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In brief

The cis-regulatory logic encoded within

DNA sequences that mediate cell-type-

specific gene expression is undefined.

Here Donohue et al. generate multi-omics

data across 15 diploid human cell types

and present a new integrative framework

for identifying regulatory DNA motif

combinations (DMCs). Specifically, they

identify cell-type- and -state-specific

DMCs and anticipate broad applicability

of the approach.
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SUMMARY
Gene expression is controlled by transcription factors (TFs) that bind cognate DNA motif sequences in cis-
regulatory elements (CREs). The combinations of DNA motifs acting within homeostasis and disease, how-
ever, are unclear. Gene expression, chromatin accessibility, TF footprinting, and H3K27ac-dependent DNA
looping data were generated and a random-forest-based model was applied to identify 7,531 cell-type-spe-
cific cis-regulatory modules (CRMs) across 15 diploid human cell types. A co-enrichment framework within
CRMs nominated 838 cell-type-specific, recurrent heterotypic DNA motif combinations (DMCs), which were
functionally validated using massively parallel reporter assays. Cancer cells engaged DMCs linked to
neoplasia-enabling processes operative in normal cells while also activating new DMCs only seen in the
neoplastic state. This integrative approach identifies cell-type-specific cis-regulatory combinatorial DNAmo-
tifs in diverse normal and diseased human cells and represents a general framework for deciphering cis-reg-
ulatory sequence logic in gene regulation.
INTRODUCTION

The cis-regulatory logic encoded in the regulatory DNA se-

quences that control cell-type-specific gene expression is unde-

fined. Deciphering this logic has been challenging because many

cis-regulatory sequences1 reside in non-coding elements2 distant

from the transcription start sites (TSSs) of their targets.3–5 Addi-

tionally, the human genome contains millions of potential en-

hancers,6,7 with a specific active subset in any given cell type.8

Gene dysregulation is a hallmark of disease,9,10 and whether

diseased cells engage new regulatory logic as opposed tomodu-

lating the activity of normal logic is unknown. Integrating high-res-

olution epigenomic profiling with computational modeling and

functional assays across diverse human cell types and disease

states may help address current knowledge gaps.

One approach to genome-scale mapping of cis-regulatory

DNA sequence logic involves identifying the recurrent DNA mo-
This is an open access article under the CC BY-N
tifs present in non-coding CREs of specific cell types, including

promoters (P) and enhancers (E) associated with cell-type-spe-

cific gene expression.11–13 Promoters lie �250 bp directly up-

stream of TSSs,14 and enhancers can directly contact promoters

and other enhancers, forming E-E, E-P, and P-P loops in three-

dimensional (3D) space.15 Active enhancers and promoters are

marked by H3K27ac histones,16–18 which enables mapping of

the 3D architecture of gene regulation. Transcription factors

(TFs) act in a combinatorial fashion at CREs to modulate gene

transcription by cooperatively binding specific DNA motifs.19

Cell-type-specific gene expression is hence believed to be

dependent on cis-regulatory logic of TF motif combinations,

referred to as the cis-regulatory lexicon.20,21 Computational ef-

forts have attempted to predict this lexicon 22–27; however, these

models rely on nearest gene annotations of the most proximal E

to a given P along the linear DNA rather than known 3D E-P link-

ages.While genome-wide regulatorymaps have been generated
Cell Genomics 2, 100191, November 9, 2022 1
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across a number of human cell types,28,29 identifying functional

cell-type-specific DNA motif combinations (DMCs) across E-P

linkages for the vast majority of normal human cell types is not

fully defined, nor is it known how such combinations are altered

in disease.

Here, we generate chromatin accessibility, 3D chromatin loop-

ing, and gene expression data across 15 diploid human cell

types to define cell-type-specific open chromatin peaks within

enhancers looped to open chromatin peaks at target gene pro-

moters of expressed transcripts, or peak-loop-transcripts

(PLTs). TF footprinting analysis extracted DNA sequence motifs

directly bound by TFs within these PLT-associated CREs and a

random-forest model was applied to derive cell-type-specific

DMCs for each of these 15 cell types. Statistical co-enrichment

analysis of TF footprint motifs produced activity predictions for

cell-type-linked DMCs, whichwere validated bymassively paral-

lel reporter assays (MPRAs) in relevant cell types. Functionally,

regulatory DMCs fell into four distinct classes: synergistic, buff-

ering, redundant, and single driver. Applying this framework to

parallel data generated in cancer cells demonstrated that malig-

nant cells not only engage new DMCs but that they also differen-

tially modulate normal lineage DMCs controlling cancer-relevant

genes mediating proliferation, metabolism, and cell migration.

This integrative approach uncovered a human DMC lexicon

driving cell-type-specific gene transcription in a variety of normal

cells and their malignant counterparts and provides a framework

for future efforts to define the DNA sequence logic that enables

cell-type-specific gene expression.

RESULTS

Characterizing epigenomic landscapes in 15 diploid
human cell types
Tomap gene regulatory elements and their putative target genes

in diverse cell types, chromatin accessibility, H3K27ac chromatin

looping, and RNA sequencing (RNA-seq) data were generated in

15 primary human cell types, including cells of epithelial origin

from tissues in which 12 of the most common human cancers

arise. Thesewere lung airway, breast (humanmammary epithelial

cell [HMEC]), bladder, colon, esophageal, skin keratinocytes

(KC), ovarian, pancreas, prostate, renal, thyroid, anduterinecells,

as well as two cell types of neural origin, primary human astro-

cytes andmelanocytes (MC), and the diploid human lymphoblas-

toid cell line, GM12878. Replicated 30 mRNA-seq, ATAC-seq

(assay for transposase-accessible chromatin followed by high-

throughput sequencing), andH3K27acHiChIP (Hi-C library prep-

aration followed by a chromatin immunoprecipitation) data were

generated for each cell type (Figure 1A). Principal-component

analysis (PCA) showed high consistency between biological rep-
Figure 1. An integrated multi-omic resource in 15 diploid human cell t

(A) Workflow for cell-type-specific ATAC peaks, HiChIP loops, and target gene t

(B) Schematic of transcription factor (TF) footprinting analysis within PLTs to iden

analysis within CRMs extracted DMCs.

(C) Native genomic instances of putative intra-enhancer and intra-promoter D

cooperativity of DMCs in a lentiviral setup.

(D) Schematic of MPRA-validated functional categories of DMC interactions.

(E) Schematic bar plot comparing synergistic DMC MPRA activity of normal and
licates (Figures S1A–S1C), although differences in read depth

likely contributed to variance (Table S2). Publicly available

data11,30–33 cover a portion of cell types studied here; however,

primary human melanocytes and airway, bladder, esophageal,

ovarian, thyroid, and uterine epithelial cells have been largely

unprofiled. These data provide a resource to begin to decode

the regulatory logic of active CREs in primary cells from distinct

human tissues.

Epigenomic landscapes and molecular subtypes of
diploid human cells
RNA-seq, ATAC-seq, and H3K27ac HiChIP data across these

15 human cell types were integrated to assess cell-type-spe-

cific features in regulatory DNA. RNA-seq identified 14,098 total

expressed genes, 7,531 of which were differentially expressed

(Figure 2A). Similar to PCA analysis, these differential RNA tran-

scripts clustered into four distinct groups, including two epithe-

lial cell groups: (1) Epithelial Cluster 1 (EC1), including colon,

esophageal, ovarian, pancreas, renal, and thyroid epithelial

cells; (2) Epithelial Cluster 2 (EC2), including airway, bladder,

KC, HMEC, prostate, and uterine epithelial cells; (3) neuroendo-

crine/neural crest lineage (N) astrocytes and MC; and (4)

hematopoietic lymphoblastoid GM12878 cells. Relevant ex-

pected genes for cell-lineage-specific expression programs

were associated with these differential clusters, such as IRF4

in GM12878,34 RUNX2 in astrocytes,35 WT1 in EC1,36,37 and

TP63 in EC238,39 (Figures 2A and S1A). ATAC-seq identified

2,342,155 total accessible regions, of which 30,519 (1.3%) ex-

hibited significant variation across all 15 cell types. Chromatin

accessibility separated the cell types into the same four clus-

ters found by differential RNA transcripts, EC1, EC2, N, and

GM12878 (Figures 2B and S1B). H3K27ac HiChIP data identi-

fied 2,822,181 loop anchors, 46,540 (1.6%) of which were

differential across all 15 diploid human cell types. Differential

regulatory loops clustered into EC1, EC2, MC, astrocyte, and

GM12878 (Figures 2C and S2C). Further characterization of

these differential regulatory loops revealed expected putative

target genes such as CD22 in GM12878,40 SYNDIG1 in astro-

cytes,41 MLANA in MC,42 TFF1 in EC1,43 and KRT1 in EC244

(Figure 2C). Hierarchical clustering of differential regulatory

loops revealed cell type relatedness, with broad clustering of

the hematopoietic GM12878 B cells of mesoderm origin, endo-

crine and gastrointestinal system-related EC1 cells of meso-

derm and endoderm origin, and the neuroendocrine astrocytes

and MCs of neuroectoderm origin clustering more closely to

exocrine-system-related EC2 cells, including keratinocytes

and HMECs (Figure 2D). These data identified tens of thou-

sands of putative enhancers physically linked to thousands of

expressed genes.
ypes

ranscripts (PLTs) across 15 diploid human cell types.

tify inputs for a random-forest model to derive cell type CRMs. Co-enrichment

MCs were tested via MPRA. Combinatorial mutations were used to assess

cancer-derived DMCs in corresponding cell types.

Cell Genomics 2, 100191, November 9, 2022 3
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Figure 2. Epigenomic landscape reveals distinct molecular subtypes of human cells

(A) RNA transcripts (rows) versus cell types (columns) of differential gene expression (log2 fold change >0.1, t test, FDR-adjusted p value <0.05).

(B) Heatmap of accessible peaks (rows) versus cell types (columns) indicating differential ATAC peaks. ATAC peaks with the highest inter-group SD shown.

(C) Heatmap of H3K27ac HiChIP loops (rows) versus cell types (columns) indicating differential loops. Differential loops with the highest inter-group SD shown.

(legend continued on next page)
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To characterize 3D genomic architecture across these cell

types, significant looping interactions identified by H3K27ac

HiChIP were investigated, and 10,117 common anchors were

shared across all cell types. These linked to 453 commonly ex-

pressed target genes, 36 of which are housekeeping genes45

and 112 are essential genes.46 Between 2.5% and 45% of

HiChIP interactions detected in a given cell type were unique

to that cell type (Figure 2E), and 80% of all HiChIP interactions

occurred between DNA regions within 180 kb of each other (Fig-

ure S1D). Significant loop anchors were classified into putative

enhancers and promoters. Through integration of HiChIP and

ATAC-seq data, a putative enhancer was defined as a pro-

moter-interacting region (PIR) containing accessible chromatin

peaks within matched datasets by cell type. Promoters were

defined as regions containing accessible chromatin peaks and

the TSS of a gene. Of the 1,175,428 total looping interactions,

58.4% were between putative enhancer loci (E-E), 33.6% were

E-P, and 8.0% were P-P (Figure 2F). A single promoter was as-

signed a median of two putative enhancers. Promoters linked to

expressed genes had a greater number of E-P linkages than non-

expressed genes (Mann-Whitney U test, p value = 1 3 10�41).

