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Abstract 

Background  Intratumoral microbial communities have been recently discovered to exist in a variety of cancers and 
have been found to be intricately involved in tumour progression. Therefore, investigating the profiles and functions 
of intratumoral microbial distribution in hepatocellular carcinoma (HCC) is imperative.

Methods  To verify the presence of microorganisms in HCC, we performed fluorescence in situ hybridization (FISH) 
using HCC tissues and conducted MiSeq using 99 HCC and paracancerous tissues to identify the key microorganisms 
and changes in metabolic pathways affecting HCC progression through a variety of bioinformatics methods.

Results  Microbial diversity was significantly higher in HCC tissues than in adjacent tissues. The abundances of micro-
organisms such as Enterobacteriaceae, Fusobacterium and Neisseria were significantly increased in HCC tissues, while 
the abundances of certain antitumour bacteria such as Pseudomonas were decreased. Processes such as fatty acid and 
lipid synthesis were significantly enhanced in the microbiota in HCC tissues, which may be a key factor through which 
intratumoral microbes influence tumour progression. There were considerable differences in the microbes and their 
functions within tumour tissue collected from patients with different clinical features.

Conclusion  We comprehensively evaluated the intratumoral microbial atlas of HCC tissue and preliminarily explored 
the mechanism of the effects of the microbial community involving changes in lipid metabolism and effects on HCC 
progression, which lays the foundation for further research in this field.
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Introduction
Hepatocellular carcinoma is the sixth most common 
malignancy and the third leading cause of cancer-related 
deaths worldwide, mainly due to liver cirrhosis caused by 
hepatitis virus, alcohol and fat accumulation [1, 2]. As a 
cancer with a progressive disease course, without effec-
tive early intervention, the disease can cause an irrevers-
ible damage and extremely poor prognosis [3, 4]. Despite 
the great progress achieved in various treatments, such 
as surgery, chemoradiotherapy, immunotherapy and 
targeted therapy, in the past few decades, the prognosis 
of HCC patients is still not optimistic due to the high 
metastasis rate and recurrence rate of this tumour type 
[5–7]. Therefore, it is urgent to explore the molecular 
mechanisms that occur during the pathogenesis and pro-
gression of HCC.

The interior of tumours was originally thought to be 
sterile, especially in solid tumours. However, recent 
evidence suggests that intratumoral microbes form an 
important component of the tumour microenvironment 
(TME) and that these microbes are intricately involved in 
tumorigenesis, progression, and sensitivity to therapy in 
the local environment [8]. Deborah Nejman comprehen-
sively identified the presence of abundant intratumoral 
bacteria in breast, lung, ovarian, pancreatic, melanoma, 
bone, and brain tumours. The results revealed a tumour-
specific microbial composition, and the metabolic path-
ways and clinical features of these microorganisms were 
closely related [9]. At present, it is believed that intra-
tumoral microorganisms affect tumour progression 
mainly by causing DNA damage, the activation of onco-
genic pathways, and the regulation of the immune sys-
tem in the microenvironment [10, 11]. The above results 
show that investigating the importance of intratumoral 
bacteria is an emerging field, attracting the interest of 
researchers for its potential role as an intervention target 
in tumour diagnosis and therapy. It is reasonable to spec-
ulate that microorganisms within HCC can also partici-
pate in the progression and metastasis of HCC through 
the above pathways. However, few relevant studies have 
explored the tumour microbiome in HCC. Therefore, it 
is necessary and meaningful to investigate the presence, 
abundance and functions of intratumoral microorgan-
isms in this cancer type.

In this study, we first performed fluorescence in  situ 
hybridization (FISH) using HCC tissues to verify the 
presence of bacteria in HCC, followed by MiSeq using 
99 HCC tissues and adjacent tissues, to comprehen-
sively analyse microbial infiltration and changes in the 
metabolic pathways that occur in HCC. Some valuable 
conclusions were revealed. For instance, microbes in 
tumours may support tumour cell proliferation and inva-
sion through increased fatty acid and lipid synthesis. In 

addition, certain microorganisms may be involved in 
the process of HCC in unique ways. Taken together, the 
results suggest that intratumoral microbes interact and 
complement tumour cells and the TME. We believe that 
our research supports further developments in this field.

