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Abstract

Introduction: Changes in brain structure and function occur with aging. However, there is 

substantial heterogeneity both in terms of when these changes begin, and the rate at which they 

progress. Understanding the mechanisms and/or behaviors underlying this heterogeneity may 

allow us to act to target and slow negative changes associated with aging.
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Methods: Using T1 weighted MRI images, we applied a novel algorithm to determine the 

physiological age of the brain (brain-predicted age) and the predicted age difference between this 

physiologically based estimate and chronological age (BrainPAD) to 551 sedentary adults aged 65 

to 84 with self-reported cognitive complaint measured at baseline as part of a larger study. We also 

assessed maximal aerobic capacity with a graded exercise test, physical activity and sleep with 

accelerometers, and body composition with dual energy x-ray absorptiometry. Associations were 

explored both linearly and logistically using categorical groupings.

Results: Visceral Adipose Tissue (VAT), Total Sleep Time (TST) and maximal aerobic capacity 

all showed significant associations with BrainPAD. Greater VAT was associated with higher (i.e,. 

older than chronological) BrainPAD (r = 0.149 p = 0.001)Greater TST was associated with higher 

BrainPAD (r = 0.087 p = 0.042) and greater aerobic capacity was associated with lower BrainPAD 

(r = − 0.088 p = 0.040). With linear regression, both VAT and TST remained significant (p = 0.036 

and 0.008 respectively). Each kg of VAT predicted a 0.741 year increase in BrainPAD, and each 

hour of increased TST predicted a 0.735 year increase in BrainPAD. Maximal aerobic capacity did 

not retain statistical significance in fully adjusted linear models.

Discussion: Accumulation of visceral adipose tissue and greater total sleep time, but not 

aerobic capacity, total daily physical activity, or sleep quantity and/or quality are associated with 

brains that are physiologically older than would be expected based upon chronological age alone 

(BrainPAD).

Keywords

BrainAge; Visceral adipose tissue; Sleep quantity; Maximal cardiovascular fitness; Successful 
aging; Body composition

1. Introduction

Advancing age is associated with declines in both grey and white matter volume (Harada 

et al., 2013), increases in white matter hyperintensities (Scharf et al., 2019), and reduced 

cortical thickness (Salat et al., 2004). Functionally, aging leads to reduced ability to retrieve 

newly learned information (Bier et al., 2017; Cargin et al., 2007) decreased executive 

function and processing speed (Salthouse, 2010), and increased likelihood of developing 

cognitive impairment (Overton et al., 2019) and neurodegenerative disease (Erickson et al., 

2018; Lopez and Kuller, 2019). However, there is substantial heterogeneity in these changes 

across individuals both in terms of age of onset, and the rate of progression (Harada et al., 

2013). Understanding the mechanisms and/or behaviors underlying this heterogeneity may 

lead to interventions that target the negative brain changes associated with aging. This is 

particularly useful if there are lifestyle factors which could be modified by public health 

interventions designed to promote successful (brain) aging.

Differences in individual physical fitness and exercise habits have been hypothesized to 

explain some of the observed differences in brain structure and function. Large cohort 

studies have found strong correlations between physical fitness and activity levels and 

both brain volume and risk of developing cognitive dysfunction (Tan et al., 2017; Zhu 

et al., 2015). Further, recent systematic reviews of cross-sectional studies using magnetic 
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resonance imaging (MRI) have found that higher levels of fitness and regular moderate-to-

vigorous intensity activity are sometimes associated with higher volume of grey matter 

in the hippocampus and prefrontal cortex (Erickson et al., 2014). However, this is not 

universally true depending upon clinical status (Burns et al., 2008; Raz et al., 2005). More 

generally, studies relating physical fitness to brain structural integrity have yielded variable 

findings and sometimes small effect sizes (Sexton et al., 2016; Bugg and Head, 2011; 

Burns et al., 2008). Further, inferring causality in cross-sectional studies is uncertain because 

age related changes in grey matter is highly heterogeneous (Fjell and Walhovd, 2010) and 

observed changes in older adults can be affected by brain development in youth (Tamnes et 

al., 2013).

Similarly, body composition has been hypothesized to have meaningful associations with 

brain volume and cognitive function independent of its impact on cardiovascular function. 

For example, Kharabian Masouleh et al. (2016) found that higher BMI was associated with 

lower grey matter volume in multiple brain regions even after controlling for confounding 

variables associated with fitness. Further, two recent systematic reviews of cross-sectional 

studies of obesity and brain structure suggest that obesity, particularly central obesity, is 

often correlated structurally with reduction in grey matter volume and reduced cortical 

thickness (S. X. Sui and Pasco, 2020) and functionally with impaired cognition (Tanaka 

et al., 2020). There is also substantial evidence linking central obesity with cardiovascular 

disease (Britton et al., 2013; Mahabadi et al., 2009), cancer (Britton et al., 2013; Kang et al., 

2010) and all-cause mortality (Kuk et al., 2006; S. W. Lee et al., 2018). As such, although 

there are suggestions that observed associations between brain structure and obesity reflect 

a shared etiology, the potential that centrally located visceral fat is a modifiable target 

for intervention across multiple disease states, including those affecting the brain, seems 

worthy of further investigation. Additionally, Kullmann et al. (2020a) may have identified 

a mechanism for these observed changes, noting that insulin sensitivity in the brain is 

strongly associated with volume of visceral fat. Importantly, this is one of the few studies 

reporting correlations from dual x-ray absorptiometry (DXA) derived visceral fat, rather 

than comparatively crude measures of obesity such as BMI, or proxy measures of visceral 

adiposity such as waist circumference.

