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Abstract

The vast majority (≥90%) of literature reports agree on the regiochemical outcomes of Pd-

catalyzed cross-coupling reactions for most classes of dihalogenated N-heteroarenes. Despite 

a well-established mechanistic rationale for typical selectivity, several examples reveal that 

changes to the catalyst can switch site selectivity, leading to the unconventional product. In this 

Perspective, we survey these unusual cases in which divergent selectivity is controlled by ligands 

or catalyst speciation. In some cases, the mechanistic origin of inverted selectivity has been 

established, but in others the mechanism remains unknown. This Perspective concludes with a 

discussion of remaining challenges and opportunities for the field of site-selective cross-coupling. 

These include developing a better understanding of oxidative addition mechanisms, understanding 

the role of catalyst speciation on selectivity, establishing an explanation for the influence of 

ring substituents on regiochemical outcome, inverting selectivity for some “stubborn” classes of 

substrates, and minimizing unwanted over-reaction of di- and polyhalogenated substrates.
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INTRODUCTION

Overview.

The challenge of regiocontrol is central to functionalizing heteroarenes, particularly in 

the context of ring substitution reactions including C—H functionalization, electrophilic 

aromatic substitution, nucleophilic aromatic substitution (SNAr), and—relevant to this 

Perspective—cross-coupling. For heteroaromatic substrates bearing two or more halides, 

Pd-catalyzed cross-coupling reactions tend to proceed selectively, with a bias for reaction at 

sites adjacent to a heteroatom (Table 1).1 This reactivity bias often enables straightforward 

synthesis of a single regioisomer. However, accessing target molecules with substitution 

patterns that are disfavored by cross-coupling is more challenging. A substrate-controlled 

approach to achieving unusual substitution patterns involves the use of substrates bearing 

mixed (nonidentical) halides. In this scenario, cross-coupling often takes place at the 

heavier halide even when there is a lighter halide at a privileged position α to a 

heteroatom. However, greater synthetic effort is required to prepare heteroarenes with mixed 

dihalides compared to identical dihalides, which translates into increased cost. Alternatively, 

unconventional site selectivity can be achieved through the use of catalyst-controlled 

approaches. Although the topic of catalyst-controlled site selectivity2 is at the forefront 

of other research areas, such as C—H functionalization,3 relatively little is known about the 

relationship between catalyst structure and cross-coupling site selectivity.4 This Perspective 

surveys the handful of known examples in which unconventional or divergent site selectivity 

is achieved by changing the catalyst structure (e.g., through changing the ligand). In some 

cases, the mechanistic basis for the switch in selectivity is known, although others remain 

unexplained. Developing a better understanding of these reactions could lead to improved 

versatility of cross-coupling chemistry.
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For the purposes of this Perspective, we define ‘conventional’ (or ‘typical’) selectivity as 

the regiochemical outcome that is reported in the large majority of literature examples 

for a given substrate class, to date. However, it has recently become clear that ligand 

choice, among other factors, can significantly affect selectivity (vide infra). As such, our 

perception of what is ‘typical’ is heavily influenced by a historical bias toward the use of 

certain ligands, especially PPh3 and the related bisphosphine dppf (Table 1). As methods for 

achieving divergent selectivity become better established, the line between conventional and 

unconventional regioselectivity may eventually blur.

Multiple excellent reviews already provide a comprehensive picture of conventional 

selectivity.1 The focus of this Perspective is the minority of cases in which the regiochemical 

outcome deviates from the norm, some of which are more recent than existing reviews. 

These deviations are rare. A SciFinder search suggests that, for many substrate classes, only 

1-8% of cross-coupling reactions provide atypical selectivity (Table 1).5 Furthermore, in 

many of these reports, the putative exceptional selectivity is not discussed nor is it supported 

by structural characterization. In other cases, the exceptions catalogued by SciFinder may 

reflect minor rather than major products. As such, the number of actual exceptions to 

conventional selectivity is likely lower than shown in Table 1. In this Perspective, we largely 

limit our discussion to unsubstituted dihaloheteroarenes. Substituents can lead to directing 

effects (see Outlook section), 6,7,8 but here we focus on cases in which unconventional site 

selectivity is achieved through changes to the catalyst rather than changes to the substrate.

Origin of Conventional Site-Selectivity.

In the vast majority of reports, a C—X bond α to a heteroatom, if present, is favored 

to undergo cross-coupling. Handy correlated conventional selectivity with positional 

electrophilicity as inferred from the 1H NMR spectrum of the parent heteroarene.9 The 

most deshielded proton of the parent heteroarene (α to one or more heteroatoms) usually 

corresponds to the most reactive site of the analogous halogenated substrate. The correlation 

is not perfect, however. For example, the most reactive site of 2,4-dichloropyrimidine (9) 

is C4, but the most deshielded proton of pyrimidine is attached to C2.10 Through a series 

of computational studies, Houk and Merlic later showed that selectivity is often inversely 

correlated with C—X bond dissociation energy (BDE); that is, the most reactive C—X bond 

is usually the weakest one (distortion-controlled selectivity).11 For example, the C4—X 

bond of 9 is weaker than C2—X (Figure 1). However, exceptions to the bond strength trend 

were noted when (1) the weaker C—X bond is on a carbocycle (16); (2) the two C—X 

bonds have identical or very similar BDEs (17); and (3) on a substituted ring in which 

the two halides are α to two different heteroatoms (18). In these cases, selectivity was 

better explained by a stronger attractive interaction between Pd and the more reactive site 

of the substrate (interaction-controlled selectivity). This attractive interaction is influenced 

by frontier molecular orbital distribution. For example, Houk’s DFT calculations indicate a 

stronger interaction between Pd and C2 of 16, which can be explained by the much larger 

LUMO coefficient at C2 compared to C5.

