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Abstract

Lead (Pb) poisoning is a major public health concern in environmental justice communities of the 

US and in many developing countries. There is no identified safety threshold for lead in blood, 

as low-level Pb exposures can lead to severe toxicity in highly susceptible individuals and late 

onset of diseases from early-life exposure. However, identifying “susceptibility genes” or “early 

exposure biomarkers” remains challenging in human populations. There is a considerable variation 

in susceptibility to harmful effects from Pb exposure in the general population, likely due to 

the complex interplay of genetic and/or epigenetic factors. This systematic review summarizes 

current state of knowledge on the role of genetic and epigenetic factors in determining individual 

susceptibility in response to environmental Pb exposure in humans and rodents. Although a 

number of common genetic and epigenetic factors have been identified, the reviewed studies, 

which link these factors to various adverse health outcomes following Pb exposure, have provided 

somewhat inconsistent evidence of main health effects. Acknowledging the compelling need 

for new approaches could guide us to better characterize individual responses, predict potential 

adverse outcomes, and identify accurate and usable biomarkers for Pb exposure to improve 

mitigation therapies to reduce future adverse health outcomes of Pb exposure.
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The heavy metal lead (Pb) is a ubiquitous persistent environmental and occupational 

toxicant affecting human populations. Despite years of intensive research, educational 

efforts, and remedial measures, Pb poisoning remains a major environmental health concern. 

Human exposure to Pb occurs through inhalation of air contaminated with Pb dust, ingestion 

of contaminated food and/or water, or direct contact through the skin (Olympio et al. 

2009). Although Pb has been removed from paints and gasoline, it can still be found in a 

number of consumer products used daily such as batteries, toys, food, and water (Olympio 

et al. 2009). The incidence of Pb poisoning is associated with numerous factors, including 

socioeconomic status, rurality, race, age, and the date one’s residence was built (Levin et 

al. 2008). Urban children in low socioeconomic status (SES) areas are at the highest risk, 

presumably due to the presence of Pb in older building materials and reduced access to 

healthy sources of nutrition (Mason et al. 2014; Tong et al. 2000). Additional sources of 

Pb in these areas are aging public infrastructure and mistreatment of water purification as 

occurred in Flint, Michigan (Masten et al. 2016).

Pb introduced into the bloodstream is excreted in urine and bile with a median biologic 

half-life of about 30 days (Barbosa et al. 2005), which mostly reflects acute exposure. The 

remaining Pb is distributed throughout soft tissues of the body, and eventually accumulates 

in bones with a half-life of approximately 25 to 30 years (Rădulescu and Lundgren 2019), 

which reflects one’s cumulative exposure over time (Pawlas et al. 2012). Although Pb is not 

essential for biological functions, it has the capacity to disrupt biological systems by altering 

molecular interactions, enzyme activities, and cell signaling and function (García-Lestón 

et al. 2012; Sanders et al. 2009). As a cumulative toxicant, acute and chronic exposure 

to Pb has irreversible toxicity in several human organs and systems, such as nervous, 

hematopoietic, and reproductive systems, as well as in kidneys and bones (Lopes et al. 

2016; Shellenberger 1984). Although early life Pb exposure may have long-term negative 

impacts in adult health, children are more susceptible to Pb toxicity than adults as they 

undergo rapid growth and development, and windows of great plasticity and vulnerability 

accompany these processes. Moreover, children have heavier exposures because of their 

behavior, diet, and metabolic and physiologic characteristics (Moya et al. 2004). In fact, 

they can absorb a greater percentage of Pb from the gastrointestinal tract and inadequate 

nutrition, iron deficiency, and calcium deficiency can further influence Pb absorption (Hon 

et al. 2017). The levels of Pb considered safe for children have been repeatedly lowered 

by regulatory agencies over the past three decades as even low levels of Pb in blood 

result in adverse outcomes, which currently cannot be reversed (Vorvolakos et al. 2016). 

According to the latest guideline from the Centers for Disease Control and Prevention 

(CDC), a reference level of 5 μg/dL should be used to identify children with Pb toxicity 

(Hon et al. 2017). This reference value is based on the 97.5 percentile of the blood Pb 

level in U.S. population children aged 1–5 years. Additionally, the European Food Safety 

Authority (EFSA) concluded that there is no safe exposure to Pb based on international 

studies (Authority 2012). There is a considerable variation in the severity of harmful 

effects of Pb exposure in both the general population and occupational workers (Kim et 

al. 2014). Differences in health outcome may be affected by nutritional and physiological 

factors, degree of exposure, and/or host factors such as age, sex, genetic differences, and 

Cuomo et al. Page 2

Environ Sci Pollut Res Int. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



microbiome composition that can modify adsorption, distribution, metabolism and excretion 

(ADME), or the sensitivity to the toxic effects of Pb (Gundacker et al. 2010).

Experimental and epidemiological studies have shown gene-environment interactions and 

epigenetic changes to have a plausible role in variation to adverse health effects of 

Pb (Mitra et al. 2017). Such gene-environment interactions are still poorly understood 

as epidemiological studies in humans are confounded by many other factors such as co-

morbidities, health and physiological status, and exposure to a wide variety of chemical 

mixtures over the lifetime of an individual (Harrill and McAllister 2017). Additionally, 

only surrogate measures of Pb exposure, that may not accurately represent body burden, 

are used in human studies (Barbosa et al. 2005). Challenges and limitations also exist in 

preclinical animal studies, the primary limitation being the use of inbred rodent strains that 

lack genetic diversity and thus the differential susceptibility that exists in humans. In fact, 

many recent studies have shown that genetic background can profoundly affect adverse 

outcomes of exposures to environmental contaminants (Harrill and McAllister 2017). On 

the other hand, analyses of animal models exposed to Pb have the potential to disclose 

unpredicted outcomes and, most importantly, mechanisms of toxicity relevant to human and 

environmental health risk assessment. Here we review available published information on 

Pb toxicity, genetic and epigenetic studies that underly variable Pb-induced adverse health 

outcomes in animal models and human cohorts.