Finally, sleep quantity and quality appear to have associations with elements of brain 

structure, particularly cortical brain volume (Sexton et al., 2014, Baril et al., 2021) and 

the microarchitecture of white matter including the observed number of white-matter 

hyperintensities indicative of reduced microstructural integrity and stability (Khalsa et al., 

2017, Baril et al., 2021). It appears that there may be an optimal amount of sleep for 

neurorestoration, with cognitive decline associated with both shorter (Mohlenhoff et al., 

2018) and longer (Mohlenhoff et al., 2018; Faubel et al., 2009) sleep durations. Diseases that 

manifest during sleep periods may also play a role in neurodegeneration with obstructive 

sleep apnea (OSA) having been associated with increased prevalence of blood markers 

associated with developing Alzheimer’s Disease (Andrade et al., 2018), and the use of 

Continuous Positive Airway Pressure (CPAP) appearing to improve cognitive outcomes 

in individuals with OSA (Andrade et al., 2018; Mullins et al., 2020). One recent study 

using a BrainAge algorithm has also linked brains that are older than chronological age 

would suggest with poor sleep quality (Ramduny et al., 2022). However, the strength of the 
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associations between sleep quantity and quality and brain health is variable, ranging from 

substantial and wide-spread across multiple regions of the brain (Lo et al., 2014; Thurston 

et al., 2020), to statistically non-significant (Kocevska et al., 2019) or localized to relatively 

small tracts within the brain (Khalsa et al., 2017).

To provide a more comprehensive analysis of age-related changes to brain structure, new 

tools that leverage the capacity of machine learning algorithms have emerged. Commonly 

considered a way to determine the physiological age of the brain (hereafter called brain-

predicted age), these tools utilize regional brain measures from MRI acquired from large 

samples who range widely in age to calculate a biological brain age. The difference between 

this biological age and an individual’s chronological age is called the Brain Predicted Age 

Difference (BrainPAD). In essence, a negative BrainPAD is indicative of a brain younger 

than chronological age would assume. Conversely a positive BrainPAD is indicative of an 

older than “expected” brain. In the last decade, these tools have been able to predict age in 

both healthy adolescents (Franke et al., 2012) and older adult populations (Cole et al., 2018; 

de Lange et al., 2020) with a high degree of accuracy. Further, outputs from these algorithms 

show high test/retest reliability (Cole et al., 2017) and correctly identify higher baseline 

brain age cross-sectionally and accelerated brain aging longitudinally in clinical populations 

manifesting symptoms of cognitive decline including development of Alzheimers Disease 

(Franke et al., 2010), multiple sclerosis (Cole et al., 2019; Cole et al., 2020), stroke (Richard 

et al., 2020), dementia (Biondo et al., 2022) and traumatic brain injury (Cole et al., 2015). 

In addition to providing potentially meaningful clinical data, as a single easily understood 

numeric score, BrainPAD may offer a meaningful public health tool that can be understood 

by the general public and can be used to promote brain healthy activities and behaviors.

While this tool shows potential as a biomarker for brain health, there is some evidence 

that suggests that positive BrainPAD (i.e., older than expected brain age) may be the result 

of early life changes in brain structure instead of behavioral patterns of middle and older 

adulthood (Vidal-Pineiro et al., 2021) which would limit its effectiveness as a tool for 

understanding the effect of modifiable behaviors on brain health. However, there is also 

evidence that suggests that modifiable lifestyle factors may have an impact on BrainPAD. 

Specifically, a large-scale epidemiological study drawn from the UK Biobank sample has 

identified modifiable lifestyle factors, including physical fitness and body composition, that 

contribute meaningfully to BrainPAD in adults ages 50 and older (Smith et al., 2019), 

and self-reported physical activity has been reported to be associated with younger than 

expected brain-predicted age across multiple studies (Steffner et al., 2016; Bittner et 

al., 2021). Given these data, and the equivocal findings to date regarding the role(s) of 

physical fitness and activity levels, body composition, and sleep on brain health within 

the older adult population, further exploring cross-sectional associations is important to 

better understand the potential clinical and research applications of this new tool. These 

analyses contribute to the understanding of brain-predicted age and BrainPAD by using 

high accuracy/precision objective measures of aerobic capacity, body composition, physical 

activity, and sleep to offer robust analyses that minimize sources of error than might 

come from estimation algorithms, proxy measures, or self-report within a relatively large 

population of presumptively healthy adults located in the United States. We hypothesized 

that superior cardiorespiratory fitness (as measured by estimated maximal aerobic capacity) 
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and higher levels of daily physical activity would be associated with a younger brain relative 

to chronological age (i.e., a smaller or negative BrainPAD). Additionally, we hypothesized 

that higher levels of adiposity, particularly higher levels of VAT, would be associated with 

older brains relative to chronological age (i.e. a larger or more positive BrainPAD) and that 

better sleep, as measured by number of minutes of sleep and overall sleep efficiency, would 

be associated with smaller/more negative BrainPAD.