Recent work by Leitch et al. contributes to a more complete picture of conventional 

selectivity.12 Based on experimental results using Pd(PCy3)2, Leitch developed a model to 
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predict substrate reactivity toward oxidative addition based on several molecular descriptors. 

This model revealed that C—X bond strength, on its own, is a poor predictor of the rate 

of oxidative addition. Instead, the electrostatic potential (ESP) at the ipso carbon was 

determined to be the most important descriptor in this model, followed by the ESP at the 

more negative ortho atom. The model was demonstrated to accurately predict conventional 

selectivity for a wide range of dihalogenated heterocycles.

Despite the importance of Houk’s and Leitch’s work, these models do not directly suggest 

an explanation for the reported exceptions to conventional selectivity, wherein changes to 

reaction conditions lead to the atypical product. However, for Houk’s distortion/interaction 

model, transition structures were optimized in the gas phase with a simple Pd-bisphosphine 

model Pd(PH3)2.11a For Leitch’s molecular descriptor model, parameterization was based 

on results using Pd(PCy3)2 in a single solvent (THF).12 It is known that the calculated 

mechanism for oxidative addition can change with palladium’s coordination number, with 

ligand identity, and with the use of solvation models.13,14,15 Thus it is reasonable to 

conclude that, in the exceptional situations where unconventional selectivity is observed, 

the transition states for C—X cleavage look significantly different from those that were the 

basis for Houk’s and Leitch’s models.

LIGAND-CONTROLLED SELECTIVITY

6-Membered Heterocycles.

Six-membered nitrogen heterocycles (azines) are ubiquitous in metabolites,16 therapeutics,17 

agrochemicals,18 and functional materials.19 From metalation and SNAr to catalytic C—H 

functionalization by transition metals, regioselective elaborations of 6-membered nitrogen-

containing heteroarenes have been the subject of extensive investigation. In discovery 

chemistry settings, dihalogenated azines are among the mainstay building blocks for the 

construction of di- or polysubstituted nitrogen heterocycles via iterative cross-coupling or 

other substitution methods.1

In the context of cross-coupling, the regioselectivity outcomes with dihalogenated 6-

membered N-heteroarenes—especially dihalopyridine derivatives—are now the most studied 

and best understood. As discussed above, for dihalogenated pyridines, pyridazines, and 

quinolines, halides α to nitrogen are conventionally more reactive than distal halides. 

Because of the polarity of the C—N bond of pyridine, C2 has more positive charge than 

the more distal carbons, making it more reactive toward Pd(0). Furthermore, α C—X bonds 

are weaker than other C—X bonds due to nitrogen’s lone pair, which is in the same plane as 

C—X.

However, a few recent reports describe deviations from the conventional reactivity 

patterns when using sterically hindered ligands. In 2013, Dai, Chen, and coworkers 

demonstrated the first clear example of ligand-controlled inversion of site-selectivity.20 

Although dppf, a popular bidentate phosphine ligand, exclusively promotes coupling of 

3,5-dichloropyridazine at the expected C3-site, the bulky monophosphine QPhos promotes 

reaction at the unconventional C5-site (C5:C3 = 20:1, Scheme 1, top). Under the optimized 

conditions, a broad scope of aryl, alkenyl, and heteroaryl boron nucleophiles were 
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selectively coupled at C5 of 3,5-dichloropyridazines. Additionally, QPhos was shown to 

mediate unconventional C4-arylation of 2,4-dichloropyridine, albeit with modest selectivity 

and yield (Scheme 1, bottom). Although a rationale for the unusual behavior of QPhos was 

not discussed at the time, the structural differences between QPhos and dppf provide a hint 

that palladium’s ligation state could be a deciding factor in the regiochemical outcome. 

Hartwig had previously established that, in the presence of QPhos, Pd is monoligated 

during oxidative addition of chloro- and bromoarenes,21,22 whereas Pd would almost 

certainly be bisligated when supported by the diphosphine dppf. Interestingly, RuPhos 

(2-dicyclohexylphosphino-2′,6′-diisopropoxybiphenyl) was noted to promote diarylation of 

3,5-dichloropyridazine despite a 1:1 ratio of the coupling partners.

Recently, hindered N-heterocyclic carbene (NHC) ligands have emerged as ligands that 

promote Pd-catalyzed cross-coupling at a distal site of dihaloazines. In 2019, Willans, 

Hardie, et al. reported that cyclotriveratrylene-tethered trinuclear Pd(II)-NHC complexes 

mediate Suzuki coupling at the 4-position of 2,4-dibromopyridine (2, C4:C2 = 6.5-10.7 : 1, 

Scheme 2), albeit with significant overarylation (2c).23 Additionally, these ligands promote a 

greater proportion of C5-arylation at 2,5-dibromopyridine (3, C5:C2 = 1 : 1.3-1.6) compared 

to PPh3 (C5:C2 = 1 : 14). The origin of selectivity was not determined in this report, 

although the authors suggested that it is unlikely to result from cooperative multinuclear 

catalysis.

