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Significance

Although the genetic intricacies 
of acute myeloid leukemia have 
been unmasked, the 
transcriptomic landscape 
remains incompletely defined 
and poorly translated into clinical 
practice. In this study, we 
evaluated the transcriptome 
repertoire in a large multicenter 
AML cohort and established eight 
robust gene expression-based 
molecular subgroups (G1–G8) of 
AML, including two previously 
unidentified and three redefined 
subgroups. Each subgroup 
displayed characteristic clinical 
features, genetic lesions, and 
developmental hierarchies. This 
classification system reflects the 
complex interplay of regulatory 
circuitry in this disease and 
complements and enriches 
current, well-recognized genome-
based categorization schemes, 
which may, thus, provide 
innovative insights into disease 
pathogenesis. Moreover, this 
transcriptomic classification 
demonstrated prognostic value 
and provided subgroup-specific 
drug sensitivity information, 
which may facilitate therapeutic 
decision-making for AML 
patients.
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The current classification of acute myeloid leukemia (AML) relies largely on genomic 
alterations. Robust identification of clinically and biologically relevant molecular sub-
types from nongenomic high-throughput sequencing data remains challenging. We 
established the largest multicenter AML cohort (n = 655) in China, with all patients 
subjected to RNA sequencing (RNA-Seq) and 619 (94.5%) to targeted or whole-ex-
ome sequencing (TES/WES). Based on an enhanced consensus clustering, eight stable 
gene expression subgroups (G1–G8) with unique clinical and biological significance 
were identified, including two unreported (G5 and G8) and three redefined ones (G4, 
G6, and G7). Apart from four well-known low-risk subgroups including PML::RARA 
(G1), CBFB::MYH11 (G2), RUNX1::RUNX1T1 (G3), biallelic CEBPA mutations or 
-like (G4), four meta-subgroups with poor outcomes were recognized. The G5 (mye-
lodysplasia-related/-like) subgroup enriched clinical, cytogenetic and genetic features 
mimicking secondary AML, and hotspot mutations of IKZF1 (p.N159S) (n = 7). In 
contrast, most NPM1 mutations and KMT2A and NUP98 fusions clustered into G6–
G8, showing high expression of HOXA/B genes and diverse differentiation stages, from 
hematopoietic stem/progenitor cell down to monocyte, namely HOX-primitive (G7), 
HOX-mixed (G8), and HOX-committed (G6). Through constructing prediction models, 
the eight gene expression subgroups could be reproduced in the Cancer Genome Atlas 
(TCGA) and Beat AML cohorts. Each subgroup was associated with distinct prognosis 
and drug sensitivities, supporting the clinical applicability of this transcriptome-based 
classification of AML. These molecular subgroups illuminate the complex molecular 
network of AML, which may promote systematic studies of disease pathogenesis and 
foster the screening of targeted agents based on omics.

acute myeloid leukemia | RNA-Seq | molecular classification | cell differentiation | drug sensitivity

Acute myeloid leukemia (AML) is a group of myeloid neoplasms characterized by high 
heterogeneity in clinical courses and responses to therapy (1). Leveraging advances in 
cytogenetics, molecular biology, and next-generation sequencing (NGS) technologies, an 
accumulating body of novel prognostic markers and therapeutic targets have been iden-
tified (2). The classification of AML has accordingly shifted from the French-American-
British (FAB) morphological subtyping to the more refined World Health Organization 
(WHO) system (3). Additionally, the emergence of new targeted agents, as exemplified 
by FLT3, BCL2, and IDH1/2 inhibitors (4–7), has improved the long-term survival of a 
subset of AML patients.

Since 2010, several genomic and transcriptomic studies have been conducted in AML 
and other acute leukemia. The Cancer Genome Atlas (TCGA) program has dissected the 
genomic landscape of AML and proposed nine categories of mutated genes (8). Another 
landmark research has recommended 11 distinct AML classes based solely on genetic 
abnormalities. However, 4% of AML patients met the criteria of two or more classes, 11% 
remained unclassified, and 5% did not carry driver mutations (9). Hence, there is an 
urgent need to exploit and integrate more information beyond genomic alterations to 
further refine the classification and treatment strategies of the disease.