2. Methods

2.1. Participants

Data were drawn from baseline measurements of a multicenter 2×2 factorial randomized 

interventional clinical trial set in two urban areas and approved by Institutional Review 

Boards at both the University of California, San Diego, and Washington University in 

St. Louis. This group has been described elsewhere (Wetherell et al., 2020). In brief, a 

total of 607 sedentary adults aged 65 to 84 with self-reported cognitive complaints, but 

without cognitive impairment indicative of developing dementia as defined by a score 

of <11 on Short Blessed Test (Katzman et al., 1983) were recruited. Individuals with 

diagnosed cognitive impairment or neurodegenerative disease were excluded. Additional 

exclusion criteria included conditions that would prohibit safe participation in the exercise 

intervention, current participation in cognitive training programs, currently engaging in >60 

min/week of moderate or vigorous exercise, use of glucocorticoid or diabetes medications, 

and alcohol or substance abuse within 6 months. All participants signed informed consent.

2.2. Neuroimaging acquisition

3T MRI scanners were used to acquire high-resolution (1′ × 1′ × 1′mm) T1-weighted 

sagittal, magnetization-prepared rapid gradient echo (MP-RAGE; repetition time (TR) = 

2300 ms; inversion time (TI) = 900 ms, echo time (TE) = 2.95 ms, flip angle = 9°; 

Acquisition time = 5 min) with real-time motion correction (PROMO). A study neurologist 

reviewed all images for excessive movement and/or incidental findings. Additionally, all 

scans were processed using FreeSurfer (version 6.0) to assess cortical thickness and provide 

a quantitative measure of image quality in the form of the Euler number (Fischl and Dale, 

2000).

2.3. Development of cole brain-predicted age algorithm

Although several models to estimate brain-predicted age exist, we utilized a model 

developed by Dr. James Cole. This model was created from T1-weighted whole brain 

structural images from 3377 presumptively healthy individuals drawn from seven publicly 

available datasets (https://github.com/james-cole/brainageR/blob/master/README.md). 

SPM 12 was used to normalize and segment the images into grey matter (GM), white matter 

(WM) and cerebrospinal fluid (CSF). Vectors of each of these tissue types were created and 

masked to remove non-brain voxels. Correlational matrices between vectors were explored 

and reduced using Principle Components Analysis (PCA). Principle components accounting 

for the top 80% of the explained variance were retained. Ultimately, 435 unique variables 

were identified which contribute to the brain-predicted age estimation. The algorithm was 

developed using Guassian Processes Regression, and was implemented using the kernlab 
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package in R (Karatzoglou et al., 2004). During model development, the model was tested 

on 857 individuals drawn from the same larger set of pooled data. Pearson’s correlation 

between predicted and chronological age was r = 0.973 with a mean absolute error of 

3.9 years. This model was thought to be the most appropriate for this study based on the 

comparatively large number of individuals over the age of 65 within the training dataset. 

Model fit data comparing chronological age with brain predicted age in this population 

specifically is included in the supplementary materials.

2.4. Brain-predicted age processing of T1 weighted MRI images

SPM12 was utilized to segment and normalize the T1-weighted MRI scans. The Rnifti 

package in R was then applied to create vectors with mutually exclusive GM, WM, and 

CSF tissue compartments. The Kernlab package in R was then applied to quantify the 

435 established variables and provide a brain-predicted age score. Visual quality control 

was conducted using FSL (Jenkinson et al., 2012). BrainPAD scores were calculated by 

subtracting chronological age from the derived ‘brain’ age. Positive scores reflect a brain 

that is older than would be predicted by chronological age alone. BrainPAD has been 

associated with increased mortality risk (Cole et al., 2018), increased likelihood of cognitive 

impairment (Liem et al., 2017), and poorer physical function on tests of muscular strength 

and pulmonary function (Cole et al., 2018).

2.5. Assessment of brain-predicted age values and images for inclusion

Images rated by a board certified neuroradiologist as poor quality or had notes indicating 

that their scans were uninterpretable were excluded. Additionally, individuals with a 

FreeSurfer derived Euler number larger than physiologically likely for their age were 

excluded (Fischl and Dale, 2000). The brain images for remaining scans were visually 

inspected by a trained research associate to exclude motion artifact (indicated by 

excessive blurriness) or abnormal mass. Because longitudinal data were available for many 

individuals, baseline values for brain-predicted age were compared against follow up scans 

(at 6- and 18-months post baseline) and those that differed by >25% were excluded on the 

presumption that changes of that magnitude were unlikely to be observed in such a short 

time frame, even with intervention.