In 2020, Yang et al. reported a C4-selective Suzuki-Miyaura coupling of 2,4-

dichloropyridine (1) under Pd-catalyzed conditions in the presence of the hindered NHC 

ligand IPr.24 Throughout most of the authors’ optimization efforts (Scheme 3), Pd-PEPPSI-

IPr was found to afford the C4-arylated product 1b with site-selectivity ranging from 2.5:1 

to 10.4:1, depending on reaction solvent and base. Notably, the hindered ligands PtBu3 

and PAd2(n-Bu) effected modest selectivity for the C4-site in a dioxane/H2O mixture. In 

this solvent system, RuPhos and IPr gave the largest proportion of unwanted diarylated 

product, although switching to PEG400 decreased diarylation with IPr. Remarkably, a 

drastic improvement in C4-selectivity (to ~99:1) was observed upon changing the reaction 

conditions to include KI and NaOAc (not shown in Scheme 3). However, it was recently 

found through ligand-free control reactions that selectivity under these latter conditions does 

not require IPr; as such, these results are discussed in the Speciation-Controlled Selectivity 

section below.

Recently, we further explored the role of ligand sterics on the site-selectivity of Suzuki 

couplings of 2,4-dichloropyridine derivatives.15,25 In agreement with earlier reports, a 

systematic analysis of ligand trends revealed a clear correlation between increased steric 

congestion around the metal center and increased selectivity for the distal C—Cl site 

(Scheme 4A). The highest selectivity for reaction at the distal position was achieved 

with bulky NHC ligands. However, there is a trade-off that accompanies NHC ligand 

size: the proportion of diarylated product increases concurrently with the C4:C2 ratio 

of monoarylated products. This unwanted reactivity is especially notable with the ligand 

IPent. As such, IPr offers the best compromise between high C4:C2 selectivity and low 

diarylation:monoarylation, thus maximizing the yield of the C4-monoarylated product. 

Under our optimized room-temperature conditions, no reaction is observed in the absence of 
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IPr. A detailed scope investigation showed that Pd catalysis with IPr is general to Suzuki, 

Kumada, and Negishi cross-coupling at the distal site of diverse 2,4-dichloropyridines and 

-quinolines as well as 3,5-dichloropyridazines (Scheme 4B). This methodology allows 

installation of diverse sp2 and sp3-carbon substituents at a distal site while retaining a 

chloride α to nitrogen.

Taken together, the reports described so far in this section demonstrate an 

unmistakable relationship between ligand sterics and unconventional site-selectivity for 2,4-

dihalopyridines and pyridazines. We recently proposed that this correlation can be explained 

by the tendency of larger ligands to promote low-coordinate (i.e., 12 e−) PdL during the 

selectivity-determining oxidative addition step.15 Less hindered ligands, especially those that 

are better π-acceptors, favor 14 e− PdL2 during the oxidative addition step. DFT calculations 

with a model system comprising PhCl and Pd(PMe3)n (n = 1 or 2) suggest that 12 e− and 

14 e− palladium may be biased toward different mechanisms for oxidative addition (Figure 

2, top). Monoligated Pd(PMe3) prefers to react through a classic, 3-centered concerted 

mechanism in which Pd interacts with both chloride and the ipso carbon of the substrate. In 

contrast, bisligated Pd(PMe3)2 prefers a displacement-type mechanism in which Pd interacts 

with both the ipso and the ortho carbons, but does not interact directly with chloride. A 

displacement-type mechanism for oxidative addition has been proposed in several previous 

instances, and is also referred to as an SNAr-like mechanism14,26 or a dissociative process.13 

Our analysis of frontier molecular orbitals suggests that the distinct mechanisms arise from 

differences in orbital symmetries when comparing the HOMOs of mono- vs. bis-ligated 

Pd. PdL has a σ-type HOMO, whereas the HOMO of PdL2 has π-type symmetry once it 

is bent into the geometry required for forming the pre-oxidative addition π complex with 

the substrate (Figure 2, bottom). The HOMO σ-symmetry of PdL enables palladium to 

donate into a single ring atom of PhCl (a single lobe of the substrate’s LUMO), consistent 

with the 3-centered concerted mechanism. On the other hand, the HOMO π-symmetry of 

PdL2 enables palladium to donate into two ring atoms, consistent with the displacement 

mechanism.

For the substrate 2,4-dichloropyridine (1), the percent contribution to the LUMO is 

substantially greater at the C4 site (26% vs 8%, Figure 3A), which predicts more favorable 

orbital overlap between Pd and substrate at this site if Pd can only interact with a single 

ring atom, as is the case for monoligated PdL (e.g., L = IPr). Indeed, Pd/IPr-catalyzed 

cross-couplings of other dihaloheteroarenes also reveal a correlation between selectivity for 

a distal site and a relatively larger LUMO coefficient at that site (Figure 3B). In contrast to 

PdL, because PdL2 can interact with two ring atoms, the LUMO coefficient at individual 

carbon atoms is less important. Instead, conventional selectivity for oxidative addition of the 

C2—Cl bond at PdL2 is determined by other factors such as C—Cl bond strength and the 

polarity of the C2—N bond.

