, the normalized residual values for all
molecules in the training and test sets did not deviate outside
the range ±x (x = 2.5). This means that the predictions of the
MLR-QSAR model are accurate and reliable and that there is a
high agreement between the pIC50 biological activities of all of
the molecules examined in vitro with those predicted in silico.
The successful placement of all molecules of the test and
training sets in the AD indicates the validity of the MLR-QSAR
model in the prediction of the activities of new molecules that
can be designed on the basis of the screened cyclohexane-1,3-
dione scaffolds.

We developed a nonlinear QSAR model based on the ANN
technique32 to validate the suitability and ability of the eight
molecular descriptors (S−B, HBA, CMA, PSA, TC, ET, EHOMO,
and ELUMO) to describe precisely the biological inhibitory
activity (pIC50), as well as to adopt them as a valid structural
basis for improving pIC50 of the investigated molecules.
Moreover, a feed-forward neural network model composed of
three layers of neurons (input layer, hidden layer, and output
layer) allows us to evaluate the correlation between pIC50
(output layer) and the molecular descriptors selected by the
linear MLR model (input layer).32Figure 3A shows the
architecture of the feed-forward neural network (FFNN)
used in this study to develop the ANN-QSAR model, and
Table 4 presents the statistical significance indexes for this
model.

The statistical parameters of the ANN-QSAR model
presented in Table 4 indicate the significant correlation
between the eight selected molecular descriptors and pIC50
biological inhibitory activity of the examined cyclohexane-1,3-
dione derivatives. The high coefficient of correlation (98%)
can be explained by the homogeneous distribution of pIC50
values observed and predicted by the nonlinear ANN-QSAR
model (Figure 3B). This confirms that the transformation of
the input data (molecular descriptors) into a new functional
layer-level hidden layer space in the nonlinear ANN model
provides more accurate output than the linear model that

depends on only two layers (input layer and output layer).
This can be confirmed by the observed gaps in the statistical
significance indices of both MLR-QSAR (R2 = 0.85, Q2 = 0.65,
Rtest

2 = 0.82, MSE = 0.04) and ANN-QSAR (R2 = 0.98, Q2 =
0.76, Rtest

2 = 0.97, MSE = 0.01) models. However, all internal
and external validation parameters evaluated for both models
indicate their high and adequate predictive ability. Besides, the
MLR-QSAR model offers a clearer insight regarding the
description of the relationship between molecular descriptors
and biological activity, and this is represented in its output,
which is a linear equation that can be analyzed and described
based on the coefficients of each molecular descriptor. While
the nonlinear ANN-QSAR model provides good predictions in
the output layer, the description of the molecular descriptor
parameter effects remains unclear for follow-up and analysis.
Therefore, the application of the MLR-QSAR model to predict
the biological activity of molecules based on the selected
molecular descriptors is more rational in describing the
structure−activity correlation.

Through the overall results of the QSAR modeling analyses
developed in this work, it can be concluded that the biological
inhibitory activity pIC50 against NSCLC of the investigated
heterocyclic molecules is strongly correlated with the eight
molecular descriptors (S−B, HBA, CMA, PSA, TC, ET, EHOMO,
and ELUMO). Therefore, we can use these descriptors as
structural keys of cyclohexane-1,3-dione derivatives useful to
design new compounds with higher biological activity against
NSCLC. Table S5 presents the computed physicochemical and
quantum descriptors as well as the observed and predicted
pIC50 values for the investigated molecules.

3.1.2. Molecular Descriptor Interpretations. Through the
normalization coefficient diagram shown in Figure 4, we can
describe the effect of the eight selected molecular descriptors
on the pIC50 biological inhibitory activity.

According to the coefficient normalization diagram shown in
Figure 4, the stretch−bend (S−B) descriptor has a positive
coefficient, which means that the investigated compounds are
more bioactive the higher the stretch−bend energy. Addition-
ally, we can see that the hydrogen bond acceptor (HBA)
coefficient is positive, indicating that the more hydrogen bonds
a molecule can accept, the more active it will be biologically
against NSCLC. The creation of noncovalent interactions
through hydrogen bonds with the target protein’s receptor
pocket’s active amino acid sites can account for this.
Additionally, the CMA descriptor coefficient’s negative sign
shows that the pIC50 of the molecule decreases as the
molecular surface area increases. This can be explained by the
rise in energy required to get past the solvent molecules’
coherent interactions and create a cavity for the solute
molecules. This may be because water molecules interact
more cohesively than lipid molecules do, which explains why
larger molecules exhibit lipid-like properties. Therefore, we can
draw the conclusion that small-size groups should be added to
the modeled structures or large-size groups should be replaced
by smaller-size groups to improve the biological activity of the
molecular structures studied in this work. The PSA descriptor
coefficient has a negative sign, which means that as the polar
surface area of the biomolecule structure increases, its
biological activity decreases. This might be because molecules
with a high PSA index find it challenging to pass through cell
membranes. As a result, in the current work, we check that the
PSA index is low for the molecules that can be modeled to
enhance the biological activity of the studied biomolecular

Table 4. Statistical Parameters of the ANN-QSAR Model

ANN-QSAR model

parameters R2 Radj
2 MSE Rtest

2 Qcv
2 ρ85

values 0.98 0.94 0.01 0.97 0.76 1.03
threshold >0.6 >0.6 a low value >0.6 >0.5 1 < ρ < 3
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structures and facilitate the absorption of auxiliary biomolec-
ular structures. Moreover, the negative sign of the TC
coefficient indicates that the more TC is increased, the more
the biological activity of the molecule is decreased. The TC
index has been interpreted as a steric parameter associated with
the difficulty degree of molecule passage in cell membranes.86

Molecules with a low TC index can easily penetrate the cell
membrane and gain access to living organisms. Therefore,

compounds with small TC values will lead to high biological
activity.

In terms of how electronic quantum descriptors affect pIC50,
the negative total energy coefficient (ET) shows that a
molecule has higher biological activity if its total energy is
more stable (more negative). The symmetries of the highest
occupied and lowest unoccupied molecular orbitals (HOMO
and LUMO), according to Frontier molecular orbital (FMO)

Figure 4. Normalized coefficients of each selected molecular descriptor.