Health effects from Pb exposure

Pb as cumulative toxicant can cause many deleterious systemic effects and yet their 

underlying mechanisms have not been completely unfolded. Information on Pb toxicity 

has been reviewed below from epidemiological studies in humans. The most extensively 

studied adverse health outcomes are neurological, renal, cardiovascular, hematological, 

reproductive, and developmental effects (Flora et al. 2012).

Research provides substantial evidence that Pb exposure alters the central nervous system 

with the brain being the most sensitive organ. Specifically, Pb can disrupt key molecules 

during neuronal migration and differentiation; interfere with synapse formation; premature 

differentiation of glial cells; interfere with neurotransmitter release (Mason et al. 2014). Pb 

effects on glutamatergic transmission can affect both development and neuronal plasticity 

(Sanders et al. 2009). Early-life exposure to Pb has short- and long-term consequences 

on cognitive function (e.g., lower IQ, lowered learning and memory, poor fine motor 

skills, antisocial and delinquent behaviors, and attention-deficit hyperactivity disorder (Caito 

and Aschner 2017). Behavioral problems, including attention-deficit hyperactivity disorder 

have been associated with disruption of dopaminergic functioning (Sanders et al. 2009). 

Moreover, recent evidence links developmental Pb poisoning with the etiology of disorders 

that appear much later in life, such as Alzheimer’s disease, Parkinson’s disease, and 

schizophrenia (Ordemann and Austin 2016). The underlying mechanism for neurotoxicity is 

not fully understood and is being actively explored. Oxidative stress, altered cell signaling, 

and neurotransmission play a major role in Pb neurotoxicity.
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Adverse renal effects of Pb have been reported in numerous epidemiological studies. Despite 

the nephropathy caused by Pb exposure, the mechanisms by which Pb enters target cells 

in the kidneys are not well understood. Early-life exposure to low-levels of Pb has been 

shown to cause glomerular hypertrophy, which may result in renal insufficiency later in 

life. Furthermore, acute Pb exposure affects renal tubules determining defects in solute 

and amino acid transport culminating in Fanconi syndrome, whereas chronic Pb exposure 

results in progressive nephritis (Mitra et al. 2017). Pb-induced kidney injury has been 

reported to be associated with increased oxidative stress, leading to alterations of the 

mitochondrial permeability transition pore (MPTP) which can initiate apoptosis in kidney 

cells. Additionally, Pb can impair calcium distribution in renal cells leading to activation 

of signaling pathways that trigger apoptosis (Orr and Bridges 2017). Overall, the Pb role 

in kidney function is very inconsistent suggesting that individuals might have different 

responses to Pb poisoning. Effects on blood pressure are the most studied cardiovascular 

outcome. Epidemiological studies suggest a link between childhood Pb exposure and 

development of hypertension (Mitra et al. 2017). However, Pb exposure, as a causal factor 

of hypertension is still controversial (Mitra et al. 2017). High concentrations of Pb are 

toxic to both heart and vascular smooth muscle (Prozialeck et al. 2008) increasing the risk 

for mortality (Lanphear et al. 2018). Furthermore, nephrotoxicity Pb-induced can indirectly 

affect the cardiovascular system by modulating renin and angiotensin production.

Pb toxicity to the hematopoietic system has been confirmed in numerous studies. Exposure 

to Pb can result in hemolytic or Frank anemia as a consequence of the decrease in 

hemoglobin synthesis and in erythrocytes lifespan. In fact, Pb severely affects the heme 

biosynthesis by down-regulating three vital enzymes: delta-aminolevulinic acid dehydratase 

(ALAD), aminolevulinic acid synthetase (ALAS) and ferrochelatase. Anemia is usually 

observed in chronic Pb poisoning in adults and in case of iron deficiency, especially kids 

and women (Mitra et al. 2017). An increase in oxidative stress can damage or destabilize red 

blood cell (RBC) membranes.

Exposure to Pb has been reported to alter immune functions. Epidemiological and 

experimental studies suggest that Pb can influence levels of immunoglobulins, alter the 

number of lymphocytes, peripheral blood mononuclear cells (PBMCs) and macrophages, 

and depression neutrophil functions (Fenga et al. 2017; Mishra et al. 2003). In particular, 

Pb can affect both cellular and humoral immune response by altering Th cell function 

and increasing susceptibility to the development of autoimmunity and hypersensitivity 

(Mishra 2009). Pb can also deregulate cytokines production and tryptophan degradation 

which could produce depression of immune responses and contribute to the development of 

several immunological pathologies in individuals occupationally exposed (García-Lestón et 

al. 2012).

Reproductive studies in humans suggest Pb as a contributing factor to infertility in both men 

and women (Kumar 2018). Health effects on male reproductive system have been largely 

investigated in comparison to the female system. Specifically, it has been reported damage 

to sperm and potential alterations in serum levels of reproductive hormones (Naha et al. 

2005; Taha et al. 2013). On the other hand, epidemiological studies conducted in women 

show an increased risk for miscarriages (Vigeh et al. 2010), prematurity, and earlier age 

Cuomo et al. Page 4

Environ Sci Pollut Res Int. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



at onset of menopause (Eum et al. 2014; Irgens et al. 1998). However, results on female 

reproductive effects from Pb are inconsistent. Similarly, Pb exposure has been associated 

with developmental outcomes such as decreased birth size and child growth (Berkowitz et al. 

2006; Zhu et al. 2010) and yet results are also conflicting.

