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The current classification of acute myeloid leukemia (AML) relies largely on genomic
alterations. Robust identification of clinically and biologically relevant molecular sub-
types from nongenomic high-throughput sequencing data remains challenging. We
established the largest multicenter AML cohort (n = 655) in China, with all patients
subjected to RNA sequencing (RNA-Seq) and 619 (94.5%) to targeted or whole-ex-
ome sequencing (TES/WES). Based on an enhanced consensus clustering, eight stable
gene expression subgroups (G1-G8) with unique clinical and biological significance
were identified, including two unreported (G5 and G8) and three redefined ones (G4,
GO, and G7). Apart from four well-known low-risk subgroups including PML::RARA
(G1), CBEB::MYH11 (G2), RUNXI1::RUNX1TI (G3), biallelic CEBPA mutations or
-like (G4), four meta-subgroups with poor outcomes were recognized. The G5 (mye-
lodysplasia-related/-like) subgroup enriched clinical, cytogenetic and genetic features
mimicking secondary AML, and hotspot mutations of IKZFI (p.N159S) (n = 7). In
contrast, most NPM1 mutations and KMT2A and NUP98 fusions clustered into G6—
G8, showing high expression of HOXA/B genes and diverse differentiation stages, from
hematopoietic stem/progenitor cell down to monocyte, namely HOX-primitive (G7),
HOX-mixed (G8), and HOX-committed (G6). Through constructing prediction models,
the eight gene expression subgroups could be reproduced in the Cancer Genome Atlas
(TCGA) and Beat AML cohorts. Each subgroup was associated with distinct prognosis
and drug sensitivities, supporting the clinical applicability of this transcriptome-based
classification of AML. These molecular subgroups illuminate the complex molecular
network of AML, which may promote systematic studies of disease pathogenesis and
foster the screening of targeted agents based on omics.
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Acute myeloid leukemia (AML) is a group of myeloid neoplasms characterized by high
heterogeneity in clinical courses and responses to therapy (1). Leveraging advances in
cytogenetics, molecular biology, and next-generation sequencing (NGS) technologies, an
accumulating body of novel prognostic markers and therapeutic targets have been iden-
tified (2). The classification of AML has accordingly shifted from the French-American-
British (FAB) morphological subtyping to the more refined World Health Organization
(WHO) system (3). Additionally, the emergence of new targeted agents, as exemplified
by FLT3, BCL2, and IDH1/2 inhibitors (4-7), has improved the long-term survival of a
subset of AML patients.

Since 2010, several genomic and transcriptomic studies have been conducted in AML
and other acute leukemia. The Cancer Genome Atlas (TCGA) program has dissected the
genomic landscape of AML and proposed nine categories of mutated genes (8). Another
landmark research has recommended 11 distinct AML classes based solely on genetic
abnormalities. However, 4% of AML patients met the criteria of two or more classes, 11%
remained unclassified, and 5% did not carry driver mutations (9). Hence, there is an
urgent need to exploit and integrate more information beyond genomic alterations to
further refine the classification and treatment strategies of the disease.

Significance

Although the genetic intricacies
of acute myeloid leukemia have
been unmasked, the
transcriptomic landscape
remains incompletely defined
and poorly translated into clinical
practice. In this study, we
evaluated the transcriptome
repertoire in a large multicenter
AML cohort and established eight
robust gene expression-based
molecular subgroups (G1-G8) of
AML, including two previously
unidentified and three redefined
subgroups. Each subgroup
displayed characteristic clinical
features, genetic lesions, and
developmental hierarchies. This
classification system reflects the
complex interplay of regulatory
circuitry in this disease and
complements and enriches
current, well-recognized genome-
based categorization schemes,
which may, thus, provide
innovative insights into disease
pathogenesis. Moreover, this
transcriptomic classification
demonstrated prognostic value
and provided subgroup-specific
drug sensitivity information,
which may facilitate therapeutic
decision-making for AML
patients.
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RNA-sequencing (RNA-Seq) provides comprehensive and multifaceted information, o 2" 20

which can not only scrutinize gene fusions and mutations but also dissect the gene expres-
sion profiling (GEP), holding great potential for improving the classification framework
of AML (10). Besides, recent works have reported that the cellular origin of AML can be
inferred from bulk transcriptomes and have underscored the association between differ-
entiation hierarchies and sensitivities to targeted inhibitors (11-14). Mer et al. (12) recently
classified NPMI-mutated AML into primitive and committed subtypes based on the
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presence or absence of stemness. The primitive AML cells con-
ferred stem cell signatures and poor prognosis, while the differen-
tiated monocyte-like AML cells (committed) expressed
immunomodulatory factors and suppressed T cells (11). Via min-
ing large multicenter RNA-Seq data, we and others have success-
fully identified emerging molecular subtypes in B cell and T cell
acute lymphoblastic leukemia (ALL) (15-17).

However, the robust classification of molecular subtypes based
on integrative genomic and transcriptomic features in AML is still
challenging. Inconsistent clustering results and complex cellular
compositions have been observed in previous works (8, 18, 19).
Small sample sizes, single hierarchical clustering without bias fea-
ture filtration or cross-validation, and limited biological/clinical
interpretation have long hindered the stability and wide applica-
tion of emerging classification systems in this disease. On the other
hand, some published works have ignored dominant signals of
specific genetic lesions or gene expression-like subtypes when ana-
lyzing the association between differentiation stages and molecular
inhibitors. In fact, several genomic markers including t(8;21),
inv(16)/t(16;16), and t(15;17) could be determinants of distinct
gene expression clusters (20). Taken together, interpreting the
complicated interplay and functional impact of leukemogenic
events requires the establishment of stable molecular subtypes
combining genetic abnormalities, gene expression landscapes, and
cellular differentiation states in large AML cohorts.