2.6. Physical measures (GXT, DXA, accelerometery)

2.6.1. Graded Exercise Testing (GXT)—A GXT to volitional maximal exertion was 

conducted on either a treadmill (Quinton QStress, Cardiac Science, Chelmsford, Mass) 

or cycle ergometer (LODE Excalibur Sport, Netherlands). Participants were monitored at 

rest and throughout exercise with a 12 lead ECG by the study physician. Participants 

were familiarized with the safety elements of the exercise device, and coached to find a 

comfortable walking speed between 2.0 and 4.0 miles per hour (treadmill) or practiced at 

a workload of 0.33 W/kg (cycle), at which they warmed up for 3–5 min. Participants were 

then returned to a seated position and heart rate was monitored until it was less than 75 beats 

per minute, or had returned to baseline, whichever was higher. Assuming normal heart rate 

and blood pressure responses, participants began a progressive exercise protocol in which 

they walked at their chosen speed or cycled at 0.33 W/kg for the first 2-min stage and 
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increased by 2.5% elevation (treadmill) or 0.33 W/kg (cycle) each 2-min stage thereafter 

and continued until the participant was unable/unwilling to continue, or the study physician 

ended the test based on physiological changes. Heart rate, rate of perceived exertion, and 

blood pressure were recorded during the final 30 s of each stage.

Maximal exercise capacity was calculated in metabolic equivalents of task (METs) using 

formulas published by the American College of Sports Medicine based upon speed and 

grade (“ACSM’s Guidelines for Exercise Testing and Prescription - American College 

of Sports Medicine - Google Books,” n.d.) Based upon an expected linear relationship 

between oxygen uptake and workload, partial stages were scored in 30 s increments (i.e. if 

participants completed 30 s of a new stage, their score was METslastcompletedstage + 0.25* 

METsdifference)

2.7. Body composition using dual X-ray absorptiometry (DXA)

Body composition was assessed by DXA using a GE Lunar Prodigy densitometer at one 

site and an iDXA (GE/Lunar, Madison, WI) at the other. Both scanners utilized EnCore 

software (versions 14.1 and 16.1 respectively) for estimation of body composition. While we 

acknowledge the likelihood of small differences in soft tissue between these two machines, 

a full cross-calibration study was not feasible; instead, we compared data from 9 volunteers 

measured on both machines within a 2-week timeframe and found good agreement across 

sites (R = 0.982 to 0.997 depending upon metric).

Participants were coached to remove all potential artifact (metal, hard plastic, etc.) and were 

positioned in line with best practice recommendations (Thurlow et al., 2018). In the event 

participants were unable to completely fit on the table, a “hemi scan” was acquired scanning 

only the left arm and/or leg as needed. The software automatically replicated the values from 

the scanned limb for the limb that was “missing.”

2.8. Accelerometry for physical activity and sleep

Physical activity and sleep were measured objectively using the ActiGraph GT9X+ Link 

(ActiGraph Inc., Pensacola, FL, USA), a tri-axial accelerometer that has previously 

been used among adults, children, and adolescents in the National Health and Nutrition 

Examination Survey (Troiano et al., 2008) and has consistently been shown to be both 

valid and reliable (John and Freedson, 2012; Robusto and Trost, 2012; Warren et al., 2010). 

Participants were asked to wear the device continuously on their non-dominant wrist, except 

while bathing or swimming, for ten consecutive days. The wear location and time period 

are in-line with the best practices and result in high levels of acceptability and compliance 

among participants (Freedson et al., 2012; Matthews et al., 2012; Troiano et al., 2014; 

Tudor-Locke et al., 2015). Upon return, data were immediately downloaded and screened by 

hour for completeness and irregularities/malfunction (John and Freedson, 2012; Troiano et 

al., 2008, 2014), and algorithms designed to detect periods of non-wear were applied (Choi 

et al., 2011, 2012). Raw data were processed into “counts” (ActiGraph’s proprietary metric) 

per minute in the x, y and z axis independently and the vector magnitude of all three axis 

collectively. This metric incorporates intensity, frequency, and duration of acceleration and 
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has been recommended for assessing the total volume of physical activity in a 24-h period 

(Bassett et al., 2015) and can also be utilized to distinguish between sleep and wakefulness.

Bedtime was derived from contemporaneously maintained sleep journals in which 

participants recorded the time that they went to bed (i. e. tried to fall asleep) and the 

time that they first awoke. These times windows were assessed for sleep vs. awake on a 

minute-by-minute basis using an algorithm validated for use in adults (Cole et al., 1992). 

If no journal was provided, sleep onset and wake times were manually determined by a 

specially trained researcher using previously validated methods developed by Full et al. 

(2018). Additional derived values include sleep latency, wake after sleep onset in terms 

of number and length, and sleep efficiency. Individuals were also classified as normal or 

abnormal sleepers based on NIA recommendations for older adults of seven to nine total 

hours of sleep time per night.

2.9. Genotyping analysis

The Apolipoprotein E (APOE): gene encodes a protein involved in the metabolism 

of fats. The presence of a specific allele (APOE4) is implicated in the development 

of Alzheimer’s disease (Uddin et al., 2019; Zhang and Hong, 2015) and cardiovascular 

disease (Mahley, 2016). APOE genotyping was run on samples in duplicate on a 12K 

Flex QuantStudios (ThermoFisher, Waltham MA) PCR instrument following standardized 

procedures for normalizing, priming, plating, and analyzing.