Methods
Sample collection
We collected 99 HCC and paracancerous tissue samples 
from patients at the First Affiliated Hospital of Zheng-
zhou University (Zhengzhou, Henan, China). All studies 
using these samples were approved by the Ethics Com-
mittee of the First Affiliated Hospital of Zhengzhou Uni-
versity. The average age of patients included in the study 
was 54.19. 71.4% patients had HBV infection. 77.3% of 
the patients were single tumor, and 79.1% of the patients 
were classified as Child A. More detailed information 
was shown in Table 1. All tumor tissues and adjacent tis-
sues are obtained by surgical resection.

Fluorescence in situ hybridization
Tissues were prepared into paraffin sections, added to 
prehybridization solution, and incubated at 37  °C for 
1 h. Then, hybridization solution containing the EUB338 
probe (Servicebio, G3016-3) was added, and samples 
were incubated at 42  °C overnight in an incubator and 
photographed under a microscope (NIKON DS-U3).

The probe sequence used was EUB338:5’-CY3-GCT 
GCC TCC CGT AGG AGT-3’.

Bacterial DNA extraction and sequencing
All of the samples were subjected to the same procedures 
for DNA extraction and PCR amplification by the same 

Table 1  Clinical characteristics of patients included in this study

Clinical features Overall Clinical features Overall

n 44 Grade = G3 (%) 7 (22.6)

Age (mean (SD)) 54.19 (9.02) BCLC (%)

HBV = YES (%) 30 (71.4) A 2 (5.0)

Child (%) A1 19 (47.5)

ChildA 34 (79.1) A2 2 (5.0)

ChildB 6 (14.0) A4 3 (7.5)

ChildC 3 (7.0) B 11 (27.5)

Tumor number = single 
(%)

34 (77.3) D 3 (7.5)

T stage (%) Stage (%)

T1 33 (75.0) I 32 (72.7)

T2 8 (18.2) Ib 2 (4.5)

T3 2 (4.5) II 9 (20.5)

TI 1 (2.3) IIIA 1 (2.3)

CA125-B (mean (SD)) 53.58 (161.87) CEA-B (mean (SD)) 2.76 (2.61)
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laboratory staff. Each sample was suspended in 790 μL 
of sterile lysis buffer (4  M guanidine thiocyanate; 10% 
n-lauroyl sarcosine; 5% n-lauroyl sarcosine-0.1 M phos-
phate buffer [pH 8.0]) in a 2-mL screw-cap tube contain-
ing 1 g glass beads (0.1 mm BioSpec Products, Inc., USA). 
This mixture was vortexed vigorously and incubated at 
70 °C for 1 h. After incubation by bead beating for 10 min 
at maximum speed, DNA was extracted using the manu-
facturer’s instructions for bacterial DNA extraction using 
the E.Z.N.A.®Stool DNA Kit (Omega Biotek, Inc., GA), 
with the exception of lysis steps, and the product was 
stored at −  20  °C until further analysis. The extracted 
DNA obtained from each sample was used as the tem-
plate to amplify the V3 ~ V4 region of 16S rRNA genes.

The primers F1 and R2 (5′-CCT​ACG​GGNGGC​WGC​
AG-3′ and 5′-GAC​TAC​HVGGG​TAT​CTA​ATC​C-3′) cor-
responding to positions 341 to 805 in the Escherichia coli 
16S rRNA gene were used to amplify the V3 ~ V4 region 
of each sample by PCR. The PCR experiments were run 
in an EasyCycler 96 PCR system (Analytik Jena Corp., 
AG, Germany) using the following program: 3  min of 
denaturation at 95 ℃ followed by 21 cycles of 0.5  min 
at 94  ℃ (denaturation), 0.5  min of annealing at 58  ℃, 
and 0.5 min at 72 ℃ (elongation), with a final extension 
at 72 ℃ for 5 min. The products from different samples 
were indexed and mixed at equal ratios for sequencing 
using the MiSeq platform (Illumina Inc., USA) according 
to the manufacturer’s instructions.