RNA-sequencing (RNA-Seq) provides comprehensive and multifaceted information, 
which can not only scrutinize gene fusions and mutations but also dissect the gene expres-
sion profiling (GEP), holding great potential for improving the classification framework 
of AML (10). Besides, recent works have reported that the cellular origin of AML can be 
inferred from bulk transcriptomes and have underscored the association between differ-
entiation hierarchies and sensitivities to targeted inhibitors (11–14). Mer et al. (12) recently 
classified NPM1-mutated AML into primitive and committed subtypes based on the 
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presence or absence of stemness. The primitive AML cells con-
ferred stem cell signatures and poor prognosis, while the differen-
tiated monocyte-like AML cells (committed) expressed 
immunomodulatory factors and suppressed T cells (11). Via min-
ing large multicenter RNA-Seq data, we and others have success-
fully identified emerging molecular subtypes in B cell and T cell 
acute lymphoblastic leukemia (ALL) (15–17).

However, the robust classification of molecular subtypes based 
on integrative genomic and transcriptomic features in AML is still 
challenging. Inconsistent clustering results and complex cellular 
compositions have been observed in previous works (8, 18, 19). 
Small sample sizes, single hierarchical clustering without bias fea-
ture filtration or cross-validation, and limited biological/clinical 
interpretation have long hindered the stability and wide applica-
tion of emerging classification systems in this disease. On the other 
hand, some published works have ignored dominant signals of 
specific genetic lesions or gene expression-like subtypes when ana-
lyzing the association between differentiation stages and molecular 
inhibitors. In fact, several genomic markers including t(8;21), 
inv(16)/t(16;16), and t(15;17) could be determinants of distinct 
gene expression clusters (20). Taken together, interpreting the 
complicated interplay and functional impact of leukemogenic 
events requires the establishment of stable molecular subtypes 
combining genetic abnormalities, gene expression landscapes, and 
cellular differentiation states in large AML cohorts.

To address these issues, we established the largest omics cohort 
of AML patients in China from three centers. Stable molecular 
subgroups (G1–G8) with characteristic clinical/biological signa-
tures and cellular differentiation hierarchies were identified, which 
were reproduced in the TCGA LAML (8) and Beat AML (14, 19) 
cohorts.

Results

Genetic Mutations and Fusion Genes Identified in the 
Multicenter Cohort. The study overview, flow diagram, and 
clinical characteristics of 655 newly diagnosed AML patients are 
provided (SI Appendix, Figs. S1 and S2 and Table S1 and Dataset 
S1). The frequency of recurrent genetic mutations was revealed 
by the combination of RNA-Seq and targeted or whole-exome 
sequencing (TES/WES). We identified at least one genetic lesion in 
649 of 655 (99.1%) AML patients at diagnosis. A higher mutation 
rate of CEBPA gene was observed in this study, including 96 
(14.7%) biallelic CEBPA (biCEBPA) and 24 (3.7%) monoallelic 
CEBPA (moCEBPA) mutations (SI Appendix, Fig. S3 A and B 
and Dataset S2). Consistently, Wilhelmson et al. (21) previously 
summarized that a higher incidence of biCEBPA mutations could 
be seen in Asian (6–15%; average 12%) as compared to Caucasian 
(2–6%; average 4%) populations, reflecting a possible difference 
in genetic backgrounds between the two counterparts. Several 
highly mutated genes in AML exhibited dysregulated expression 
levels, such as CEBPA, RUNX1, and FLT3 (SI Appendix, Fig. S4). 
Additionally, 38.0% (249/655) of newly diagnosed AML patients 
harbored at least one fusion, with entity-defining fusions, namely 
PML::RARA, CBFB::MYH11, RUNX1::RUNX1T1, and KMT2A 
translocations ranking the top (SI Appendix, Fig. S5), consistent 
with the TCGA and Beat reports (SI Appendix, Fig. S6). A total of 
18 (2.7%) NUP98 fusions were detected. Among fusion-positive 
cases, 16 fusions were barely  reported, including two NUP98 
fusions (NUP98::HOXD12 and NUP98::TNRC18) (SI Appendix, 
Fig. S5 and Table S2). The RNA gene MIR99AHG was involved in 
RUNX1::MIR99AHG and NRIP1::MIR99AHG, and both of them 
exhibited significant upregulation of MIR99AHG (SI Appendix, 
Fig. S7).