Consistent with this reasoning, calculated transition structures for the reaction of 12 e− 

Pd(IPr) with 2,4-dichloropyridine suggest that the lowest energy pathway for reaction at 

either C2 or C4 involves a 3-centered concerted transition state (Figure 4, top). Reaction 

at C4 is predicted to be favored by 1.7 kcal/mol, which shows good agreement with 

experiment. In contrast, oxidative addition involving bisligated Pd(IPr)(1) is predicted to 
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proceed through a displacement-type mechanism at either site, with reaction at C2 favored 

by this mechanism. However, the structures involving Pd(IPr)(1) are markedly higher in 

energy than those involving Pd(IPr), and thus unlikely to be experimentally relevant. Similar 

observations are made with Pd(PtBu3) and Pd(PtBu3)(1), although Pd(PtBu3) is less C4-

selective than Pd(IPr), likely due to the weaker σ-donicity of phosphines compared to NHC 

ligands (Figure 4, middle). On the other hand, parallel calculations using the less hindered 

ligand IMes predict that a displacement mechanism for reaction at C2 via Pd(IMes)(1) is 

energetically competitive with the concerted mechanism for reaction at C4 via monoligated 

Pd(IMes) (Figure 4, bottom). This prediction is consistent with the poor selectivity observed 

experimentally with IMes, and with the observation that selectivity skews toward the C2-

coupled product when the Pd/IMes-catalyzed reactions employ higher concentrations of 1.15

In summary, it appears that the ligand-controlled examples of unconventional site-selectivity 

in cross-couplings of dihalogenated azines can largely be explained by the ability of bulky 

ligands to promote 12 e− Pd. Although more traditional 14 e− Pd prefers to react α to 

nitrogen via a displacement mechanism involving a Pd•••N interaction, 12 e− Pd cannot 

benefit from this interaction because its HOMO symmetry precludes such a mechanism. 

Instead, 12 e− Pd reacts through a concerted mechanism at the site with a significantly 

larger LUMO coefficient, which can be a site distal to nitrogen. A similar mechanistic 

phenomenon may be at play in related systems wherein ligands control the chemoselectivity 

of cross-coupling of bromochloroazines. Sigman and Tan reported that several bulky ligands 

favor amination at the C5—Br of 5-bromo-2-chloropyridine (Scheme 5A).27 However, most 

bidentate phosphines, in particular 20, promote reaction at C2—Cl. In the Suzuki coupling 

of 21, Ashcroft and Fussell found that several bulky monophosphines including QPhos favor 

reaction at Cl, while 22 (as well as PPh3 and dppf) gave more reaction at Br (Scheme 5B).28 

These observations are consistent with the hypothesis that bisligated Pd reacts α to nitrogen 

via a displacement mechanism, whereas monoligated Pd—which doesn’t benefit from a 

Pd•••N interaction during a 3-centered transition state—instead reacts with the weaker C—

Br bond.

5-Membered Heterocycles.

Compared to 6-membered heteroarenes, relatively few cross-couplings of 5-membered 

heteroarenes have been reported (for examples, see Table 1). This might be explained by the 

more electron-rich character of 5-membered arenes, making them less reactive electrophiles. 

Because of the small number of publications on this topic and the diversity of 5-membered 

heteroarenes, it is difficult to define ‘conventional’ selectivity for these substrates. Handy’s 

NMR-based model predicts that the C2-site of oxazoles, thiazoles, and imidazoles should be 

the most reactive based on a more downfield chemical shift for the corresponding hydrogen 

in the 1H NMR spectra of the parent compounds (Figure 5, top). Houk’s computations 

show that a C2—X bond of these substrates is weaker than a C4—X or C5—X bond, 

suggesting that the C2 site may be more reactive on the basis of distortion energies.11b The 

C2 carbon of oxazole, thiazole, and N-methylimidazole also has a more positive electrostatic 

potential than the other ring carbons,29 which might predict greater reactivity at this site 

based on the selectivity principles described by Leitch et al.12 Nevertheless, a literature 

survey suggests that selectivity for these substrate classes is not necessarily predictable by 
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established models. In particular, systematic studies by Strotman, Chobanian, and coworkers 

on 2,4- and 2,5-dihaloimidazoles, -oxazoles, and -thiazoles revealed that selectivity with 

some of these substrates depends on the phosphine ligand and/or the reaction solvent, as 

discussed below (Figure 5, bottom).30

The C2-site of 10 is expected to be more reactive based on Handy’s model, C—I bond 

dissociation energies, and electrostatic potentials at C2 vs. C4. However, a preliminary 

ligand screen carried out by Strotman et al. resulted in C4-selective Suzuki coupling when 

using ligands such as PPh3, dppf, XPhos (23), and Xantphos (22) in THF (Scheme 6A). 

Among these, 22 promotes the highest C4-selectivity (13:1) as well as high selectivity for 

the monoarylated product over the diarylated product (~7:1). In contrast, PtBu3 enables 

inverted selectivity in THF, modestly favoring reaction at C2 by about 2:1. Because 

hindered ligands are known to promote low-coordinate PdL, one could speculate that this 

selectivity switch relates to palladium’s ligation state during oxidative addition, similar 

to other examples discussed above in the context of 6-membered heteroarenes. However, 

a subsequent exhaustive ligand screen of ~200 achiral phosphines led Strotman et al. to 

identify 1,3,5-triaza-7-phosphaadamantane (26) as a ligand which promotes high selectivity 

for the C2-site in acetonitrile (~13:1). With its very small cone angle of 102°, even 

smaller than that of PMe3 (116°),31 26 has little in common with the bulky ligand PtBu3. 