Sequencing data processing and OTU (Operational 
Taxonomic Unit) cluster annotation
Paired-end sequence data were obtained based on MiSeq 
sequencing. According to the complementary region 
(overlap) between the PE (paired end) reads, the paired 
reads were merged into a single sequence. Quality con-
trol filtering was performed on data regarding the quality 
of reads and the effect of merging. Samples were distin-
guished according to the index sequences and primer 
sequences at both ends of the sequence to obtain high-
quality effective sequences and to correct the sequence 
orientation.

OTU (operational taxonomic unit) is a label artificially 
set for a taxonomic unit (strain, genus or species) to 
facilitate analysis in population genetics research [12]. To 
identify the number of species, genera and other infor-
mation in the sequencing results obtained from a sample, 
after removing the single sequences without repeats, we 
classified the sequences into taxonomic units, namely, 
OTUs, based on a similarity value of 97%. Chimeric 
sequences were removed during the clustering process 
to obtain the representative sequence of an OTU. Subse-
quently, by aligning the 16S bacterial and archaeal ribo-
some databases Silva3 (Release 138 http://​www.​arb-​silva.​

de) [13], we performed OTU species annotation based 
on the QIIME platform (http://​qiime.​org/​scrip​ts/​assign_​
taxon​omy.​html). The RDP classifier Bayesian algorithm 
was used to perform taxonomic analysis on the repre-
sentative sequences of OTUs with a similarity level of 
97%, and the community composition of each sample was 
counted at each classification level (phylum, class, order, 
family, genus, and species) [14].

Bioinformatics analysis
Alpha diversity was defined by the Chao, Ace, Shan-
non, and Simpson indices, which were calculated using 
mothur (version v.1.42.1, http://​www.​mothur.​org) [15]. 
Beta diversity was assessed by unweighted and weighted 
UniFrac distance matrices and visualized by principal 
coordinate analysis (PCoA). QIIME software was used 
to calculate the beta diversity distance matrix, and the R 
software ‘vegan’ package was employed for PCoA analy-
sis and visualization.

LEfSe is a data analysis method based on linear discri-
minant analysis (LDA) effect size [16]. Specifically, we 
first used the nonparametric factorial Kruskal‒Wallis 
(KW) sum-rank test to establish differential microbiota. 
Next, linear discriminant analysis (LDA) was applied to 
estimate the magnitude of the role of species abundance 
in the differential effect. The algorithm emphasizes sta-
tistical significance and biological relevance. LEfSe analy-
sis was performed with a web-based tool (http://​hutte​
nhower.​sph.​harva​rd.​edu). In this study, LDA > 2.5 was 
considered statistically and biologically significant. Sub-
sequently, using Qiime software (http://​qiime.​org), a ran-
dom forest algorithm was used to identify OTUs with 
significant differences between groups, with 1000 trees 
for modelling and fivefold cross-validation to estimate 
the size of generalization error. The default settings were 
used for the rest of the parameters. All biochemical index 
data were obtained using the last blood sample collected 
from the patient before surgery. Any correlations with the 
abundance of microorganisms were established by Spear-
man’s method. Due to the small number of patients with 
Child‒Pugh scores B and C, we pooled the two groups.

Results
Fluorescence in situ hybridization (FISH) confirmed 
the presence of bacteria in hepatocellular carcinoma
We performed haematoxylin and eosin (H&E) staining 
on the collected tumour and nontumor tissues and evalu-
ated the typical properties of these HCC and nontumor 
tissues (Fig. 1A). First, we carried out FISH detection in 
HCC tissues. The results confirmed that HCC tissues 
contained bacteria, albeit in small numbers (Fig.  1B). 
Furthermore, we explored the relationship between 
immune cells and bacteria. Using a fluorescent costaining 

http://www.arb-silva.de
http://www.arb-silva.de
http://qiime.org/scripts/assign_taxonomy.html
http://qiime.org/scripts/assign_taxonomy.html
http://www.mothur.org
http://huttenhower.sph.harvard.edu
http://huttenhower.sph.harvard.edu
http://qiime.org
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technique, we stained for the two immune cell biomark-
ers CD45 and CD68, as well as EUB338, in HCC tissues. 
As shown in Fig. 1C, some CD68 + cells harboured bac-
teria, which may have been related to phagocytosis by 
macrophages. CD45 + cells also contained bacteria. Since 
these results showed the presence of bacteria in HCC 
tissues and immune cells in the TME, we attempted to 
further reveal the differences in bacterial species and 
abundance in HCC and paracancerous tissues by Illu-
mina sequencing technology.