Consensus Clustering Defines Stable Gene Expression 
Subgroups of AML. After adjusting the batch effect of three 
datasets from China (SI Appendix, Fig. S8), we identified eight 
stable subgroups (G1–G8) in AML (Fig. 1 A and B) based on 
consensus clustering (twenty methods and gradient sampling 
of rows/columns) of RNA-Seq data (n = 655) using 859 genes 
with the greatest variance (Datasets S3 and S4), which was 
more robust compared with unsupervised hierarchical clustering  
(SI Appendix, Fig.  S9). The correlation between G1–G8 
subgroups and AML entities defined by the latest WHO 
classification (3) was adopted to determine the cutoff of the 
top-feature selection (Fig.  1C). The former four subgroups 
(G1–G4) overlapped almost with the relatively favorable 
genetic lesions of the WHO classification. Transcription factor 
fusions PML::RARA, CBFB::MYH11, and RUNX1::RUNX1T1 
exclusively clustered into the G1, G2, and G3 subgroups, 
respectively. The G4 subgroup harbored nearly all (95/96, 
99.0%) biCEBPA mutations, eight (8/9, 88.9%) moCEBPA 
mutations with loss of heterozygosity (LOH) and 11 CEBPA 
wild-type (WT) cases, termed as biCEBPA/-like. Among 
moCEBPA mutations located in the basic leucine zipper (bZIP) 
region, except for two with LOH, the other three did not cluster 
with G4. By contrast, G5–G8 subgroups lacked a single strong 
subgroup-defining molecular event. The G5 subgroup was 
represented by AML, myelodysplasia-related (AML-MR), and 
those only defined by differentiation (FAB subtypes), hence 
this subgroup was nominated as myelodysplasia-related/-
like (MR/-like). The G6–G8 subgroups encompassed NPM1 
mutations, KMT2A and NUP98 fusions, and differentiation 
entities, indicating a relatively high heterogeneity in these gene 
expression-defined clusters (Fig. 1C).

Compared with G1–G4, G5–G8 subgroups conferred higher 
expression levels of HOXA/B and MEIS1 and rarely reported 
calcium-dependent CPNE8 genes, representing the most strik-
ing discrepancies between the two counterparts (Fig. 2A and 
SI Appendix, Fig. S10 and Dataset S5). Genetic mutations involved 
in DNA methylation genes, chromatin modifiers, and spliceosomes 
were significantly enriched in G5–G8, which was concordant with 
the predominance of elderly patients, intermediate to high ELN 
risk, and more relapses and deaths in these subgroups (Fig. 2B 
and SI Appendix, Fig. S3 C and D and Table S3 and Dataset S6). 
The G5 subgroup mainly incorporated RUNX1, TP53, PHF6, and 
“secondary-type” mutations (ASXL1, BCOR, EZH2, STAG2, 
U2AF1, SRSF2, SF3B1, and ZRSR2), which were commonly 
enriched in myelodysplastic syndrome (MDS)-transformed AML 
(22). Consistently, patients in G5 carried more complex karyotype, 
monosomal karyotype, and abnormalities of chromosomes 5, 7, 
and 17, while they had lower bone marrow (BM) blasts and white 
blood cell count (WBC) at diagnosis (Fig. 2B). Meanwhile, rare 
IKZF1 N159S hotspot mutations (n = 7) uniformly clustered into 
the G5 subgroup, while the majority of other IKZF1 mutations 
cooccurred with biCEBPA and fell into the G4 subgroup. The last 
three subgroups (G6–G8) aggregated more NPM1 mutations, 
KMT2A and NUP98 fusions, FLT3-internal tandem duplication 
(FLT3-ITD), and KMT2A-partial tandem duplication (KMT2A-
PTD). Notably, the frequency of DNMT3A/NPM1/FLT3-ITD 
triple-mutated AML was higher in the G8 subgroup, with a per-
centage of 4.5%, 6.0%, and 22.2% in G6, G7, and G8, respectively, 
whereas the concurrence of TET2 or IDH2 with NPM1/FLT3-ITD 
mutations was more common in G7, which accounted for 0, 
28.4%, and 7.4% of G6, G7, and G8, respectively. Intriguingly, a 
female predominance could be observed in G7 (61%) and G8 
(60%) in comparison with other subgroups though we have 
excluded the genes at X/Y chromosomes (Fig. 2B).
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Cell Differentiation Stage and Regulatory Characteristics of 
Gene Expression Subgroups. Next, we sought to decipher the 
intrinsic transcriptome deregulation of known or unreported 
subgroups. Considering cytomorphology is the traditional 
diagnostic approach showing the cell differentiation stage, 
we first compared gene expression subgroups with the FAB 
classification system. It was shown that G1 (PML::RARA), G2 
(CBFB::MYH11), G3 (RUNX1::RUNX1T1), and G6, respectively, 
corresponded to M3, M4, and M2 with t(8;21) translocations 
and M5 in FAB nomenclature. Additionally, the G4 (biCEBPA/-
like) subgroup was represented by M1/M2/M4, G5 (MR/-like) 
by AML/M2/M4/M5, G7 mainly by M2/M4, and G8 by M4/
M5 (Fig.  3A). Moreover, molecular subtypes showed distinct 
immune cell abundances. G2 and G6 harbored more monocytes 
and macrophages (Fig. 3B), which was consistent with the FAB 
classification. Other immune fractions in defined molecular 
subgroups are provided in SI Appendix, Fig. S11.