Furthermore, the bidentate phosphine 25 also slightly favors reaction at C2 in THF. These 

results seem to suggest against a hypothesis that low-coordinate PdL is responsible for 

C2-selectivity with this substrate. Importantly, the use of MeCN as solvent is critical to 

obtaining high C2-selectivity in the reaction of 10 using 26. In THF, the reaction catalyzed 

by Pd/26 is unselective (1:1). The selectivity with other ligands in MeCN was not reported.

Based on the anomalous selectivity effected by 26 in the reaction of 10, Strotman compared 

26 to other ligands for Suzuki couplings of several additional classes of substrates. Once 

again, 26 was unique in its ability to promote cross-coupling at the C2-site of 12 and 13 
(Scheme 6B). Other ligands led to a mixture of products that were biased toward reaction 

at C5. The higher reactivity of C5—X with most ligands is contrary to the predicted 

reactivity with Handy or Houk’s model: the 1H NMR chemical shifts of imidazole and N-

methylimidazole, 32 and the relative BDEs of C2—Cl and C5—Cl for chloroimidazoles,11b 

predict that C2—X should be the most reactive (Figure 5, top). Interestingly, other reports in 

the literature—employing either Pd(dppf)Cl2 or Pd(PPh3)4—suggest that C2 is the preferred 

reaction site for 2,5-dibromoimidazoles. 33 However, none of these reports include detailed 

regiochemical characterization, whereas Strotman et al. substantiated the regiochemical 

assignments of their observed products with NOE experiments.

Despite the observed ligand-dependent divergent selectivity using 2,5-dihaloimidazoles and 

2,4-diiodooxazole, Strotman et al. found that other dihalogenated 5-membered heteroarenes 

are not sensitive to ligand effects. 2,4- and 2,5-Dibromothiazoles (14 and 15) and 2,4-

dibromoimidazole (11) were found to undergo C2-selective Suzuki coupling with all of 

the ~200 ligands screened by Strotman. The mechanistic origin of the ligand-controlled 

divergent selectivity with some 5-membered heteroarenes—and not with others—has not yet 

been reported.
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SPECIATION-CONTROLLED SELECTIVITY

Thus far, this Perspective has highlighted examples in which atypical site selectivity is 

achieved due to unique steric or electronic properties of an ancillary phosphine or NHC 

ligand. However, very recent reports suggest that changes in catalyst speciation (i.e., from 

mono- to multinuclear) can have an equal or even more powerful influence on site selectivity 

compared to changes to the ligand environment at mononuclear Pd. Catalyst speciation 

can be complicated, and in many circumstances it is reasonable to expect a mixture 

of homogeneous, heterogeneous, and soluble nanoparticle species.34 In particular, higher 

reaction temperatures can promote the conversion from mono- to multinuclearity, and some 

additives (e.g., tetralkylammonium halides or -hydroxides) can stabilize nanoparticles by 

preventing their aggregation into higher-order species.35

The conversion of mononuclear catalytic species into higher-order ones can sometimes 

translate into fundamental changes in the mechanism of cross-coupling. For example, Li and 

coworkers reported that the trinuclear Pd3X cluster 27 may catalyze Suzuki cross-coupling 

through a mechanism in which transmetallation occurs first (Scheme 7).36 The resulting 

species Pd3Ar (28) then reacts further with the aryl halide electrophile via a σ-bond 

metathesis mechanism, furnishing the cross-coupled product and regenerating Pd3X. This 

mechanism stands in contrast to the classic Suzuki reaction in that the two coupling partners 

enter the catalytic cycle in the reverse order, and there are no traditional redox steps 

(oxidative addition or reductive elimination). The likelihood of divergent mechanisms for 

multi- vs. mononuclear Pd is consistent with recent reports of divergent site selectivity for 

cross-couplings of dihaloheteroarenes catalyzed by multi- vs. mononuclear Pd, as discussed 

below.

2,4-Dibromopyridine.

Fairlamb et al. demonstrated that the regiochemical outcome of Suzuki and Kumada 

couplings of 2,4-dibromopyridine can be dependent on the ratio of PPh3:Pd. Conventional 

C2-selectivity is observed with PPh3:Pd(OAc)2 ratios ≥3:1 (Scheme 8A).37 In contrast, 

atypical C4-selectivity is seen with PPh3:Pd(OAc)2 ratios ≤2.5:1 or when using the 

preformed trimer [Pd3(μ-Cl)(μ-PPh2)2(PPh3)3]Cl, providing product 2b with up to 13:1 

selectivity. The inclusion of tetraalkylammonium bromide or hydroxide salts was necessary 

to achieve high yield and selectivity for the C4-product, hinting toward the involvement 

of Pd nanoparticles (PdNPs) under conditions with low PPh3:Pd ratios. Indeed, Fairlamb’s 

group had previously shown that the combination of PPh3 and Pd(OAc)2 in a 2:1 ratio 

can lead to the in situ generation of Pd3X clusters (Scheme 8B),38 and related clusters 

were shown to be intermediates en route to nanoparticle formation.39 As such, the evidence 

suggests that multinuclear Pd (likely PdNPs) is responsible for the atypical C4-selectivity 

at low PPh3:Pd ratios. The mechanistic rationale for the unusual site preference of PdNPs 

is currently unknown, but Fairlamb suggests that one possible explanation could involve a 

switch in mechanism similar to that reported by Li (vide supra).
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Dichloropyridines, quinolines, and pyrimidines.