Within E-P interactions, 198,896 cell-type-unique putative

enhancers were identified, of which 24,557 directly contact the

promoter of the single nearest target gene only, 38,524 putative

enhancers directly contact both the nearest target gene and

distal gene(s), while 135,815 putative enhancers contact only

distal genes (Figure 2G). P-P interactions have been identified

at clusters of co-regulated genes,47,48 and recently promoters

have also been shown to function in vivo as long-range

enhancers.5,49 In 32.0%of P-P interactions, both genes were ex-

pressed, in 45.8% one gene but not the other was expressed,

and in 22.2% neither gene was expressed (Figure S1E), suggest-

ing some promoters serve enhancer functions and highlighting

the 3D complexity of CREs across human cell types.

Relevant biological process terms were enriched in cell-type-

specific putative regulatory loops, such as B cell activation,

differentiation, and proliferation inGM12878 cells, synapse orga-

nization and neuron axonogenesis in astrocytes, pigmentation

and melanocyte differentiation in MC, maintenance of gastroin-

testinal epithelium and epithelial cell morphogenesis in EC1,

and epidermis development in EC2 (Figure 2H). The association

of cluster and cell-type-specific processes suggests that CREs

harbor lineage-specific regulatory roles. Indeed, ZNF750, a

known regulator of epidermal differentiation in KC,50,51 was

found to be an EC2-specific expressed gene contacted by two

EC2-specific putative enhancers (Figures 2I and S1F). Two

GM12878-specific putative enhancers were found to directly
(D) Hierarchical clustering of differential H3K27ac HiChIP loops.

(E) Bar plot depicting cell-type-specific 3D chromatin architecture and overlap b

(F) Bar plot depicting distribution of P-P, E-P, and E-E interactions by cell type.

(G) Bar plot depicting putative enhancers and target genes identified in different

(H) Regulatory loopmodule functional enrichment using GO biological processes.

GO enrichment (hypergeometric test).

(I) Virtual 4C visualization at 5-kb resolution and RNA and ATAC-seq tracks center

strand respectively.

(J) Virtual 4C visualization for IL10.

(K) Virtual 4C visualization for TYRP1. Related to Figures S1, S2, and Table S2.
contact the cytokine IL10, important for B cell regulation52 (Fig-

ure 2J). TYRP1, which enables melanin biosynthesis,53 similarly

displayed contact with anMC-specific putative enhancer in con-

cert with MC-specific expression (Figure 2K). Integrated HiChIP,

ATAC-seq, and RNA-seq data provide a putative map of physi-

cally linked regulatory elements to their biologically relevant

target genes across diverse normal human cell types.

Consistent with prior work,54–56 cell-type-specific CREs

identified contained risk-associated variants for diseases of their

corresponding tissues. Cell-type-specific distal CREs were in-

tersected with disease-linked variants from the genome-wide

association studies (GWAS) catalog.57 HaploReg v4 58 was

then used to identify linked single nucleotide variants (SNVs)

above a linkage disequilibrium (LD) threshold of 0.8 for 55,202

SNVs linked to risk of developing 15 cancer types arising from

the cell types profiled. Additionally, a total of 31,276 SNVS in

LD with nine inflammatory diseases were also assessed,

including systemic sclerosis, inflammatory bowel disease, and

ulcerative colitis, and 82,610 unique SNVs at 5% FDR were

significantly enriched across all traits at identified CREs in a dis-

ease- and cell-type-specific manner (Figures S2A and S2B). For

example, SNVs linked to risk for endometrial cancer and lym-

phoma were found to reside within putative enhancers that

loop to the BUB1B mitotic checkpoint kinase gene, known to

be important in cancer growth,58,59 in uterine cells and

GM12878 cells, respectively (Figure S2C); these lymphoma-

associated SNVs also score as BUB1B tissue-selective eQTLs

(expression quantitative trait loci) in GTEx whole-blood data

and created motifs for several B cell-relevant TFs (Figure S2D).

Additionally, the prostate cancer-linked SNV, rs6983267,60 and

the renal carcinoma-linked SNV, rs35252396,61 were found to

reside in CRE loci that loop to theMYC oncogene in their respec-

tive cell types (Figure S2E) and lymphoma- and pancreatic can-

cer-linked SNVs were also enriched in GM12878 and pancreas

distal CREs, respectively. E-P-linked cell-type-specific CREs

thus contain disease-relevant variants with putative functional

effects on target gene regulation, potentially through disruption

of relevant TF motifs.

cis-Regulatory modules identify a lexicon across human
cells
We next searched for cell-type-specific DMCs in cell-type-spe-

cific CREs. First, the HINT-ATAC62 package performed TF foot-

printing to identify putative DNA bases bound by proteins in

ATAC-seq data. TF position-weight matrices from HOCOMOCO

v1163 were then used to match putative TFs to TF footprints (Fig-

ure S3A). Putative TF motif footprints were linked to CRE-based
etween the 15 different cell types.

E-P interaction types.

EC1 and EC2 are grouped together. Dot color corresponds to the p value of the

ed at the ZNF750 TSS. > and < denote gene orientation on plus andminus DNA

Cell Genomics 2, 100191, November 9, 2022 5
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transcriptional regulation if the motif footprint’s corresponding

putative TF was expressed in the relevant cell type. Next, we built

a packagecalledPan-omics to identify theTFmotif footprints pre-

sent in proximal and distally looped CREs to a cell-type-specific

target gene’s TSS to nominate cis-regulatory modules (CRMs)

(Figure S3B). In addition to the identity and number of expressed

TF motifs, CRM attributes include the number of unique and total

loops contained within the CRM, the number of ATAC peaks pre-

sent in theCRM, and the identity and transcripts permillion (TPM)

expression of the target gene. Between 290,391 and 1,786,988

motif footprints were found per cell type. Expressed genes were

found to have an increased number of footprints per CRE, with

an average of 9.0 footprints for expressed genes (TPM > 1), 5.4

for lowly expressed genes (0 < TPM % 1), and 1.6 for non-ex-

pressed genes (TPM = 0). Such gene-centric CRMs captured

cell-type-specific 3D contact information, chromatin accessi-

bility, and transcription machinery that may contribute to cell-

type-specific transcription.

Consistent with this premise, using a random-forest, tree-

based algorithm, the model successfully determined the cell

type of a CRM (Figure 3A). When the CRM model features

were selected based on assay of origin, it was found that the

combination of RNA, ATAC, HiChIP, and TF footprinting was

necessary to achieve the highest cell-type performance. Using

one-dimensional (1D) RNA and ATAC information as a baseline

(purple line), the addition of 3D HiChIP alone (orange line)

contributed to a 0.17 increase in model performance (area under

the receiver operating characteristic curve [auROC]), 1D putative

TF motifs alone (red line) contributed to a 0.32 increase, yet the

addition of distally located putative TF motifs (blue line) per-

formed best, contributing to a 0.46 increase in model perfor-

mance (Figures 3B and S3C–S3F). Thus, models lacking looping

and TF motif data performed poorly on the cell-type prediction

task, indicating the importance of distal enhancers and TF motif

identity in cell-type-specific CRMs. Interestingly, TFmotifs in pu-

tative enhancers contributed the most to cell-type-specific pre-

diction accuracy. While including putative enhancers decreases

the sparsity of CRM motif matrix representations and thus aug-

ments model performance, models where the distal enhancer

was linked to the HiChIP-identified gene promoter performed

24% better than models where enhancers were linked to the

nearest gene and 10% better than models where enhancers

were linked to random intrachromosomal genes (Figure S3F).

This suggests that DNA looping data capture distal enhancers

that mediate cell-type-selective gene expression.

Cell-type-specific CRMs may underlie transcriptional differ-

ences between cell types. For example, Gene Ontology (GO)
Figure 3. TF motif enrichment via footprinting cell-type CRMs

(A) Confusion matrix depicting the positive predictive value (PPV) for the cell typ

(B) Scatterplot showing auROC versus percentage of CRMs learned in the rando

logistic regression.

(C) Virtual 4C visualization along with the POU2F2 position-weight matrix (PWM)

(D) Virtual 4C visualization along with the POU2F2 PWM, TF footprint sequence,

(E) Heatmap (left) depicts normalized log2(TPM) values for nominated TFs corresp

(columns). TFs are ordered by expression similarity. Dot plot (right) depicts GO

motifs in cell-type-specific CRMs (y axis). Dots are colored by cell type. Size co

Related to Figure S3.
enrichment analysis revealed cell-type-relevant biological terms,

such as tumor necrosis factor signaling, linked to recurrent CRM

motifs for known B cell TFs, IRF4 and IRF8,34 and IKZF164 in

GM12878 cells (Figure 3E). In addition to enrichment for distinct

putative TF motifs regulating the same target genes within a

single cell type, the same motifs in distinct putative enhancers

were looped to genes involved in specific cellular processes.

(Figure 3E). For example, the POU2F2 motif lies within a putative

enhancer looped to the KC differentiation gene, FLG65 (Fig-

ure 3C). The POU2F2 motif was also found in a unique prostate

CRM looped to UGDH, a regulator of androgen activity in pros-

tate cells66 (Figure 3D). These results suggest that TF motifs in

CRMs link to regulation of target gene expression programs

important for establishing relevant cell-type-specific biological

processes.

A cell-type-specific cis-regulatory logic of heterotypic
motif combinations
The enrichment of commonly shared TF motifs across cell-type-

specific expression programs suggested that specific combina-

tions of motifs, distinct from cell-type-unique motifs, contribute

to cell-type-specific transcription. To determine potential syner-

gistic relationships between TF DNA motifs in cell-type-specific

gene regulation, a co-enrichment test (Fisher’s exact, Bonfer-

roni-corrected p <0.05) was done on all pairwise hetero motif-

motif combinations in the CRMs associated with each cell

type. This analysis identified 838 total DMCs, ranging from 12

to 106 per cell type, with an average of 55.9 (Figures 4A–4C;

Table S4). These DMCs identify known co-regulators, such as

keratinocyte differentiation cooperative TFs KLF4 and TP63,

MAF and MAFB, among others in KC DMCs67–71 (Figure 4A).

This suggests that significantly co-occurring TF motifs are linked

to distinct processes in cellular contexts.

Next, all genomic instances of the nominated TF regulatory

DMCs within each cell type were identified and the genomic

locations of the motifs within the pairwise combination deter-

mined. Interestingly, while some DMCs have a strong bias to-

ward 1D intra-promoter interactions such as KLF4-SALL4 and

EGR2-KLF4, others have a strong bias toward 1D putative

intra-enhancer interactions, such as HBP1-RORA and EGR2-

JUNB, and nearly all DMCs occur across a 3D putative inter-

enhancer-promoter interaction (Figures 1B, 4B, and S4A).

The statistical co-enrichment of TF motifs across these distinct

epigenomic interactions suggest that identified DMC cis-regula-

tory logic acts at local proximal promoters, distal putative

enhancers, and across 3D E-P contacts to control cell-type-

specific activity.
e prediction model.

m-forest-based cell-type prediction model. Lines are fitted to the points using

, TF footprint sequence, and surrounding ATAC peak centered at FLG.

and surrounding ATAC peak centered at UGDH.

onding to motifs derived from TF footprinting analysis (rows) in the 15 cell types

enrichment for target genes (x axis) proximal or distally looped to TF footprint

rresponds to the �log10(p value) of the GO enrichment (hypergeometric test).
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Figure 4. Co-enrichment analysis reveals DMCs

(A) Co-enrichment dot plot of TF motifs within KC CRMs depicting putative cooperativity (Fisher’s exact, Bonferroni-corrected p < 0.05). Dots are colored by

�log10(p value). Size corresponds to normalized number of shared genes. Red outlined dots indicate known cooperative KC TFs.