In parallel, we referred to single-cell RNA-Seq (scRNA-Seq) 
data reported by Galen et al. (11) to pinpoint gene signatures of 
diverse differentiation states, including hematopoietic stem/pro-
genitor cell-like (HSPC-like), granulocyte-monocyte precur-
sor-like (GMP-like), and monocyte-like cells. Through diffusion 
map-based dimensionality reduction (23), each subgroup of G1–
G8 enriched distinct cell-type signatures (Fig. 3C). Notably, G5, 
G7, and G8 subgroups displayed HSPC-like cell properties, 
although G5 and G8 involved a continuum of cell types projected 

along the HSPC to monocytic differentiation axis. G1 and G3 
subgroups were characterized by GMP-like cell signatures, whereas 
differentiated monocytic features were more enriched in G2 and 
G6. The G4 subgroup lacked a prominent feature. Several molec-
ular markers of each cell type showed diverse expression levels in 
G1–G8 (Fig. 3D). Single sample gene set enrichment analysis 
(ssGSEA) and hierarchical clustering of these cellular markers 
revealed similar hematopoietic cell differentiation hierarchies 
(SI Appendix, Figs. S12 and S13 and Dataset S7). In order to verify 
the inferred cell compositions from bulk RNA-Seq data, we ran-
domly analyzed the immunophenotypes of 36 AML cases from 
G1–G8 by flow cytometry. The proportion of the 
CD34+CD38− component in total leukocytes was significantly 
higher in G5, G7, and G8 subgroups (SI Appendix, Fig. S14). In 
addition, samples from G1, G3, and G4 subgroups exhibited 
granulocytic differentiation immunophenotypes, while G2 and 
G6 showed typical monocytic differentiation (SI Appendix, 
Fig. S15).

Characteristic gene expression signatures of each subgroup were 
evaluated (Fig. 3E). HOXA/B family genes showed intermediate 
and high expression in G5 and G6–G8, respectively. Significantly, 
G5, G7, and G8 presented an upregulation of the previously 
well-established 17-gene leukemic stem cell (LSC17) signature 
(24). Using the reported differentially expressed genes that could 
classify NPM1-mutated AML into primitive and committed sub-
types (12), G6 and G7 exhibited a more differentiated monocytic 
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lineage feature and a stem cell signature, respectively, while G8 
demonstrated a mixed feature. Accordingly, they were termed 
HOX-committed (G6, monocyte), HOX-primitive (G7, stem cell), 

and HOX-mixed (G8, with differentiation stage between stem cell 
and monocyte). Hierarchical clustering confirmed the intermedi-
ate status of the HOX-mixed subgroup (SI Appendix, Fig. S16). 
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Fig. 2. Clinical and molecular features of gene expression subgroups. (A) Differentially expressed genes between each subgroup in G1–G4 and G5–G8 as a 
whole (Left), and between each subgroup in G5–G8 and G1–G4 as a whole (Right). Each point represents a gene. All genes were ordered by the level of log2 (fold 
change) from low to high. (B) The Left panel shows clinical features, cytogenetic groups, outcomes, and recurrent gene fusions and mutations in AML, which 
are classified into diverse functional groups. Each column represents a patient, which is arranged according to the gene expression subgroup through G1–G8. 
The Middle panel depicts the percentage of clinical and molecular features in each subgroup. The Right panel presents the proportional distribution of gender 
(Upper) and age group (Lower).
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Fig. 3. Cellular hierarchies and regulatory pathways of gene expression subgroups. (A) Sankey plot shows reclassification from FAB subtypes to the defined 
molecular subgroups (Upper). Immune infiltration with specific cell type abundance in each subgroup as determined by CIBERSORTx (Lower). (B) Comparison of 
immune fractions of monocytes and macrophages M2 in G1–G8 subgroups. *P < .05; **P < .01; ***P < .005; ****P < .001. (C) Diffusion map for visualization of 
distinct cell differentiation stages of gene expression subgroups through dimensionality reduction, using HSPC-like, GMP-like, and monocyte-like cell signatures 
derived from scRNA-Seq data reported by Galen et al. (Left). Enrichment score of differentiation stage markers in each subgroup, using normal-derived and tumor-
derived markers from the same scRNA-Seq data (Right). (D) Deregulation of representative molecular markers of each cell type in the eight subgroups. (E) Heatmap 
of gene expression signatures, including HOXA/B family genes, LSC17 score (Ng et al.), NPM1 stage signatures (Mer et al.), subgroup signatures representing the 
most significant differentially expressed genes in G5–G8 and G1–G4, and BCL2 family genes in each molecular subgroup. Columns indicate patients and are 
arranged according to the gene expression subgroup through G1–G8. The red and blue color represents relatively high and low gene expression, respectively. 
FAB, French-American-British; GMP, granulocyte-monocyte precursors; HSPC, hematopoietic stem/progenitor cells; scRNA-Seq, single-cell RNA sequencing.
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Apart from these well-defined gene sets, the expression levels of 
characteristic genes and BCL2 family genes in each subgroup were 
also delineated (Fig. 3E and SI Appendix, Fig. S17).