In addition, adverse health outcomes from Pb exposure to other organ systems have been 

reported as well. Pb can be considered an endocrine disruptor compound as it can interfere 

with the endocrine system. Early-life Pb exposure has been associated with low levels of 

vitamin D (Chang et al. 2014), delayed puberty and early menopause (Eum et al. 2014). 

Associations have also been reported between Pb exposure and decreased lung function, 

increased bronchial hyperreactivity, and increased risk of respiratory diseases (Taylor et al. 

2019).

Although the skeleton is the major reservoir of lead in the body, its effect on it has 

not been widely studied. Early-life Pb exposure impacts skeletal development through 

unknown mechanisms which may affect bone growth and remodeling. From in vitro data 

and clinical observations, it appears that Pb may influence cartilage differentiation at two 

stages: chondrogenesis enhancement and arrest of transition to bone (Puzas et al. 2004). 

Given the effect, lead could be an unrecognized factor in osteoporosis as it accelerates bone 

maturation but determining a reduction in bone mass (Puzas et al. 2004). However, human 

studies are limited.

In severe cases of Pb poisoning, children or adults may experience severe abdominal pain, 

nausea, vomiting and constipation, as the gastrointestinal tract is responsible for Pb intake 

and uptake (Fenga et al. 2017).

Genetic susceptibility to Pb poisoning

The results of the strength-of-evidence of association between genetic factors and Pb 

susceptibility, including health outcomes are summarized in Figure 1. Generally, factors 

influencing susceptibility to Pb toxicity include variants and polymorphisms in genes 

involved in Pb ADME (Onalaja and Claudio 2000).

Epidemiological studies

Three genes have been widely reported to be involved in Pb metabolism: δ-aminolevulinic 

acid dehydratase (ALAD), the vitamin D receptor (VDR), and the hemochromatosis (HFE). 

Polymorphisms in ALAD, whose genotype frequencies vary by geography and ethnic origin, 

have been implicated in susceptibility to Pb toxicity (Onalaja and Claudio 2000). ALAD 

is the second enzyme in the heme synthesis pathway and the primary binding protein in 

erythrocytes (Zheng et al. 2011). Human ALAD, encoded by a single gene on chromosome 

(Chr) 9q34, has eight variants that have been described. The most studied polymorphism 

is a G → C transversion at position 177 in the coding region of ALAD (rs1800435), 

substituting a neutral asparagine (Asn) for a positively charged lysine (Lys) at amino 

acid 59, which results in three distinct phenotypic variants (ALAD1-1, ALAD1-2, and 

ALAD2-2) (Battistuzzi et al. 1981; Wetmur et al. 1991). The ALAD1 (59Asn) gene product 

is more electronegative than that of ALAD2 (59Lys) suggesting that ALAD1-2/2–2 may 
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bind Pb more tightly than ALAD1-1. Consistent with this prediction, ALAD2 carriers seem 

to retain more Pb in blood than ALAD1 homozygotes, while there is no difference at low 

exposure (Scinicariello et al. 2007). Occasionally, ALAD2 has also been reported to be 

associated with higher concentration of Pb in urine. Furthermore, ALAD polymorphisms 

can influence urinary excretion of δ-aminolevulinic acid (U-ALA) in children with ALA 

being one of the contributors to Pb-induced neurotoxicity (Tasmin et al. 2015). Furthermore, 

exposure to Pb negatively impacted achieved growth in children carrying ALAD1-2 and 

ALAD2-2 genotypes (Kerr et al. 2019). Other ALAD polymorphisms have been investigated 

as well, however their role in Pb accumulation is not clear due to study limitations (Mani et 

al. 2019). Since Pb exerts toxic effects on numerous organ systems, ALAD genotype might 

affect inter-individual variation in susceptibility to these toxic effects through differential 

sequestering of Pb by ALAD, making it less bioavailable for pathogenetic process. Although 

it has been shown that the ALAD genotype alters the toxicokinetics of Pb, the association 

between adverse health outcomes of Pb and ALAD genotype is not well established.

Through an entirely different pathway, another much less studied genetic variant also 

impacts blood Pb burden and brain ALA. The solute carrier family 15 member 2 gene 

(SLC15A2), also known as PEPT2, protects the brain from excess peptide-bound amino 

acids and potentially limits Pb-induced neurotoxicity (Hu et al. 2007). Two PEPT2 single 

nucleotide polymorphisms, PEPT2-1 and PEPT2-2, predominate. At lowest levels of Pb 

exposure, males but not females homozygous for PEPT2-2 have significantly increased 

blood Pb level (Sobin et al. 2011).

Variants of the vitamin D receptor gene (VDR), involved in intestinal Ca2+ absorption 

and storage in the bone, have been suggested to play a role in modifying Pb absorption 

since it can mimic calcium at the calcium binding site of transporters. VDR plays a major 

role in maintaining calcium and phosphate homeostasis, regulating bone metabolism, and 

anti-proliferative, pro-apoptotic, and immunosuppressive activities. VDR, located on human 

Chr. 12, is regulated by the active form of vitamin D3 (1,25-dihydroxyvitamin D3). Many 

polymorphisms have been identified in VDR, mostly defined by restriction fragment length 

polymorphisms (RFLPs). Previous studies showed that the Bsm I RFLP polymorphism in 

intron 8 is associated with uptake of Pb (Schwartz et al. 2000; Weaver et al. 2005). There 

are indications that carriers of the Bsm I VDR allele are predisposed to significantly higher 

Pb concentrations in blood, bones, and urine compared with non-carriers of the Bsm I allele. 