2.10. Statistical analysis

All statistical analyses were conducted using SPSS version 27 with two-tailed p values. 

Descriptive statistics (proportions, means ± standard deviations) were used to characterize 

demographic variables and t-tests were used to compare differences by sex and location. We 

then evaluated correlations between the variables of interest and chronological age, brain-

predicted age, and BrainPAD. All analyses utilizing BrainPAD included chronological age 

as a covariate, resulting in partial Pearson’s correlations. Modifiable variables that showed 

statistically significant correlation with BrainPAD were further explored with univariate 

linear modelling. Due to observed significant difference by sex and location across multiple 

variables, and the strong association between chronological age and brain-predicted age, 

sex, location, and chronological age were included as potential covariates in all linear 

and comparative models. Education, baseline outcomes on tests of cognitive function and 

APOE status were also explored as potential covariates. Participants were excluded from any 

analysis for which they had missing values.

Additionally, we used ANCOVA techniques to examine whether BrainPAD differed by 

group according to established cut points linked to health in other physiologic systems. 

When considering body composition, the sample was divided using sex specific cut points 

for VAT mass derived for an older population based upon association with increased 

cardiometabolic risk (Meredith-Jones et al., 2021). For maximal aerobic capacity (i.e. 

maximal METs), we split the sample into study specific quartiles and also applied sex 

and age specific VO2max cutpoints derived from US population level data gathered by 

the Cooper Clinic across multiple decades (“ACSM’s Guidelines for Exercise Testing and 
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Prescription - American College of Sports Medicine - Google Books,” n.d.; Kaminsky et al., 

2015). Finally, categorical grouping for total sleep time were created using National Institute 

of Aging (NIA) recommendations of 7–9 h of sleep for older adults (US Department of 

HHS, n.d.).

2.11. Data availability

The data used in these analysis, and longitudinal data from this participant group are held 

by investigators at Washington University in St. Louis and can be made available following 

a formal request that includes a project outline, and a data sharing agreement between 

institutions. Additionally, at least one investigator from either Washington University in St. 

Louis or the University of California, San Diego will need to be included on the authorship 

team.

3. Results

Sample Analysis:

After excluding individuals whose MRI scans were suboptimal (Rosen et al., 2018), and 

those missing comparator values for aerobic capacity, accelerometry, and body composition, 

a total of 551 participants were included in most analysis. 18 additional participants were 

excluded from some analyses for partial missing data (n = 10 for maximal aerobic capacity 

and 8 for VAT). A PRISMA diagram detailing reasons behind participant exclusion is 

presented in the supplementary materials and sample descriptive data for the explored 

metrics separated by location are detailed in Table 1.

There was a significant difference by sex for height (p < 0.001), weight (p <0.001), 

percentage of body fat (p <0.001), VAT (p <0.001), and VO2max (p < 0.001) with men 

having higher values in all areas, indicating they were taller, heavier, and had relatively 

greater cardiovascular fitness. There was also a significant difference by sex for total 

physical activity and total sleep time (TST) with women being more active (p < 0.001) 

and sleeping longer (p < 0.001) when compared to men. Finally, men showed a significantly 

older BrainAge (p = 0.007) compared to women. This may be partially explained by the 

difference in chronological age (p = 0.081), although the difference was not substantial 

enough to reach statistical significance. There was also a significant difference by location 

for gender distribution (p = 0.022), chronological age (p = 0.004), brain-predicted age 

(p=<0.001), BrainPAD (p = 0.001), total physical activity (p = 0.014) and maximal aerobic 

capacity (p=<0.001) with participants from San Diego more likely to be female and 

older both in terms of chronological and brain-predicted age. Additionally, participants 

from San Diego had a lower average level of maximal aerobic capacity, but greater total 

physical activity. Some of the differences in brain-predicted age across location (mean 

= 4.0 years) can be explained by differences in chronological age (mean = 1.2 years). 

Given these observed differences, sex and location were included as covariates in all 

analyses. Additionally, given the commonly observed trend towards negative BrainPAD 

in chronologically older individuals, partial Pearson’s correlations were generated using 

chronological age as an additional covariate.
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Correlations between the metrics of interest and chronological age, brain-predicted age, and 

BrainPAD are shown in Table 2.

As expected, older chronological age was associated with higher brain-predicted age (r = 

0.555, p=<0.001) but lower BrainPAD (r = − 0.116, p = 0.006). Additionally, we observed 

a negative correlation between chronological age and both BMI (r = − 0.138 p = 0.001) and 

body fat percentage (r = − 0.128 p = 0.003) and associations between older chronological 

age and lower maximal aerobic capacity (r = − 0.285 p < 0.001) and physical activity 

(r = − 0.177 p < 0.001) and greater TST (r = 0.114 p = 0.008). When linear-age bias 

correction was applied to control for chronological age (Smith et al., 2019) VAT, maximal 

aerobic capacity, and TST showed significant association with BrainPAD, with greater VAT 

associated with higher BrainPAD (r = 0.149 p=<0.001), greater MET capacity associated 

with lower BrainPAD (r = − 0.088 p = 0.040), and more total sleep associated with higher 

Brain-PAD (r = 0.087 p = 0.042).