Differences in microbiota composition between HCC 
and paracancerous tissues
Following the comparison of MiSeq data with the 16S 
bacterial and archaeal ribosome database, we identified a 
total of 1145 OTUs, including 28 phyla, 47 classes, 133 
orders, 239 families, and 534 genera (Additional file  1: 
Table  S1). First, a rarefaction curve analysis was per-
formed, which is a curve generated by the number of 
sequences and the number of species. The results showed 
that at a specific sequencing depth, the curve tended to 
be flat, that is, an increased volume of data generated 
relatively few new OTUs, indicating that our sequenc-
ing data depth was reasonable (Fig.  2A). Subsequently, 
to evaluate the core components of the microbiome, we 

performed a statistical analysis at different sample cover-
ages based on the number of shared OTUs in the sam-
ples (Fig.  2B, Additional file  1: Table  S2). The findings 
showed that the number of shared microorganisms in 
the respective samples obtained from HCC and paracan-
cerous tissue was consistent at different levels of sample 
coverage. Fifteen core microorganisms were identified 
in all samples and were consistent between HCC and 
paracancerous tissues. In addition, the set-distribution 
analysis revealed 263 unique OTUs in tumour tissue and 
more than 241 in adjacent tissue, indicating a significant 
difference in microbial species between the two groups 
(Fig. 2C).

Alpha and beta diversity differences between groups
Single-sample diversity analysis (alpha-diversity) was 
employed to describe the diversity of bacterial species 
and abundance in a single sample. We compared the 
alpha diversity between HCC and paracancerous tis-
sues based on 4 well-established indices. The results 
showed that, among the various alpha diversity indices, 
the Ace and Chao indices were significantly higher in 
HCC tissues than in paracancerous tissues (Fig. 3A, B, 
P < 0.05), indicating that HCC samples had significantly 
more bacterial species than paracancerous tissues. The 

Fig. 1  HCC tissue and immune cells in the presence of bacteria. A H&E staining of HCC tissue and paracancerous tissue. B FISH analysis of bacterial 
16S rRNA sequences confirmed the presence of bacteria in HCC. C Representative immune cell staining. Bacteria were found in CD68 + cells and 
CD45 + cells. Among them, CD68 + cells are considered macrophages
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Simpson and Shannon indices also showed this trend, 
albeit without a statistically significant difference, 
which may have been due to the insufficient sample 
size (Fig.  3C, D). Beta diversity is a comparative ana-
lytical measure of the microbial community composi-
tion of samples obtained from different groups. In this 
study, β diversity was calculated using principal coor-
dinates analysis and ADONIS. As presented in the fig-
ure, the PCoA results based on the unweighted UniFrac 

distance showed that there was a certain overall dif-
ference in the microflora in HCC and paracancerous 
tissues, and the results of ADONIS also uncovered a 
significant difference between the two groups (Fig. 3E, 
F, P < 0.05). The above results indicated that there were 
significant differences between HCC and paracancer-
ous tissues in terms of the bacterial richness of a single 
sample and the overall composition of the two groups.

Fig. 2  General characteristics of the microbiota in HCC and adjacent tissues. A Sparsity curves for sequencing data. B Core microbes at different 
sample coverages in HCC and paracancerous tissues. C Set-distribution analysis of OTU numbers between groups