To address these issues, we established the largest omics cohort
of AML patients in China from three centers. Stable molecular
subgroups (G1-G8) with characteristic clinical/biological signa-
tures and cellular differentiation hierarchies were identified, which
were reproduced in the TCGA LAML (8) and Beat AML (14, 19)

cohorts.

Results

Genetic Mutations and Fusion Genes Identified in the
Multicenter Cohort. The study overview, flow diagram, and
clinical characteristics of 655 newly diagnosed AML patients are
provided (87 Appendix, Figs. S1 and S2 and Table S1 and Dataset
S1). The frequency of recurrent genetic mutations was revealed
by the combination of RNA-Seq and targeted or whole-exome
sequencing (TES/WES). We identified at least one genetic lesion in
649 of 655 (99.1%) AML patients at diagnosis. A higher mutation
rate of CEBPA gene was observed in this study, including 96
(14.7%) biallelic CEBPA (biCEBPA) and 24 (3.7%) monoallelic
CEBPA (moCEBPA) mutations (SI Appendix, Fig. S3 A and B
and Dataset S2). Consistently, Wilhelmson et al. (21) previously
summarized that a higher incidence of biCEBPA mutations could
be seen in Asian (6-15%; average 12%) as compared to Caucasian
(2—-6%; average 4%) populations, reflecting a possible difference
in genetic backgrounds between the two counterparts. Several
highly mutated genes in AML exhibited dysregulated expression
levels, such as CEBPA, RUNX1, and FLT3 (SI Appendix, Fig. S4).
Additionally, 38.0% (249/655) of newly diagnosed AML patients
harbored at least one fusion, with entity-defining fusions, namely
PML::RARA, CBFB::MYH11, RUNXI::RUNXITI, and KMT2A
translocations ranking the top (87 Appendix, Fig. S5), consistent
with the TCGA and Beat reports (S/ Appendix, Fig. S6). A total of
18 (2.7%) NUP9S fusions were detected. Among fusion-positive
cases, 16 fusions were barely reported, including two NUP9S
fusions (NUP98::HOXD12 and NUP98:: TNRC18) (SI Appendix,
Fig. S5 and Table S2). The RNA gene MIR99AHG was involved in
RUNXI::MIR99AHG and NRIP1::MIR99AHG, and both of them
exhibited significant upregulation of MIRIIAHG (SI Appendix,
Fig. S7).

https://doi.org/10.1073/pnas.2211429119

Consensus Clustering Defines Stable Gene Expression
Subgroups of AML. After adjusting the batch effect of three
datasets from China (S Appendix, Fig. S8), we identified eight
stable subgroups (G1-G8) in AML (Fig. 1 4 and B) based on
consensus clustering (twenty methods and gradient sampling
of rows/columns) of RNA-Seq data (n = 655) using 859 genes
with the greatest variance (Datasets S3 and S4), which was
more robust compared with unsupervised hierarchical clustering
(ST Appendix, Fig. S9). The correlation between G1-G8
subgroups and AML entities defined by the latest WHO
classification (3) was adopted to determine the cutoff of the
top-feature selection (Fig. 1C). The former four subgroups
(G1-G4) overlapped almost with the relatively favorable
genetic lesions of the WHO classification. Transcription factor
fusions PML::RARA, CBFB::MYH11, and RUNXI1::RUNXIT1
exclusively clustered into the G1, G2, and G3 subgroups,
respectively. The G4 subgroup harbored nearly all (95/96,
99.0%) biCEBPA mutations, eight (8/9, 88.9%) moCEBPA
mutations with loss of heterozygosity (LOH) and 11 CEBPA
wild-type (WT) cases, termed as biCEBPA/-like. Among
mo CEBPA mutations located in the basic leucine zipper (bZIP)
region, except for two with LOH, the other three did not cluster
with G4. By contrast, G5—-G8 subgroups lacked a single strong
subgroup-defining molecular event. The G5 subgroup was
represented by AML, myelodysplasia-related (AML-MR), and
those only defined by differentiation (FAB subtypes), hence
this subgroup was nominated as myelodysplasia-related/-
like (MR/-like). The G6-G8 subgroups encompassed NPM1
mutations, KMT2A and NUP98 fusions, and differentiation
entities, indicating a relatively high heterogeneity in these gene
expression-defined clusters (Fig. 1C).