Moreover, the Fok 1 VDR RFLP may modify the relationship of Pb exposure and blood Pb 

levels during the first two years of life, when children are most susceptible to Pb ingestion 

and absorption. The Fok 1 VDR allele is associated with posture disturbance as well as 

hearing impairment in children exposed to very low Pb levels (Pawlas et al. 2014; Pawlas et 

al. 2015). Little information is available about the association between blood Pb levels and 

other polymorphisms defined by Apa I and Taq I RFLPs of VDR. Overall, modification of 

both ALAD and VDR genes have shown to have an impact on cognition in children exposed 

to Pb (Pawlas et al. 2012). However, the role of VDR polymorphisms in Pb uptake from 

bone tissues remains unclear.

There is strong evidence that excessive Pb uptake affects iron metabolism and may be an 

important cause of iron deficiency. Thus, iron metabolism genes are potential players in Pb 
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absorption and storage. The hemochromatosis gene (HFE) is responsible for accumulation 

of iron in humans, variants in which can lead to severe liver failure, heart disease, or diabetes 

(Fleming et al. 2005). Two common missense mutations (H63D and C282Y) result in HFE 

deficiency, leading to upregulation of transferrin receptors and divalent metal transporters 

(DMTs) followed by increased iron uptake in the gut and also perhaps Pb (Hollerer et 

al. 2017). Pregnant mothers with H63D variants have higher Pb levels in placental tissue, 

umbilical cord, and blood compared to the homozygote typical (HH) (Kayaalti et al. 2015a). 

A strong association between Pb exposure and amyotrophic lateral sclerosis (ALS) has been 

reported among HFE C282Y variant carriers (Eum et al. 2015). However, the mechanistic 

basis for the relationship of increased Pb absorption and HFE deficiency has not been 

proven. Furthermore, there is no strong evidence for the influence of HFE variants on Pb 

body burden. In addition, several association studies revealed the influence of transferrin 

(TF) mutations, a monomeric glycoprotein that facilitates the transport of iron, in modifying 

the impact of cumulative Pb exposure on factors such childhood neurocognition, placental 

transfer, and homocysteine levels (Karwowski et al. 2014; Roy et al. 2013). Apart from 

HFE and TF, divalent metal transporter 1 (DMT1) has been implicated as a modulator of 

Pb toxicity in one study. A single nucleotide polymorphism (IVS4þ44C/A) in DMT1 was 

associated with higher blood Pb levels in 486 unrelated and healthy individuals in a Turkish 

population (Kayaaltı et al. 2015b). However, the study only suggested a potential link 

between the genetic variant and increased disease risk. Since these polymorphisms could 

potentially determine several phenotypic outcomes from Pb exposure due to its crosstalk 

with iron, additional studies are warranted.

Several polymorphisms in the glutathione-S-transferase genes GST (GSTM1, GSTT1, 

and GSTP1), key players in metal-induced oxidative stress defenses, can contribute to 

phenotypic variation in enzymatic production and activity, and thus also may play a role 

in susceptibility to Pb toxicity. GSTP1 Ile105Val and GSTM1 null genotypes have been 

associated with modified Pb-induced cognitive function (Eum et al. 2015). Moreover, GST 
polymorphisms like GSTT1 have been linked to increased blood pressure in Pb-exposed 

Korean male workers and inflammatory responses associated with Pb toxicity (Bozina et al. 

2009; Lee et al. 2012).

Interaction with proteins is an important mechanism of Pb toxicity, especially interactions 

with high-affinity metal-binding proteins that have a high content of sulfhydryl groups. 

Metallothioneins (MTs) are cysteine-rich low molecular weight proteins with numerous 

functions including metal detoxification. Four major isoforms have been identified in 

mammals (MT1-MT4) (Raudenska et al. 2014). An inverse association between the MT2a 
variant (rs10636) and blood Pb levels has been reported (Fernandes et al. 2016; Gundacker 

et al. 2009; Whitfield et al. 2007). However, these studies report high variation in outcomes 

making the results ambiguous.

Several studies have associated cognitive impairment and/or Alzheimer’s disease (AD) in 

adults with low-level Pb exposure (Basha et al. 2005; Weisskopf et al. 2004). However, 

few studies have evaluated the role of genetic susceptibility on the cognitive effects of 

environmental Pb exposures. Apolipoprotein E (APOE) epsilon-4 allele (e4) is a known 

genetic risk marker for cognitive function impairment and AD (Liu et al. 2013). In fact, 
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individuals with APOE e4 show age-related reduction in hippocampal volume (Lind et 

al. 2006), decreased antioxidant capacity (Miyata and Smith 1996), and altered use of 

nutrients (Reiman et al. 2004). Therefore, APOE e4 carriers may be more susceptible to 

Pb-induced neuroinflammation and impaired adult hippocampal neurogenesis contributing 

to these cognitive deficits (Engstrom et al. 2017; Prada et al. 2016).

The endothelial nitric oxide synthase gene (NOS3) is also of interest with respect to Pb. It 

has a common polymorphism NOS3 Glu298Asp in exon 7 that involves a G → T conversion 

at nucleotide position 298, which is associated with Pb susceptibility to cardiovascular 

disease (Vaziri and Ding 2001; Vaziri et al. 2001; Weaver et al. 2003).

A population-based study suggested that genetic polymorphisms within the dopamine 

receptor D2 gene (DRD2) TAQ IA increases susceptibility to intelligence deficits in Indian 

children due to Pb exposure (Roy et al. 2011). Conversely, another population study found 

no evidence of an interaction between the DRD2 TAQ IA polymorphism and Pb exposure 

on cognition in Mexican children (Kordas et al. 2011). The discrepancy could be due to 

the differences in the degree of Pb exposure and cognitive domains analyzed, as well as the 

genetic constitution of the exposed populations.

N-Methyl-D-aspartate receptors (NMDARs) mediate neuronal maturation and excitatory 

neurotransmission in mammalian brain, which affects learning and memory (Endele et 

al. 2010; Gavazzo et al. 2008; Omelchenko et al. 1997; Toscano and Guilarte 2005). 