The results of linear regression models that include all of the correlated predictors are shown 

in Table 3.

When explored independently, VAT, maximal aerobic capacity, and TST were significant 

after controlling for chronological age, sex, and location (p = 0.003, 0.018, and 0.007 

and β = 0.969, − 0.382 and 0.752 respectively). Tables showing these linear regressions 

are included in the supplemental materials as Tables S1, S2 and S3. Adding additional 

covariates of education and APOE status did not substantially affect model fit or regression 

terms of key metrics. When all significant terms, as well as chronological age, sex, and 

location, were included in the model, both VAT and TST remained significant (p = 0.036 

and 0.008 respectively) with each kg of VAT predicting a 0.741 year increase in BrainPAD 

(indicative of older brains compared to chronological age) and each hour of increased sleep 

predicting a 0.735 year increase in BrainPAD. Each MET increase in maximal aerobic 

capacity predicted a 0.242 year decline in BrainPAD but was no longer significant in fully 

adjusted models (p = 0.170).

Similar to the findings from linear regression, when controlling for chronological age, 

sex, location, total sleep time, and cardiorespiratory fitness, ANCOVA based exploration 

of differences by cardiovascular risk categories predicted by VAT indicated significant 

difference in BrainPAD. (p = 0.038; Mean Difference = 1.16 years; η2 = 0.008). Group 

differences by VAT predicted risk category are shown graphically in Fig. 1.

At 6.4 h/night, the mean total sleep time for this population was under NIA 

recommendations for older adults, and only one individual had >9 h of sleep/night. When 

dichotomizing based upon meeting vs. not meeting the recommended 7 h of nightly sleep 

this sample had unequal group size with 394 (74%) not meeting recommendations and only 

136 (26%) meeting or exceeding recommendations. When these groups were compared, 

while controlling for chronological age, sex, location, cardiovascular fitness, and VAT, we 

found significant differences in BrainPAD with those sleeping less than the recommended 

amount having lower BrainPAD than those achieving recommended nightly sleep duration 
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(p = 0.030, Mean Difference = − 1.287 years; η2 = 0.009). Group differences are visually 

presented in Fig. 2.

When US population level quintiles were used to explore categorical relationship between 

BrainPAD and maximal aerobic capacity (Kaminsky et al., 2015), the groups’ numbers were 

strongly unbalanced to the least fit (only 7% of the population were in the most fit category, 

and the sample mean of 7.1 METS falls in the second from the worst category). After 

controlling for chronological age, sex, location, TST and VAT, this categorical grouping 

did not show significant group differences (p = 0.086; η2 = 0.016) with only the second-

from-the-fittest category having potentially meaningful (although non-significant) difference 

from the other categories. When the sample was split into nearly equally sized quartiles 

groups using measured MET values from within the sample population there was significant 

difference between groups (p = 0.042). Bonferroni adjusted post hoc analysis indicates only 

significant difference between the second-from-the-fittest compared to the most fit category 

(p = 0.033 CI: − 0.107 to − 4.111), although there did appear to be a trend towards more 

negative BrainPAD with increasing fitness. Fig. 3 below presents these data graphically.

It is worth noting that APOE status not have a statistically significant impact on either 

linear or categorical outcomes for aerobic capacity, TST, or VAT. Further, when ANCOVA 

analysis was completed on APOE on/off categories there was no significant difference in 

BrainPAD between those that had the APOE4 allelle and those that did not after controlling 

for chronological age, sex, location, aerobic capacity, TST, and VAT. (p = 0.062 95% CI: 

0.056 to − 2.181)

4. Discussion

This research was designed to determine if the novel metric of BrainPAD varied based upon 

maximal aerobic capacity, body composition, physical activity and/or sleep in a sample of 

healthy but sedentary older adults. The data presented here contribute to our understanding 

of the associations between excess visceral adiposity and amount of sleep, and their possible 

contributions to accelerated (brain) aging. Given the recent evidence presented by Vidal-

Pineiro et al. (2021) suggesting that positive BrainPAD is likely the result of early life 

influences on brain structure, with only minimal contributions from behaviors during middle 

and older adulthood, it is important to avoid mistaking correlation for causation when 

discussing the importance of these data. In particular, the observed links between visceral 

adiposity and BrainPAD could be the result of early life influence(s) that contribute to 

the development of both phenomena. However, given that VAT has been implicated in 

elevated risk for disease development across multiple non-brain systems (Britton et al., 

2013; Kang et al., 2010; Kullmann et al., 2020b; Lee et al., 2018; Mahabadi et al., 2009), 

and links between excess adiposity and deteriorating brain health in terms of both structure 

and function have been observed previously (Sui and Pasco, 2020; Tanaka et al., 2020), it 

does seem worthwhile to explore the potential links between visceral fatness and brain age. 