Fig. 3  Alpha and beta diversity among microbes in HCC and paracancerous tissues. A Differences in the Ace index between groups. B Differences 
in the Chao index between groups. C Differences in the Shannon index between groups. D Differences in the Simpson index between groups. E 
PCoA of bacterial beta diversity based on unweighted UniFrac distances. F Microbiota beta diversity based on ANOSIM
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Differences in microbiota composition between HCC 
and paracancerous tissues
The predominant microflora in HCC and adjacent tissues 
were very similar. At the phylum level, the most domi-
nant genera that differed between the two groups were 
Proteobacteria, followed by Firmicutes, Actinobacteriota, 
and Bacteroidetes. Specifically, the proportion of Proteo-
bacteria in HCC was slightly higher, while the abundance 
of Actinobacteriota was significantly lower (Fig. 4A). At 
the genus level, Aliidiomarina, Halomonas, Dietzia, and 
Achromobacter were the dominant genera in the two 
groups. The proportion of Alidiomarina was lower in 
HCC samples (Fig. 4B).

We chose the Mann‒Whitney U test for the statisti-
cal analysis of the differential microbes between groups. 
According to the results, at the phylum level, Actinobac-
teriota and Verrucomicrobiota genera had significantly 
lower abundance in HCC tissues than in paraneoplas-
tic tissue, whereas Fusobacteriota abundance followed 

the opposite trend (Fig.  4C). At the genus level, the 
abundances of the genera Dietzia, Faecalibacterium, 
Megamonas, Hydrogenophaga, Agathobacter, Chry-
seobacterium, and Ruminococcaceae were significantly 
lower, while the abundances of Neisseria, Clostridia_
UCG-014, Fusobacterium, and Lactobacillus were sig-
nificantly higher in HCC tissues than in paracancerous 
tissues (Fig. 4D,  P< 0.05).

Subsequently, LEfSe analysis was performed to iden-
tify bacterial groups with significantly different effects 
on sample partitioning. We found that the abundances 
of microbes within the same phylum generally showed 
the same trend of change among the study groups 
(Fig.  5A). Specifically, the abundances of Clostridia 
and Actinobacteriota tended to rise significantly in 
paracancerous tissue. At the genus level, using an LDA 
score greater than 2.5 as the threshold, we identified 11 
bacterial genera that had significantly different abun-
dances between the T and N groups (P < 0.05, LDA > 2), 

Fig. 4  Differences in microbial composition between HCC and paracancerous tissues. A Microbial composition of HCC and paracancerous tissues 
at the phylum level. B Microbial composition of HCC and paracancerous tissues at the genus level. C Differences in microbes between study groups 
at the phylum level based on the Mann–Whitney U test. D Differences in microbes between study groups at the genus level based on the Mann‒
Whitney U test
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and the abundances of four of these genera were signifi-
cantly elevated in HCC. Enterobacteriaceae, Neisseria 
and Fusobacterium had significantly higher abundances 
in tumour tissue. Moreover, Chryseobacterium, Hydrog-
enophaga, Agathobacter, Megamonas, Pseudomonas, 
Faecalibacterium, and Dietzia abundances were ele-
vated in paracancerous tissues (Fig. 5B).

To investigate the complex nonlinear interdependen-
cies among microbes, we identified the key microbes 
that differed between the two groups of samples 
through random forest analysis and visualized the 
differences in heatmaps. The results showed that 12 
OTUs (containing 11 species of bacteria) were differ-
ent between the two groups. Consistent with the above 
results, seven OTUs were low in HCC tissue, which 
belonged to Sphingomonas, Chryseobacterium, Hydrog-
enophaga, Aliidiomarina, Dietzia, Pseudomonas, and 
Agathobacter. Five OTUs had high abundance in HCC 

tissue, namely, Fusobacterium, Neisseria and Coma-
monas, and one unclassified species (Fig. 5C).

Microbes in HCC tissue cause diverse changes in biological 
function
The microbial community in solid tumours interacts 
with tumour cells mainly through the metabolites they 
release, causing changes in cancer metabolic pathways, 
the regulation of immune responses in the TME, and 
even the occurrence of DNA damage, which in turn 
affects tumour progression. Understanding the micro-
bial metabolic functions in HCC and their impact on 
tumour cells has important implications for investigat-
ing how microbes influence HCC progression. In this 
study, we aimed to investigate this process at multiple 
levels via PICRUSt2 prediction. The KEGG pathway 
analysis showed that membrane transport, fatty acid and 
lipopolysaccharide biosynthesis, and bacteria and disease 
pathways were significantly enriched in HCC, while fatty 