Polymorphisms in its subunit genes GRIN2A and GRIN2B have been reported to contribute 

to Pb-induced toxicity. A population-based study showed that GRIN2A decreased more than 

30% after Pb exposure and its SNP rs2650429 is associated with Pb-induced neurotoxicity 

(Wu et al. 2017). Additionally, genetic variants of GRIN2A (rs727605 and rs1070503) and 

GRIN2B (rs7301328 and rs1806201) have been associated with multiple adverse cognitive 

phenotypes in children (Rooney et al. 2018).

Two SNPs (rs10503970 and rs9642758) were identified on Chr 8 in a genomic region 

of Unc-5 netrin receptor D gene (UNC5D) in humans that have a potential impact on 

neurodevelopmental outcomes in response to prenatal Pb-exposure (Wang et al. 2017). 

UNC5D controls neuronal cell survival, cell-cell adhesion, cell guidance (e.g., axon 

attraction or repulsion), and migration. It also acts as a dependence receptor required for 

apoptosis induction when not associated with netrin (Takemoto et al. 2011).

Experimental studies: in vivo

So far, only few reports have examined the role of genetic factors in Pb toxicity in rodent 

populations and have been published. Studies in animal models have shown an association 

between Pb-induced neurotoxicity and Grin2a, which encodes for an important subunit of 

the N-methyl-D-aspartate receptor (NMDAR) as mentioned previously. Pb exposure can 

alter GRIN2A concentrations in the brain overall and specifically in the hippocampus of rats 

and, consequently, can cause synaptic morphological and functional changes in hippocampal 

CA1 pyramidal neurons (Tüzmen et al. 2015), resulting in behavioral changes (Neal et al. 

2011; Wang et al. 2016).
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Additionally, adverse effects from Pb are mitigated by MTs whose synthesis has been shown 

to be Pb-induced in rat liver and kidney (Jurczuk et al. 2006; Stacchiotti et al. 2009). MT 

null mice and cells are more sensitive to Pb toxicity than wildtype equivalents (Qu et al. 

2002).

Epigenetic susceptibility to Pb poisoning

The results of the strength-of-evidence of association between epigenetic factors and Pb 

susceptibility, including health outcomes are summarized in Figure 2.

Epidemiological studies

Studies of Pb exposure in occupational cohorts have identified DNA promoter methylation 

changes, where individuals have hypomethylation in long interspersed nuclear elements-1 

(LINE-1) (Li et al. 2013) and hypermethylation of ALAD (Li et al. 2011) and CDKN2A 
(Kovatsi et al. 2010), that are associated with increased risk of toxicity from Pb exposure. 

LINE-1 is a repetitive DNA retrotransposon containing numerous CpG islands and its 

methylation helps maintain genomic stability and integrity (Li and Zhang 2014). LINE-1 

methylation represents a biomarker of past Pb exposure in elderly men as it inversely 

correlates with bone Pb accumulation (Wright et al. 2010). Besides inhibiting ALAD 

enzyme activity, Pb can increase the level of ALAD methylation and thus decrease ALAD 
transcription (Li et al. 2011). Together these changes have been suggested as risk factors 

of ASD (Keil and Lein 2016). Interestingly, the dual role of the ALAD gene in Pb 

toxicity may suggest a link between epigenetic regulation and genetic polymorphisms 

contributing to Pb susceptibility. The tumor suppressor gene CDKN2A, overexpressed 

during neurodegeneration, is hypermethylated in individuals with high blood Pb levels, 

whereas individuals with lower blood Pb levels show only partial methylation (Kovatsi et 

al. 2010). Additionally, Pb-exposed workers have higher CpG island methylation associated 

with increased DNA damage making them susceptible to tumorigenesis (Yu et al. 2018). 

Alteration of DNA methylation within the promoter region of the collagen type 1 alpha-2 

(COL1A2) gene, an important component of the connective tissues linked to preterm birth in 

humans, has been associated with blood Pb level in women undergoing in vitro fertilization 

(Hanna et al. 2012).

Lastly, Pb-induced changes in methylation have also been recently reported as 

transgenerational, with data indicating that a mother’s blood Pb levels and methylation 

status can directly impact that of her children and potentially grandchildren (Sen et al. 

2015b). Moreover, exposure to Pb during pregnancy can alter methylation patterns of DNA 

repair and antioxidant genes in newborns, which could be a risk factor for developing 

diseases later in life (Montes-Castro et al. 2019). For instance, Pb has been associated with 

decreased methylation of the glycoprotein VI platelet (GP6) gene (Engström et al. 2015), 

a key factor in platelet aggregation and thrombus formation, and with hypermethylation 

at the MEG3 (Nye et al. 2016) regulatory region indicating a link between Pb and onset 

of cardiometabolic diseases later in life. Another study reported sex-specific changes in 

DNA methylation from blood of children exposed to Pb in early-life (Sen et al. 2015a). 

In addition, children that were exposed to Pb in utero exhibited irregular methylation 
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patterns in imprinted genes, which may determine increased risk of childhood obesity and 

cardiometabolic disease in adulthood (Goodrich et al. 2015; Nye et al. 2016).

Pb toxicity has also been reported to be associated with miRNAs/lncRNAs dysregulation. 

In particular, exportin-5 (XPO5) polymorphism rs2257082 is strongly associated with the 

susceptibility to Pb poisoning. XPO5 is a key element of the miRNA biogenesis pathway 

as it is required for the transport of small RNAs and double-stranded RNA-binding proteins 

from the nucleus to cytoplasm in a Ran-GTP dependent process. Workers harboring the C 

allele tend to have higher blood Pb levels (Zhang et al. 2016). However, specific molecular 

mechanisms for how this SNP modifies susceptibility to Pb is not known.