Table 5. Drug-Like Property Screeninga

drug-likeness toxicity

entry MW (Da) n-ROTB n-HBA n-HBD TPSA Lipinski Veber Egan Log P SA AMES hepatotoxicity

rule <500 <10 <10 ≤5 <140 Å2 yes/no ≤5 0 < SA < 10 yes/no

3b 206.26 1 2 0 62.38 yes yes yes 1.25 2.74 no no
5c 286.37 1 2 1 123.36 yes yes yes 1.25 3.27 yes yes
5d 333.43 4 3 1 125.87 yes yes yes 1.99 3.63 yes yes
6b 257.24 1 5 1 83.46 yes yes yes −0.17 3.78 no no
6c 258.34 1 2 1 87.28 yes yes yes 1.59 3.97 yes yes
6d 259.32 1 3 1 81.49 yes yes yes 1.59 3.61 no no
8a 339.43 2 2 0 95.47 yes yes yes 2.02 3.57 yes no
8b 355.50 2 1 0 110.57 yes yes yes 2.90 3.60 yes no
10c 232.30 1 2 2 95.30 yes yes yes 1.10 3.01 yes no
10d 384.50 4 2 1 70.45 yes yes yes 4.10 3.71 yes yes
12a 218.21 1 5 1 71.76 yes yes yes 0.27 3.49 yes yes
12b 234.27 1 4 1 86.86 yes yes yes 1.10 3.51 yes no
16c 245.27 3 3 1 55.40 yes yes yes 0.83 2.26 no no
17d 356.44 5 3 2 109.66 yes yes yes 2.10 3.72 no no
17e 325.38 3 3 2 116.38 yes yes yes 0.82 3.30 yes no
17f 372.44 6 4 2 118.89 yes yes yes 1.55 3.71 no yes
19c 320.79 3 2 2 100.43 yes yes yes 2.15 2.96 yes yes
20c 387.84 6 4 2 127.30 yes yes yes 1.48 3.37 yes yes
22c 437.96 2 2 1 110.48 yes yes yes 4.36 3.73 yes no
Foretinib 632.65 14 10 2 111.25 yes no yes 2.62 4.05 no yes

aMW: molecular weight, n-ROTB: number of rotatable bonds, n-HBA: number of hydrogen bond acceptors, n-HBD: number of hydrogen bonds
donors, TPSA: topological polar surface area, drug-likeness: applicable (yes) or not applicable (no), Log P: logarithm of partition coefficient of
compound between n-octanol, SA: synthetic accessibility, AMES: AMES toxicity test, and hepatotoxicity: hepatotoxicity index.
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theory, are also crucial for foretelling molecular reactivity.87

The biological inhibitory activity of the molecule increases
with the number of stable electrons (more negative energy) in
the HOMO level of the molecule, as shown by the negative
sign of the descriptor coefficient (EHOMO) in Figure 4.

Conversely, the higher the number of stable electrons in the
LUMO level (more negative energy), the lower the biological
activity of the molecule will be, according to the positive value
of the descriptor coefficient (ELUMO). Therefore, compared to
molecules with high LUMO energy, those with low LUMO
energy have a better ability to accept electrons. On this basis,
electron-donating groups should be replaced by electron-
accepting groups to reduce the LUMO energy of the studied
molecules and increase their biological activity. By examining
the structural features of heterocyclic compounds based on
cyclohexane-1,3-dione that influence their biological inhibitory
activities toward non-small-cell lung cancer cell lines, it is
significant that the bioactivity of these molecules is highly
correlated with their physicochemical and electronic molecular
descriptors (S−B, HBA, CMA, PSA, TC, ET, EHOMO, and
ELUMO). To generate novel heterocyclic small molecules and
predict their inhibitory activity against NSCLC before moving
forward with synthesis and in vitro tests, we can adopt the
predictions of the MLR-QSAR model adjusted by machine.

3.1.3. Screening Appropriate Scaffold for Ligand-Based
Drug Design. We can screen the bioavailability and
pharmacodynamic parameters of the entire database of 40
cyclohexane-1,3-dione derivatives at this stage of screening to
identify candidate scaffolds for drug design.58,88 To simplify
the procedure, we excluded all molecules that demonstrated
weak biological inhibitory activities against the cancer cell lines
tested in vitro. As a result, we investigated the drug-like
properties and toxicity risks of 19 molecules that demonstrated
the most powerful inhibitory activity against the cancer cell
lines evaluated in vitro.5 This in silico pharmacokinetic model
included a screening of the 19 compounds (3b, 5c, 5d, 6b, 6c,
6d, 8a, 8b, 10c, 10d, 12a, 12b, 16c, 17d, 17e, 17f, 19c, 20c,
and 22c) using the standard drug Foretinib as a control for
comparison and validation.

Table 5 presents the in silico drug-like property profile
obtained in this work for the selected 19 molecules. In this in
silico drug-like property screening, we evaluate the bioavail-
ability parameters of 19 synthesized molecules based on the
rules of Lipinski, Veber, and Egan.89−91 This is due to the
importance of these rules in the discovery of appropriate drugs
for oral use. In addition, we evaluated the TPSA and n-ROTB
indices due to their importance in predicting the flexibility
level of the molecules.92 We also evaluated the synthetic
accessibility index of the molecules in vitro (SA)93 and
predicted the toxicity risks of the synthesized molecules by
AMES and hepatotoxicity estimations.94,95

From the screening results presented in Table 5, we can note
that all 19 molecules fulfill Lipinski, Veber, and Egan rules
regarding the bioavailability of candidate drug molecules. It is
also indicated by the TPSA < 140 Å and n-ROTB < 10 scores
that the molecules have a high ability to easily penetrate the
brain barrier and flexibly interact with the therapeutic target.
Also, we can notice that the SA values of the examined
molecules were between 2.26 and 3.73, while the synthetic
accessibility value of Foretinib was 4.05. This means that small
molecules derived from cyclohexane-1,3-dione can be synthe-
sized easily compared to the synthesis of Foretinib.

On the other hand, according to the predictions of molecule
toxicity, it appears that the majority of the synthesized
molecules are toxic according to AMES and hepatotoxicity
tests, except for the molecules (3b, 6b, 6d, 16c, and 17d) that
are nontoxic. Also, we can notice that the standard drug
Foretinib is predicted to be hepatotoxic. Therefore, we can
conclude that the in vitro screening of the 19 molecules based
on the IC50 range of compounds is not sufficient to describe
the drug-like properties of the compounds. As a result, when
the 19 molecules are examined in silico, we observe only five
molecular structures among the 19 possess drug-like proper-
ties. Therefore, for the purpose of predicting suitable
biomolecular structures to design new biomolecules in this
work, all toxic and hepatotoxic molecules are filtered out. Table
6 shows the SMILES structure of the compounds selected in
silico with their pIC50 values observed in vitro and predicted by
the QSAR models. We have kept the Foretinib scaffold for
future comparison, although it has potential hepatotoxicity.

To select the best scaffold candidate structure for modeling
new heterocyclic compounds against NSCLC, we count on the
criterion of observed and predicted pIC50 values. Table 6
shows that the molecular structures 3b (6.41, 6.035, 6.598)
and 6d (6.38, 6.88, 6.354) have higher pIC50 biological
inhibitory activity than the other three molecules 6b (6.09,
5.95, 6.20), 16c (6.17, 5.983, 6.33), and 17d (5.78, 5.88, 5.64).
As the observed pIC50 values are very close for molecules 3b
(6.41) and 6d (6.38), it is difficult to favor one over the other.
Therefore, we base this on a comparison between the pIC50
values predicted by the MLR-QSAR/ANN-QSAR models
developed in this study. Table 6 shows that molecule 6d
(pIC50 = 6.88) has a higher predicted biological activity than
3b (pIC50 = 6.035). This means that the molecular descriptors
proposed in the MLR-QSAR model are appropriate to improve
the pIC50 biological activity of molecular 6d structure.
Therefore, we adopt molecule 6d (Figure 5) as a scaffold for
designing novel heterocyclic molecules as inhibitors of NSCLC
by targeting the c-Me protein.