Fig. 5  Differences in the microbiome and its function between HCC and paracancerous tissues identified based on LEfSe and random forest. A 
Clade map containing differential bacterial taxa from the phylum to the genus level. B LDA histogram of differential microbiota at the genus level. 
C Microbes with the largest contribution to group differences identified based on the random forest algorithm. D Differential metabolic pathways 
between groups based on the KEGG database. E Differential metabolic pathways between groups based on the MetaCyc database
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acid degradation and the metabolic processes of linoleic 
acid, propionate and histidine were significantly inhibited 
(Fig.  5D). The MetaCyc-based metabolic pathway pre-
diction results indicated that the biosynthesis and satu-
rated fatty acid elongation pathways of molecules such as 
lysine, lipid and mevalonate were significantly enhanced 
in HCC, while the degradation of molecules such as 
purines and nucleotides, glyoxylate bypass and arginine 
biosynthesis was inhibited (Fig. 5E). Overall, despite dif-
ferences in predictions from different metabolic function 
databases, the key pathways involved in the impacts of 
the microbiota on tumour cells in HCC appear to be fatty 
acid and lipid biosynthesis, metabolic inhibition of small 
molecules, and amino acid imbalances.

Differences in the intratumoral microbiome are 
significantly associated with clinical features
Previous reports have revealed that differences in tumour 
characteristics, such as pathological stages, could be 
attributed to remarkable differences in microbial infil-
tration in the TME. Herein, we analysed the relationship 
between the abundance of intratumorally infiltrated bac-
teria and the clinical characteristics of patients. Hepatitis 
B virus (HBV) infection persistently damages hepato-
cytes and causes inflammatory changes in the TME of 

HCC. We found that the infiltrated colonies were more 
diverse in the TME of HBV-related HCC tissues than in 
that of non-HBV-related HCC tissues (Fig. 6A, B). In par-
ticular, the abundances of Dietzia and Oscillibacter were 
lower in the HBV group, while those of Veillonella and 
Alloprevotella were higher (Fig. 6C). The metabolic func-
tion prediction results showed that the thiamin diphos-
phate biosynthesis pathway was inhibited in the HBV 
group, while the degradation of glutamate and the bio-
synthesis of diacylglycerol were significantly enhanced 
(Fig. 6D).

The vast majority of HCCs originate from different 
degrees of liver cirrhosis. As a key indicator for evaluat-
ing the severity of liver cirrhosis, the Child‒Pugh score 
can be used to comprehensively estimate liver function. 
We found that the Child‒Pugh scores appeared to be 
strongly correlated with the extent of bacterial infiltration 
in the TME. Child‒Pugh B-C HCC patients exhibited sig-
nificantly higher bacterial diversity than Child‒Pugh A 
HCC patients (Fig. 7A, B). At the genus level, the abun-
dances of most microbes, such as Aeromicrobium, Sphin-
gobacterium and Erysipelotrichaceae, were significantly 
higher in Child B-C HCC tissues, while the abundance 
of Aliidiomarina and Bacillus was lower (Fig. 7C). Func-
tionally, the microbiota in this group of HCC tissues 

Fig. 6  Differences in the microbiota of HBV-related and non-HBV-related HCC. A, B Differences in the Ace and Chao indices of microbiota between 
HBV-related and non-HBV-related HCC. C Microbial differences at the genus level between HBV-related and non-HBV-related HCC. D Alterations in 
metabolic pathways in the microbiota of HBV-related and non-HBV-related HCC based on the MetaCyc database
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were found to play roles in processes such as glycogen 
metabolism and the degradation of molecules such as 
acetylneuraminic acid, galactose, and purines (Fig.  7D). 
Considering that patients with higher Child‒Pugh scores 
generally have symptoms such as ascites, intra-abdomi-
nal infection, and hepatic encephalopathy, the role of 
the microbiota and their metabolites deserves further 
investigation.