The reported studies show that environmentally relevant Pb exposure in humans, some 

resulting in even lower blood Pb levels than what recommended from CDC guidelines, can 

elicit changes in the epigenome that could translate into onset of diseases. However, adverse 

health effects from such changes can only be suggested since data from most of the human 

cohort studies lack phenotypic data addressing the overall health status.

Experimental studies: in vitro and in vivo

Studies performed in human cell lines and experimental animals provide evidence that 

prenatal Pb exposure is inversely associated with genomic DNA methylation in cord 

blood, suggesting that Pb can alter the fetal epigenome in humans, leading to long-term 

reprogramming of the DNA methylation profile and increased disease risk (Pilsner et al. 

2009). Specifically, Pb exposure in human neural progenitor cells alters DNA methylation 

status of genes involved in neuronal growth (Senut et al. 2014). Additionally, Pb exposure 

in human neuroblastoma cultures disrupts IGF1 stimulated methionine synthase activity, 

an enzyme that regulates DNA methylation (Waly et al. 2004). In these studies, cell 

line exposure to Pb can be considered relevant to humans since Pb concentrations of 

120–1200 nM correspond to blood Pb levels of 1–10 μg/dL. In addition, several in vivo 
studies described below used a wide range of Pb concentrations through different routes of 

exposures to better recapitulate human exposure and its link to disease onset.

DNA methylation is maintained by DNA methyltranferases (DNMTs) including DNMT1 

and DNMT3a and 3b, and involves the recruitment of methyl-CpG binding protein 

2 (MECP2) and other proteins (Bestor 2000). DNMT1 is responsible for maintaining 

methylation patterns following DNA replication whereas DNMT3a and 3b are required for 

de novo methylation and are essential for the establishment of DNA methylation patterns 

during development (Okano et al. 1999). MECP2 is an important epigenetic regulator as 

it acts as a transcriptional repressor by recruiting histone deacetylases and other factors 

to silence target genes (Im et al. 2010). Another study reported a significant decrease in 

DNMT1 levels across the lifespan of mice developmentally exposed to Pb and altered 

expression of MECP2, which could contribute to cognitive deficits observed in early-life 

exposure to Pb (Stansfield et al. 2012).

DNA promoter methylome analysis from a cortical neuron-specific population of cells of 

male adult mice exposed to Pb in utero showed methylation changes, albeit small, in regions 

connected to neurodevelopment and cognitive functions (Dou et al. 2019). Another study 
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reported hypomethylation of cadherin 7, type 2 (Chd7), a gene essential for neural crest 

migration and patterning, and its potential link to autism spectrum disorders (ASD) (Hill et 

al. 2015).

Early-life Pb exposure in rodents was associated with altered expression of genes coding 

for amyloid-beta precursor protein (App) and beta-site APP-cleaving enzyme 1 (Bace1) later 

in life, dysregulating biological pathways important to late-onset AD pathogenesis (Kim et 

al. 2014). Amyloid β (Aβ) plays a crucial role in the pathogenesis of neurodegeneration 

and its increase can generate ROS and modulate epigenetic patterns of cytosines interfering 

with repair and oxidation potential of adjacent oxidized guanines (Zawia et al. 2009). This 

observation is consistent with the role of APOE e4 in AD and Pb susceptibility due to its 

role in the process of Aβ deposition contributing to the formation of aggregates or clearance 

alteration (Dodart et al. 2002). It is possible that the individuals carrying the APOE e4 
variant and exposed to Pb in early life could be even more susceptible to the AD onset.

Epigenetic outcomes from Pb exposure can also happen at the histone level (Schneider 

et al. 2016). Developmental exposure to Pb can induce aberrant histone modifications in 

the hippocampi of rats resulting in attention-deficit/hyperactivity disorder (ADHD) (Luo 

et al. 2014). In addition, mice exposed to Pb during post-natal day (PND) 1–20 showed 

both decreased levels of specific epigenetic marks such as H3K9Ac and H3K4me2, which 

are associated with gene activation, and increased levels of H3K27me3 indicative of gene 

repression (Eid et al. 2016).

The analysis of rats’ hippocampi chronically exposed to Pb revealed changes in the 

expression of miRNAs (Mir204, Mir211, Mir448, Mir449a, Mir34b, and Mir34c) associated 

with neuronal injury and neurodegeneration (An et al. 2014). The SNP rs 7958904 in 

the lncRNA HOTAIR, involved in oxidative stress, has been linked to Pb susceptibility in 

workers with high blood Pb levels (Chen et al. 2018). Another study reported an increased 

expression of the lncRNA lncRpa and the circRNA circRar1, which directly regulate Mir671 
expression to promote neuronal apoptosis in the hippocampus and cerebral cortex of a 

mouse model of Pb-induced neurotoxicity (Nan et al. 2017). Moreover, early postnatal 

exposure to Pb alters the expression of miRNAs that target epigenetic mediators and 

neurotoxic AD-related proteins (Masoud et al. 2016). Undoubtedly, Pb can affect ncRNA 

expression, but further studies are needed to unveil molecular mechanisms and consequences 

of such change following exposure.