3.2. Structural Characterization of the Scaffold
Design. We perform molecular electrostatic potential
(MEP) computations and molecular docking simulations

Table 6. Biological Inhibitory Activity of Scaffold Candidates

obs(pIC50)
pred(pIC50)

MLR

pred(pIC50)
ANN

com. SMILES in vitro in silico

3b O�C1C(C(CCC1)�O)�CC2�CC�CS2 6.41 6.035 6.598
6b O�C1C([C@H](C2�CC�CO2)C(C#N)�C(O)O3)�C3CCC1 6.09 5.950 6.200
6d OC(O1)�C(C#N)[C@@H](C2�CC�CS2)C3�C1CCCC3 6.38 6.888 6.354
16c O�C(C1�CNC2�CC�C(OC)C�C2)CCCC1�O 6.17 5.983 6.33
17d O�C(OCC)C1�C(N)SC2�C1/C(C(CC2)�O)�C/NC3�CC�C(C)C�C3 5.78 5.886 5.64
Foretinib COC1�CC2�C(C�CN�C2C�C1OCCCN3CCOCC3)OC4�C(C�C(C�C4)NC(�O)

C5(CC5)C(�O)NC6�CC�C(C�C6)F)F
6.67
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based on the 6d scaffold structure in this section of this study
with the main goal of highlighting the reactive sites in the 6d
scaffold structure that are likely to interact with the active
amino acid residues in the c-Met target protein pocket.

3.2.1. Molecular Electrostatic Potential Contour Maps.
The 3D molecular electrostatic potential (MEP) contour maps
can be used to identify reactive sites for potential electrophilic
and nucleophilic attacks inside the c-Met active pocket. The
MEP of the template compound (6d) is presented in Figure 6.

The red color indicates negative electrostatic potential, which
means that these sites are suitable for electrophilic attacks. The
blue color indicates positive electrostatic potential, which
means that these sites are suitable for nucleophilic attacks,
while there are no potential reactive sites in the green
contours.96

Through the 3D visualization (Figure 6), we can notice that
the most negative potential in red is centered around the
radical (CN), which means that this region is favorable for
electrophilic attacks; this region is coded with (R1) on the
structure of template molecule 6d. On the other hand, we can
notice that the most positive potential in blue is arranged on
the atoms of hydroxide H and oxygen O, indicating that these
regions are favorable to nucleophilic attacks. These regions are
coded with (R2) and (R3), respectively, on the structure of the
template molecule 6d. Therefore, to enhance the molecular
reactivity of the compound 6d, the (R1) and (R2, R3) sites
must be substituted with groups whose properties favor
electrophilic and nucleophilic attacks, respectively.

3.2.2. Molecular Docking Simulation. The structure of the
target protein will be validated prior to performing molecular

docking simulations between the scaffold (6d) and the c-Met
protein (PDB code: 3LQ8). This is done to improve the
accuracy and reliability of protein−ligand interaction pre-
dictions and to identify the active binding site in the target
protein’s structure. This was done by redocking the ligand
Foretinib into the active pocket of 3LQ8, evaluating the root
mean square deviation (RMSD) of docking ligand super-
position, binding energies (BE), and ligand−protein inter-
actions.97Figure 7A,B shows the structure of the c-Met protein
complexed with the native inhibitor Foretinib. Figure 7C−F
shows the obtained redocking results based on the optimal
conformation of Foretinib redocked inside the c-Met pocket
(BE = −6.8 kcal/mol, RMSD = 0.2292 Å).

From Figure 7, we can notice that the original Foretinib
ligand (Figure 7B) interacted with these amino acid residues:
Phe1134, Ala1221, Ala1108, Met1160, Met1211, Gly1163,
Tyr1159, Ile1084, Phe1223, Lys1110, and Asp1222. On the
other hand, we can notice that the redocked Foretinib ligand
(Figure 7F) interacts with all of the identical 11 residues with
which the original ligand interacted. In addition, the redocked
Foretinib ligand interacts with another four new residues, i.e.,
Met1131, His1202, Leu1157, and Pro1158. Also, the super-
imposed modes (RMSD = 0.2292 < 2 Å) shown in Figure
7C−E indicate the accurate predictions obtained by the
molecular redocking simulation. Prediction results obtained
through validation of the molecular docking protocol indicate
the adaptation of the c-Met protein model for docking novel
molecular structures to it. Therefore, in the rest of the work,
molecular docking simulations can be reliably performed using
the 3D model of c-Met (3LQ8) as well as the AutoDock Vina
algorithms.

Figure 8 shows the docking pattern of ligand (6d) inside the
active pocket of the c-Met receptor, as well as the most
important interactions predicted in the most stable 6d−3LQ8
complex conformation (BE = −7.4 kcal/mol).

From Figure 8A, we can clearly notice that the 6d
biomolecular structure is successfully docked into the pocket
of the c-Met protein. Also, from Figure 8B, we can notice that
the carbonitrile (R1) group interacted with active site Lys1110
(5.28 Å) by one conventional hydrogen bond. The hydroxide
group (R2) and the oxygen atom (R3) interact with the active
site Asp1222 with two hydrogen bonds (2.46 and 2.04 Å,
respectively). Also, the thiophene ring interacted with the
Glu1127 site (4.09 Å) through the π−anion electrostatic bond.
Also, the thiophene ring interacted with both Glu1127 (4.09
Å) and Asp1222 (5.27 Å) sites through the two electrostatic
π−anion bonds. Moreover, we can notice that the ring
structure (tetrahydro-4H-chromene) interacted with the active
sites Phe1200 (4.90 Å), Phe1134 (4.85 Å), His1202 (5.41 Å),
and Met1131 (4.28 Å) through hydrophobic alkyl and π−alkyl
interactions. Moreover, we can notice that ligand 6d interacted
with five referential active sites in the inhibition of c-Met
enzymatic activity by Foretinib, namely, Phe1134, His1202,
Asp1222, Met1131, and Lys1110. Also, the binding energy of
scaffold 6d (−7.4 kcal/mol) is higher than that of Foretinib
(−6.8 kcal/mol) to the c-Met receptor, which means that the
structure of ligand 6d can be more suitable for c-Met activity
inhibition compared to Foretinib.

As a result, the 6d scaffold structure may provide novel
cyclohexane-1,3-dione derivatives as candidates for inhibiting
NSCLC growth by targeting c-Met enzymatic activity. To
develop a better understanding of the functional groups of the
6d scaffold that are most likely to bind to the active site of the

Figure 5. Molecular structure of scaffold 6d (2-hydroxy-4-(thiophen-
2-yl)-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile).

Figure 6. Molecular electrostatic potential map of the geometrically
optimized compound 6d.
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Figure 7. (A) Crystalline 3D model of the c-Met protein (PDB: 3LQ8). (B) 2D visualization of native Foretinib structure interactions with c-Met
active amino acid residues. (C−E) 3D visualizations of the superimposed pose between the original (black) and the redocked (yellow) Foretinib
ligand in the c-Met pocket. (F) 2D visualization of the most important interactions between redocked Foretinib and amino acid residues of the c-
Met receptor.

Figure 8. (A) Ligands 6d and Foretinib in the c-Met receptor pocket. (B) 3D and 2D views of interactions between ligand 6d and the predicted
active sites.
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c-Met protein, we visualized the surface of the c-Met−6d
complex generated by molecular docking in 3D (Figure 9).