(B) Bar plot depicting the distribution of DMCs based on CRM epigenomic interactions for MPRA-tested KC DMCs.

(C) Bar plot of number of cell-type-specific DMCs in the 15 cell types.

(D) Genomic instance of intra-promoter KC DMC HMGA1+KLF5 at the SCNN1A TSS.

(E) Genomic instance of putative intra-enhancer KC DMC HMGA1+KLF5 looping to PPARD. RC, reverse complement.

(F) Genomic instance of putative inter-enhancer-promoter KC DMC HMGA1+KLF5 proximal to FNBP1L. Related to Figure S4 and Table S4.
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All three DMC interaction types were associated with cell-

type-relevant target gene biological processes. For example, a

DMC harboring the KLF5 KC differentiation motif,72 KLF5-

HMGA1, resides in an intra-promoter genomic instance in KC

at the SCNN1A gene, a subunit of the epithelial sodium channel

important for body temperature regulation in skin73 (Figure 4D).

Also in KC, an intra-enhancer genomic instance of KLF5-

HMGA1 looped to PPARD, which stimulates keratinocyte differ-

entiation and improves skin barrier74,75 (Figure 4E). Finally, a 3D

E-P genomic instance of KLF5-HMGA1 in KC links to FNBP1L, a

regulator of another known skin barrier gene, N-WASP76,77

(Figure 4F). These findings suggest that the identified DMC cis-

regulatory logic operates both distally and proximally to control

cell-type-relevant gene expression.

Functional assessment of cell-type-enriched DMCs via
MPRA
If the DMCs identified above capture the sequence logic of cell-

type-specific gene regulation, then motif combinations should

synergistically drive cell-type-specific transcription when tested

in diverse cell types. To assess this quantitatively at scale,

MPRAs were performed on a subset of cell-type DMCs derived

from cells representative of eachmajor cluster studied, including

primary human colon (EC1), KC (EC2), MC (N), and GM12878

lymphoblastoid cells. Ten native genomic instances of 42 colon,

49 KC, 26 MC, and 39 GM12878 heterotypic cis DMCs were

selected, along with matched sequences in which one or both

DNA motif nucleotide sequences were iteratively scrambled.

These were cloned into a lentiviral MPRA library containing

62,400 sequences, including controls (Figure 5A). MPRA was

performed in primary human colon, KC, MC, and diploid

GM12878 cells; sample clustering demonstrated high reproduc-

ibility and clear separation between cell types (Figures S5A–

S5E). Each native DMC genomic instance was compared with

its corresponding scrambled controls (individual motifA, individ-

ual motifB, and jointly scrambledmotifA andmotifB). An expected

additive change in MPRA signal, computed from individually

scrambled motifs, was compared with the observed MPRA

signal with both motifs present to assess the cell-type-specific

activity of each DMC and the interaction between its constituent

motifs.

Similar to previously identified TF interaction categories,78 four

major patterns of motif interactions were observed within stud-

ied DMCs (Figure 5A). The expected pattern of synergy was

observed for the MITF-ZNF589 DMC in MC where scrambling

the motif for both MITF, a known MC master regulator,79 and

ZNF589 had a greater combined negative impact than scram-

bling of each motif alone (Figure 5B). A pattern of redundancy
Figure 5. MPRAs validate TF DMCs in human cells

(A) Schematic representation of MPRA design and validated functional categorie

(B) Box-and-whisker plot showing the normalized log2MPRA signal for the differe

point on the plot represents the signal value in one genomic instance in one repl

(C) Pie chart depicting percentage of DMCs by functional category.

(D) Top left: heatmap shows log2(TPM + 1) values for TFs involved in the functio

combinatorial TFs of DMCs (rows). Motifs (columns) that make up the DMC are c

Right: dot plot shows the GO terms enriched for target genes (x axis) that utilize t

�log10(p value) of the GO enrichment. GO terms are colored by cell-type biolog
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was observed for an IRF4-PLAG1 DMC in GM12878 cells where

scrambling either IRF4 or PLAG1 alone failed to alter transcrip-

tion-directing activity (Figure S5F). A buffer pattern was

observed for an ETV2-SP2 DMC in MC where mutation of either

motif boosted expression over native DMC sequences (Fig-

ure S5G). Finally, a single-driver pattern was also observed in

which only one DNA motif was necessary to achieve similar

expression to that obtained with the native recurrent heterotypic

motif combination. Examples of this included the EGR2-KLF4

DMC in KC (Figure S5H) and the FOXM1-PATZ1 DMC in colon

cells (Figure S5I). While all tested DMCs included TF motifs

where the associated TF had a TPM > 1 in the relevant cell

type, it remains a possibility for single-driver DMCs that one of

the TFs is lowly expressed, such as FOXM1 compared with

PATZ1 in colon (Figure 3E), or that the annotated TF is not rele-

vant for the given cell type. The frequencies of these four pat-

terns of motif interactions within DMCs were significant against

expected pattern simulations (Figures S5J–K), with synergy

(32%) being the most common (Figure 5C; Table S5).

Combinatorial TF motifs within synergistic DMCs may be

linked to cell-type-specific gene expression. Indeed, cell-type-

specific synergistic DMCs correspond to known important line-

age TFs and linked target genes are enriched in GO terms related

to relevant cellular processes, such as colon synergistic DMCs

harboring the KLF5 motif co-regulating terms related to trans-

forming growth factor b (TGF-b) and Wnt signaling.80,81 Further-

more, the RORA motif was found to co-regulate keratinization

and cornification terms in KC,82 EBF1 and IZKF1motifs co-regu-

late lymphocyte activation and proliferation in GM12878s,64 and

the MITF motif co-regulates intracellular transport in MC83 (Fig-

ure 5D). Previous studies modeled the configuration of TF bind-

ing motifs,22,84 thus we further investigated the spacing of

combinatorial TF motifs within the 10 tested genomic instances

of validated synergistic DMCs. While no global spacing-to-

MPRA signal relationship was observed (Figure S5L), some

DMCs did display recurrent spacing features. For example,

some DMCs drove signal when <25 bp apart, such as HBP1-

IRF8 in GM12878s (Figure S5M), while others drove signal

when�40 bp apart, such as PRDM1-RORA in KCs (Figure S5N).

These results indicate that heterotypic TF motif pairs synergisti-

cally regulate transcription through a cis-regulatory logic and

that this regulation occurs in the absence of a strict global

pattern of TF motif spacing.

Synergistic KC and MC DMCs are differentially
modulated in malignancy
Do diseased cells modulate the activity of normal lineage DMCs

or do they engage entirely new DMCs? To explore this, the
s of DMC interactions.

nt motifA-motifB combinations in the synergy DMCMITF + ZNF589 in MC. Each

icate. *p < 0.05 (Mann-Whitney U test).

nal synergistic DMC combinatorial motifs (columns) by cell type (rows). Left:

ircles connected by a black line. Circles are colored based on DMC cell type.

he DMC (y axis). Dots are colored by log2(target gene count). Dot sizes are the

ical processes (hypergeometric test). Related to Figure S5 and Table S5.
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present framework was applied tomalignant counterparts of two

of the primary cell types studied here that give rise to some of the

most common cancers in humans: keratinocytes and melano-

cytes. Replicate RNA-seq, ATAC-seq, and HiChIP data were

generated across independent human malignant melanoma

(MM) (WM-266-4 [WM] and COLO 829 [COLO]) and cutaneous

squamous cell carcinoma (cSCC) (CAL27, SCC13, and A431)

cell lines (Jung et al., in preparation) then DMCs identified as

above. Fifty-three putative heterotypic DMC pairs were nomi-

nated in MM and 155 in cSCC (Figure 6A). These findings sug-

gest that DMC cis-regulatory logic is not only cell-type-specific

but potentially cell-state specific, such as between a disease

cell and its healthy cell of origin.

To address disease DMC commonalities and differences

with their normal counterparts, wild-type native DMC genomic

instances were selected from 40 MM and 43 cSCC heterotyp-

ic motif pairs, for a total of 33,200 sequences then lentiviral

MPRA performed in COLO and A431 cells. MPRA readouts

for the entire library were obtained and sample clustering

demonstrated high reproducibility and clear separation be-

tween the two cancer types and normal primary human cells

(Figure S5E). Of the MPRA-validated cancer DMCs, 36.4%

were determined to be functionally synergistic (Figure 6B;

Table S5). The spacing patterns between TF motifs of these

synergistic cancer DMCs were then assessed. Similar to

healthy cells, some DMCs drove MPRA signal when <25 bp

apart, such as SOX10-SOX13 in MM cells (Figure S6A). How-

ever, it was also observed that the EGR2 motif drove MPRA

signal in KCs when 12–22 bp apart from the RARG motif (Fig-

ure S6B), while driving signal in MM cells when <10 bp or

>27 bp apart from the NFE2L1 motif (Figure S6C), suggesting

the spacing of several DMCs may be important for regulatory

function in these cancer cells. Interestingly, comparing syner-

gistic DMCs between cancer cells and their normal cell type of

origin (MM versus MC and cSCC versus KC) revealed that, for

the same target gene, DMCs were co-enriched for different

combinatorial TF pairs, such as the 1P validated synergistic

ETV-PRRX1 DMC in MC versus the 1P ZBTB49-NF2L1 DMC

in MM at the MLANA locus, a gene involved in melanosome

biogenesis85 (Figure S6D). These findings suggest that normal

and disease-state cells might display a differential cis-regula-

tory lexicon to regulate gene expression programs that are

biologically relevant for their given cell type of origin.

To investigate whether different cell states mediate gene

expression through shared DMCs or through cell-state-specific

DMCs, the relationship between synergistic regulatory DMCs

in normal human cells versus their malignant counterparts was

explored. The difference in synergy scores between the A431

cSCC line and primary KCs was calculated. A significant distri-

butional shift in DMC synergy scoreswas observed in cSCCcells

(Wilcoxon rank-sum test, p = 5.163 10�5) (Figures 6C, S6G, and

S6H), where cSCC DMCs had higher synergistic scores in the

A431 cSCC line than in KCs andKCDMCs had higher synergistic

scores in KCs than in the A431 cSCC cells. Due to the differential

modulation of synergistic DMCs in a healthy cell type of origin

versus a disease cell state, all functional DMCs were assessed

by their global expression across all six cell types assayed by

MPRA to compare DMC activity. Five synergistic DMCs were
found to be cSCC specific and threewereMMspecific (Wilcoxon

signed rank test, p value <0.10), suggesting different mecha-

nisms may control this process in normal versus malignant cells

(Figures 6D and S6F). These cSCC- andMM-specific synergistic

DMCs implicate known cancer-associated TFs such as SP1 in

cSCC86–88 and SOX10 in MM.89–91 Hence, cSCC- and MM-spe-

cific DMCs determined by the CRMmodel drive cSCC- andMM-

specific expression.

To investigate whether validated cell-state-specific synergis-

tic cancer DMCs regulate the same gene modules as their

healthy cell type of origin or regulate new biological processes

relevant to a disease state, GO enrichment analysis was per-

formed on the putative target genes of normal and cSCC- and

MM-specific DMCs. While synergistic DMCs in both cSCC and

MM linked to processes identified in normal cell function, such

as epidermis development and pigment metabolic processing,

respectively, there is also a de-enrichment of terminal differenti-

ation processes in cSCC-specific DMCs, such as keratinization

and cornification, compared with their enrichment in KC-specific

DMCs (Figures 6E and S6E). Furthermore, cSCC- and MM-spe-

cific processes were also enriched, such as regulation of nuclear

division and stem cell population maintenance, respectively.