Subsequently, we evaluated the correlation of various 
preoperative clinical indicators of patients with bacte-
rial abundance. We found that Comamonas abundance 
was significantly negatively correlated with the levels 

of CA125, whereas Halomonas abundance was signifi-
cantly positively correlated with CA125 and CEA levels 
and negatively correlated with ALP levels (Fig. 7E). This 
finding further illustrates the influence of certain bacte-
ria within the tumour, such as Halomonas, a bacterium 
that has been shown to be associated with cancer, as 
well as their metabolites on tumour cells. We compre-
hensively evaluated the differences in tumour microbial 
infiltration among samples obtained from patients with 
different tumour-node-metastasis (TNM) stage, tumour 
numbers, and Barcelona Clinic Liver Cancer (BCLC) 
stages (Additional file 1: Fig. S1). Interestingly, according 

Fig. 7  Differences in intrahepatic microbiota between HCC patients with Child‒Pugh A and Child‒Pugh B-C and their correlation with biochemical 
markers. A, B Differences in the Ace and Chao indices of microbiota between Child‒Pugh A and Child‒Pugh B-C HCC. C Microbial differences at the 
genus level between Child‒Pugh A and Child‒Pugh B-C HCC. D Alterations in metabolic pathways in the microbiota of Child‒Pugh A and Child‒
Pugh B-C HCC based on the MetaCyc database. E Correlation analysis of biochemical indices and intratumoral microflora in HCC patients
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to these results, the bacterial diversity within the tumour 
increases with tumour size/malignancy.

Discussion
Interactions between microbes and the human body have 
been well documented; microbes can affect a variety of 
physiological functions, including metabolism and the 
immune system [17]. These interactions are also observed 
in cancer. Martel et al. suggested that at least 20% of can-
cers are influenced by the microbiota [18]. Therapeutic 
responsiveness (e.g., to immunotherapy and chemother-
apy) has been observed to depend on the gut micro-
ecosystem in animal experiments and cancer patients 
[19–23]. Previous studies have focused on the interac-
tion between gut microbes and specific diseases, and 
although multiple noninvasive biomarkers of particular 
diseases have been developed, due to the limitation that 
the microbiota play indirect roles in disease, the pre-
cise identification of the causal relationship between gut 
microbes and diseases, including cancer, remains a chal-
lenge [24, 25]. Intratumoral microbes play a more direct 
role on a more local scale than gut microbes to influ-
ence tumour progression [8]. Such microbes have been 
shown to interact with tumour cells in diseases such as 
lung, colorectal and skin cancers [11, 26–28]. Mechanis-
tically, intratumoral microbes act through three principal 
mechanisms: (1) their metabolites regulate oncogenes or 
oncogenic pathways; (2) they promote DNA damage and 
gene mutation; and (3) they regulate immune responses 
in the microenvironment [8, 10, 11]. Overall, these effects 
inhibit the antitumour response. Nejman et  al. demon-
strated that intratumoral microbiota are tumour specific, 
which may imply that the metabolic pathways in which 
microorganisms are involved in different microenviron-
ments can differentially affect tumour cells [9]. There-
fore, to further clarify the mechanism underlying HCC 
progression, it is necessary to explore the intratumoral 
microbes associated with HCC.

In this study, we assessed the microenvironment of 
HCC and confirmed the presence of bacteria in immune 
cells using FISH technology. Specifically, we performed 
MiSeq sequencing using 99 HCC and paracancerous tis-
sues based on 16S rRNA sequence technology, which 
yielded a comprehensive map of the microbes within 
HCC and paracancerous tissues. The results showed that 
the microbial community diversity, including alpha and 
beta diversity, was significantly higher in HCC tissues 
than in paracancerous tissues. However, the dominant 
species of the microflora (Proteobacteria, Firmicutes, 
Actinobacteria, etc.) did not differ between the two 
groups, but their levels were slightly different. We conjec-
tured that certain microorganisms with low relative abun-
dance may contribute more to the difference between 