Figure 9A−F shows the surfaces of the receptors in terms of
the aromatic edge/surface, H-bond, charge, hydrophobicity,
solvent access surface (SAS), and ionization susceptibility.
Figure 9A representing the aromatic edge/face surface (blue
(edge)/orange (face)) indicates that blue predominates over
orange in the 6d ligand structure. This means that the position
of the aromatic cycles in the 6d molecule is favorable for the
edge alignment.

Also, the hydrogen bond donor/acceptor surface (Figure 9B,
purple (donor)/green (acceptor)) is shown. We can notice the
sites (R1, R2, R3) located in the purple-colored zone, which
means that these sites are favorable for hydrogen bond donor
groups.

The charge surface is shown (Figure 9C, colors blue
(positive charge)/red (negative charge)). We can notice that

the structure of ligand 6d surrounded by the colors close to
blue means that the structure of ligand 6d is favorable to the
positive charge.

The hydrophobic surface (Figure 9D, blue (hydrophilic)/
brown (hydrophobic)) has been shown. We can notice that
the R1, R2, and R3 sites on the 6d ligand structure are
surrounded by brown, which means that these sites are
favorable for hydrophobic groups.

The ionization surface is shown (Figure 9E, colors blue
(basic)/red (acid)). We can notice that the structure of ligand
6d is favorable to basic conditions. The solvent accessibility
surface (SAS) is shown (Figure 9F, blue (high SAS)/green
(low SAS)). We can notice that the blue color predominates
over the green color in the structure of ligand 6d. This means
that the solvent accessibility surface area (SASA) is high, which
means that the amino acid residues on the biosurface of the c-
Met protein possess a high SAS tendency.

Figure 9. Graphical description of (A) aromatic, (B) H-bond, (C) charge, (D) hydrophobicity, (E) ionizability, and (F) solvent accessibility
surface area of c-Met around 6d.

Figure 10. Rationalization of key structural properties needed to design new drug molecules derived from cyclohexane-1,3-dione.
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The overall results obtained from the structural character-
ization of the 6d molecule via QSAR, MEP, drug-like, and
molecular docking indicate that the structure of the molecule
6d is suitable as a reference for the design of novel NSCLC
inhibitors targeting the enzymatic activity of c-Met. Figure 10
summarizes the most important 2D/3D structural properties of
cyclohexane-1,3-dione derivatives to enhance their biological
inhibitory activity against NSCLCs and their binding to the c-
Met tyrosine kinase receptor.

3.3. Design, Optimization, and Screening of Novel
Cyclohexane-1,3-dione Derivatives. Based on the sum-
mary of favorable structural properties for improved biological
activity against non-small-cell lung cancer shown in Figure 10,
a series of 36 heterocyclic compounds were designed based on
the chemical reactions of cyclohexane-1,3-dione with radicals
that had favorable properties to enhance the biological activity
against NSCLC (Figure S1). We have designed these
molecules by suggesting different reaction mechanisms,
including the Michael reaction appropriate for the synthesis
of such compounds, following the same synthesis protocol
used in some of our previous work.98,99Figure 11 shows the

synthetic pathways adopted in the design of the proposed new
molecular structures.

The new molecular designs are prepared and optimized
using the same approach as used in this work. The molecular
descriptors (S−B, HBA, CMA, PSA, TC, ET, EHOMO, and
ELUMO) are calculated after optimized structures of the
proposed compounds (H01−H36) by DFT/B3LYP/6-31G-
(d,p) method. The inhibitory activity values predicted for the
36 new molecular structures are shown in Table S6 in the
Supporting Information.

The pIC50 values corresponding to the engineered molecular
structures were predicted by the MLR-QSAR model, which
validated in this study its success in describing the structure−
activity relationship for cyclohexane-1,3-dione derivatives.
From Table S6, we can notice that the predicted pIC50 values
for the new molecules ranged from 5.28 to 7.92. Among the 36
new molecules, we notice that the biological inhibitory activity
against NSCLC was improved for 11 new molecules
H01(pIC50 = 7.06), H06(pIC50 = 7.22), H12(pIC50 = 7.19),
H18(pIC50 = 7.01), H20(pIC50 = 7.49), H21(pIC50 = 7.02),
H24(pIC50 = 7.32), H30(pIC50 = 7.62), H31(pIC50 = 7.05),

Figure 11. Synthetic pathways adopted to design new molecular structures.

Table 7. Predicted Drug-Like Property Profile of the Candidate Compounds

entry TPSA(Å2)
n-

ROTB
MW
(Da) WLog P

n-
HBA

n-
HBD

Lipinski’s
violations

Veber
violations

Egan
violation

bioavailability
score SA

rule ABS <140 <10 <500 ≤5 <10 <5 <2 <2 <2 F > 0.1 pains 0 < SA < 10

H01 high 89.25 1 256.26 2.09 4 1 0 0 0 0.56 0 3.92
H06 high 76.11 1 300.74 3.15 3 1 0 0 0 0.56 0 3.77
H12 high 78.62 4 347.79 3.19 4 1 0 0 0 0.56 0 4.09
H18 high 70.32 1 301.72 3.75 4 1 0 0 0 0.85 0 3.62
H20 high 101.07 4 320.36 3.20 5 1 0 0 0 0.56 0 4.01
H21 high 72.83 4 314.33 3.14 5 1 0 0 0 0.85 0 3.96
H24 high 72.83 4 348.78 3.79 5 1 0 0 0 0.85 0 3.92
H30 high 73.98 1 298.72 3.50 4 1 0 0 0 0.55 0 2.59
H31 high 89.63 4 301.29 2.74 6 1 0 0 0 0.55 0 3.08
H32 high 104.73 4 317.36 3.21 5 1 0 0 0 0.55 0 3.04
H36 high 76.49 4 345.78 3.80 5 1 0 0 0 0.55 0 2.95
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H32(pIC50 = 7.31), and H36(pIC50 = 7.92). All 11 molecules
showed a higher predicted pIC50 activity compared to the
activity observed for both reference structure 6d (pIC50 = 6.38,
pred(pIC50 = 6.88)) and Foretinib (pIC50 = 6.67). On this
basis, 11 new compounds were identified as strong inhibitors
against NSCLC cell proliferation compared to scaffold 6d and
Foretinib.

3.3.1. In Silico ADME/Tox Screening. To filter molecules for
medicinal use, they must have favorable absorption, distribu-
tion, metabolism, excretion, and toxicity (ADME-Tox) proper-
ties.100 For this purpose, the drug-like and ADME-Tox models
of the 11 proposed compounds were predicted using the
SwissADME and pkCSM online servers. In view of the
importance of drug-like property assessment as an initial step
in the drug development pathway, this procedure measures the
level of correlation between the physical and chemical

properties of the compound with its bioavailability properties
in the human body.101 Therefore, drug-like assessment
perspectives allow us to predict the level of influence of drug
candidate molecules on oral bioavailability. Table 7 shows the
drug-like predictions based on the Lipinski, Veber, and Egan
criteria (such as absorption, topological polar surface area,
number of rotatable bonds, molecular weight, Log P), the
bioavailability score, and the synthetic accessibility (SA) index.