Indeed, the cooperative SP1-ARNT cancer-associated DMC92

was found to be cSCC specific, and a 3EP genomic instance is

linked to theADAP1 gene, amediator of TGF-b-induced invasion

in cSCC93 (Figure 6F). These results suggest that malignant-cell-

type DMCs synergistically regulate both normal cell types of

origin as well as cancer-relevant target gene expression in MM

and cSCC through distinctive patterns of disease-specific cis-

regulatory logic.

DISCUSSION

Here, we describe a framework for identifying cell-type-specific

DMCs that regulate cell-type-specific transcription built on a

newly generated resource of RNA-seq, ATAC-seq, and

H3K27ac HiChIP in 15 diploid human cell types. This resource

was designed to serve as a repository for further studies of

cell-type cis-regulatory control. Modeling these data suggested

a combinatorial lexicon of cooperative DNA motifs encoded in

cell-type-specific putative enhancers and promoters of actively

expressed target genes to derive 7,531 cell-type-specific

CRMs. MPRA experiments validated predicted cell-type-spe-

cific cis-regulatory logic, helping account for regulation of cell-

type-specific transcripts between primary human cell types

and selected cancer cell counterparts. The functional synergy

of regulatory DMCs was found to shift between normal cells

and a disease state, namely cancer, identifying cell-type- and

state-enriched DMCs. This suggested that pathogenic gene

dysregulation engages disease-type-unique motif combinations

while also modulating existing cell lineage lexicons relevant to

pathogenesis. The present work thus suggests that cell-type-

specific gene expression is mediated by a code of TF DMCs in

regulatory DNA whose activity is modulated in disease.

Previous studies provided high-throughput chromatin looping

datasets linking distal CREs to annotate functional target gene

promoters across a diverse array of cell types.54–56,94 The cur-

rent integrative framework using cell-type-specific ATAC,
Cell Genomics 2, 100191, November 9, 2022 11
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Figure 6. MPRAs identify regulatory DMCs in cancer

(A) Upset plot depicting number of DMCs determined from MM and cSCC cell lines and the size of their overlapping sets.

(B) Pie chart depicting percentage of functional DMC categories by MPRA in cSCC and MM cells.

(C) Bar plot showing the synergy score difference for KC- and cSCC-identified DMCs; p value based on a rank-sum Wilcoxon test.

(D) Left to right: panel colored by cell type/state; panel colored by functional DMC category; heatmap panel of �log10(p value) cell-type-/state-specificity score

(STAR Methods); panel colored by cell-type-/state-specific expression (Wilcoxon rank-sum test p value <0.10).

(E) Top left: heatmap shows log2(TPM + 1) values for TFs in synergistic DMCs (columns) by normal KC- and cSCC-specific cell state (rows). Left: combinatorial

TFs of the DMC (rows). Motifs that make up the DMC (columns) are circles with a black line connecting them. Circles are colored based on DMC cell state. Right:

dot plot shows GO terms enriched for target genes (x axis) that utilize the DMC (y axis). Dots are colored by log2(target gene count). Dot sizes are the �log10(p

value) of the GO enrichment. GO terms are colored by cell state biological processes.

(F) Genomic instance of putative inter-enhancer-promoter cSCC-specific synergistic DMC SP1+ARNT at ADAP1. Related to Figure S6 and Table S5.
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HiChIP, and RNA-seq data extends these efforts to imply pat-

terns of combinatorial, motif-based, cis-regulatory control.

Including the looping-data-inferred location, proximal or distal,

of CREs relative to the promoter enhanced model accuracy for

cell-type-specificity in cis-regulatory logic. Moreover, cell-type-

specificity predictions perform best when all features derived

fromATAC, HiChIP, and RNA-seq of a CRMare present, demon-

strating the value of epigenomic and transcriptomic data in

relevant cellular contexts. This genome-wide map provides

a resource of testable hypotheses on cell-type-specific

transcription.

Additionally, while this work echoes previous efforts in

model interpretation methods to catalog cis-regulatory logic

and discover active motif instances and co-occurrence patterns,

the present framework provides validation of extracted CRE

logic. The epigenomic and transcriptomic data provided a

genome-wide map of CREs for 15 human cell types and enabled

resolution of CRE logic to the level of individual genes. Further-

more, cell-type-specific, regulatory DMCs were validated func-

tionally via MPRA. These DMCs could then be categorized into

classes based on their cooperative patterns. Motifs for estab-

lished transcriptional regulators, such as MITF in melanocytes,79

IKZF1 in lymphocytes,64 andKLF5 in colon epithelial cells,80,81 are

found in concert with other cell-type-specific as well as more

globally expressed TFs to drive cell-type-specific processes.

These cooperative patterns of DMCs suggest that discrete logic

patterns guide transcription regulatory mechanisms to achieve

differential cell-type-specific gene transcription.

The present work also compared functional cis-regulatory

logic between diseased cells and healthy human cells from

which they arise. Specifically, MPRA enabled direct comparison

of the transcription-driving activity of synergistic TFmotif combi-

nations between normal human skin cells and their malignant

counterparts; the latter, namely cSCC and MM, represent two

of the most common cancers in humans. This demonstrated

that CRM-predicted cell-state-specific TF regulatory DMCs are

functionally synergistic in normal and cancer cells. These cell-

state-derived synergistic regulatory DMCs were enriched for

processes specific to cell state and cell type of origin, such as

pigment metabolism, response to oxygen levels, regulation of

amide metabolism in MM and epidermis development, Ras

signal transduction, and mitotic nuclear division in cSCC. MM-

and cSCC-specific processes were also linked to TFs with es-

tablished roles in their corresponding tumors, such as SOX10

in MM and SP1 in cSCC, each associated with several paired

TF motif co-regulators. Cell-state-specific synergistic TF regula-

tory DMCs were further functionally validated and found to be

differentially modulated between healthy versus disease cell

states. Finally, spacing of TFmotifs within functional DMCs failed

to exhibit strict global spatial patterns that could identify synergy,

buffering, redundancy, and single driver patterns, but several

spatial patterns were identified for specific synergistic DMCs in

both healthy and disease cells. This suggests that, while a

normal cell and a disease cell may retain a shared cis-regulatory

logic linked to the originating cell lineage, cells in the pathogenic

state shift toward using a disease-state-selective lexicon, thus

altering the homeostatic balance of transcriptional regulation

toward pathophysiological processes.
Limitations of the study
The information about DNA sequence lexicons underlying cell-

type-specific gene expression provided here raises issues for

future exploration. For example, due to the 3D nature of the

CRMs, synthesizing cooperative patterns across proximal and

distal elements into a relatively high-throughput, unbiased, test-

able manner represents a future, albeit technically challenging,

goal. The chosen MPRA of combinatorial DNA motifs was

limited to two cooperative motifs found in pre-existing 145-bp

genomic instances, likewise limiting the assay to 3D DMCs

also found in a 1D context. Moreover, MPRA does not test

candidate DMCs in their native context and does not function-

ally validate target gene expression. Additionally, MPRA tested

heterotypic motifs only with a pre-existing spacing and orienta-

tion based on the genomic instances used. Future modeling ef-

forts, however, could be designed in synthetic sequences to

explore the CRE logic with finer granularity and for a wider

range of combinatorial lexical patterns. Finally, the epigenomic

and transcriptomic data are derived from a static snapshot of

different human cell types, and extending these efforts to

model dynamic developmental processes influenced by

CRMs is a future extension of these efforts. High-throughput

perturbational experimental assays, such as SPEAR-ATAC95

and Perturb-seq,96 may offer orthogonal means of identifying

functionally active DMCs to help decipher additional patterns

of cell-type-specific cis-regulatory logic in development, ho-

meostasis, and disease progression.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-H3K27ac Abcam Cat#Ab4729; RRID:AB_2118291

Bacterial and virus strains

Stellar Competent Cells Takara Cat#636766

Biological samples

Primary Keratinocytes Stanford University School of Medicine De-identified

Primary Melanocytes Stanford University School of Medicine De-identified

Human Bronchial/Tracheal Epithelial Cells

(Airway)

ATCC Cat#PCS-300-010

Human Astrocytes (astrocytes) Lonza Cat#N7805-100

Primary Human Bladder Epithelial Cells

(Bladder)

ATCC Cat#PCS-420-010

Human Primary Colonic Epithelial Cells

(Colon)

CellBiologics Cat#H-6047

Human Primary Esophageal Epithelial Cells

(Esophageal)

CellBiologics Cat#H-6046

Human Mammary Epithelial Cells (HMECs) Lonza Cat#CC-2551

Human Primary Ovarian Epithelial Cells

(Ovarian)

CellBiologics Cat#H-6036

Human Primary Pancreatic Epithelial Cells

(Pancreas)

CellBiologics Cat#H-6037

Human Prostate Epithelial Cells (Prostate) Lonza Cat#CC-2555

Human Primary Proximal Tubular Epithelial

Cells (Renal)

CellBiologics Cat#H-6015

Human Primary Thyroid Epithelial Cells

(Thyroid)

CellBiologics Cat#H-6040

Endometrial Epithelial Cells (Uterine) Lifeline Cell Technology Cat#FC-0078

Chemicals, peptides, and recombinant proteins

PrimeSTAR� Max DNA Polymerase Takara Cat#R045B

EcoRI-HF NEB Cat#R3101L

BamHI-HF NEB Cat#R3136L

XhoI NEB Cat#R0146L

NheI-HF NEB Cat#R3131L

rSAP: shrimp alkaline phosphatase NEB Cat#M0371L

T4 DNA ligase NEB Cat#M0202L

SuperScriptTM IV Reverse Transcriptase Thermo Fisher Cat#18090200

Thermolabile Exonuclease I NEB Cat#M0568L

Lenti-X Concentrator Takara Cat#631231

Turbo DNase Thermo Fisher Cat#AM2239

Optimem Thermo Fisher Cat#31985062

Lipofectamine 3000 Thermo Fisher Cat#L3000015

SYBRTM Green I Nucleic Acid Gel Stain,

10,000X concentrate in DMSO

Thermo Fisher Cat#S7567

Polybrene Sigma-Aldrich Cat#H9268-5G

Keratinocyte-SFM Thermo Fisher Cat#17005042

Medium 154 Thermo Fisher Cat#M-154-500

HKGS Supplement Thermo Fisher Cat#s-002-5

(Continued on next page)
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Medium 254 Thermo Fisher Cat#M-254-500