Oncogenic pathways were significantly upregulated mainly in 
the G5 subgroup, as exemplified by Rho GTPases, PI3K-AKT, 
JAK-STAT, and Calcium signaling pathways. The G2, G3, and 
G6 subgroups enriched more tumor microenvironment (TME)-
related pathways, such as immunoregulatory, neutrophil degran-
ulation, and IL-10 signaling. The platelet cytosolic Ca2+ pathway 
was upregulated in both G5 and G8 subgroups (SI Appendix, 
Fig. S18A). Multiple coexpression gene modules were associated 
with prognosis and G1–G8 subgroups (SI Appendix, Fig. S18B 
and Dataset S8). Selected HOX-, G5/G8-, and monocyte-related 
core networks are presented (SI Appendix, Figs. S19 and S20).

Prognostic Value of the established AML Subtypes. Clinical 
outcomes of the eight subgroups are displayed (SI  Appendix, 
Fig. S21), with the survival of G1 (PML::RARA) as a reference. 
Despite G2 (CBFB::MYH11), G3 (RUNX1::RUNX1T1), and 
G4 (biCEBPA/-like) subgroups displaying a relatively long 
duration of overall survival (OS), a considerable proportion of 
these patients experienced disease recurrence. Patients in G5 
(MR/-like) and G8 (HOX-mixed) subgroups had the poorest 
prognosis, in terms of both OS and event-free survival (EFS), 
while those in G6 (HOX-committed) and G7 (HOX-primitive) 
conferred slightly lower risk. Similar results were observed when 
only patients who received standard-of-care induction therapy 
were selected. Given that age significantly affects survival in 
AML, we stratified patients into two age groups. For patients 
older than 60 y, outcomes were uniformly dismal except for a 
few ELN low-risk subgroups. Nevertheless, both G5 and G8 
could significantly predict an adverse prognosis in young (≤60 
y) AML patients (Fig. 4A).

We then explored the within-subgroup heterogeneity in rep-
resentative molecular subgroups. Patients with biCEBPA-like 
gene expression signatures achieved a similar good prognosis to 
those harboring biCEBPA mutations in the G4 subgroup. 
Nevertheless, CEBPA mutations in other subgroups yielded an 
extremely poor prognosis, almost all of which were moCEBPA 
(Fig. 4B). Within the G5 subgroup, patients who carried fusion 
genes (mainly rare and previously unreported ones), and muta-
tions in transcription factors (TFs), tumor suppressors (TS), and 
spliceosome had more adverse survival (Fig. 4C). We explored 
the underlying pathogenesis of several previously unidentified 
fusions, among which, the injection of human CYB5A::DYM 
(G5) mRNA into zebrafish embryos led to an increased expres-
sion of myeloid markers lyz, mpx, and lcp1 (SI Appendix, 
Fig. S22). In the G8 subgroup, patients with TFs and other 
genetic lesions had a more dismal prognosis than those with 
fusion genes and NPM1 mutations, and those with and without 
DNMT3A/NPM1/FLT3-ITD triple-mutations showed similar 
poor outcomes (Fig. 4D). Moreover, these results facilitate the 
screen of prognostic genes from inter- and intrasubgroups 
(SI Appendix, Fig. S23).

To elucidate the independent prognostic value of these identi-
fied transcriptome-based subgroups, we conducted a multivariable 
Cox analysis in non-M3 AML patients (Fig. 4E). Age, male gen-
der, platelet, WBC, and LSC17 risk score (24) were all unfavorable 
prognostic factors. Notably, as compared with the G2 
(CBFB::MYH11) subgroup, the classification of G3, G5 with 
mutations in TFs, TS, and spliceosome and G6, G7, and G8 with 
other genetic lesions (except for fusions, NPM1, and TFs muta-
tions) independently predicted an adverse OS after adjusting for 
established clinical and molecular prognostic parameters.