The drug-like property assessments presented in Table 7
indicate that all 11 proposed molecules meet the Lipinski,
Viber, and Egan criteria suitable for use as a drug. The absence
of the pain (0 alert) index also indicates that the positive
biological results of the 11 proposed structures are not false.63

Also, the score (F > 10%) of the proposed molecules
indicates that the bioavailability properties of the proposed
structures match the five Lipinski rules.102 The synthetic

Table 8. In Silico Predicted ADMET Properties

ADME-Tox properties

metabolism

CYP

absorption distribution substrate inhibitor

models

intestinal
absorption
(human)

skin
permeability

VDss
(human)

fraction unbound
(human)

BBB
permeability

CNS
permeability 2D6 3A4 1A2 2C19 2C9 2D6 3A4

unity
numeric (%
absorbed)

numeric
(log Kp)

numeric
(Log L/kg) numeric (Fu)

numeric
(Log BB)

numeric
(Log PS) categorical (yes/no)

Predicted Values
Fore 92.836 −2.735 −0.026 0.326 −2.02 −3.728 no yes no no no no yes
6d 90.719 −2.714 0.26 0.159 0.047 −1.749 no yes yes yes no no no
H01 95.431 −3.304 −0.145 0.307 −0.209 −3.933 no yes no no no no no
H06 93.642 −3.086 0.102 0.09 −0.094 −2.913 no yes no yes no no no
H12 94.507 −3.913 −0.094 0.078 −0.258 −3.175 no yes no yes no no no
H18 92.339 −3.581 0.049 0.04 −0.155 −2.819 no yes yes yes no no no
H20 93.067 −3.676 −0.102 0.123 −0.385 −3.197 no yes no yes no no no
H21 94.658 −3.51 −0.056 0.078 −0.167 −3.173 no yes no no no no no
H24 92.998 −3.479 −0.082 0.042 −0.319 −3.059 no yes no no no no no
H30 93.241 −2.981 0.089 0.041 −0.233 −2.893 no yes yes yes yes no no
H31 95.908 −2.766 −0.365 0.205 −0.577 −3.082 no no yes no no no no
H32 93.356 −2.782 −0.324 0.027 −0.451 −3.367 no yes no yes no no no
H36 93.408 −2.764 −0.289 0 −0.383 −3.224 no yes no yes yes no no

ADME-Tox properties

excretion toxicity

models total clearance AMES toxicity
oral rat acute toxicity

(LD50)
oral rat chronic toxicity

(LOAEL) hepatotoxicity skin sensitization

unity
numeric

(log mL/(min kg))
categorical
(yes/no) numeric (mol/kg) numeric (log mg/kg_bw/day)

categorical
(yes/no)

categorical
(yes/no)

Predicted Values
Fore 1.145 no 2.665 2.832 yes no
6d 0.015 no 2.728 1.988 no no
H01 0.585 no 2.866 0.888 no no
H06 −0.091 no 2.758 1.278 no no
H12 −0.024 no 2.905 1.121 no no
H18 0.05 no 2.946 1.308 no no
H20 0.194 no 3.032 1.113 no no
H21 0.504 no 2.870 1.172 no no
H24 0.121 no 3.102 1.106 no no
H30 0.025 no 2.664 0.823 no no
H31 0.822 no 3.077 1.393 yes no
H32 0.194 yes 2.683 0.816 yes no
H36 0.122 no 2.645 0.800 no no
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accessibility index score of the proposed structures indicates
that the SA values range from 2.95 to 4.09 (far from 10), which
means that the synthetic potential of the proposed molecules
in vitro is very easy.103

The overall drug-like properties evaluated indicate a strong
correlation between bioavailability and the proposed molecular
structures. Thus, the 11 new molecular structures are likely to
be suitable for medicinal use. To test this hypothesis, we
evaluate the pharmacokinetic and pharmacodynamic proper-
ties of these molecules in silico through the prediction of
ADME-Tox modeling. The ADME-Tox profile of the 11
compounds that passed the oral bioavailability screening is
shown in Table 8. The ADME-Tox properties of these
candidate drugs were predicted using the scaffold 6d structure
and the standard drug Foretinib as references. Oral drugs are
absorbed in the human small intestine, so assessment of the
absorption index of drugs is important in predicting the
fullness of an oral drug. Molecules with an absorption index of
less than 30% are poorly absorbed in the human intestine.64

Based on the predictions of the absorption index obtained in
Table 8, we can notice that all examined molecular structures
have absorption rates above 90%. This means that the
absorption potential of these molecules in the human intestine
is high, thus increasing the potential for therapeutic access by
these molecules. Also, the skin permeability index (log Kp) was
evaluated for its critical significance in predicting skin
sensitivity to chemical compounds. The lower Kp (in log
cm/s) indicates the lower skin permeability of substances;
therefore, the risk of contact with these substances decreases
and the security of their use as drugs increases.81 Predictions of
the Kp profile of the investigated molecules indicate that all Kp
values are less than −2.5; therefore, all proposed molecules and
6d and Foretinib have low skin permeability and no potential
dermatological effect.

In terms of the distribution index, the volume of distribution
(VDss), the unbound fraction (FU), the blood−brain barrier
(BBB), and central nervous system (CNS) permeability were
predicted. The larger the volume of distribution, the more
widespread drug distribution in body tissues. The higher the
FU levels of the molecules, the more likely they are to bind to
plasma rather than the target protein, resulting in low
pharmacological activity of the molecules. The negative VDss
indices obtained indicate that most of the proposed molecules,
including Foretinib, show a limited distribution at the
bloodstream pathway in the body. Except for the molecules
6d, H18, and H30, their VDss values are positive, which means
that these molecules are likely to spread to the tissues of the
body.104

The unbound fractions (FU) of the molecules examined in
human plasma ranged from 0 to 0.3, which greatly increases
the possibility of binding the proposed molecular structures to
the c-Met protein and thus achieving the desired therapeutic
target. The capacity of the investigated molecules on the
permeability of the blood−brain barrier (BBB) and the central
nervous system (CNS) was evaluated. Due to the importance
of these two parameters in the pharmaceutical industry, they
are used to determine whether a drug affects the brain. A drug
has the ability to cross the BBB if it has log BB > 0.3, whereas
drugs that have log BB < −1 are poorly able to cross the
BBB.64 Therefore, candidate drugs with log PS > −2 are
considered able to penetrate the CNS, while those with log PS
< −3 are considered poorly able to penetrate the CNS.
Fortunately, the results shown in Table 8 indicate that all of

the proposed new compounds and Foretinib, with the
exception of the reference compound 6d, have an acceptable
range and are negative in the blood. Although compound 6d
showed a positive log BBB value, it did not reach a threshold of
0.3, so the possibility of this molecule crossing the blood−
brain barrier remains relative.

In terms of metabolism, the cytochrome CYP450 enzymes
are responsible for removing toxins from the body.105 This is
done through the oxidation of intrusive foreign substances,
including drugs. These enzymes facilitate the process of
clearance, and cytochromes 1A2, 2C9, 2C19, 2D6, and 3A4
have been reported to be the most important enzymes
responsible for the metabolism of over 90% of drugs after the
first stage of treatment.32 Co-enzyme 3A4 is considered the
most important cytochrome enzyme responsible for drug
metabolism in the human body. If the drug is an inhibitor of
3A4, the ability of the enzyme to decompose the drug is
reduced, resulting in increased side effects of the drug.
Conversely, when the drug is a 3A4 substrate, the ability of
the enzyme to metabolize the drug is increased, and the drug is
not rapidly rejected, thus increasing the potential for
therapeutic access and reducing unwanted side effects. The
predicted inhibitory actions against CYP3A4 indicated that all
of the investigated molecules did not have an inhibitory
interaction against this enzyme as well as for CYP2D6.
Furthermore, most of the candidate molecules were substrates
of CYP3A4, with the exception of compound H31.