HMGS Supplement Thermo Fisher Cat#s-002-5

Airway Epithelial Cell Basal Medium ATCC Cat#PCS-300-030

Airway Epithelial Cell Basal Medium -

supplement

ATCC Cat#PCS-300-040

Gibco Astrocyte Medium ThermoFisher Cat#A1261301

CComplete Human Epithelial Cell Medium

supplemented with Human Epithelial Cell

Medium Supplement Kit

CellBiologics Cat#H6621

MEGM Mammary Epithelial Cell Growth

Medium BulletKit

Lonza Cat#CC-3150

Prostate Epithelial Basal Medium Lonza Cat#CC-3165

Renal Epithelial Cell Basal Medium ATCC Cat#PCS-400-030

Renal Epithelial Cell Growth Kit ATCC Cat#PCS-400-040

ReproLifeTM Reproductive Medium

Complete Kit

Lifeline Cell Technology Cat#LL-0068

RPMI-1640 A1049101 Cat#A1049101

L-glutamine Sigma-Aldrich Cat#G8540-25G

DMEM F:12 Thermo Fisher Cat#11995-065

Digitonin Promega Cat#G9441

MboI NEB Cat#R0147

Large Klenow Fragment NEB Cat#M0210

Proteinase K Thermo Fisher Cat#AM2526

BlueJuice loading buffer Thermo Fisher Cat#10816015

Critical commercial assays

Miseq Reagent kit v3 (150-cycle) Illumina Cat# MS-102-3001

Lexogen Quant-seq 30 mRNA-seq Library

Prep Kit

Lexogen Cat#015.96

BioAnalyzer High Sensitivity DNA Kit Agilent Cat#5067-4626

Zymo DNA Clean and Concentrator-5 Kit Zymo Cat#D4014

Turbo DNA-free kit Thermo Fisher Cat#AM1907

Dynabeads mRNA direct kit Thermo Fisher Cat#61012

Kapa Library Quantification Kit Roche Cat#KK4854

NucleoSpin Gel and PCR Clean-Up Takara Cat#740609.25

Deposited data

RNA-seq This paper GEO: GSE186947

ATAC-seq This paper GEO: GSE188398

HiChIP This paper GEO: GSE188401

MPRA This paper GEO: GSE188403

HOCOMOCO PWMs v11 (Kulakovskiy et al., 2018)63 #0000FF;

https://hocomoco11.autosome.ru/

Housekeeping genes (Hsiao et al., 2001)45 #0000FF;

https://www.gsea-msigdb.org/gsea/

msigdb/cards/

HSIAO_HOUSEKEEPING_GENES

Essential genes (Wang et al., 2015)46 #0000FF;

https://doi.org/10.1126/science.aac7041

Haploreg v4 (Ward and Kellis, 2016)97 #0000FF;

https://pubs.broadinstitute.org/mammals/

haploreg/haploreg.php

(Continued on next page)
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GWAS Catalog (Buniello et al., 2019)57 #1155CC;

https://www.ebi.ac.uk/gwas/home

Experimental models: Cell lines

Human: GM12878 Coriel Cat#GM12878

Human: A-431 ATCC Cat#CRL-1555; RRID:CVCL_0037

Human: CAL27 ATCC Cat#CRL-2095; RRID:CVCL_1107

Human: SCC-13 Harvard Human Skin Disease Resource

Center, James Rheinwald Lab

RRID:CVCL_4029

Human: WM-266-4 human malignant

melanoma cell line

ATCC Cat#CRL-1676

Human: COLO-823 human malignant

melanoma cell line

ATCC Cat#CRL-1974

Human: SK-MEL-5 human malignant

melanoma cell line

ATCC Cat#HTB-70

Human: HEK293T Lenti-X Takara Cat#632180

Oligonucleotides

Primers for RNAseq: Please see Table S1 This paper N/A

Primers for ATACseq: Please see Table S1 This paper N/A

Primers for HiChIP: Please see Table S1 This paper N/A

Primers for MPRA: Please see Table S1 This paper N/A

Recombinant DNA

pGreenFire1-mCMV (EF1a-puro) System Biosciences Cat# TR010PA-P

pD2-miniluc This paper AddGene:174105

pCMV R d8.91 (Stewart et al., 2003)98 AddGene:2221

pUC-MDG VSVG EPFL Laboratory of Virology and Genetics,

Didier Trono Lab

AddGene:12259

Software and algorithms

CRM code This paper GitHub: https://github.com/mguo123/

pan_omics; Zenodo: https://zenodo.org/

record/6981951

Samtools (Li et al., 2009)99 http://www.htslib.org/; RRID:SCR_002105

Bedtools (Quinlan and Hall, 2010)100 http://bedtools.readthedocs.io/en/latest/;

RRID:SCR_006646

Pybedtools (Dale et al., 2011)101 #72C02C;

https://daler.github.io/pybedtools/#;

RRID:SCR_021018

BWA (Li and Durbin, 2009)102 https://sourceforge.net/projects/bio-bwa/

Bowtie2 (Langmead and Salzberg, 2012)103 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml; RRID:SCR_016368

Picard Tools #1155CC;

http://broadinstitute.github.io/picard/

RRID:SCR_006525

ENCODE ATAC pipeline (2008)33 https://github.com/ENCODE-DCC/

atac-seq-pipeline

ChIPSeeker (Yu et al., 2015)104 https://bioconductor.org/packages/

release/bioc/html/ChIPseeker.html

ChIPpeakAnno (Zhu et al., 2010)98 https://bioconductor.org/packages/

release/bioc/html/ChIPpeakAnno.html

Rsubread (Liao et al., 2019)105 https://bioconductor.org/packages/

release/bioc/html/Rsubread.html

GRanges (Lawrence et al., 2013)106 https://bioconductor.org/packages/

release/bioc/html/GenomicRanges.html

(Continued on next page)
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BiomaRt (Durinck et al., 2009)107 https://bioconductor.org/packages/3.8/

bioc/html/biomaRt.html

ClusterProfiler (Wu et al., 2021)108 https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

MotifBreakR (Coetzee et al., 2015)109 https://bioconductor.org/packages/

release/bioc/html/motifbreakR.html

RSEM (Li and Dewey, 2011)110 #0000FF;

https://deweylab.github.io/RSEM/;

RRID:SCR_013027

STAR (Dobin et al., 2013)111 https://github.com/alexdobin/STAR

Limma (Ritchie et al., 2015)112 #0000FF;

https://bioconductor.org/packages/

release/bioc/html/limma.html;

RRID:SCR_010943

DEseq2 (Love et al., 2014)113 #0000FF;

https://bioconductor.org/packages/

release/bioc/html/DESeq2.html;

RRID:SCR_015687

MOODs (Korhonen et al., 2009)114 https://pypi.org/project/MOODS-python/

MACS2 (Zhang et al., 2008)115 https://github.com/taoliu/MACS;

RRID:SCR_013291

HINT-ATAC (Li et al., 2019)62 #0000FF;

http://www.regulatory-genomics.org/hint/

introduction/

HiC-Pro (Servant et al., 2015)116 #0000FF;

https://github.com/nservant/HiC-Pro;

RRID:SCR_017643

Hichipper (Lareau and Aryee, 2018a)117 #0000FF;

https://github.com/aryeelab/hichipper

FitHiChIP (Bhattacharyya et al., 2019)118 #0000FF;

https://github.com/ay-lab/FitHiChIP

Diffloop (Lareau and Aryee, 2018b)119 #0000FF;

http://bioconductor.org/packages/release/

bioc/html/diffloop.html

Pandas #0000FF;

https://pandas.pydata.org/

RRID:SCR_018214

Numpy #0000FF;

http://www.numpy.org/

RRID:SCR_008633

Scipy #0000FF;

https://www.scipy.org/

RRID:SCR_008058

scikit-learn #0000FF;

http://scikit-learn.org/

RRID:SCR_002577

Statsmodel #0000FF;

http://www.statsmodels.org/

RRID:SCR_016074

Matplotlib #0000FF;

http://matplotlib.sourceforge.net/

RRID:SCR_008624

Seaborn #0000FF;

https://seaborn.pydata.org/

RRID:SCR_018132

ggplot2 #0000FF;

https://cran.r-project.org/web/packages/

ggplot2/index.html

RRID:SCR_014601

RColorBrewer #0000FF;

https://cran.r-project.org/web/packages/

RColorBrewer/index.html

RRID:SCR_016697

(Continued on next page)
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Pheatmap #0000FF;

https://www.rdocumentation.org/

packages/pheatmap/versions/0.2/topics/

pheatmap

RRID:SCR_016418

Viridis #0000FF;

https://cran.r-project.org/web/packages/

viridis/vignettes/intro-to-viridis.html

RRID:SCR_016696

Resource
ll

OPEN ACCESS
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Paul A.

Khavari (khavari@stanford.edu).

Material availability
Plasmid pD2-miniluc generated in this study has been deposited to Addgene, catalog number 174105.

Data and code availability
d RNA-seq (GEO: GSE186947), ATAC-seq (GEO: GSE188398), HiChIP (GEO: GSE188401) and MPRA (GEO: GSE188403) data

have been deposited at GEO: GSE188405 and are publicly available as of the date of publication. Raw sequencing files for pri-

mary keratinocyte and melanocyte data are restricted and access is in accordance with NIH genomic data sharing policy.

Accession numbers are listed in the key resources table.

d Original code to generate CRMs is available on Github: https://github.com/mguo123/pan_omics and Zenodo: https://zenodo.

org/record/6981951 (https://doi.org/10.5281/zenodo.6981951). Analysis scripts are available as a series of jupyter notebooks

used for generating figures for this paper. All code is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human tissue samples
Primary human keratinocytes and melanocytes were isolated and cultured from fresh, surgically discarded neonatal foreskin. All hu-

man cells were collected and analyzed by protocols approved by the Stanford Human Subjects Institutional Review Board and in

accordance with the NIH genomic data sharing policy. Keratinocytes were maintained in a 1:1 mixture of Keratinocyte-SFM

(ThermoFisher, 17005042) and Medium 154 (ThermoFisher, M-154-500) supplemented with HKGS (ThermoFisher, S-001-5). Kera-

tinocyte differentiationwas induced by the addition of 1.2mMcalcium for 3 or 6 days at full confluence.Melanocytesweremaintained

in Medium 254 (ThermoFisher, m-254-500) and supplemented with HMGS supplement (ThermoFisher, s-002-5) and 1% anti-myco-

plasma and 1% pen/strep.

Human cell culture
Bronchial/Tracheal Epithelial Cells (Airway) were obtained from ATCC (PCS-300-010) and grown in Airway Epithelial Cell Basal Me-

dium (ATCC, PCS-300-030) supplementedwith Bronchial Epithelial Cell Growth Kit (ATCC, PCS-300-040). Cells were grown in 15 cm

dishes.

Human astrocytes (astrocytes) were obtained from Lonza (N7805-100) and grown in Gibco Astrocyte Medium (ThermoFisher,

A1261301). Cells were grown in 15 cm dishes.

Primary Human Bladder Epithelial Cells (A/T/N) (Bladder) were obtained from ATCC (PCS-420-010) and grown in Bladder Epithelial

Cell Basal Medium ((ATCC PCS-420-032) supplemented with Bladder Epithelial Cell Growth Kit (ATCC PCS-420-042). Cells were

grown in 15 cm dishes.

Human Primary Colonic Epithelial Cells (Colon) were obtained from CellBiologics (H-6047) and grown in Complete Human Epithe-

lial Cell Medium supplemented with Human Epithelial Cell Medium Supplement Kit (CellBiologics, H6621). Cells were grown in 15 cm

dishes.

Human Primary Esophageal Epithelial Cells (Esophageal) were obtained from CellBiologics (H-6046) and grown in Complete Hu-

man Epithelial Cell Medium supplemented with Human Epithelial Cell Medium Supplement Kit (CellBiologics H6621). Cells were

grown in 15 cm dishes.
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Human Mammary Epithelial Cells (HMECs) were obtained from Lonza (CC-2551) and grown in MEGM Mammary Epithelial Cell

Growth Medium BulletKit (Lonza, CC-3150). Cells were grown in 15 cm dishes.

Human Primary Ovarian Epithelial Cells (Ovarian) were obtained from CellBiologics (H-6036) and grown in grown in Complete Hu-

man Epithelial Cell Medium supplemented with Human Epithelial Cell Medium Supplement Kit (CellBiologics, H6621). Cells were

grown in 15 cm dishes.