Compared with G1-G4, G5-G8 subgroups conferred higher
expression levels of HOXA/B and MEISI and rarely reported
calcium-dependent CPNES genes, representing the most strik-
ing discrepancies between the two counterparts (Fig. 24 and
SI Appendix, Fig. S10 and Dataset S5). Genetic mutations involved
in DNA methylation genes, chromatin modifiers, and spliceosomes
were significantly enriched in G5-G8, which was concordant with
the predominance of elderly patients, intermediate to high ELN
risk, and more relapses and deaths in these subgroups (Fig. 2B
and ST Appendix, Fig. S3 Cand D and Table S3 and Dataset S6).
The G5 subgroup mainly incorporated RUNXI, TP53, PHF6, and
“secondary-type” mutations (ASXLI1, BCOR, EZH2, STAG2,
U2AFI1, SRSF2, SF3B1, and ZRSR2), which were commonly
enriched in myelodysplastic syndrome (MDS)-transformed AML
(22). Consistently, patients in G5 carried more complex karyotype,
monosomal karyotype, and abnormalities of chromosomes 5, 7,
and 17, while they had lower bone marrow (BM) blasts and white
blood cell count (WBC) at diagnosis (Fig. 2B). Meanwhile, rare
IKZF1 N159S hotspot mutations (n = 7) uniformly clustered into
the G5 subgroup, while the majority of other /KZFI mutations
cooccurred with biCEBPA and fell into the G4 subgroup. The last
three subgroups (G6-G8) aggregated more NPMI mutations,
KMT2A and NUP98 fusions, FLT3-internal tandem duplication
(FLT3-1TD), and KMT2A-partial tandem duplication (KMT2A-
PTD). Notably, the frequency of DNMT3A/NPM1/FLT3-1TD
triple-mutated AML was higher in the G8 subgroup, with a per-
centage of 4.5%, 6.0%, and 22.2% in G6, G7, and G8, respectively,
whereas the concurrence of 7ET2 or IDH2 with NPM1/FLT3-1TD
mutations was more common in G7, which accounted for 0,
28.4%, and 7.4% of G6, G7, and G8, respectively. Intriguingly, a
female predominance could be observed in G7 (61%) and G8
(60%) in comparison with other subgroups though we have
excluded the genes at X/Y chromosomes (Fig. 2B).
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Fig. 1. Characteristic AML subgroups defined by gene expression profiling. (A) Consensus clustering (membership heatmap) of gene expression profiling
from 655 primary AML patients with the use of 20 different computational parameters. The PAC negatively indicates the stability of clustering results (Left).
Heatmap displays representative consensus clustering method (skmeans) based on top variance genes, which shows the consistency of two samples in the
same subgroup (Right). (B) Scatters of eight gene expression subgroups via tSNE visualization are shown. (C) Sankey plot indicates the relationship between
the defined molecular subgroups and disease entities defined by WHO classification. PAC, proportion of ambiguous clustering; tSNE, t-distributed stochastic

neighbor embedding; WHO, World Health Organization.

Cell Differentiation Stage and Regulatory Characteristics of
Gene Expression Subgroups. Next, we sought to decipher the
intrinsic transcriptome deregulation of known or unreported
subgroups. Considering cytomorphology is the traditional
diagnostic approach showing the cell differentiation stage,
we first compared gene expression subgroups with the FAB
classification system. It was shown that G1 (PML::RARA), G2
(CBFB::MYH11), G3 (RUNX1::RUNXIT1), and GO, respectively,
corresponded to M3, M4, and M2 with ¢(8;21) translocations
and M5 in FAB nomenclature. Additionally, the G4 (biCEBPA/-
like) subgroup was represented by M1/M2/M4, G5 (MR/-like)
by AML/M2/M4/M5, G7 mainly by M2/M4, and G8 by M4/
M5 (Fig. 34). Moreover, molecular subtypes showed distinct
immune cell abundances. G2 and G6 harbored more monocytes
and macrophages (Fig. 3B), which was consistent with the FAB
classification. Other immune fractions in defined molecular
subgroups are provided in SI Appendix, Fig. S11.

In parallel, we referred to single-cell RNA-Seq (scRNA-Seq)
data reported by Galen et al. (11) to pinpoint gene signatures of
diverse differentiation states, including hematopoietic stem/pro-
genitor cell-like (HSPC-like), granulocyte-monocyte precur-
sor-like (GMP-like), and monocyte-like cells. Through diffusion
map-based dimensionality reduction (23), each subgroup of G1-
G8 enriched distinct cell-type signatures (Fig. 3C). Notably, G5,
G7, and G8 subgroups displayed HSPC-like cell properties,
although G5 and G8 involved a continuum of cell types projected

PNAS 2022 Vol.119 No.49 e2211429119

along the HSPC to monocytic differentiation axis. G1 and G3
subgroups were characterized by GMP-like cell signatures, whereas
differentiated monocytic features were more enriched in G2 and
G6. The G4 subgroup lacked a prominent feature. Several molec-
ular markers of each cell type showed diverse expression levels in
G1-G8 (Fig. 3D). Single sample gene set enrichment analysis
(ssGSEA) and hierarchical clustering of these cellular markers
revealed similar hematopoietic cell differentiation hierarchies
(SI Appendix, Figs. S12 and S13 and Dataset S7). In order to verify
the inferred cell compositions from bulk RNA-Seq data, we ran-
domly analyzed the immunophenotypes of 36 AML cases from
G1-G8 by flow cytometry. The proportion of the
CD34'CD38" component in total leukocytes was significantly
higher in G5, G7, and G8 subgroups (SI Appendix, Fig. S14). In
addition, samples from G1, G3, and G4 subgroups exhibited
granulocytic differentiation immunophenotypes, while G2 and
G6 showed typical monocytic differentiation (S/ Appendix,
Fig. §15).