In 2022, we reported that ligand-free “Jeffery” conditions facilitate exquisitely selective 

C4-coupling in the Pd-catalyzed Suzuki reactions of 2,4-dichloropyridine (>99:1) and 2,4-

dichloroquinoline (53:1, Scheme 9). Remarkably, these conditions also favor reaction at the 

C5 position of 2,5-dichloropyridine (6) and 2,5-dichloropyrimidine (8). Preferential reaction 

at C5 of these substrates, with spectroscopically substantiated regiochemical assignments, 

had not been previously reported. Prior evidence supports the formation of nanoparticles 

under such Jeffery conditions involving a simple palladium salt (PdCl2) in the presence 

of a tetralkylammonium halide.35a,40 As such, it is likely that the unusual site-selectivity 

in this system is due to PdNPs, similar to the observations made by Fairlamb using 2,4-

dibromopyridine. A direct comparison between the Jeffery conditions and Pd/IPr conditions 

for the Suzuki coupling of 2,4-dichloropyridine 1 indicates that speciation-control has the 

potential to be much more powerful than ligand-control. Whereas the Pd/IPr catalytic system 

typically provides ~10:1 selectivity, the ligand-free conditions lead to an order-of-magnitude 

improvement in selectivity (~99:1).

The remarkable improvement in selectivity under ligand-free conditions compared to Pd/IPr 

conditions led us to re-examine a previous report by Yang et al. As discussed above, 

Yang had shown that a PEPPSI-IPr catalytic system gives ~10:1 selectivity for the C4-

position during Suzuki cross-coupling of 2,4-dichloropyridine under fairly routine reaction 

conditions.24 However, they described a surprising jump in C4-selectivity upon modifying 

their high-temperature reaction conditions to include KI, along with two bases (NaOAc 

and Na2CO3) added at different times and a higher catalyst loading (Scheme 10A). These 

conditions are effective for achieving ~99:1 C4-selectivity for Suzuki coupling of a wide 

range of substituted dichloropyridines. Although the catalyst used by Yang was Pd-PEPPSI-

IPr, the exquisite selectivity under their unusual reaction conditions resembles the selectivity 

that we observe under ligand-free conditions. As such, we investigated this system more 

closely with a ligand-free control experiment using PdCl2 instead of Pd-PEPPSI-IPr 

(Scheme 10B). Indeed, the high selectivity was maintained in the absence of IPr, indicating 

that selectivity under Yang’s optimized conditions is not ligand-controlled. Rather, higher-

order Pd species may be responsible for the observed unconventional selectivity.

OUTLOOK

As described above, unconventional or divergent site-selectivity has been established 

for a few classes of N-heteroarenes. Nevertheless, catalyst-controlled site-selective cross-

couplings remain largely unexplored. Machine-learning algorithms for predicting selectivity 

are likely to be biased toward conventional selectivity patterns, promoted especially by 

dppf and PPh3, due to the prevalence of these ligands in literature.41 As such, the 

development of new methods may rely on improving our mechanistic understanding of 

selectivity. In particular, we consider the mechanistic picture to be lacking with respect 

to (1) the significance of two possible mechanisms for oxidative addition (concerted vs. 

displacement) and the relationship between the preferred mechanism and ligand/substrate 

identity, (2) the role of catalyst speciation, specifically in cases where multinuclear catalysts 

promote unconventional site selectivity, and (3) the influence of ring substituents on 
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the regiochemical outcome of cross-coupling reactions. Filling in these mechanistic gaps 

may lay the groundwork for overcoming additional challenges that face the field of site-

selective cross-coupling, including inverting selectivity for some “stubborn” classes of 

substrates and minimizing unwanted over-reaction of di- and polyhalogenated substrates 

(e.g., avoiding diarylation). Here we summarize our perspective on these current challenges 

and opportunities.

Mechanism of Oxidative Addition.

Although oxidative addition of aryl halides at Pd(0) is traditionally thought of as proceeding 

through a 3-centered concerted mechanism, the existence of a second mechanistic possibility 

has been well-established. In particular, oxidative addition can also proceed through a 

pathway that has been termed “SNAr-like”, “dissociative”, or “displacement” (Scheme 

11A).13,14,15,26,42 In this pathway, C—X cleavage does not involve interaction between 

Pd and X in the transition state; instead, Pd interacts with the ipso carbon and an ortho 
atom of the ring while X dissociates as an anion. Several computational studies have 

indicated that use of a solvation model is necessary to locate displacement-type transition 

structures, and that this pathway is more favorable in polar solvents or an externally applied 

electric field.13,14,43 Calculations by Maseras et al. show that the preferred mechanism for 

the reaction between PhBr and PdLn depends on the ligand identity and the value of n 

(1 or 2).14 Palladium’s coordination number during oxidative addition can be influenced 

by ligand sterics44 or even by substrate concentration.45 In our own work, we found 

that the preferred mechanism for oxidative addition is intimately related to the divergent 

site selectivity observed in Pd-catalyzed couplings of 2,4-dichloropyridines using bulky 

ligands versus smaller or bidentate ligands.15 Developing a better understanding of the 

circumstances under which these mechanisms (or other mechanisms) are relevant for other 

classes of dihaloheteroarenes may shed light on strategies for controlling site selectivity in 

less-explored substrate classes.