Human Primary Pancreatic Epithelial Cells (Pancreas) were obtained from CellBiologics (H-6037) and grown in Complete Human

Epithelial Cell Medium supplemented with Human Epithelial Cell Medium Supplement Kit (CellBiologics, H6621). Cells were grown in

15 cm dishes.

Human Prostate Epithelial Cells (Prostate) were obtained from Lonza (CC-2555) and grown in Prostate epithelial basal medium

(Lonza, CC-3165) and supplemented with PrEGM Prostate Epithelial Cell Growth Medium SingleQuots Supplements and Growth

Factors (Lonza, CC-4177)

Human Primary Proximal Tubular Epithelial Cells (Renal) were obtained fromCellBiologics (H-6015) and grown in Complete Human

Epithelial Cell Medium supplemented with Human Epithelial Cell Medium Supplement Kit (CellBiologics, H6621). Cells were grown in

15 cm dishes.

HumanPrimary Thyroid Epithelial Cells (Thyroid) were obtained fromCellBiologics (H-6040) and grown in Complete Human Epithe-

lial Cell Medium supplemented with Human Epithelial Cell Medium Supplement Kit (CellBiologics, H6621). Cells were grown in 15 cm

dishes.

Endometrial (Uterine) Primary Epithelial Cells were obtained from Lifeline Cell Technology (FC-0078) and grown in ReproLifeTM

Reproductive Medium Complete Kit (Lifeline Cell Technology, LL-0068). Cells were grown in 15 cm dishes.

Cell lines
GM12878 were obtained from Coriel (Catalog # GM12878) and grown in RPMI-1640 supplemented with 2mM L-glutamine (Thermo

Fisher 25030149), 15% non-heat-activated FBS (HyClone, ThermoFisher) and 1% pen/strep. Cells were grown in T-25 or T-75 flasks

in accordance with ENCODE guidelines.

Lenti-X 293T cell line was obtained from Takara (Catalog # 632180) and grown in DMEM F:12 (ThermoFisher, 11995-065) supple-

mented with 10% FBS (HyClone, ThermoFisher) and pen/strep.

SK-MEL-5 human malignant melanoma cell line was obtained from ATCC (HTB-70) and grown in DMEM F:12 (ThermoFisher,

11995-065) supplemented with 10% FBS and 1% Pen/Strep. Cells were grown in T-75 flasks.

WM-266-4 human malignant melanoma cell line was obtained from ATCC (CRL-1676) and grown in DMEM F:12 (ThermoFisher,

11995-065) supplemented with 10% FBS. Cells were grown in T-75 flasks.

COLO 829 human melanoma cell line was obtained from ATCC (CRL-1974) and grown in RPMI 1640 Media (ThermoFisher,

A1049101) supplemented with 10% FBS. Cells were grown in T-75 flasks.

A-431 human epidermoid carcinoma cell line was obtained from ATCC (CRL-1555) and grown in DMEM F:12 (ThermoFisher,

11995-065) supplemented with 10% FBS. Cells were grown in 15 cm dishes.

CAL27 human squamous cell carcinoma cell line was obtained from ATCC (CRL-2095) and grown in DMEM F:12 (ThermoFisher,

11995-065) supplemented with 10% FBS. Cells were grown in 15 cm dishes.

SCC-13 human squamous cell carcinoma cell line was a generous gift from J.G. Rheinwald, Dana-Farber/Harvard Cancer Center

and grown in Keratinocyte-SFM (Thermo Fisher, 17005042) supplemented with HKGS (ThermoFisher, S-001-5). Cells were grown in

15 cm dishes.

All cells were grown at 37�C in a humidified chamber with 5% CO2. All cell lines were negative for mycoplasma with MycoAlert

(Lonza, Basel, Switzerland) immediately before use.

METHOD DETAILS

RNA-seq library preparation and sequencing
RNA-seq was performed on biological replicates using the Lexogen Quant-seq 30 mRNA-seq Library Prep Kit FWD for Illumina pro-

tocol (Lexogen, 015.96). Briefly, total RNAwas extracted from cells using the RNeasyMini Kit (QIAGEN, 74104). 1 ug of total RNAwas

hybridized with an oligo-dT primer containing an Illumina-compatible sequence at its 50 end and reverse transcription is performed.

Following first strand cDNA synthesis, RNA is removed. Double-stranded cDNA was synthesized followed by a purification step.

qPCR was performed to determine optimal PCR cycle number using the PCR Add-on Kit for Illumina (Lexogen, 020.96). i7 adapters

for Illumina sequencing were added during PCR amplification (see Table S1, Primers and oligos, for RNA-seq adapter sequences).

Following purification, RNA-seq libraries were quantified using the BioAnalyzer High Sensitivity DNA Kit (Agilent, 5067-4626) prior to

sequencing using 1 3 150 bp single-end reads on an Illumina HiSeq 4000 instrument at a depth of 50 million reads per sample (see

Table S2, Sequencing QC, for RNA-seq read depth information).

ATAC-seq library preparation and sequencing
Fast-ATAC sequencing on biological replicates was performed as previously described.120 Briefly, 55,000 viable cells were pelleted

and resuspended in 50 uL of ATAC resuspension buffer (RSB) with 0.1% Igepal CA-630 (NP-40), 0.1%Tween 20, and 0.01%digitonin
Cell Genomics 2, 100191, November 9, 2022 e6
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(Promega, G9441). After 3min on ice, 1mL of ATACRSBwith 0.1%Tween 20was added, tubes were inverted, and nuclei pelleted by

centrifugation at 500 RCF for 10 min at 4C. Supernatant was carefully removed and the nuclei pellet was resuspended in 50 uL of

transposition mixture (25 uL TD buffer, 2.5 uL of TDE1 (Illumina, 20034197), 16.5 uL PBS, 0.5 uL 1% digitonin, 0.5 uL 10% Tween

20, 5 uL nuclease-free water). Transposition reactions were incubated at 37�C for 30min in an Eppendorf ThermoMixer with agitation

at 1000 RPM. Transposed DNA was purified using a Zymo DNA Clean and Concentrator-5 Kit (Zymo, D4014) and purified DNA was

eluted in 20 ul elution buffer (10 mM Tris-HCl, pH 8). Transposed fragments were amplified and purified as described previously121

(briefly, transposed fragments were amplified for 5 cycles, then 5 uL of the pre-amplified mixture was run in a 15 uL qPCR and the

amplification profiles assessed manually to determine the required number of additional cycles to amplify the remainder of the pre-

amplified DNA.) with modified primers122 (see Table S1 for ATAC-seq adapter sequences). Libraries were quantified using qPCR

(Kapa Library Quantification Kit for Illumina, Roche, #KK4854) prior to sequencing. All Fast-ATAC libraries were sequenced using

paired-end 2 3 75 bp, dual-index sequencing on an Illumina HiSeq 4000 at a depth of 50 million reads per sample (see Table S2

for ATAC-seq read depth information).

HiChIP library preparation and sequencing
The HiChIP protocol was performed as previously described.123 Briefly, 5 million live cells were crosslinked using freshly prepared

1% formaldehyde. The reaction was quenched using 125 mM glycine and cells were stored in �80C prior to performing the HiChIP

protocol. Crosslinked cells were resuspended in 500 uL Hi-C Lysis Buffer and rotated at 4C for 30min. Cells were spun down at 2500

rcf for 5 min at 4C. Supernatant was removed and the pelleted nuclei were resuspended in 500 uL Hi-C Lysis Buffer (10 mM Tris-HCl

pH 8.0, 10 mM NaCl, 0.2% NP-40, 1X protease inhibitors, water). Spin down and wash steps were performed twice. The pellet was

resuspended in 100 uL of 0.5%SDS, split in half, and incubated at 62 for 10min. SDSwas quenched using 285 uLH20 and 50 uL 10%

Triton X-100with rotation at 37C for 15min. Chromatin was digested using 50 uLNEBuffer 2 (NEB, B7002S) and 8 uL of 375 U ofMboI

restriction enzyme (NEB, R0147) with rotation at 37C for 15 min. Digested chromatin was spun down for 5 min at 2500 rcf, superna-

tant was removed, and the pellet was resuspended in 500 uL 1XNEBuffer 2. This stepwas repeated twice. Restriction fragment over-

hangs were filled in and DNA ends were marked with biotin through addition of 52 uL of fill-in master mix (37.5 uL 0.4mM biotin-ATP

(Jena Bioscience, NU-835-BIO14-L), 1.5 uL 10 mM dCTP, 1.5 uL 10 mM dGTP, 1.5 uL 10 mM dTTP (ThermoFisher, 10297018), and

10 uL 5U/uL DNA Polymerase I, Large Klenow Fragment (NEB, M0210) and rotation at 37C for 1 h. 948 uL ligation master mix (150 uL

10X NEB TF DNA ligase buffer with 10 mM ATP (NEB, B0202), 125 uL 10% Triton X-100 (Sigma, T8787-100ML), 3 uL 50 mg/mL BSA

(ThermoFisher, AM2616), 10 uL 400 U/uL T4 DNA Ligase (NEB, M0202) and 660 uL water) was added and chromatin was resus-

pended before incubation at RT for 4 h with rotation. Nuclei was pelleted at 2500 rcf for 5 min, supernatant was removed, 880 uL

Nuclease Lysis Buffer (50 mM Tris-HCl pH7.5, 10 mM EDTA, 1% SDS, 1X protease inhibitors, water) was added, and nuclei were

moved to 1 mL Covaris tubes (milliTUBE 1 mL AFA Fiber(100), Covaris). Samples were sheared using a Covaris E220 using the

following parameters: Fill Level = 10, Duty Cycle = 5, PIP = 140, Cycles/Burst = 200, Time = 4 min and then clarified by centrifugation

for 15min at 16100 rcf at 4�C. 10X volume of ChIP Dilution Buffer (0.01%SDS, 1.1%Triton X-100, 1.2mMEDTA, 16.7mMTris pH 7.5,

167 mM NaCl, water) was added to achieve an SDS concentration of 0.1%. 4 ug of H3K27ac antibody was added (Abcam, ab4729)

and chromatin was incubated overnight at 4Cwith rotation.We captured the chromatin-antibody complex with 34 uL Protein A beads

(Thermo Fisher, 10001D) and rotation at 4C for 2 h. Beads were washed three times each with 500 uL Low Salt Wash Buffer (0.1%

SDS, 1%Triton X-100, 2mMEDTA, 20mMTris-Hcl, 150mMNaCl, water), High Salt Wash Buffer (0.1%SDS, 1%Triton X-100, 2mM

EDTA, 20mM Tris-HCl, 500mMNaCl, water), and LiCl Wash Buffer (10 mM Tris pH 7.5, 250mMLiCl, 1%NP-40, 1%Na-DOC, 1mM

EDTA, water) at RT using magnet swishing and removing the supernatant. Split samples were recombined when adding the first Low

Salt Wash Buffer.