Characteristic gene expression signatures of each subgroup were
evaluated (Fig. 3E). HOXA/B family genes showed intermediate
and high expression in G5 and G6-GS8, respectively. Significantly,
G5, G7, and G8 presented an upregulation of the previously
well-established 17-gene leukemic stem cell (LSC17) signature
(24). Using the reported differentially expressed genes that could
classify NPMI1-mutated AML into primitive and committed sub-
types (12), G6 and G7 exhibited a more differentiated monocytic
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Fig. 2. Clinical and molecular features of gene expression subgroups. (A) Differentially expressed genes between each subgroup in G1-G4 and G5-G8 as a
whole (Left), and between each subgroup in G5-G8 and G1-G4 as a whole (Right). Each point represents a gene. All genes were ordered by the level of log, (fold
change) from low to high. (B) The Left panel shows clinical features, cytogenetic groups, outcomes, and recurrent gene fusions and mutations in AML, which
are classified into diverse functional groups. Each column represents a patient, which is arranged according to the gene expression subgroup through G1-G8.
The Middle panel depicts the percentage of clinical and molecular features in each subgroup. The Right panel presents the proportional distribution of gender
(Upper) and age group (Lower).

lineage feature and a stem cell signature, respectively, while G8 ~ and HOX-mixed (G8, with differentiation stage between stem cell
demonstrated a mixed feature. Accordingly, they were termed  and monocyte). Hierarchical clustering confirmed the intermedi-
HOX-committed (G6, monocyte), HOX-primitive (G7, stem cell), ate status of the HOX-mixed subgroup (S Appendix, Fig. S16).
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Fig. 3. Cellular hierarchies and regulatory pathways of gene expression subgroups. (A) Sankey plot shows reclassification from FAB subtypes to the defined
molecular subgroups (Upper). Immune infiltration with specific cell type abundance in each subgroup as determined by CIBERSORTX (Lower). (B) Comparison of
immune fractions of monocytes and macrophages M2 in G1-G8 subgroups. *P < .05; **P < .01; ***P < .005; ****P < .001. (C) Diffusion map for visualization of
distinct cell differentiation stages of gene expression subgroups through dimensionality reduction, using HSPC-like, GMP-like, and monocyte-like cell signatures
derived from scRNA-Seq data reported by Galen et al. (Left). Enrichment score of differentiation stage markers in each subgroup, using normal-derived and tumor-
derived markers from the same scRNA-Seq data (Right). (D) Deregulation of representative molecular markers of each cell type in the eight subgroups. (F) Heatmap
of gene expression signatures, including HOXA/B family genes, LSC17 score (Ng et al.), NPM1 stage signatures (Mer et al.), subgroup signatures representing the
most significant differentially expressed genes in G5-G8 and G1-G4, and BCL2 family genes in each molecular subgroup. Columns indicate patients and are
arranged according to the gene expression subgroup through G1-G8. The red and blue color represents relatively high and low gene expression, respectively.
FAB, French-American-British; GMP, granulocyte-monocyte precursors; HSPC, hematopoietic stem/progenitor cells; sScRNA-Seq, single-cell RNA sequencing.
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Apart from these well-defined gene sets, the expression levels of
characteristic genes and BCL2 family genes in each subgroup were
also delineated (Fig. 3E and SI Appendix, Fig. S17).

Oncogenic pathways were significantly upregulated mainly in
the G5 subgroup, as exemplified by Rho GTPases, PI3K-AKT,
JAK-STAT, and Calcium signaling pathways. The G2, G3, and
G6 subgroups enriched more tumor microenvironment (TME)-
related pathways, such as immunoregulatory, neutrophil degran-
ulation, and IL-10 signaling. The platelet cytosolic Ca** pathway
was upregulated in both G5 and G8 subgroups (S Appendix,
Fig. S184). Multiple coexpression gene modules were associated
with prognosis and G1-G8 subgroups (SI Appendix, Fig. S18B
and Dataset S8). Selected HOX-, G5/G8-, and monocyte-related
core networks are presented (S Appendix, Figs. S19 and S20).

Prognostic Value of the established AML Subtypes. Clinical
outcomes of the eight subgroups are displayed (SI Appendix,
Fig. S21), with the survival of G1 (PML::RARA) as a reference.
Despite G2 (CBFB::MYH11), G3 (RUNXI1::RUNXITI), and
G4 (biCEBPA/-like) subgroups displaying a relatively long
duration of overall survival (OS), a considerable proportion of
these patients experienced disease recurrence. Patients in G5
(MR/-like) and G8 (HOX-mixed) subgroups had the poorest
prognosis, in terms of both OS and event-free survival (EFS),
while those in G6 (HOX-committed) and G7 (HOX-primitive)
conferred slightly lower risk. Similar results were observed when
only patients who received standard-of-care induction therapy
were selected. Given that age significantly affects survival in
AML, we stratified patients into two age groups. For patients
older than 60 y, outcomes were uniformly dismal except for a
few ELN low-risk subgroups. Nevertheless, both G5 and G8
could significantly predict an adverse prognosis in young (<60
y) AML patients (Fig. 44).