Prediction Models of Transcriptome-Based Classification Enable 
Individualized Risk-Adapted Therapy. By utilizing automatic 
machine learning (AutoML)-based modeling algorithm and 
different preprocessing steps, the eight gene expression subgroups 
could be accurately predicted, with a median prediction accuracy 
of 0.95 (Fig.  5A). We selected newly diagnosed AML samples 
collected from BM with available data from the TCGA LAML 
(8) and Beat AML (14, 19) cohorts. Based on the established 
models, both cohorts could convincingly reproduce the G1–G8 
subgroups, which showed the corresponding expression and 
differentiation signatures (Fig. 5 B and C and SI Appendix, Figs. 
S24–S26  and  Dataset S9). Of note, patients in the predicted 
G5, G6, and G8 subgroups from the TCGA LAML cohort, and 
those in G5 from the Beat cohort conferred extremely adverse 
clinical outcomes (Fig. 5 D and E). Comparisons of clinical and 
molecular parameters of the three cohorts are provided (Fig. 5F 
and SI Appendix, Table S4 and Dataset S10).

Based on ex vivo drug sensitivity data from the Beat AML 
cohort (14, 19), responses of gene expression subgroups to differ-
ent types of drugs were predicted (Fig. 5G and Dataset S11). The 
G1, G4, and G5 subgroups showed resistance to multiple inhib-
itors of receptor tyrosine kinase (RTK) such as Sorafenib, 
Sunitinib, Quizartinib, Pazopanib, etc., whereas G6–G8 sub-
groups demonstrated high sensitivity to these agents. Notably, the 
G2, G5, and G6 subgroups were resistant to the BCL2 inhibitor 
Venetoclax. Of interest, we noticed an obvious sensitivity of the 
monocytic phenotype (G2 and G6) to the histone deacetylase 
(HDAC) inhibitor Panobinostat and RTK inhibitor Dasatinib, 
two drugs commonly used in hematological malignancies. Taken 
together, these data substantiated the clinical utility of defined 
gene expression subgroups in AML, which may facilitate more 
rational treatment, and lend support to the development of novel 
agents.

Discussion

Accurate molecular classification and risk assessment are indis-
pensable for improving the prognosis of patients with AML (1). 
RNA-Seq has recently been proven to be a comprehensive NGS 
technique, allowing the detection of various genetic abnormalities 
in acute leukemia (25–28). Additionally, gene expression signa-
tures provide valuable information on the molecular classification 
and differentiation hierarchies of AML, which may further 
advance our understanding of the disease (11–14).

To date, stable gene expression-based molecular subtypes have 
not been established and cross-validated in large-scale AML 
cohorts. Herein, we established the largest multicenter AML 
cohort from China including 655 RNA-Seq and 619 targeted/
whole-exome sequencing data. Based on an enhanced consensus 
method and clustering algorithms with extra feature filtration 
steps, eight stable molecular subgroups (G1–G8) were identified 
in this study. Among them, several subtypes significantly overlap 
with the existing genomic classification of AML (3, 8, 9, 19). More 
importantly, the proposed G1–G8 subgroups further enrich the 
current classification system by integrating genetic anomalies, gene 
expression signatures, and putative differentiation trajectories in 
AML.

Well-known PML::RARA (G1), CBFB::MYH11 (G2), and 
RUNX1::RUNX1T1 (G3), respectively, defined a distinct gene 
expression subgroup and exhibited GMP-like (G1/G3) and mono-
cyte-like (G2) gene signatures. In the G4 subgroup, the biCEB-
PA-like entity was identified, which incorporated moCEBPA 
mutations with LOH and several CEBPA WT cases, both exhib-
iting similar GEP to biCEBPA, such as high TRH and low HOXA/B 

https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
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gene expression (29). In contrast, apart from biCEBPA-positive 
cases, the recently proposed bZIP-CEBPA did not cluster closely 
at the gene expression level. Notably, the biCEBPA-like AML con-
ferred an equally favorable prognosis to biCEBPA, whereas the 
non-G4 CEBPA mutations showed significantly poor outcomes.