Catalyst Speciation.

As discussed above, the relevance of catalyst speciation (mono- vs. multinuclear) on site 

selectivity was discovered by Fairlamb in the context of couplings of 2,4-dibromopyridine.37 

Our group later provided evidence that multinuclear Pd also gives unique selectivity 

in reactions of 2,4-dichloropyridine, as well as 2,5-dichloropyridine and -pyrimidine.25 

Remarkably, it appears that multinuclear palladium has the potential to give much higher 

selectivities than systems in which selectivity is ligand-controlled. Despite the robust 

evidence for multinuclear speciation, especially in Fairlamb’s system, there is currently 

no explanation for why multinuclear Pd prefers to react at the distal site (Scheme 11B). 

Developing a deeper understanding of the mechanism of C—X cleavage at multinuclear 

Pd is expected to catalyze the development of new selective coupling methods which 

complement those involving mononuclear catalysis. Much is already known about the 

size and shape of PdNPs in Suzuki cross-coupling reactions.46 At this time, however, the 

effect of these properties on site selectivity is unknown. Exploiting the current knowledge 

base about PdNP size and shape might enable the active sites for selective catalysis to be 

determined.
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Ring Substituents.

For dihalogenated heteroarenes, the effect of substituent sterics and electronics on the site-

selectivity of cross-coupling has largely been a matter of empirical study. In a few reports, 

there is evidence to support the coordination of a substituent (most often carboxylates) to 

Pd, directing oxidative addition to take place at an adjacent site.6 However, other substituent 

effects cannot be explained by this phenomenon. In 2011, Khoje and Gundersen summarized 

the effects of six distinct substituents located at the C3-position of 2,4-dichloropyridine in 

Pd-catalyzed Stille couplings (Scheme 11C).7 Consistent with its established conventional 

selectivity, Pd/PPh3 effects C2-arylation in nearly every example. However, when the C3-

substituent is a nitro group, arylation occurs almost exclusively at C4. There is currently no 

published rationale for this phenomenon, yet anomalous examples such as this one provide 

an opportunity to identify new mechanistic features which could complement our current 

understanding of selectivity.

“Stubborn” Substrate Classes.

For the majority of di- and polyhalogenated N-heteroarenes, strategies for inverting 

conventional site selectivity remain undeveloped or underdeveloped (examples in Scheme 

11D). For many heteroaryl substrate classes, little selectivity information has been 

established due to poor reactivity. These substrates include substituted pyrazoles and 

fused 5,6-heterocycles such as benzimidazoles and indoles.1g,47 For other substrates, 

existing literature seems to indicate that selectivity always follows a particular pattern. 

For instance, Strotman’s extensive ligand screening for the Suzuki couplings of 2,4- and 

2,5-dibromothiazoles (14 and 15) and a 2,4-dibromoimidazole (11) resulted in C2-selective 

cross-coupling in all cases, leaving no option to access the opposite regioisomer through 

cross-coupling.30 As an another example, 2,4-dichloropyrimidines present a particular 

challenge. These substrates generally react preferentially at C4 (both in cross-couplings 

and in SNAr reactions), but a method to cross-couple selectively at C2 would be quite 

desirable due to the prevalence of the resulting motifs in bioactive compounds. However, 

it is difficult to envision a robust foothold for biasing reactivity toward C2, since multiple 

factors seem to favor reaction at C4. The C4—Cl bond is weaker, and the C4 carbon 

has a much larger LUMO coefficient. Thus, a method to successfully achieve C2-selective 

coupling may require a fundamentally different strategy than those that have been previously 

reported for other substrates.

Diarylation.

Undesired “overarylation” is common in cross-coupling reactions of dihaloheteroarenes 

when using bulky NHC or biarylphosphine ligands, despite a 1:1 ratio of substrate to 

nucleophile.20,23a,24,25 This trend is consistent with literature reports involving halogenated 

aromatic carbocycles. For example, Larosa et al. found that IPent enables efficient 

“exhaustive arylation” of various dihalogenated arenes despite a deficit of nucleophile.48 

Further, Hein et al. have reported that both IPr and RuPhos are effective di- or 

polyamination catalysts for regioselective elaborations of tetrabromospirobifluorenes.49 

When a monofunctionalized product is desired, competitive overarylation detracts from 

the yield, in part because diarylated products can be challenging to separate from 
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monofunctionalized product. Furthermore, the accumulation of diarylated product in a 

reaction mixture can complicate an evaluation of site-selectivity if either monoarylated 

isomer undergoes a second arylation more rapidly than the other. Formation of diarylated 

product can thus artificially inflate or deflate the observed ratio of monoarylated products. 