We then explored the within-subgroup heterogeneity in rep-
resentative molecular subgroups. Patients with biCEBPA-like
gene expression signatures achieved a similar good prognosis to
those harboring biCEBPA mutations in the G4 subgroup.
Nevertheless, CEBPA mutations in other subgroups yielded an
extremely poor prognosis, almost all of which were moCEBPA
(Fig. 4B). Within the G5 subgroup, patients who carried fusion
genes (mainly rare and previously unreported ones), and muta-
tions in transcription factors (TFs), tumor suppressors (TS), and
spliceosome had more adverse survival (Fig. 4C). We explored
the underlying pathogenesis of several previously unidentified
fusions, among which, the injection of human CYB5A::DYM
(G5) mRNA into zebrafish embryos led to an increased expres-
sion of myeloid markers lyz, mpx, and lpl (SI Appendix,
Fig. $22). In the G8 subgroup, patients with TFs and other
genetic lesions had a more dismal prognosis than those with
fusion genes and NPM1 mutations, and those with and without
DNMT3AINPM1/FLT3-ITD triple-mutations showed similar
poor outcomes (Fig. 4D). Moreover, these results facilitate the
screen of prognostic genes from inter- and intrasubgroups
(SI Appendix, Fig. S23).

To elucidate the independent prognostic value of these identi-
fied transcriptome-based subgroups, we conducted a multivariable
Cox analysis in non-M3 AML patients (Fig. 4E). Age, male gen-
der, platelet, WBC, and LSC17 risk score (24) were all unfavorable
prognostic factors. Notably, as compared with the G2
(CBFB::MYH]I1) subgroup, the classification of G3, G5 with
mutations in TFs, TS, and spliceosome and G6, G7, and G8 with
other genetic lesions (except for fusions, NPM1, and TFs muta-
tions) independently predicted an adverse OS after adjusting for
established clinical and molecular prognostic parameters.

https://doi.org/10.1073/pnas.2211429119

Prediction Models of Transcriptome-Based Classification Enable
Individualized Risk-Adapted Therapy. By utilizing automatic
machine learning (AutoML)-based modeling algorithm and
different preprocessing steps, the eight gene expression subgroups
could be accurately predicted, with a median prediction accuracy
of 0.95 (Fig. 5A4). We selected newly diagnosed AML samples
collected from BM with available data from the TCGA LAML
(8) and Beat AML (14, 19) cohorts. Based on the established
models, both cohorts could convincingly reproduce the G1-G8
subgroups, which showed the corresponding expression and
differentiation signatures (Fig. 5 B and Cand S7 Appendix, Figs.
§24-S26 and Dataset S9). Of note, patients in the predicted
G5, G6, and G8 subgroups from the TCGA LAML cohort, and
those in G5 from the Beat cohort conferred extremely adverse
clinical outcomes (Fig. 5 D and E). Comparisons of clinical and
molecular parameters of the three cohorts are provided (Fig. 5F
and S/ Appendix, Table S4 and Dataset S10).

Based on ex vivo drug sensitivity data from the Beat AML
cohort (14, 19), responses of gene expression subgroups to differ-
ent types of drugs were predicted (Fig. 5G and Dataset S11). The
G1, G4, and G5 subgroups showed resistance to multiple inhib-
itors of receptor tyrosine kinase (RTK) such as Sorafenib,
Sunitinib, Quizartinib, Pazopanib, etc., whereas G6-G8 sub-
groups demonstrated high sensitivity to these agents. Notably, the
G2, G5, and G6 subgroups were resistant to the BCL2 inhibitor
Venetoclax. Of interest, we noticed an obvious sensitivity of the
monocytic phenotype (G2 and GO) to the histone deacetylase
(HDAC) inhibitor Panobinostat and RTK inhibitor Dasatinib,
two drugs commonly used in hematological malignancies. Taken
together, these data substantiated the clinical utility of defined
gene expression subgroups in AML, which may facilitate more
rational treatment, and lend support to the development of novel
agents.

Discussion

Accurate molecular classification and risk assessment are indis-
pensable for improving the prognosis of patients with AML (1).
RNA-Seq has recently been proven to be a comprehensive NGS
technique, allowing the detection of various genetic abnormalities
in acute leukemia (25-28). Additionally, gene expression signa-
tures provide valuable information on the molecular classification
and differentiation hierarchies of AML, which may further
advance our understanding of the disease (11-14).

To date, stable gene expression-based molecular subtypes have
not been established and cross-validated in large-scale AML
cohorts. Herein, we established the largest multicenter AML
cohort from China including 655 RNA-Seq and 619 targeted/
whole-exome sequencing data. Based on an enhanced consensus
method and clustering algorithms with extra feature filtration
steps, eight stable molecular subgroups (G1-G8) were identified
in this study. Among them, several subtypes significantly overlap
with the existing genomic classification of AML (3, 8, 9, 19). More
importantly, the proposed G1-G8 subgroups further enrich the
current classification system by integrating genetic anomalies, gene
expression signatures, and putative differentiation trajectories in
AML.

Well-known PML::RARA (G1), CBFB::MYHI1 (G2), and
RUNXI::RUNXITI (G3), respectively, defined a distinct gene
expression subgroup and exhibited GMP-like (G1/G3) and mono-
cyte-like (G2) gene signatures. In the G4 subgroup, the biCEB-
PA-like entity was identified, which incorporated moCEBPA
mutations with LOH and several CEBPA WT cases, both exhib-
iting similar GEP to biCEBPA, such as high 7RH and low HOXA/B