Discussion

The severity of a toxic effect depends on dose, duration, and windows of exposure (i.e. 

pre- and post-natal development) (Sexton and Hattis 2007). However, humans show great 

variability in response to environmental exposures even under similar exposure settings 

(Dornbos and LaPres 2018). The high variability in clinical consequences of Pb exposure 

may be explained, in part, by the genetic background and the epigenetic changes that 

can alter susceptibility to Pb. The mechanisms by which Pb, interacting with genetics, 

trigger epigenetic changes remain to be clarified, and the causal relationship between such 

alterations and potential aberrant phenotypes needs to be further investigated. Therefore, 

Cuomo et al. Page 11

Environ Sci Pollut Res Int. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



it is crucial to understand how genetics and epigenetics influence the wide range of 

possible outcomes from Pb exposure within populations. This review presents the status 

of current knowledge on associations between adverse outcomes from Pb exposure and 

specific genetic and epigenetic factors involved in individual susceptibility to Pb toxicity 

(Figure 3). At least three polymorphic genes are well-established susceptibility markers in 

humans: ALAD, VDR, and HFE. Moreover, many other genes reviewed here also modulate 

Pb absorption and toxicokinetics, but their role remains to be explored as their impact on 

health effects of Pb are still unclear (Mani et al. 2019). Unlike genotoxic factors, which 

lead to permanent changes of genes, epigenetic changes are reversible and responsive to 

different environmental factors including lifestyle, diet, and other exposures (Crews et al. 

2014; Foley et al. 2009). Epigenetic modifications occurring early in life have the potential 

to alter later life events. In fact, disturbances in critical developmental windows can lead 

to increased risk of adult chronic diseases, including neurodevelopmental disorders that can 

manifest in childhood, adulthood, or even transgenerationally (Perera and Herbstman 2011). 

Epigenetic modifications are mediated through a series of interconnected pathways that 

include DNA methylation, histone modifications, and ncRNAs (Handy et al. 2011). All three 

epigenetic mechanisms are critical players in the development of a healthy brain. Although 

it is no coincidence that the previously mentioned Pb-induced epigenetic changes have been 

primarily associated with neurotoxicity (Senut et al. 2012), it is likely they have roles in 

other adverse health outcomes in other organ systems as well.

Most of the literature reviewed here relies on epidemiological studies which can address 

the exposure-response relationship and susceptibility to Pb, but they have been challenging 

due to the variety of clinical symptoms, uncontrolled environments, the use of safety 

measurements in occupational environments, difficulty in relating phenotypic effect to dose, 

uncontrolled genetic backgrounds, and modifying effects of other chemicals. Furthermore, 

most human exposure studies are underpowered, lacking sufficient information on timing 

and duration of exposure, and require additional validation in multiple independent sample 

sets or functional analyses to further elucidate the gene-phenotype relationship. The 

heterogenous results of these studies is likely due to the difficulty of characterizing gene-

environment interactions.

On the other hand, we retrieved very few studies utilizing in vitro and/or in vivo models 

particularly regarding the genetic susceptibility to Pb-induced adverse health outcomes.

Although animal models cannot completely mimic real-world exposures, results from 

animal studies can still provide valuable information to the body of evidence linking 

genetic and epigenetic factors with susceptibility to Pb toxicity. Animal studies can also 

shed light on biological mechanisms critical for determining adverse responses from Pb 

exposure. Understanding these processes as they relate to Pb susceptibility may help identify 

prevention and/or treatment strategies.

In conclusion, the examination of the available literature on associations between genetic 

and epigenetic factors and human health outcomes from Pb exposure indicate that both 

factors can influence an individual’s response to Pb and likely the variation in the types of 

responses. Moreover, the discrepancy of some reports reveals gaps in knowledge within 
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the field which would benefit from utilizing new approaches to validate, perhaps by 

utilizing more in vitro and in vivo models, and help find additional genetic factors or 

modifiers contributing to Pb susceptibility. Such knowledge could allow the identification 

of biomarkers for early diagnosis, disease susceptibility, and design of novel therapeutic or 

mitigation strategies to prevent long-lasting, Pb-induced effects.

Methods

This study used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) guidelines to report the results (Figure 4).

Search Strategy

Five databases were searched: Medline (Ovid), Global Health (Ovid), CINAHL (Ebsco), 

Cab Abstracts (Ovid), and Embase (Ovid) with the concepts of Pb, genetic susceptibility, 

and human or rats or mice. The search was developed by a medical librarian (M.J.F.) 

with expertise in systematic reviews. The search strings used to identify studies of interest 

are reported in Table 1. Results retrieved from the searches were uploaded to Covidence, 

which identifies duplicates and manages the screening process. Lastly, database searches 

were supplemented with studies identified through citation searching of included or highly 

relevant studies.

Study Eligibility Criteria

To be included studies needed to examine the association between general environmental, 

occupational, and experimental exposures to Pb, genetic and/or epigenetic factors, and 

health outcomes. Table 2 was developed to identify relevant to health effects of exposure to 

Pb detailing the Populations of interest, Exposures, Comparators, and Outcomes (PECO). 

Studies that reported health outcomes from Pb exposure without any link to genetic or 

epigenetic variation were excluded. Conference abstracts, letters, and editorials were also 

excluded. Articles were limited to those published between 2000 and September 2020. Only 

English-language primary studies were eligible.

Study Selection and Extraction

Study selection was conducted in two steps, first by title and abstract, then by full text. 

A standardized form was developed in Covidence to extract data from included studies. 