Regarding the excretion index, this index is very important in
predicting the behavior of the liver in terms of detoxifica-
tion.106 A lower excretion index (total clearance) means that
the drug has a longer half-life of stability in the body, thus the
higher the probability of achieving the therapeutic target by the
drug.107Table 8 displays that the total clearance index of all
proposed molecules was less than 1 (0.015−0.58), whereas the
total clearance index of Foretinib was greater than 1 (1.145).
This means that the stability of the 11 proposed molecules and
the 6d molecule in the body may be better than Foretinib.

The assessment of a molecule’s toxicity potential is critical in
pharmaceutical chemistry. The toxicity of the investigated
molecules was assessed in this study by predicting AMES and
acute oral toxicity for rats (LD50), chronic oral toxicity for rats
(LOAEL), hepatotoxicity, and skin sensitivity. The predictions
of the AMES test presented that the toxicity of H31 is positive,
which means that H31 is mutagenic and has potential toxic
symptoms. Similarly, the prediction of hepatotoxicity indicates
that H31, H32, and Foretinib have hepatotoxic effects, while
the rest of the examined compounds showed no potential
toxicity according to the AMES test and hepatotoxicity. The
LD50 and LOAEL indicators also indicate that the potential
toxicity of the proposed compound may occur at very high
doses, which is not likely to occur due to the micromolar IC50
dose values of the investigated compounds. The skin sensitivity
test indicates the negativity of the investigated candidates,
which confirms the safety of contact with the proposed drug
candidates.

The ADME-Tox property evaluations obtained indicate the
suitability of molecular structures (H01, H06, H12, H18, H20,
H21, H24, H30, and H36) as potential reference structures in
drug design for NSCLC therapy. The structure of the
molecules (H31 and H32) was excluded due to the potential
toxicity of these molecules. Based on the ADME-Tox
predictions, we can conclude that the structures of the nine
selected lead compounds are suitable for drug discovery and
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development targeted at NSCLC therapy. This also suggests
that the structural properties of the scaffold 6d were
appropriate for the design and optimization of the nine
proposed lead compounds.

3.3.2. c-Met Targeting by Lead Compounds. We perform
molecular docking simulations between the c-Met protein
(PDB code: 3LQ8) and the structures of nine molecules
screened as potential drugs for NSCLC. This is needed to

evaluate the most likely interactions between the active pocket
of the c-Met protein and candidate ligands as NSCLC cell
growth inhibitors. The noncovalent interactions predicted by
the molecular docking simulations and the recorded binding
energy values are used to identify the optimal candidate ligand
conformations required to interact with the target c-Met
protein. In addition, we perform MM-GBSA simulations under
the VSGB 2.0 solvation model to recalculate and estimate the

Figure 12. Key potential interactions between 3LQ8 and designed compounds (A) H01, (B) H06, (C) H12, (D) H18, (E) H20, (F) H21, (G)
H24, (H) H30, and (I) H36. (J) Superimposed poses of designed compounds with Foretinib inside the pocket of 3LQ8.
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free binding energy (ΔGbind) yielded by noncovalent cross-
binding between c-Met and the proposed nine ligands (H01,
H06, H12, H18, H20, H21, H24, H30, and H36). This allows
us to reinforce the hypothesis regarding the most stable
Protein−ligand systems and to cross-check the molecular
docking predictions. Figure 12 presents 2D visualizations of
key potential interactions between the nine candidate drug
ligands and the active residue sites in the c-Met protein pocket
(PDB code: 3LQ8). Table 9 presents summary results of the
molecular docking and MM-GBSA simulations obtained in this
section.

The docking pattern of the nine lead compounds in the c-
Met active pocket shown in Figure 12A−I shows that the main
protein−ligand interactions generated were hydrogen bonds,
electrostatic interactions, van der Waals (vdW) interactions,
and hydrophobic interactions. The presence of these weak
bonds increases the likeliness of compatibility between the c-
Met receptor and proposed computational drug ligands. This is
due to the importance of weak binding (noncovalent
interactions) in drug molecule clearance after achieving the
therapeutic target. With strong binding such as covalent
interactions, it is difficult to easily get rid of the drug molecule

bound to the receptor, which can lead to an adverse drug effect
represented by toxic risks. Also, the docking poses of the
designed drug molecules aligned with the Foretinib inhibitor in
the c-Met active binding target site indicate that all compounds
were successfully binding in the active pocket of this receptor
(Figure 12J). This supports the hypothesis that the conforma-
tional structures of cyclohexane-1,3-dione scaffold small
molecules are highly compatible with the c-Met protein
tyrosine kinase. This can be explained by the significantly lower
binding free energies recorded by molecular docking (−8.9 to
−6.4 kcal/mol) and prime MM-GBSA simulations (ΔGbind,
ΔGbind vdW, and ΔGbind H-bond ranging from −43.65 to
−15.26, −53.8 to −23.55, and −1.64 to −0.04 kcal/mol,
respectively) (Table 9). Furthermore, from Figure S2, we can
notice that all noncovalent interactions generated between the
nine examined ligands and the c-Met active site were preserved
after the prime MM-GBSA simulations. The stability of these
predicted interactions can strongly contribute to modeling the
enzymatic activity of the c-Met protein and achieving the
intended therapeutic goal.

3.3.3. Molecular Dynamics Simulations. To further explore
the stability status of the designed lead compounds inside the

Table 9. Syntheses of Molecular Docking and MM-GBSA Free Binding Energy Simulations

complexes

binding
affinity

(kcal/mol)

ΔGbind
(MM-
GBSA)

(kcal/mol)

ΔGbind
vdW
(MM-
GBSA)

(kcal/mol)

complex
energy

(kcal/mol)

ΔGbind
H-bond

(kcal/mol)

hydrogen-
binding

interaction
electrostatic
interaction

van der Waals
interaction hydrophobic interaction

3LQ8−
H01

−7.7 −18.10 −23.55 −10 961.10 −1.64 Glu1127
(2.24 Å)

Asp1222
(3.56 Å)

His1202, Asp1204,
Gln1123, Leu1225,
Gly1224, Phe1200,
Ile1130

Arg1203 (5.19 Å)

3LQ8−
H06

−7.9 −20.05 −34.28 −10 975.14 −1.64 Asp1222
(2.73 Å),
His1202
(2.25 Å)

Asp1222
(4.10 Å),
Glu1127
(4.34 Å)

Val1201, Phe1200,
Arg1203, Asp1204,
Glu1224, Gln1123

Met1131 (4.52 Å), Ile1130
(5.41 Å)

3LQ8−
H12

−8.1 −20.32 −33.79 −10 980.51 −1.84 His1202
(1.95 Å),
Asp
(1222),
Arg1203
(3.12 Å)

Glu1127
(4.37 Å),
Asp1222
(4.07 Å)