the two groups. The significant elevations in Enterobac-
teriaceae, Neisseria and Fusobacterium abundance in 
tumour tissues caught our attention. A high abundance 
of Enterobacteriaceae is often associated with higher lev-
els of inflammation, which may be related to the ability 
of this type of microorganism to utilize inflammatory 
byproducts (such as nitrate) in the microenvironment 
as energy sources, which is an ability that is not found in 
competing bacteria [29–31]. Moreover, virulence factors 
secreted by E. coli, such as cytolethal distending toxin 
(CDT), further aggravate the inflammatory response 
and directly induce DNA damage [32]. Considering that 
inflammation is a recognized risk factor for cancer, this 
may be a potential mechanism through which Entero-
bacteriaceae is involved in the progression of HCC [33]. 
Similarly, Fusobacterium plays a role in proinflammatory 
processes [34]. Moreover, a unique ability of Fusobacte-
rium may be more involved in the progression of HCC: 
the bacterium can shuttle noninvasive bacteria into the 
cytoplasm of host cells [35]. Considering the direct con-
tact that occurs between intratumoral microbes and 
tumour cells in the TME, this ability could theoretically 
have a greater influence. This indicates that even bacte-
ria with levels that are not significantly different between 
HCC and paracancerous tissue can be involved in 
tumour progression by a mechanism that remains to be 
elucidated; uncovering this potential mechanism is obvi-
ously a great challenge to the pursuit of a full understand-
ing of the interaction between intratumoral microbes 
and tumours. In addition, the increased abundance of 
certain tumour-promoting bacteria, such as Neisseria, 
and the low infiltration of antitumour bacteria, such as 
Pseudomonas, may further influence HCC progression 
[36, 37]. The research conducted by Rolandas Gedgau-
das et  al. proved that intestinal permeability in patients 
with portal hypertension was significantly higher than 
that in the healthy control group, which was accompa-
nied by a high abundance of some bacteria in peripheral 
blood [38]. These bacteria mainly included Enterobacte-
riaceae, Shigella and many other kinds of bacteria, which 
is consistent with the high abundance of bacteria in HCC 
tissues observed in our study. This finding indicates that 
the progression of portal hypertension is accompanied 
by bacterial translocation, which can partly explain the 
source of intratumoral bacteria in HCC tissue.

Another interesting phenomenon is that functional 
enrichment analysis showed that the metabolic pathway 
in which microorganisms associated with HCC were 
involved in featured significant enhancement of fatty acid 
and lipid biosynthesis. It has been confirmed that changes 
in lipid metabolism occur in rapidly proliferating cancer 
cells [39]. Cancer cells transfer more carbon to fatty acids 
for membrane and signalling molecule biosynthesis than 
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normal cells to maintain rapid cell growth [40]. Previous 
studies have shown that tumour cells tend to synthesize 
fatty acids de novo [41]. However, the entry of pyruvate 
into the TCA cycle is inhibited due to the hypoxic TME, 
and the resulting reduction in fatty acid synthesis may be 
compensated by the increased uptake of exogenous lipids 
[42, 43]. Based on our research, we speculate that micro-
bial metabolites in the TME may provide another plausi-
ble source of fatty acids and lipids for cancer cells, which 
in turn promotes their proliferation and invasion.

Even within the HCC group, different clinical features 
led to differential microbial communities. For example, 
the abundance of Veillonella and Alloprevotella was sig-
nificantly increased in the TME of HBV-related HCC 
tissues. Higher Child‒Pugh scores tended to favour 
the high abundance of Sphingosineum and Erysipelas. 
Based on the current data, we are not able to precisely 
interpret the relationship between changes in the abun-
dance of specific bacteria and clinical features. Certainly, 
these microbes affect changes in the clinical character-
istics of patients in their own unique ways. Collectively, 
the microbial community associated with HCC causally 
interacts with the unique TME, influencing the progres-
sion of HCC through multiple mechanisms. While we 
cannot accurately assess the relationship between the two 
due to the lack of related research, we believe that our 
findings provide a basis and guidance for further explora-
tion in this field.

Conclusion
The present study involved microbial profile analysis 
of human HCC tissue and attempted to decipher the 
functional roles of specific microbes in tumour progres-
sion. We found significant differences in microbial com-
munities in HCC and paracancerous tissues. The high 
abundance of Enterobacteriaceae and Fusobacterium 
in HCC may affect HCC progression through various 
mechanisms.
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