Additionally, we observed four robust subgroups characterized 
by intermediate (G5) to high (G6–G8) expression of HOXA/B, 
MEIS1, and CPNE8 genes. The G5 (MR/-like) subgroup 
enriched more MDS-related changes, such as “secondary-type” 
mutations (22) and TP53 abnormalities/complex karyotype, 
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suggesting that patients in this subgroup might originate from 
previously diagnosed or unrecognized MDS. It is worth noting 
that this subgroup, though being a previously undefined subtype 
at the transcriptome level, corresponds well to the redefined 
AML-MR in the fifth edition of the WHO classification, which 
has incorporated the eight “secondary-type” mutations (3). In 
light of these results, the transcriptome-based classification could 
serve as a potential surrogate for the diagnosis of AML-MR. Of 
interest, an unexpectedly high frequency of IKZF1 N159S muta-
tion (1.1%, 7/655) was found in this study, which was reported 
as a germline and dominant negative mutation associated with 
T, B, and myeloid cell combined immunodeficiency and T-ALL 
(30, 31). All cases with IKZF1 N159S showed a distinct gene 
expression signature and clustered into the G5 subgroup, which 
has not been reported to date. By analogy, we previously defined 
a GEP-dependent subtype of IKZF1 N159Y mutation in 
B-progenitor acute lymphoblastic leukemia (15). Further studies 
concerning the functional mechanism of this hotspot mutation 
are warranted.

The G6 to G8 subgroups are represented by NPM1 mutations, 
KMT2A and NUP98 fusions, and FLT3-ITD and KMT2A-PTD. 
Leukemia cells in these three subgroups are inferred to be blocked 
at various differentiation stages. Consistent with this finding, a 
recent study has classified NPM1-mutated AML into primitive 
and committed subtypes based on stemness (12). Herein, we 
extend this classification to a larger AML population sharing sim-
ilar GEP features, especially the significant overexpression of HOX 
family genes, even in the absence of NPM1 mutations. In com-
parison with the previous report (12), we redefined two subgroups 
with distinct differentiation properties, namely HOX-committed 
(G6) and HOX-primitive (G7), and identified an additional sub-
group spanning a spectrum of cell types, referred to as HOX-mixed 
(G8). The HOX-committed (G6) subgroup was characterized by 
monocyte-like gene signatures, i.e., CD14, S100A8/9, and LILRB4 
(32, 33), which was similar to CBFB::MYH11 (G2). In contrast, 
the G5 (MR/-like), HOX-primitive (G7), and HOX-mixed (G8) 
subgroup demonstrated HSPC-like signatures, which was in con-
cordance with the well-recognized LSC17 score (24). Other genes 
upregulated in these subgroups, such as MYCT1, PAWR, HLF, 
and PRDM16, were reported to be associated with stem cell prop-
erties (34–36).

These GEP-dependent subgroups herald different clinical out-
comes, with patients in G5 (MR/-like) and G8 (HOX-mixed) 
showing the worst prognosis, which may partly be attributed to 
the enrichment of high-risk genetic lesions in these subgroups. 
Besides, the G5 and G8 subgroups might bear both stemness and 
synergistic immunosuppressive properties that lead to an extremely 
adverse prognosis. Remarkably, the independent prognostic value 
of several gene expression subgroups and the within-subgroup 
heterogeneity were observed, as exemplified by different outcomes 
of specific genetic abnormalities in G5 and G8, indicating that 
the transcriptome-based molecular classification may lay the foun-
dation for more accurate and efficient screening of prognostic 
indicators in AML.

Of note, the eight GEP-defined subgroups were successfully 
reproduced in both TCGA LAML and Beat AML cohorts using 
the established prediction models. More importantly, drug sensi-
tivity data from the Beat cohort suggested that transcriptome-based 
molecular subgroups may guide therapeutic decisions for AML 
patients, as exemplified by the eventual sensitivity of G6–G8 sub-
groups to RTK inhibitors. Coinciding with recent reports (37, 
38), a potential resistance to Venetoclax was observed in G2 and 
G6 possibly due to the monocytic phenotype in both subgroups. 
The HDAC inhibitor Panobinostat and RTK inhibitor Dasatinib 

might exert therapeutic efficacy for the two subgroups, which 
warrants further validation in preclinical and clinical studies. 
Besides, the G5 subgroup seemed resistant to Venetoclax and most 
kinase inhibitors, representing a putative treatment bottleneck in 
AML. In addition to intensive chemotherapy, potential treatment 
options for patients in G5 include CPX-351 (liposomal dauno-
rubicin/cytarabine approved for AML-MR) (39), hypomethyla-
tion agents, targeted therapies, and hematopoietic stem cell 
transplantation. These results suggest that cellular compositions 
of AML correlate with different drug sensitivities. In this regard, 
it might be premature to ignore or phase out the FAB classification 
in AML diagnostics, as it can still reflect, to some extent, the stage 
of cell differentiation based on morphology.