The form covered the following information: study type, risks of bias, location, population, 

route of exposure, window of exposure, exposure definition (i.e., general environmental, 

occupational, experimental, relevance to humans), research type (i.e., genetic or epigenetic 

variation), genetic variants, epigenetic variation, and health outcomes from genetic and 

epigenetic variants. The health outcomes were classified based upon organ dysfunction or Pb 

accumulation. The selection and extraction were completed by one reviewer in Covidence 

(D.C.) and data was exported from Covidence to Microsoft Excel and uploaded into the 

Texas Data Repository (https://doi.org/10.18738/T8/DTGDZB).
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Fig. 1. 
Gene polymorphisms in Pb susceptibility (A) and phenotype associations (B). Numbers 

indicate the number of studies for a given genetic factor and adverse health outcomes 

associated with them when reported.
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Fig. 2. 
Epigenetic factors in Pb susceptibility (A) and phenotype associations (B). Numbers indicate 

the number of studies for a given epigenetic factor and adverse health outcomes associated 

with them when reported.
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Fig. 3. 
An illustrative summary of well-known or suggested associations between genetic or 

epigenetic factors and health adverse outcomes from Pb exposure in humans. Italic font style 

indicates genetic factors, bold font style illustrates epigenetic factors and rectangles identify 

targets/adverse health outcomes. Underlined factors have been reported in both humans and 

rodents, asterisks delineate factors reported solely in rodents. The solid lines connecting 

either genetic or epigenetic factors represent a well-established relation with adverse health 

outcomes from Pb exposure and dotted lines a potential relation.
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Fig. 4. 
Literature search and screening results for studies reporting on the associations between 

genetic/epigenetic factors and susceptibility to Pb displayed as a PRISMA flow diagram 

(http://www.prisma-statement.org).

Cuomo et al. Page 25

Environ Sci Pollut Res Int. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.prisma-statement.org/


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cuomo et al. Page 26

Table 1

Search strategy for systematic review

Databases 
searched

Search strings

Medline 1. exp Lead Poisoning/
2. exp Lead/ or (lead or pb).ti,ab.
3. exp environmental exposure/ or exp food contamination/ or exp Occupational Exposure/ or exp Environmental Pollutants/
4. (poison* or exposure* or contaminat* or toxic* or intoxic* or pollut*).ti,ab.
5. toxicity.fs.
6. 1 or (2 and (3 or 4 or 5))
7. exp Genetic Predisposition to Disease/ or exp Genetic Variation/ or exp Disease Susceptibility/ or exp Gene-Environment 
Interaction/ or exp Epigenomics/ or exp genomics/
8. (gene* adj2 (predispos* or suscept*)).ti,ab.
9. (epigen* or genomic*).ti,ab.
10. disease suscept*.ti,ab.
11. (genetic adj1 variation*).ti,ab.
12. or/7–8
13. exp animals/ not humans.sh.
14. (rats or rat or mouse or mice).ti,ab. or exp Rats/ or exp Mice/
15. (6 and 12 and 14) or ((6 and 12) not 13)

Embase 1. exp lead poisoning/
2. exp lead/ or (lead or pb).ti,ab,kw.
3. exp environmental exposure/ or exp food contamination/ or exp Occupational Exposure/ or exp Environmental Pollutants/
4. (poison* or exposure* or contaminat* or toxic* or intoxic* or pollut*).ti,ab.
5. 1 or (2 and (3 or 4))
6. exp genetic predisposition/ or exp disease predisposition/ or exp genotype environment interaction/ or exp epigenetics/ or exp 
genomics/ or exp genetic variability/ or exp genetic variation/
7. (gene* adj2 (predispos* or suscept*)).ti,ab.
8. (epigen* or genomic*).ti,ab,kw.
9. disease suscept*.ti,ab.
10. (genetic adj1 variation*).ti,ab.
11. or/6–7
12. exp animals/ not humans.sh.
13. (rats or rat or mouse or mice).ti,ab. or exp mouse/ or exp rat/
14. (5 and 11 and 13) or ((5 and 11) not 12)
15. limit 14 to yr=“2000 -Current”

Cinhal (MH “Lead Poisoning”) OR
(((MH “Lead”) or AB (lead or pb) or TI (lead or pb)) AND ((MH “Environmental Pollution+”) OR (MH “Occupational 
Exposure”) OR (MH “Food Contamination+”) OR (MH “Toxins+”) OR (AB (poison* or exposure* or contaminat* or toxic* or 
intoxic* or pollut*)) OR ( TI (poison* or exposure* or contaminat* or toxic* or intoxic* or pollut*))))
AND
((MH “Epigenomics”) OR (MH “Genomics+”) ) OR (AB ((disease suscept* or epigen* or genomic*) or (gene* n2 (predispos* 
or suscept*)) or (genetic n1 variation*)) ) OR ( TI ( (disease suscept* or epigen* or genomic*) or (gene* n2 (predispos* or 
suscept*)) or (genetic n1 variation*)))
AND
(MH “Human”) OR (AB (rats or rat or mouse or mice or human*)) OR (TI (rats or rat or mouse or mice or human*))

CAB 
Abstracts

1. (lead or pb).ti,ab.
2. (poison* or exposure* or contaminat* or toxic* or intoxic* or pollut*).ti,ab.
3. (disease suscept* or epigen* or genomic* or (gene* adj2 (predispos* or suscept*)) or (genetic adj1 variation*)).ti,ab.
4. (rats or rat or mouse or mice or human*).ti,ab.
5. and/1–4
6. exp genomics/
7. exp man/
8. exp rats/
9. exp mice/
10. predisposition.sh.
11. exp lead poisoning/
12. 11 or (1 and 2)
13. 3 or 10
14. 4 or 7 or 8 or 9
15. and/12–14

Global 
Health

((lead or pb) and (poison* or exposure* or contaminat* or toxic* or intoxic* or pollut*)).ti,ab.
AND
((disease suscept* or epigen* or genomic*) or (gene* adj2 (predispos* or suscept*)) or (genetic adj1 variation*)).ti,ab.
(rats or rat or mouse or mice or human*).ti,ab.
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Table 2

Population, Exposure, Comparator and Outcome (PECO) statement

PECO element Evidence

Population Human populations or rodent models.

Exposure Pb exposure without any restrictions of the definition, measurement methods, length, or timing. Co-exposure studies that 
examined individual susceptibilities were only included if Pb effects could be extrapolated.

Comparators Comparison group with lower exposure or no exposure.

Outcome Dysfunction for any health outcome.
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