Glu1224, Gln1123,
Val1201, Asp1204

Phe1200 (4.87 Å), Ile1130
(3.79 Å), Met1131 (4.52 Å)

3LQ8−
H18

−6.4 −15.26 −26.07 −10 988.99 −0.04 Asp1222
(3.75 Å)

Gln1123, Gly1224,
Glu1127, His1202,
Arg1203, Asp1204,
Tyr1235

Ile1130 (3.71 Å), Leu1225
(4.96 Å)

3LQ8−
H20

−7.8 −19.72 −33.69 −11 014.74 −0.11 Asp1164
(2.89 Å)

Tyr1159, His1094,
Lys1161, His1162,
Asn1167, Gly1163,
Met1211, Val1092,
Ala1108, Met1160

Ile1084 (3.75 Å), Ile1084
(4.70 Å), Phe1223 (5.22 Å)

3LQ8−
H21

−6.9 −27.95 −33.32 −11 037.18 −0.58 Asp1164
(2.95 Å)

Gly1085, Asp1228,
Asn1167, Phe1223,
Val1092, Gly1163,
Met1160, His1162,
Lys1161

Met1211 (3.82 Å), Ala1108
(5.0 Å), Ile1084 (3.53 Å),
Tyr1159 (5.90 Å)

3LQ8−
H24

−6.4 −21.71 −36.37 −11 019.17 −0.10 Ala1108, Met1160,
Tyr1159, Val1083,
His1162, Asn1167,
Asp1164, Gly1163

His1094 (4.72 Å), Ile1084
(3.68 Å), Ile1084 (4.59 Å),
Met1211 (5.46 Å), Val1092
(5.31 Å), Phe1223 (5.14 Å)

3LQ8−
H30

−8.3 −22.65 −47.49 −10 976.08 −1.06 Lys1110
(3.15 Å)

Gln1123, Glu1127,
Asp1222, Gly1224,
Leu1157, Leu1140,
Val1139, Val1220,
Leu1195, Phe1200

Ile1130 (5.40 Å), Ile1130
(4.82 Å), His1202 (5.47 Å),
Phe1134 (5.41 Å), Ala1221
(4.27 Å), Ala1221 (4.74 Å),
Met1131 (5.09 Å), Met1131
(4.03 Å)

3LQ8−
H36

−8.9 −43.65 −53.80 −11 019.61 −0.67 Lys1110
(3.37 Å)

Glu1127
(4.74 Å)

Val1139, Asp1222,
Leu1140, Gly1128,
Leu1157, Phe1223,
Gly1224, Gln1123,
Phe1200, Phe1134,
Val1220

His1202 (5.43 Å), Ile1130
(4.77 Å), Ile1130 (5.38 Å),
Ala1221 (4.84 Å), Ala1221
(4.25 Å), Met1131 (5.09 Å),
Met1131 (4.06 Å), Val1155
(3.60 Å), Lys1110 (4.68 Å)
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c-Met active pocket, we perform molecular dynamics
simulations on the four complexes 3LQ8−H06 (−7.9 kcal/
mol), 3LQ8−H12 (−8.1 kcal/mol), 3LQ8−H30 (−8.3 kcal/
mol), and 3LQ8−H36 (−8.9 kcal/mol), which exhibited
higher negative binding affinity than the scaffold 6d (−7.4
kcal/mol) and Foretinib drug (−6.8 kcal/mol). Figure 13
depicts the free binding energy calculated by prime MM-GBSA
for samples 3LQ8−H06 (ΔGbind = −20.05 kcal/mol), 3LQ8−
H12 (ΔGbind = −20.32 kcal/mol), 3LQ8−H30 (ΔGbind =
−22.65 kcal/mol), and 3LQ8−H36 (ΔGbind = −43.65 kcal/
mol) used as inputs for MD simulations.

In this regard, protein−ligand systems were simulated in an
aqueous environment, and the structural and dynamical
stability of c-Met protein free and complexed with lead
compounds and standard drug Foretinib was evaluated over an
independent time cycle of 100 ns. In this part of the
investigation, the timelines of RMSD and RMSF parameter

variations, protein−ligand contact profiles, ligand properties
(RMSF, RMSD, rGyr, MolSA, intraHB, SASA, and PSA), and
thermodynamic properties (total energy, potential energy,
temperature, pressure, and volume) were analyzed.

3.3.3.1. RMSD and RMSF Analyses. We used the two
measures, root mean square deviation (RMSD) and root mean
square fluctuation (RMSF), to investigate potential structural
fluctuations in the examined systems of 3LQ8 (uncomplexed
and complexed with ligands). Using these two indices, the
average movement of all atoms in the α-carbon backbone
structure for each residue in the systems examined is calculated
relative to the first reference frame of the protein backbone
(uncomplexed 3LQ8) across a time trajectory fixed at 100 ns
(Figure 14).

From Figure 14A, the data indicate clearly that all systems
(free 3LQ8 and its complexes) showed minor fluctuations at
the start of the simulation and then became stable after 20 ns

Figure 13. Prime MM-GBSA free binding energy parameters for the best complexes.

Figure 14. (A) RMSD of free protein 3LQ8, complexed with ligands H06, H12, H30, H36, and Foretinib. (B) RMSF of backbone atoms in free
3LQ8 protein, complexed with ligands H06, H12, H30, H36, and Foretinib. (C) RMSF of ligands H06, H12, H30, H36, and Foretinib complexed
with the 6JQR protein.
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Figure 15. continued
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of MD simulation. This stability indicates that the systems
reach equilibrium after about the first 20 ns and then remain
stable during the whole simulation time period. The average
RMSD for free 3LQ8 and complexed with H06, H12, H30,
H36, and Foretinib were obtained as 1.824, 2.011, 1.876,
2.420, 2.259, and 1.790 Å, respectively. The low values of
RMSD fluctuation observed indicate that all of the systems
investigated have reached the desired equilibrium. Therefore, it

can be said that the complexes examined have a stable nature
under physiological conditions.

RMSF analyses of the α-carbon atom residues of 3LQ8
uncomplexed and complexed with the selected ligands H06,
H12, H30, H36, and Foretinib indicated average values of
0.904, 0.940, 0.879, 1.086, 1.112, and 0.921 Å, respectively
(Figure 14B). The average RMSF level values of the residue
atoms in the systems examined indicate a very high stability
level of 3LQ8 uncomplexed and complexed with the various

Figure 15. Diagram report of the MD simulation interactions over the 100 ns time: (A) protein−ligand contacts, (B) ligand−protein contacts, and
(C) ligand properties.
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ligands. Some minor fluctuations in RMSF can be observed for
some residues (ILE1053, ILE1118, ASP1054, GLU1061,
ASN1100, and ASP1231), especially the extreme residues
outside the active reference residue sites in the c-Met protein
pocket. The RMSFs of each ligand atom were also determined
to define the dynamic profile of the ligand structures in the c-
Met protein pocket. The data presented in Figure 14C indicate
the presence of certain fluctuations that signal some conforma-
tional dynamics in the evolution of ligands in their active
binding sites. These slight fluctuations are probably due to the
flexible nature of the ligand structures in the c-Met pocket.