Multiple mechanisms to explain the detrimental impact of VAT across systems have been 

proposed. In the cardiovascular and metabolic systems, VAT has been linked to increased 

cytokine activation and oxidative stress (Pou et al., 2007), a higher likelihood of developing 

insulin resistance (Kabir et al., 2005) and increased levels of chronic inflammation and 
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consequent reduced immunity (Shoelson et al., 2006). Although the brain is often considered 

an immune-privileged organ, system wide inflammation has been associated with increased 

oxidative damage in the brain as well (Miller et al., 2018; Pugazhenthi et al., 2017).

It is also worth noting that to-date much of the data regarding visceral adiposity has been 

based on proxy measures like waist circumference, with high quality assessment of VAT 

through DXA-based imaging only reaching widespread availability in the last decade. 

Further, the duration during which an individual carries excess visceral fat may have a 

meaningful impact on health status, including brain aging. Thus, further research to stratify 

risk by VAT mass and/or volume and duration of excess adiposity offer opportunity to 

better understand the directionality and clinical relevance of this relationship. Additionally, 

longitudinal analyses that explore the time course relationship between changes in visceral 

fat and the rate of brain aging may inform interventions targeting VAT to improve brain 

health.

These data also indicate associations between sleep quantity and BrainPAD. The results of 

these analyses, specifically finding that less than currently recommended amount of sleep is 

associated with younger than chronologically predicted brains, stands in contrast with much 

of the current literature that indicate that both too little and too much sleep is associated 

with older age (Kocevska et al., 2019, 2021) and also with diminished structural brain health 

(Andrade et al., 2018; Khalsa et al., 2017), reduced performance on standardized cognitive 

tests (Faubel et al., 2009; Mohlenhoff et al., 2018), higher incidence of Alzheimer’s Disease 

(Lucey et al., 2021) and a higher likelihood of developing cardiovascular disease (Cappuccio 

et al., 2008). Further, when exploring sleep’s associations with BrainAge in particular, 

the research of Ramduny et al. (2022) found that better self-reported sleep quality was 

associated with negative BrainPAD, whereas our data indicated no difference in BrainPAD 

based on objectively measured quality, but significant difference based on total quantity of 

sleep, a metric which was not reported by Ramduny et al. (2022). While further study is 

needed, these data indicate that the current recommendation of 7–9 h of sleep per night may 

be too much for optimal brain health. Alternatively, it may be that metrics other than total 

sleep time, like slow wave or REM sleep, are responsible for the observed differences.

Finally, while overall levels of daily physical activity have meaningful correlations with both 

chronological age and brain-predicted age, they do not appear to contribute to BrainPAD. 

This is consistent with existing research indicating that physical activity, particularly 

moderate to vigorous activity (MVPA), declines with age (Shin et al., 2018; Westerterp, 

2018), and that reduced physical activity is associated with reduced brain volume and 

increased structural and functional disruption (Erickson et al., 2014; Sexton et al., 2016). 

Given that the potential participants in this study were specifically excluded if they 

engaged in over 60 min/week of MVPA, it is perhaps unsurprising that we do not see 

substantial contribution to BrainPAD based on activity. Further, because our accelerometer 

measurement devices were wrist worn, quantifying activity into accurate intensity levels 

is not feasible, forcing associations to be made using a counts per minute metric across 

all (non-sleep) wear time. This method risks treating high levels of light activity and low 

levels of MVPA combined with high volume of sedentary behavior as identical for activity 

classification purposes.
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Finally, while aerobic capacity is well correlated with both chronological and brain-

predicted age, it appears to have minimal impact on BrainPAD when considered in the linear 

regression analysis, and there does not appear to be differences across traditionally defined 

categorical groups based upon fitness level. Further, although significant difference between 

groups is observed when the sample is divided into roughly evenly sized groups, observed 

differences do not seem to be linear. There does appear, however, to be a trend towards 

younger than predicted brains in the most fit individuals. This is somewhat consistent 

with evidence linking cardiovascular fitness with other disease states in which there is 

a threshold of fitness that is protective (although further improvement provides minimal 

additional benefit) (X. Sui et al., 2007, Grundy et al., 2012; C. do Lee et al., 1999). Further 

analyses, particularly longitudinal observations of rates of change in both aerobic capacity 

and brain-predicted age, are needed.

Overall, these findings are moderately consistent with the current literature in which excess 

adiposity in consistently linked with structural and cognitive decline (S. X. Sui and Pasco, 

2020; Tanaka et al., 2020). However, the results linking less than the currently recommended 

amount of total sleep with younger brains is contrary to much of the existing literature 

(Andrade et al., 2018; Khalsa et al., 2017; Lucey et al., 2021). Meanwhile, links between 

brain structure and aerobic capacity and regular physical activity have been less consistently 

observed, and observed changes are more likely to be localized to specific regions like the 

hippocampus or prefronal cortex. (Firth et al., 2018; Herold et al., 2019; Petrik and Encinas, 

2019).