In the context of Pd-catalyzed cross-couplings of dihalo(hetero)arenes, the mechanism of 

diarylation may mirror that of catalytic chain growth polymerizations in which oxidative 

addition of a nascent monoarylated product takes place more rapidly than dissociation of 

the catalyst from product at the end of a catalytic cycle. This mechanism is referred to as a 

chain-walking mechanism.50 Kapdi et al. reported that several sulfonated alkylimidazolium 

ligands markedly disfavor diarylation of 2,6-dibromopyridine compared to IMes, PPh3, 

and other ligands under Pd-catalyzed SMC conditions (Scheme 11E), hinting that ligand 

bifunctionality may play a role in assisting the dissociation step.23 Further mechanistic study 

into the relationship between over-functionalization and ligand environment could guide 

catalyst design to minimize unwanted overfunctionalization.
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Figure 1. 
Bond dissociation energies (BDEs) for selected dihalogenated substrates. BDEs calculated 

with B3LYP/6-31G(d). The highlighted halide corresponds to the conventional site of 

reactivity.11
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Figure 2. 
PdL and PdL2 can favor different mechanisms for oxidative addition due to differences in 

orbital symmetry.15
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Figure 3. 
(A) Frontier molecular orbitals of 12 e− Pd(IPr), bent 14 e− Pd(IPr)(1), and 2,4-

dichloropyridine (1). (B) The distal-selectivity of Pd/IPr-catalyzed Suzuki-coupling 

correlates with the difference in LUMO coefficients between the two sites (% contribution to 

LUMO is indicated in parentheses).15
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Figure 4. 
Mono- and bisligated transition structures for oxidative addition of 2,4-dichloropyridine at 

Pd(IPr), Pd(PtBu3), and Pd(IMes). Free energies in kcal/mol relative to the lowest-energy 

preceding π-complex.15
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Figure 5. 
(Top) Highlighted positions represent the expected site of highest reactivity for 5-membered 

heteroarenes based on Handy’s NMR model,9 Houk and Merlic’s BDE calculations,11b 

and electrostatic potentials at carbon,29 which are related to Leitch’s model.12 (Bottom) 

Summary of the actual selectivity behavior for the substrates studied by Strotman and 

Chobanian.30
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Scheme 1. 
First Examples of Ligand-Controlled Inversion of Conventional Selectivity for 3,5-

Dichloropyridazine and 2,4-Dichloropyridine20
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Scheme 2. 
Ligand-Controlled Inversion of Conventional Selectivity for 2,4-Dibromopyridine and 

Erosion of Conventional Selectivity for 2,5-Dibromopyridine23a
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Scheme 3. 
Salient Optimization Data from Yang et al. Showing that IPr Promotes C4-Selective Cross-

Coupling of 2,4-Dichloropyridine24
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Scheme 4. 
(A) C4-Selectivity with 1 Correlates with Ligand Sterics; (B) IPr Enables C4-Selective 

Suzuki, Kumada, and Negishi Coupling of Dichloroazines.25
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Scheme 5. 
Ligand-Switchable Chemoselectivity Between Cl and Br on 6-Membered Heteroarenes 

Reported by (A) Sigman, Tan, et al.27 and (B) Ashcroft, Fussell, and Wilford.28
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Scheme 6. 
Ligand-Switchable Site Selectivity for 5-Membered Heteroarene Substrates: (A) 2,4-

Diiodooxazole and (b) 2,5-Dihaloimidazoles.30
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Scheme 7. 
Proposed Catalytic Cycle for Pd3X-Catalyzed Suzuki Cross-Coupling.36
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Scheme 8. 
(A) Changes in Speciation can Modulate Site-Selectivity; (B) Modified Pd:PPh3 Ratios 

Change Catalyst Speciation.37,38
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Scheme 9. 
Ligand-free ‘Jeffery’ conditions give unconventional selectivity.25
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Scheme 10. 
(A) Modified Reaction Conditions Give Unusually High Selectivity with Pd/IPr.24 (B) 

Control Reaction in the Absence of IPr Shows that Selectivity is Not Ligand-Controlled 

Under These Conditions.25

Norman and Neufeldt Page 32

ACS Catal. Author manuscript; available in PMC 2023 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 11. 
Challenges and Opportunities: (A) Understanding Significance of Different Mechanisms 

for Oxidative Addition, (B) Mechanistic Origin of Selectivity with Multinuclear Pd, (C) 

Substituent Effects on Selectivity, (D) Inverting Selectivity with “Stubborn” Substrates, (E) 

Minimizing Unwanted Difunctionalization.
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Table 1.

Conventional Site Selectivity for Substrates Discussed in this Perspective.

Substrate Total Examples
a Percentage of Examples with Conventional 

Selectivity (%)
b

Percentage of Examples with PPh3 or dppf 

(%)
c

1 186 81 43

2 143 92 81

3 822 97 77

4 77 94 52

5 68 (56) 50

6 164 93 49

7 223 99 52

8 162 88 36

9 1284 99 92

10 23 (57) 22

11 15 100 40

12 11 (55) 36

13 1 (100) 0

14 59 100 78

15 222 100 66

a
Total number of examples of Pd-catalyzed cross-coupling to form a C—C or C—N bond, according to a SciFinder search.5

b
Percentage of examples for which the major product is indicated to result from coupling at the highlighted position. Values in parentheses indicate 

that the literature is near-evenly divided in describing selectivity or the number of examples is too small to evaluate.

c
Percentage of examples for which PPh3 or dppf were included in the reaction conditions.
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