pnas.org


https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials

A Age > 60y Age<60y E Variable N Hazard ratio P
1.004 F— )
t”f:‘—"“*‘w . Age group Adolescent 18 | | Reference
o et
Iy |
g nie VO I P
> 075 i Young Adult 201 i 4.07 (0.54, 30.65) 0.173
3 |
E Adult 188 I>—.—< 9.61(1.28, 72.17) 0.028
o
i(: 0501 1 Young Old 142 : —— | 28.58 (3.77,216.93) 0.001
[
z |
5 |
a 0.25. ] Old Old 22 | —ll— | 39.36 (4.88, 317.44) <0.001
Gender Female 272 | | Reference
0.00] P=0.022 | P<0.0001 !
: Male 299 ] 1.65 (1.17, 2.34) 0.004
Number at risk Number at risk |
a1 5 4 4 4 3 52 49 4 46 44 PLT 571 ] 1.18 (1.01, 1.38) 0.032
G2 9 8 8 4 0 46 42 38 28 19 HGB 571 + 1.13 (0.94, 1.35) 0.204
o 23 6 3 1 1 0 47 40 30 22 15
E G4 =| 21 18 8 5 2 95 94 66 53 39 BM blasts 571 i 1.05 (0.87, 1.27) 0.629
D G5 ==l g1 36 19 7 3 67 50 29 22 15 !
G6=| 16 7 5 2 1 51 44 32 24 18 WBC 571 II 1.20 (1.03, 1.40) 0.023
G7 27 10 6 2 1 40 36 24 17 10
ELN risk Favourable 219 | | Reference
G8 28 19 9 3 1 80 72 43 25 15 |
T T T T T T T T T T
0 180 360 540 720 0 180 360 540 720 Intermediate 132 - 1.35 (0.75, 2.44) 0.321
Time in days |
Adverse 220 - 1.24 (0.66, 2.31) 0.500
B Strata C Strata |
G4-biCEBPA biCEBPA-like G5-fusions G5-others LSCA17 risk score 571 |>I< 2.53 (1.06, 6.04) 0.037
WT CEBPA-others G5-TFs-TS-Spliceosome
Others APS risk score 571 n 1.17 (0.72, 1.90) 0.517
|
1004 Subgroups G2 55 | Reference
. |
z 0.751 G3 53 |- 472(1.62,13.81)  0.005
I |
Q
o
£0.50 G4 110 - 1.70 (0.59, 4.92) 0.330
K]
E 0251 Gb5-others 30 '—+—' 1.07 (0.24, 4.89) 0.926
=3
w
G5-fusions 16 'I—.—‘ 3.12(0.80, 12.18) 0.102
0.00] P<0.0001 P<0.0001 |
Number at risk Number at risk G5-TFs-TS-Spliceosome 78 :—.ﬂ 3.38 (1.07, 10.67) 0.038
21 19 1312010 fromor 4t G6 63 |- 4.83(1.55,15.07)  0.007
S 15 9 3 1 0 30 23 1 8 7 |
©
& 9% 93 61 46 3N 81 &7 32 19 12 G7 65 |- 4.90(1.35,17.78)  0.016
522 411 292 206 145 525 446 321 236 168 |
0 180 360 540 720 0 180 360 540 720 G8-others 23 |>—.—< 4.77 (1.42, 15.95) 0.011
Time in days
G8-fusions 26 ':—I—c 3.21(0.78, 13.24) 0.107
D Strata Strata
G8-fusions - GB-NPM ~ Others G8-triple-mutations -~ Others G8-NPM1 42 JI-I—c 2.59 (0.64,10.48)  0.183
-+ G8-TFs G8-others G8-non-triple-mutations G8-TFs 10 i 2.93(0.71,12.15)  0.138
|
1004 £ i KMT2A fusions 571 e 3 0.64 (0.25, 1.63) 0.347
|
> 0.75- i NUP98 fusions 571 - 1.30 (0.44, 3.85) 0.638
- |
_‘é NPM1 mutations 571 q-‘ 0.76 (0.33, 1.71) 0.500
2 0.504 g
Q
E Transcription factors (TFs) 571 il 0.97 (0.70, 1.35) 0.874
2 0.25- 1
3 Spliceosome 571 ] 0.97 (0.60, 1.56) 0.890
|
0.004 P=0.0014 1P=0.0017 Tumor suppressors (TS) 571 | ] 1.25 (0.84, 1.86) 0.268
) |
Number at risk i
o e e Number at risk DNA methylation 571 ] 094 (0.72,1.24) 0677
© 44 37 25 10 7 84 70 3 223 M |
[ Activated signaling 571 1.26 (0.99, 1.60) 0.063
& f? 283 g i g 24 21 15 5 5 .
545 441 317 237 170 545 441 317 237 170 Chromatin modifiers 571 + 0.82 (0.60, 1.13) 0.226
T T T T T T T T T T
0 180 360 540 720 0 180 360 540 720 Cohesin complex 571 » 0.93 (0.55, 1.56) 0.774
Time in days oo
0.51 5 20 100

Fig. 4. Prognostic value of the established molecular subgroups. (A) Kaplan-Meier curves for overall survival of elderly (>60y, Left) and young (<60y, Right) AML
patients stratified by eight gene expression subgroups. (B-D) Kaplan-Meier curves for the probability of overall survival in G4 (B), G5 (C), and G8 (D) subgroups
stratified by specific genetic lesions. (E) Multivariable Cox analysis for overall survival in non-M3 AML patients.

gene expression (29). In contrast, apart from biCEBPA-positive
cases, the recently proposed bZIP-CEBPA did not cluster closely
at the gene expression level. Notably, the biCEBPA-like AML con-
ferred an equally favorable prognosis to biCEBPA, whereas the
non-G4 CEBPA mutations showed significantly poor outcomes.