ChIP samples were resuspended in 100 uL Elution Buffer (50 mM NaHCO3, 1% SDS, water) and incubated for 10 min at RT with

rotation, followed by 3 min at 37C shaking. Samples were placed on a magnet and the supernatant was moved to a new tube. This

step was repeated twice for a final volume of 200 uL ChIP DNA. 10 uL Proteinase K (ThermoFisher, AM2546) was added and samples

were incubated at 55C for 45 min. The temperature was then increased to 67C for 1.5 h with shaking. Samples were purified using

Zymo ChIP DNA Clean & Concentrator (Capped Columns) (Zymo, D5205) and eluted in 10 uL of water. Qubit quantification following

ChIP ranged from 125-150 ng. (ThermoFisher, Q32851) Up to 150 ng DNA was resuspended with 5 uL Streptavidin C-1

(ThermoFisher, 65001) beads resuspended in 10 uL Binding Buffer (10 mM Tris-HCl pH 7.5, 1mM EDTA, 2M NaCl, water) and incu-

bated at RT for 15 min with rotation. Beads were separated on a magnet and the supernatant removed. Beads were washed twice

with 500 uL Tween Wash Buffer (5 mM Tris-HCl pH 7.5, 0.5 mM EDTA, 1 M NaCl, 0.05% Tween 20, water) and incubated at 55C for

2 min shaking. Beads were washed with 100 uL 1X TD Buffer. Beads were resuspended in 25 uL of 2X TD Buffer (20 mM Tris-HCl pH

7.5, 10mMMgCl2, 20%Dimethylformamide, water), the appropriate amount of Tn5 used and number of PCR cycles performedwere

based on the post-ChIP Qubit amounts, as previously described123 (briefly, amaximum of 4 uL Tn5was used for samples with 125 ng

of DNA transpose and then amplified in 5 cycles), and water up to 50 uL. Samples were incubated at 55C with interval shaking for

10 min, placed on a magnet, and the supernatant removed. 300uL of 50 mM EDTA (ThermoFisher, 15575020) was added and sam-

ples were incubated at 50C for 30 min. Samples were placed on a magnet and the supernatant removed, washed twice with 300 uL

50 mM EDTA, and incubated at 50 for 3 min with interval shaking and the supernatant removed. Samples were then washed twice

with 500 uL TweenWash Buffer and incubated at 55C for 2 min with interval shaking, removing the supernatant on the magnet. Sam-

ples were washed once with 500 uL 10 mM Tris. Beads were resuspended in 50 uL PCRmaster mix in a strip tube (25 uL Phusion HF
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2X (NEB, M0531S), 1 uL 12.5 uM Ad 1.x, 1 uL 12.5 uM Ad2.x100 (see Table S1 for H3K27AC HiChIP adapter sequences), and 23 uL

water) and run at 72C for 5 min, 98C for 1 min, and for 5 cycles of 98C for 15 s, 63C for 30 s, and 72C for 1 min. Supernatant was

transferred to fresh tubes. Samples were purified using the Zymo kit (Zymo, D4013) and eluted in 10 uL of water. 1 uL of 10X

BlueJuice loading buffer (ThermoFisher, 10816015) was added and samples were run on a 6% PAGE gel (ThermoFisher,

EC6265BOX) for 30 min at 160V. The gel was soaked in SYBR Safe (ThermoFisher, S33102) and TBE buffer (ThermoFisher,

LC6675)) for 5 min. HiChIP samples were size selected by PAGE purification (300-700 bp) for effective paired-end tag mapping

and were therefore removed of all primer contamination. Gel slices were placed in doubled tubes with a hole in the smaller one

and tubes were centrifuged for 3 min at max speed. 300 uL Crushed Salt Buffer (500 mM NaCl, 1 mL EDTA, 0.05% SDS, water)

was added to each tube and incubated at 55C overnight. CSB buffer and gel slurry were transferred to Spin-X columns (Sigma,

CLS8162-24EA) and spun down at max speed for 2 min. Samples were Zymo purified using the DNA Clean & Concentrator-5 kit

(Zymo, D4013) and eluted in 10 uL elution buffer. Libraries were quantified using qPCR (Kapa Library Quantification Kit for Illumina,

Roche) prior to sequencing. All libraries were sequenced using 2 3 150 bp reads on the Illumina NovaSeq 6000 instrument to an

average read depth of 300 million total reads (see Table S2 for H3K27ac HiChIP read depth information).

MPRA
Oligo design and selection

TF DMCs were selected from the co-enrichment analysis. A total of 49 keratinocyte, 42 colon, 39 GM12878, and 26 melanocyte

normal DMCs were curated based on literature search, which prioritized TF’s with cell type-specific function in the corresponding

cell type. Additionally, 43 squamous cell carcinoma and 40 melanoma DMCs were curated, for a total of 239 DMCs to be tested.

For each DMC, 10 genomic instances of the DMCs in a 135 bp segment were selected. Segments where the DMCs were closer

than 50 bp apart were prioritized. Positive and negative control sequences were added. Positive controls were genomic sequences

of the 150 bp upstream of the TSS of the 72 highest expressed genes in selected cell type DMCs. Negative controls were genomic

sequences of the 150 bp upstream of the TSS of 89 genes that were not expressed, had no looping, and had no accessible sites in

any of the selected cell types. A list of the 239 selected DMCs can be found in Table S5, MPRA DMC categories. All genomic se-

quenceswere extracted via API querying of hg19 version of the UCSCbrowser.124 Scrambling of themotif instances of the twomotifs

within the DMC were done so that four configurations existed for each DMC: both motifs scrambled, motif A scrambled, motif B

scrambled, and no motifs scrambled. The scrambling was done iteratively. After each iteration, the sequences were scanned for

via the MOODs python package,114 to ensure that the scrambled version did not contain the motif of interest and to minimize the

possibility that other possible motifs were introduced. To design the MPRA sequences for synthesis and subsequence cloning, se-

quences first were filtered to ensure the restriction sites for EcoRI, BamHI, XhoI, and NheI were not present. Each MPRA library oligo

included, in order: a forward PCR primer binding site (50-ACTGGCCGCTTCACTG-30), the 145 bp genomic instance sequence, a XhoI

restriction site, a 10bp randomly generated spacer sequence, a NheI restriction site, a 20bp barcode, and a reverse PCR primer bind-

ing site (50-AGATCGGAAGAGCGTCG-30) (see Table S1 for complete MPRA oligo and primer information). The 10bp spacer

sequence was included to improve restriction enzyme cutting efficiency and to reduce template switching in the initial PCR

amplification cloning step, and is later removed following digestion with NheI and XhoI. The 20bp barcodes are all a minimum Ham-

ming distance of 3 apart. Each unique genomic instance is barcoded 10 times. The smaller number of barcodes may reduce sensi-

tivity,125 but 10 barcodes were sufficient to identify active time-dependent combinatorial DNA motifs.20 This yields a 97,210-221bp

oligo library that was synthesized by the Agilent oligo synthesis process.

Cloning

Cloning proceeded in 2 steps. Agilent oligo library was resuspended in Ultra-Pure H2O then diluted to make a 10 pg/ul stock. Re-

suspended oligo pool was amplified 24 cycles using PrimeSTAR Max DNA Polymerase (Takara, R045B) with a forward primer

50-GCTAAGGAATTCACTGGCCGCTTCACTG-30 and reverse primer 50-GCTAAGGGATCCCGACGCTCTTCCGATC-30 to introduce

the EcoRI and BamHI restriction sites upstream and downstream of the oligo, respectively. Product was gel purified using a 2%

agarose gel then using an MN nucleospin kit (Takara, 740609.250). A BamHI site was added to the pGreenFire1-mCMV (EF1a-puro)

plasmid (System Biosciences, TR010PA-P) between the luciferase and WPRE element by mutagenesis with the following primer:

GAGGTTGATTGTCGAGTCGAGGATCCTTACAATTTGGACTTTCCGCCC. This is referred to as the pGreenFire-MPRA plasmid.

64ug of pGreenFire-MPRA plasmid (32 reactions) and the purified PCR library product (6 reactions) were digested with EcoRI-HF

(NEB, R3101L) and BamHI-HF (NEB, R3136L) for 1 h at 37C. The pGreenFire plasmid was also simultaneously rSAP (NEB,

M0371L) treated. The pGreenFire-MPRA plasmid gel purified using a 0.7% agarose gel, while the digested oligo library was PCR

purified using the same MN kit. Digested library and pGreenFire-MPRA vector were ligated using T4 Ligase (NEB, #M0202L) at a

2:1 insert:vector ratio for 2 h at room temperature (10-20ul reactions). All of the ligation product was transformed into Stellar Compe-

tent cells (Takara, 636766) with 2 ul of ligation mix per 50 ul of cells and a total of 80 transformation reactions. Reactions were done in

two sets of 40, with a test transformation followed by Sanger sequencing to confirm the ligation was a success. Full scale transfor-

mation was done in large volume liquid cultures, allowed to recover for 1 h-post heat shock, and incubated at 37C for 8 h in ampicillin-

treated LB. The expanded library was isolated by Qiagen Plasmid Plus Max Kit (Qiagen, 12963). This pGreenFire-library vector was

then digested with XhoI (NEB, R0146L) and NheI-HF (NEB, R3131L) and rSAP treated for 90 min at 37C. The pMPRA-d2-minilucifer-

ase plasmid was simultaneously PCR amplified with 50-TTGTAAAACGACGGCCAGTGAATTCG-30 and 50-ACATCATGGTCGC

TAGCGGGCGTAGCGCTTCATGGCT-30 for 34 cycles and then subsequently digested with XhoI and NheI-HF for 90 min at 37C.
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Both the digested pGreenFire-library vector and the minluc insert products were gel purified using 0.5 and 1.6% agarose gel respec-

tively. Purified miniluc and pGreenFire-library vector were ligated using T4 Ligase at a 3:1 insert:vector ratio for 2 h at room temper-

ature (5-20ul reactions). A similar round of 40 transformations using Stellar Competent cells was performed, as done in the previous

cloning step with an 8 h incubation of liquid cultures. The final plasmid library was isolated by Qiagen Plasmid Plus Maxi Kit (Qiagen,

12963). Plasmid library was sequenced to ensure adequate coverage of the designed oligo library pool, according to manufacturer

instructions. Briefly, Plasmid was amplified on a qPCR Stratagene MX3005P machine using the PrimeSTAR MAX polymerase and

SYBR green (ThermoFisher, S7567) until the linear phase (around cycles 10-15) on the qPCR machine was achieved. PCR product

was PCR purified then gel purified with a 549 bp band using the MN Nucleospin kit (Takara, 740609.250). Library concentration was

determined using Kapa Library Quantification Kit (Roche Diagnostics Corporation, KK4854) and Bioanalyzer. Sequencing was done

using an Illumina Miseq (Illumina, MS-102-3001), and the number of barcodes present in the library was determined. Multiple itera-

tions of the cloning process were done and pooled to form the final plasmid library to obtain near complete coverage of the library.

Virus generation

LentiX cells (passage < P8) were grown in 15cm plates until �80% confluent. Plasmids pCMV R d8.91126 (25 ug/plate), pUC-MDG

VSVG (Addgene, 12259) (10 ug/plate), and the plasmid library (25 ug/plate) were transfected using Lipofectamine 3000

(ThermoFisher, L3000015) (2ul/ug DNA) in Optimem (ThermoFisher, 31985062) (7mL/plate). Supernatant was harvested 48 and

72 h post transfection. Supernatant was concentrated using Lenti-X concentrator (Takara, 631232) at a 3:1 vol:vol ratio of superna-

tant: concentrator, then aliquoted and frozen down to �80C.