3.3.3.2. Dynamics of Protein−Ligand Contact and Ligand
Properties. The visualizations of the protein−ligand inter-
actions provide a better view of the interaction profiles that
provide a stable environment for the ligands in the pocket of
the target c-Met protein. Figure 15A shows the various contact
interactions between the ligands H06, H12, H30, H36, and
Foretinib to active residue sites in the 3LQ8 protein during the
100 ns pathway of MD simulation.

From 2D visualizations of the interactions between the
examined ligands and amino acid residues shown in Figure
15B, we can notice that the most important interactions that
contributed to the stability of the systems examined were of
type H-bonds, hydrophobic, ionic, and water bridges.
Furthermore, the (protein−ligand contacts) and (ligand−
protein contacts) plots of interaction modes of examined
ligands with the 3LQ8 protein clearly show that the predicted
key contacts with the molecular docking were almost
conserved throughout the MD simulation time of 100 ns.

Also, six properties of the investigated ligands were analyzed,
namely, the RMSD, radius of gyration (rGyr), molecular
surface area (MolSA), intramolecular hydrogen bonding
(intraHB), solvent accessible surface area (SASA), and polar
surface area (PSA), respectively (Figure 15C). All of the
dynamics measurements obtained indicate the high stability of
the investigated systems over the 100 ns period of the MD
simulation time.

3.3.3.3. Thermodynamic Property Analysis. Moreover, the
summary MD quality simulation was analyzed by calculating
the variation of total energy (E), potential energy (EP),
temperature (T), pressure (P), and volume (V) along the 100
ns of the simulation period, and these analyses were done by
subjecting the studied systems to simulation quality analysis.108

The plots of the thermodynamic properties calculated along
100 ns of MD simulation time for 3LQ8 free and complexed
with ligands are presented in Figure 16. Through the
thermodynamic plots obtained, we can notice that the energy
parameters of the six investigated systems are very close and
showed perfect stability throughout the MD simulation time.
This can be confirmed by the average values of the parameters
(E, EP, T, P, and V) presented in Table 10.

The full MD analysis results demonstrated that the
structures of the computational drug compounds (H06, H12,
H30, and H36) were highly stable inside the c-Met protein
pocket. This further validates the reason for screening the nine
novel designed compounds as prime candidates for c-Met
enzyme activity inhibition and drug use against NSCLC.

Figure 16. Thermodynamic property analysis: (A) 3LQ8 uncomplexed, (B) 3LQ8−H06, (C) 3LQ8−H12, (D) 3LQ8−H30, (E) 3LQ8−H36, and
(F) 3LQ8−Foretinib.

Table 10. Average Thermodynamic Property Scores for Systems Examined

thermodynamic properties

protein−ligand complex total energy (kcal/mol) potential energy (kcal/mol) temperature (K) pressure (bar) volume (Å3)

3LQ8 −90 302.277 −110 373.609 298.685 1.207 327 802.838
3LQ8−H06 −90 109.333 −110 165.406 298.674 0.707 327 539.865
3LQ8−H12 −90 087.429 −110 144.368 298.683 0.653 327 645.373
3LQ8−H30 −90 340.770 −110 444.722 298.685 1.157 328 390.322
3LQ8−H36 −90 340.788 −110 448.703 298.691 1.204 328 435.906
3LQ8−Foretinib −89 995.713 −110 065.429 298.683 0.797 327 581.987
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4. CONCLUSIONS
Cyclohexane-1,3-dione derivatives’ cytotoxicity against a
variety of cancer cell lines, including non-small-cell lung
cancer (NSCLC), makes them highly attractive for targeted
cancer therapy. In this paper, we conduct a large-scale
computational study on 40 heterocyclic small molecules with
cydohexane-1,3-dione scaffolds that have inhibitory biological
activity in vitro against the non-small-cell lung cancer cell line
H460. The goal is to discover the most important structural
features and properties of these molecules that are related to
their biological activity against NSCLC, as well as to gain
insights into how to optimize these molecules to become
successful lead agents for drug design. To achieve the desired
goals, we take a hybrid approach that combines ligand-based
and structure-based drug design approaches.

In this context, based on statistical modeling techniques:
principal component analysis (PCA), univariate analysis (UV),
multiple linear regression (MLR), artificial neural network
(ANN), Y-randomization, applicability domain (AD), and the
structure−activity relationship between the studied com-
pounds is modeled and interpreted by the QSAR modeling
approach. Predictions of the MLR-QSAR model trained,
validated internally and externally, and supported by ANN-
QSAR modeling indicated that the biological inhibitory activity
of cyclohexane-1,3-dione derivatives is strongly correlated with
physicochemical and electronic molecular descriptors (S−B,
HBA, CMA, PSA, TC, ET, EHOMO, and ELUMO). The
compound 6d is identified as the optimal scaffold for the
further design and optimization of new lead compounds based
on QSAR modeling predictions and in silico pharmacokinetic
and pharmacodynamic (ADME-Tox) evaluations of synthe-
sized compounds.

Abnormal tyrosine kinase enzyme activity is most likely
associated with cancer cell growth and proliferation;
specifically, c-Met enzymatic activity was a significant factor
associated with the cell growth of NSCLC that was focused on
as part of this study. Thus, in the context of fostering the
search for novel small-molecule tyrosine kinase inhibitors. In
this study, we use the protein tyrosine kinase c-Met as a focal
point for the structure-based drug design. In this context, the
6d scaffold is docked to the c-Met active pocket (PDB code:
3LQ8) and generates the most predicted protein−ligand
interactions and the most important functional groups
involved. Simultaneously, from the DFT calculations, the
MEP contour maps generated on the 6d scaffold are analyzed.
As a result, we obtain a well-defined and in-depth mapping of
the pharmacokinetic sites favorable for the modifications to
achieve strong noncovalent interactions with the receptor
tyrosine kinase c-Met.

Based on the properties of the scaffold 6d of cyclohexane-
1,3-dione derivatives and the pharmacophore models devel-
oped in this study, 36 novel small molecules are designed,
optimized, and screened as new candidates for cancer
targeting. Among the newly designed lead compounds, nine
new compounds are selected as the best drug candidates
against NSCLC, compared to the synthesized compounds and
the standard drug Foretinib. This screening is performed on
the basis of QSAR, ADME-Tox, molecular docking, and prime
MM-GBSA simulations.

To further validate the obtained results, we investigated the
stability dynamics of the designed drug molecules inside the c-
Met protein active pocket by performing molecular dynamics

simulations. For this, we consider the four systems 3LQ8−H06
(ΔGbind = −20.05 kcal/mol), 3LQ8−H12 (ΔGbind = −20.32
kcal/mol), 3LQ8−H30 (ΔGbind = −22.65 kcal/mol), and
3LQ8−H36 (ΔGbind = −43.65 kcal/mol), which showed that
more negative free binding energy (ΔGbind) were used as
validation samples. The MD simulation along the 100 ns
trajectory showed high stability for all four c-Met complexes
examined, alongside c-Met free and crystallized with Foretinib.
Finally, the use of the hybrid drug design approach carried out
in this study led to the successful development of a new class of
heterocyclic small molecules based on the cyclohexane-1,3-
dione scaffold for drug design against NSCLC and other types
of cancer. Retrosynthesis of the newly designed compounds
and evaluation of their inhibitory activity toward the enzymatic
activity of c-Met and other receptor tyrosine kinases could be
useful for further experimental and theoretical studies.
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