PNAS 2022 Vol.119 No.49 e2211429119

Additionally, we observed four robust subgroups characterized
by intermediate (G5) to high (G6-G8) expression of HOXA/B,
MEISI, and CPNES genes. The G5 (MR/-like) subgroup
enriched more MDS-related changes, such as “secondary-type”
mutations (22) and 7P53 abnormalities/complex karyotype,
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Fig. 5. Construction of prediction models and validation in the TCGA LAML and Beat AML cohort. (A) Construction of prediction models utilizing a customized
modeling method with different data preprocessing, modeling methods, and random data sampling. Briefly, read counts were quantified by using Featurecounts,
and the gene expression matrix was generated by DESeq2 or TPM normalization with or without batch effect adjustment. Then, 90% of all primary AML samples
were used for model training by Autogluon with 10 times sampling. (B and C) tSNE visualization for scatters of eight gene expression subgroups predicted in the
TCGA LAML (B) and Beat AML (C) cohort. (D and E) Kaplan-Meier curves for overall survival of eight gene expression subgroups in the TCGA LAML (D) and Beat
AML (E) cohort. (F) Distribution of age (Upper) and gene expression subgroups (Lower) in the TCGA LAML, Beat AML, and our study cohort. (G) Heatmap shows
treatment responses of gene expression subgroups to different small-molecule inhibitors, using the Beat AML ex vivo drug screen data. Drug responses were
measured by the scaled AUC in each subgroup as compared with others, with blue and red color indicating sensitivity and resistance, respectively. AUC, area
under the dose-response curve; tSNE, t-distributed stochastic neighbor embedding.
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suggesting that patients in this subgroup might originate from
previously diagnosed or unrecognized MDS. It is worth noting
that this subgroup, though being a previously undefined subtype
at the transcriptome level, corresponds well to the redefined
AML-MR in the fifth edition of the WHO classification, which
has incorporated the eight “secondary-type” mutations (3). In
light of these results, the transcriptome-based classification could
serve as a potential surrogate for the diagnosis of AML-MR. Of
interest, an unexpectedly high frequency of JKZFI N159S muta-
tion (1.1%, 7/655) was found in this study, which was reported
as a germline and dominant negative mutation associated with
T, B, and myeloid cell combined immunodeficiency and T-ALL
(30, 31). All cases with JKZFI N159S showed a distinct gene
expression signature and clustered into the G5 subgroup, which
has not been reported to date. By analogy, we previously defined
a GEP-dependent subtype of IKZFI N159Y mutation in
B-progenitor acute lymphoblastic leukemia (15). Further studies
concerning the functional mechanism of this hotspot mutation
are warranted.

The G6 to G8 subgroups are represented by NPM 1 mutations,
KMT2A and NUP9S fusions, and FLT3-ITD and KMT2A-PTD.
Leukemia cells in these three subgroups are inferred to be blocked
at various differentiation stages. Consistent with this finding, a
recent study has classified VPMI-mutated AML into primitive
and committed subtypes based on stemness (12). Herein, we
extend this classification to a larger AML population sharing sim-
ilar GEP features, especially the significant overexpression of HOX
family genes, even in the absence of NPMI mutations. In com-
parison with the previous report (12), we redefined two subgroups
with distinct differentiation properties, namely HOX-committed
(G6) and HOX-primitive (G7), and identified an additional sub-
group spanning a spectrum of cell types, referred to as HOX-mixed
(G8). The HOX-committed (G6) subgroup was characterized by
monocyte-like gene signatures, i.e., CDI14, SI00A8/9, and LILRB4
(32, 33), which was similar to CBFB::MYH11 (G2). In contrast,
the G5 (MR/-like), HOX-primitive (G7), and HOX-mixed (G8)
subgroup demonstrated HSPC-like signatures, which was in con-
cordance with the well-recognized LSC17 score (24). Other genes
upregulated in these subgroups, such as MYCT1, PAWR, HLF,
and PRDM 16, were reported to be associated with stem cell prop-
erties (34-306).

These GEP-dependent subgroups herald different clinical out-
comes, with patients in G5 (MR/-like) and G8 (HOX-mixed)
showing the worst prognosis, which may partly be attributed to
the enrichment of high-risk genetic lesions in these subgroups.
Besides, the G5 and G8 subgroups might bear both stemness and
synergistic immunosuppressive properties that lead to an extremely
adverse prognosis. Remarkably, the independent prognostic value
of several gene expression subgroups and the within-subgroup
heterogeneity were observed, as exemplified by different outcomes
of specific genetic abnormalities in G5 and G8, indicating that
the transcriptome-based molecular classification may lay the foun-
dation for more accurate and efficient screening of prognostic
indicators in AML.

Of note, the eight GEP-defined subgroups were successfully
reproduced in both TCGA LAML and Beat AML cohorts using
the established prediction models. More importantly, drug sensi-
tivity data from the Beat cohort suggested that transcriptome-based
molecular subgroups may guide therapeutic decisions for AML
patients, as exemplified by the eventual sensitivity of G6-G8 sub-
groups to RTK inhibitors. Coinciding with recent reports (37,
38), a potential resistance to Venetoclax was observed in G2 and
G6 possibly due to the monocytic phenotype in both subgroups.
The HDAC inhibitor Panobinostat and RTK inhibitor Dasatinib

PNAS 2022 Vol.119 No.49 e2211429119

might exert therapeutic efficacy for the two subgroups, which
warrants further validation in preclinical and clinical studies.
Besides, the G5 subgroup seemed resistant to Venetoclax and most
kinase inhibitors, representing a putative treatment bottleneck in
AML. In addition to intensive chemotherapy, potential treatment
options for patients in G5 include CPX-351 (liposomal dauno-
rubicin/cytarabine approved for AML-MR) (39), hypomethyla-
tion agents, targeted therapies, and hematopoietic stem cell
transplantation. These results suggest that cellular compositions
of AML correlate with different drug sensitivities. In this regard,
it might be premature to ignore or phase out the FAB classification
in AML diagnostics, as it can still reflect, to some extent, the stage
of cell differentiation based on morphology.