To summarize, robust transcriptome-based molecular sub-
groups not only capture the clinically, morphologically, and genet-
ically defined AML entities but also largely enrich the current 
widely used prognostic classification systems, which may consti-
tute a paramount framework for understanding the cellular origin 
and genotype-phenotype associations of the disease. We envisage 
the widespread application of RNA-Seq and the established clas-
sification (G1–G8) in clinical routine will provide a prompt and 
comprehensive molecular landscape of AML and facilitate per-
sonally tailored disease management (Fig. 6).

Materials and Methods

Patients. A total of 655 primary AML patients were enrolled in this study, among 
them, 442 were from Shanghai Institute of Hematology (SIH), 110 were from 
Jiangsu Institute of Hematology (JIH), and 103 were from Zhejiang Institute 
of Hematology (ZIH). All BM samples from 655 AML patients were subjected to 
RNA-Seq, while TES and WES were performed in 576 and 43 patients, respectively. 
Treatment protocols are provided in SI Appendix.

This study was approved by the Ethics Committee of Ruijin Hospital Affiliated 
to Shanghai Jiao Tong University School of Medicine, the First Affiliated Hospital 
of Soochow University, and the First Affiliated Hospital of Zhejiang University 
College of Medicine. All patients had given informed consent for both treat-
ment and cryopreservation of BM and peripheral blood samples according to 
the Declaration of Helsinki.

Gene Expression Profiling-Dependent Subgroups. Raw RNA-Seq reads counts 
were extracted by both genome alignment-based Featurecounts v2.0.1 (40) and 
Htseq v0.11.3 (41) and alignment-free methods salmon v1.2.1 (42) and Kallisto 
v0.46.2 (43). Normalization of the counts matrix was simultaneously computed 
based on the R DESeq2 (v1.28.0) (44) transformation and the Transcripts Per 
Kilobase Million (TPM) value, which were used as the gene expression matrix for 
downstream analysis. ComBat function in the R sva package (v3.40.0) (45) was 
used to adjust the batch effect. Unsupervised clustering of top variance genes 
was conducted in R using the ComplexHeatmap (46) and a modified consensus 
clustering workflow. Autogluon (v0.2.0) (https://github.com/awslabs/autogluon) 
in Python was applied in the training and assessment of predictive models of 
GEP-defined subgroups. Detailed information and parameters related to the gene 
expression analysis are provided in SI Appendix.

Data, Materials, and Software Availability. Available scripts and programs 
of this study were deployed in https://github.com/clindet and Hiplot website 
(47). Anonymized [RNA sequencing] data have been deposited in [The Genome 
Sequence Archive for Human (GSA-Human, https://ngdc.cncb.ac.cn/gsa-human)]
(HRA002693). All study data are included in the article and/or SI  Appendix. 
Previously published data were used for this work (1. X. Lin et al. Integration 
of Genomic and Transcriptomic Markers Improves the Prognosis Prediction of 
Acute Promyelocytic Leukemia. Clin. Cancer. Res. 27, 3683-3694 (2021). 2. P. Jin  
et al. Large-scale in vitro and in vivo CRISPR-Cas9 knockout screens identify a 
16-gene fitness score for improved risk assessment in AML. Clin. Cancer. Res. 
10.1158/1078-0432.Ccr-22-1618 (2022). 3. T. J. Ley et al. Genomic and epig-
enomic landscapes of adult de novo AML. N. Engl. J. Med. 368, 2059-2074 (2013). 
4. J. W. Tyner et al., Functional genomic landscape of AML. Nature 562, 526-531 

https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
https://github.com/awslabs/autogluon
https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
https://github.com/clindet
https://ngdc.cncb.ac.cn/gsa-human
https://www.pnas.org/lookup/doi/10.1073/pnas.2211429119#supplementary-materials
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Fig. 6. Schematic of molecular alterations and potential therapeutic targets in AML. Accumulation of diverse genomic and transcriptomic aberrations is related 
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including fusion transcripts, genetic mutations, prognostic gene expression and alternative splicing events. Genetic mutations involving activated signaling 
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agents are also labeled accompanying the target gene or pathway. Venetoclax and Glasdegib are respectively targeting the de-regulated apoptosis pathway 
gene BCL2 and the Hedgehog pathway SMO. Inhibitors Midostaurin and Gilteritinib can be used to treat FLT3 mutant AMLs. Cellular immunotherapy is another 
treatment option for AML patients with specific cell surface markers including the Gentuzumab ozogamicin targeting CD33.
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