This study had several strengths centered on the high-quality measurements of a large 

older adult population. In particular, the use of whole-brain MRI imaging for brain-

predicted age calculation, maximal exercise tests to assess aerobic capacity, DXA to assess 

body composition, and objective tools to measure physical activity and sleep mean that 

there were fewer sources of error than might come from estimation algorithms, proxy 

measures, or self-report. However, there were also limitations. Chief among these was the 

cross-sectional nature of the study, making it impossible to indicate the directionality of 

observed relationships and the possibility of a shared etiology or mechanism accounting 

for the observed associations. Further, our population of older adults expressing cognitive 

complaints, but without observable impairment, may also not be truly representative of 

the larger presumptively healthy older adult population. Additionally, the fact that we 

only captured night-time sleep behavior and did not gather data on daytime napping may 

have contributed to an underestimation of total sleep time leading to incomplete/incorrect 

analysis of the relationship between sleep and BrainPAD. Further, the degree to which the 

observed associations are explained by the examined metrics is small. Finally, the sample 

was drawn from a self-reportedly sedentary population of older adults, and as such may not 

be applicable to younger and/or more active populations.

5. Conclusion

In this population of presumptively healthy older adults residing in the United States, the 

age of the brain, as described by the difference in the biological age of the brain vs. 

the chronological age of the individual, is negatively associated (i.e., older than expected) 
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with accumulation of visceral adipose tissue and increased total sleep time, but not aerobic 

capacity, total daily physical activity or sleep quality.
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Fig. 1. 
Group Differences in BrainPAD based on VAT risk category.
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Fig. 2. 
Group Differences in BrainPAD based on Meeting vs. Not Meeting NIA Total Sleep Time 

Recommendations.
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Fig. 3. 
Group Differences in BrainPAD based on Sample Specific Quartiles of Maximal 

Cardiovascular Fitness.

Wing et al. Page 23

Neuroimage Rep. Author manuscript; available in PMC 2023 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wing et al. Page 24

Table 1

Sample descriptive statistics.

Total (n = 551) SD (n = 275) WUSTL (n = 276) p for difference between 
locations

% Female % 74 78 69 0.022

Chronological Age Yr 71.5 (4.8) 72.1 (4.9) 70.9 (4.7) 0.004

Brain predicted age Yr 69.6 (7.4) 71.6 (7.3) 67.6 (7) <0.001

Predicted BrainAge Difference (BPAD) Yr − 1.9 (6.2) − 0.5 (6.4) − 3.4 (5.7) <0.001

Education Yr 16.2 (2.2) 16.2 (2) 16.1 (2.3) .709

% APOE E4 genotype % 30 26 34 0.025

Height M 1.7 (0.1) 1.6 (0.1) 1.7 (0.1) <0.001

Weight Kg 77.6 (16.6) 75.1 (16.5) 80 (16.4) 0.001

BMI kg/m2 28.1 (5.1) 27.8 (5.3) 28.4 (5) 0.173

Body Fat % 39.8 (7.6) 40.1 (7.3) 39.5 (7.9) 0.376

Visceral Adipose Tissue Kg 1.3 (0.9) 1.3 (0.9) 1.4 (1) 0.228

Resting Heart Rate BPM 69 (10) 68 (10) 69 (10) 0.100

Estimated Maximal Capacity METS 7.1 (1.8) 6.6 (1.5) 7.6 (1.9) <0.001

Total Physical Activity CPM 1941 (509) 1994 (532) 1888 (480) 0.014

Total Sleep Time hours/night 6.4 (0.9) 6.4 (0.9) 6.4 (1.0) 0.941

Sleep Efficiency % 84.3 (6.6) 84.3 (6.0) 84.3 (7.2) 0.976

All values presented as mean (SD) unless otherwise noted BMI=Body Mass Index; CPM=Counts per Minute.
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Table 2

Correlations between chronological age, Brain Predicted Age Difference (BrainPAD) and key physiological 

metrics.

Chronological Age Brain Predicted Age BrainPAD (adjusted for chronological age)

Chronological Age 0.555 (<0.001)

BMI (kg/m2) −0.138 (0.001) − 0.037 (0.392) 0.048 (0.257)

Body Fat Percentage (%) −0.128 (0.003) − 0.064 (0.136) 0.008 (0.850)

Visceral Adipose Tissue (kg) 0.012 (0.773) 0.132 (0.002) 0.152 (<0.001)

Resting Heart Rate (bpm) 0.014 (0.75) 0.011 (0.796) 0.004 (0.924)

Estimated Maximal Capacity (METS) −0.285 (<0.001) −0.259 (<0.001) −0.127 (0.003)

Total Physical Activity (counts/min) −0.177 (<0.001) −0.147 (<0.001) − 0.062 (0.150)

Total Sleep Time (hours) 0.114 (0.008) 0.134 (0.002) 0.087 (0.042)

Sleep Efficiency (%) 0.064 (0.137) 0.06 (0.165) 0.030 (0.483)

Education (years) − 0.49 (0.258) 0.02 (0.65) 0.055 (0.199)

APOE E4 genotype (yes/no) − 0.17 (0.7) 0.03 (0.488) 0.013 (0.760)

All values presented as Pearson’s Correlation Coefficient (r) and p value of association BMI=Body Mass Index; VAT=Visceral Adipose Tissue; 
METS= Metabolic Equivalent of Task; bpm= beats per minute.
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