To summarize, robust transcriptome-based molecular sub-
groups not only capture the clinically, morphologically, and genet-
ically defined AML entities but also largely enrich the current
widely used prognostic classification systems, which may consti-
tute a paramount framework for understanding the cellular origin
and genotype-phenotype associations of the disease. We envisage
the widespread application of RNA-Seq and the established clas-
sification (G1-G8) in clinical routine will provide a prompt and
comprehensive molecular landscape of AML and facilitate per-
sonally tailored disease management (Fig. 6).

Materials and Methods

Patients. Atotal of 655 primary AML patients were enrolled in this study, among
them, 442 were from Shanghai Institute of Hematology (SIH), 110 were from
Jiangsu Institute of Hematology (JIH), and 103 were from Zhejiang Institute
of Hematology (ZIH). All BM samples from 655 AML patients were subjected to
RNA-Seq, while TES and WES were performed in 576 and 43 patients, respectively.
Treatment protocols are provided in S Appendix.

This study was approved by the Ethics Committee of Ruijin Hospital Affiliated
to Shanghai Jiao Tong University School of Medicine, the First Affiliated Hospital
of Soochow University, and the First Affiliated Hospital of Zhejiang University
College of Medicine. All patients had given informed consent for both treat-
ment and cryopreservation of BM and peripheral blood samples according to
the Declaration of Helsinki.

Gene Expression Profiling-Dependent Subgroups. Raw RNA-Seq reads counts
were extracted by both genome alignment-based Featurecounts v2.0.1(40) and
Htseqv0.11.3(41) and alignment-free methods salmon v1.2.1(42) and Kallisto
v0.46.2 (43). Normalization of the counts matrix was simultaneously computed
based on the R DESeq2 (v1.28.0) (44) transformation and the Transcripts Per
Kilobase Million (TPM) value, which were used as the gene expression matrix for
downstream analysis. ComBat function in the R sva package (v3.40.0) (45) was
used to adjust the batch effect. Unsupervised clustering of top variance genes
was conducted in R using the ComplexHeatmap (46) and a modified consensus
clustering workflow. Autogluon (v0.2.0) (https://github.com/awslabs/autogluon)
in Python was applied in the training and assessment of predictive models of
GEP-defined subgroups. Detailed information and parameters related to the gene
expression analysis are provided in S/ Appendix.

Data, Materials, and Software Availability. Available scripts and programs
of this study were deployed in https://github.com/clindet and Hiplot website
(47). Anonymized [RNA sequencing] data have been deposited in [The Genome
Sequence Archive for Human (GSA-Human, https://ngdc.cncb.ac.cn/gsa-human)]
(HRA002693). All study data are included in the article and/or S/ Appendix.
Previously published data were used for this work (1. X. Lin et al. Integration
of Genomic and Transcriptomic Markers Improves the Prognosis Prediction of
Acute Promyelocytic Leukemia. Clin. Cancer. Res. 27,3683-3694(2021). 2. P Jin
et al. Large-scale in vitro and in vivo CRISPR-Cas9 knockout screens identify a
16-gene fitness score for improved risk assessment in AML. Clin. Cancer. Res.
10.1158/1078-0432.Ccr-22-1618 (2022). 3.T. J. Ley et al. Genomic and epig-
enomic landscapes of adult de novo AML. N. Engl.J. Med. 368,2059-2074 (2013).
4.J.W.Tyner et al., Functional genomic landscape of AML. Nature 562, 526-531
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Fig.6. Schematic of molecular alterations and potential therapeutic targets in AML. Accumulation of diverse genomic and transcriptomic aberrations is related
to the risk and prognosis of AML. Potential AML-related abnormalities identified in this work are displayed in the cell diagram (cell membrane, cytoplasm, nucleus)
including fusion transcripts, genetic mutations, prognostic gene expression and alternative splicing events. Genetic mutations involving activated signaling
molecules are common in the cytoplasm and cell membrane. Nuclear regulatory factors may contribute to the instability of the genome resulting in specific
genetic mutations and gene expression profiles. Genes with sequence variations are marked with red lightning marks. The known and emerging target therapy
agents are also labeled accompanying the target gene or pathway. Venetoclax and Glasdegib are respectively targeting the de-regulated apoptosis pathway
gene BCL2 and the Hedgehog pathway SMO. Inhibitors Midostaurin and Gilteritinib can be used to treat FLT3 mutant AMLs. Cellular immunotherapy is another
treatment option for AML patients with specific cell surface markers including the Gentuzumab ozogamicin targeting CD33.

(2018). 5. D. Bottomly et al. Integrative analysis of drug response and clinical
outcome in acute myeloid leukemia. Cancer Cell 40, 850-864.6859 (2022)).
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