Infection and cell collection

In each cell type, optimal puromycin concentration was determined, and the virus was titrated using CellTiterBlue (Promega, G8080)

assays to minimize virus toxicity and maximize infection efficiency for each cell type. Additionally, average integrants per cell was

determined for infected cells. Briefly, gDNAwas extracted from infected cells post-selection via Qiagen tissue extraction kits (Qiagen,

69504). Serial dilutions of the original plasmid library and the gDNA were made. qPCR was performed on all serial dilutions using

primers designed for the oligo library sequences to determine the number of copies of the integrants present in each gDNA sample,

using the formula: log10(copies) = PLASMID_INTERCEPT * Cq + PLASMID_SLOPE. Cell number for each gDNA sample was approx-

imated based on the assumption that there is roughly 6.6 pg of gDNA per cell. The average integrants per cell was calculated by

dividing the number of copies present in a gDNA sample by the number of estimated cells. Average number of integrants per cell

greater than 4 were desired.

For non-GM12878 cell types, cells were infected by trypsinizing then counting cells. At least 12.2 million cells per replicate were

desired for infection. A virus-polybrene-cell-media mix of 8 ul/mL of polybrene (Sigma, H9268-5G) and 100,000 cells/mL of media

was made to seed the cells in 6 15-cm plates. The amount of virus/200,000 cells was previously determined using a CellTiterBlue

(Promega, G8080) toxicity screen (see Table S3, MPRA cell culture conditions, for concentrations for each cell type). 2 wells of a

6-well plate were also seeded, one with virus and the other without, for monitoring the antibiotic selection. Plates were returned

to the 37C incubator and allowed to recover for 24 h. For GM12878 cells, virus was not concentrated and fresh virus suspended

in RPMI-1640 media was used. Cells were counted and at least 26 millions cells per replicated were desired for infection. A virus-

polybrene-cell-media mix of 4 ul/mL polybrene was plated onto 6-well plates and spun at 731g (2000 rpm) at room temp for 2 h.

Plates were incubated at 37C for 6 h before the cells were pelleted and resuspended into the T-25 flasks in normal media. Media

was changed 24 h post-infection. 48 h post-infection, cells were selected using puromycin (1.0 ug/mL for keratinocytes) for

48-72 h. CellTiterBlue (Promega, G8080) assays were used to ensure all noninfected, antibiotic-treated cells were dead. Cells

were changed to normal media and allowed to divide until the desired number of cells was achieved (usually 2-4 days post-selection).

Cells were lysed on plate using the Lysis/binding buffer from the Dynabeads mRNA direct kit (ThermoFisher, 61012). Cells were ho-

mogenized using a 2gg needle and syringe and stored at �80C for sequencing library preparation.

Sequencing library preparation

mRNA from the cells was extracted using the DynabeadsmRNA direct kit (ThermoFisher, 61012) per manufacturer’s instructions and

eluted to 30 ul per replicated. Extracted mRNA was Turbo DNase treated (ThermoFisher, AM1907) for 1 h at 37C and then subse-

quently purified using Ampure XP beads (Beckman Coulter, A63881) at a 1:1.9 sample:Ampure bead ratio. cDNA was generated us-

ing Super-Script IV Reverse Transcriptase (ThermoFisher, 18090050) in 500 ng RNA reactions using a P5 primer (see Supplemental

Information Table S1 for full MPRA primer sequences), per manufacturer’s instructions. No RT enzyme conditions were included as a

control. Reaction were treated with 1ul of thermolabile exonuclease I (NEB, M0293) and incubated at 37C for 10 min then heat in-

activated. A second Ampure XP purification step was done, using a 1:1.1 sample to beads ratio. Test qPCR assays using

PrimeStar Max Polymerase, the Illumina P7 primer and 50-AATGATACGGCGACCACCGAGATCTAC-30 (see Table S1 for full

MPRA primer sequences) and were run to determine the optimal number of cycles with a 50C annealing temperature for 15 s and

a 72C extension temperature for 20 s. Samples were removed when qPCR reached a linear phase (typically cycle 20-25). Care

was taken to ensure the cycle stopped prior to when the NRT negative control began to rise. qPCR amplification product was gel

purified on a 2% agarose gel and the resultant amplicon was 277 bp. Library concentration of the cDNA libraries was determined

using Kapa Library Quantification Kit (Roche Diagnostics Corporation, KK4854) and BioAnalyzer prior to pooling for sequencing.

Sequencing

cDNA libraries were sequenced using 2 3 150 bp reads on the Illumina NovaSeq 6000 instrument to an average read depth of 200

million reads per sample.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Coding platform
Statistical analyses were performed with R version 3.6.1 and Python 3.7.4 in Jupyter Notebook. Parameters such as number of rep-

licates, the number of independent experiments, measures of center, dispersion, and precision (mean ± SD or SEM), statistical test

and significance, are reported in Figures and Figure Legends. Raw sequencing data were processed on Stanford’s Sherlock cluster.

RNA-seq (GSE186947), ATAC-seq (GSE188398), HiChIP (GSE188401) and MPRA (GSE188403) data have been deposited at GEO

(GSE188405) and are publicly available as of the date of publication. Raw sequencing files for primary keratinocyte and melanocyte

data are restricted and access is in accordance with NIH genomic data sharing policy. Python packages pandas, numpy, scipy,

statsmodel, and matplotlib were also used for modeling. The seaborn Python package was used for visualization using viridis color

palettes. Plots in R were made with tidyverse, ggplot2, RColorBrewer, and pheatmap packages.

Computational pipeline for RNA-seq
To quantify gene expression, single end reads were mapped to the hg19 reference genome with GRCh37 Ensembl annotations

using STAR aligner (version 2.5.4b)111 using default parameters and the Gencode V19 gene annotation gtf. Sample expression

counts and transcripts per million (TPM) values were generated using RSEM (version 1.3.0)110 and default parameters. Conversion

between Ensemble IDs and HGNC symbols was performed using the biothings api client python package. Cell type-specific genes

were defined as genes expressed at a TPM>1 across both biological replicates in a single cell type and at a TPM <1 in all other cell

types.

Computational pipeline for ATAC-seq
ATAC-seq read alignment, quality filtering, duplicate removal, transposase shifting, peak calling, and signal generation were all per-

formed through the ENCODE ATAC-seq pipeline (https://github.com/ENCODE-DCC/atac-seq-pipeline). Briefly, adapter sequences

were trimmed, sequences were mapped to the hg19 reference genome using Bowtie2 (-X2000),103 poor quality reads were removed

(params), PCR duplicates were removed (Picard Tools MarkDauplicates, http://broadinstitute.github.io/picard/), chrM reads were

removed, and read ends were shifted +4 on the positive strand or �5 on the negative strand to produce a set of filtered high-quality

reads. These reads were put through MACS2115 to get peak calls and signal files. Finally, IDR analysis was run on the two replicate

peak files to produce an IDR peak file that is the reproducible set of peaks across both replicates. Cell type-specific ATAC-seq peaks

were identified using the IDR peak files across both biological replicates that were unique to a single cell type. The full pipeline can be

found on the ENCODE portal. ATAC Footprinting was performed using the HINT-ATAC62 package. Transcription factor motif posi-

tion-weight matrices (PWMs) from the HOCOMOCO v1163 database were processed to remove non-informative bases. Additionally,

motifs werematched to transcription factors using the annotations provided. Ends of the PWMswere trimmed by an information con-

tent (IC) threshold at the end of IC > 0.4. Overall 770 PWMs remained post-processing. Footprinting using the ‘‘rgt-hint footprinting’’

and ‘‘rgt-motifanalysis matching’’ commands were done using default parameters over the filtered ATAC bam file and the IDR peak

file derived from ATAC processing. A TF motif footprint was considered present within a cell type-specific regulatory region if the

associated TF had a TPM >1.

Computational pipeline for HiChIP
HiChIP paired-end readswere aligned to the hg19 genome using the HiC-Pro pipeline.116 Default settingswere used to remove dupli-

cate reads, assign reads to MboI restriction fragments, filter for valid interactions, and generate binned interaction matrices. HiC-Pro

filtered reads were then processed using hichipper117 using the {EACH, ALL} settings to call HiChIP peaks to MboI restriction frag-

ments. HiC-Pro valid interaction pairs and hichipper HiChIP peaks were then processed using FitHiChIP118 to call significant chro-

matin contacts using the default settings except for the following: MappSize = 500, Int-Type = 3, BINSIZE = 5000, QVALUE = 0.01,

UseP2PBackgrnd = 0, Draw = 1, TimeProf = 1. Significant HiChIP interactions from either biological replicate were used to identify

unique interactions to a single cell type. Cell type-specific HiChIP data were analyzed. The distribution of loop width was determined.

The number of unique, total, common across cell types loops and anchors (anchors are defined as one of two 5 kb regions a loop is

connecting) was found. The distribution of loop types (promoter:promoter, promoter:promoter-interacting, promoter-interacting:-

promoter-interacting) was determined. An ‘‘enhancer’’ was determined as a promoter-interacting region, or HiChIP anchor, that con-

tained at least one ATAC peak in the match cell type data. Results were compared with HiChIP data from previous studies.

Differential ‘‘omics’’ analysis
Differential RNA-seq analysis

Differential RNA-seq was performed using the limma112 package using cell type as the grouping variable and an absolute log fold

change >0.1 and an FDR-adjusted p value < 0.05 as thresholds. Hierarchical clustering was used to determine the four main clusters

(Epithelial C1 (Airway, Bladder, Keratinocytes, HMEC, Prostate, and Uterine), Epithelial C2 (Colon, Esophageal, Ovarian, Pancreas,

Renal, and Thyroid), neurogenic (Melanocytes and astrocytes), and immune (GM12878)). biomaRt107 was used to obtain gene iden-

tifiers. Differential expression by cluster (Epithelial C1, Epithelial C2, neurogenic, and immune) revealed 7531 differentially expressed

genes which was further filtered down to 2952 prioritized differential genes. Results were plotted as a heatmap using R package
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pheatmap and the R function scale to Z score by column (cell type). ClusterProfiler R package108 was used to functionally charac-

terize the different genesets using GO Term enrichment.

Differential ATAC-seq analysis

Differential ATAC-seq analysis was performed on the IDR filtered ATAC peak files for each tissue and in accordance with the RNA-

seq extracted groups. Consensus peak regionswere established using the R packageGranges.106 Counts of readswithin consensus

regions were determined using the R package Rsubread.105 The R package DESeq2113 was used to determine differentially acces-

sible peak regions between the groups for a total of 34253 peak regions, and results were plotted using R package pheatmap and the

R function scale to Z score by column (cell type).

Differential HiChIP analysis

Differential loop regions were determined by first creating a loop Object in R using package diffloop.119 Loop objects are matrix-like

with rows as loops, columns as cell type samples and values as the number of read counts part of the loop. Differential loops are

called using limma,112 similar to how differential RNAseq analysis is done with 46,540 unique loops. Heatmap of results is plotted

using R package pheatmap and the R function scale to Z score by column (cell type).

Integrative pairwise comparison

Differential analyses from the different ‘‘omics’’ datasets were compared by determining the Jaccard similarity and odds ratio (via

Fisher exact test) for the genesets extracted fromdifferential analysis of different methods. Genesets for the different groups for RNA-

seq are trivially determined. Genesets for the differential ATAC peaks and the differential HiChIP loops are determined by annotating

peaks with the R packages ChIPseeker104 and ChIPpeakAnno98

Tracks visualization

HiChIP HiC-Pro interaction matrices were generated as described above. v4C visualization plots were generated from HiChIP inter-

action matrices by filtering thematrix for all bin pairs in which one binmatched a single anchor bin. The interaction profile of a specific

5-kb bin containing the anchor of a loci of interest was then plotted in R and smoothed with the rollmean function of the zoo package.

Depth normalization was achieved by scaling counts by the total number of filtered reads in each sample. High-confidence FitHiChIP

loop calls were loaded into the WashU Epigenome Browser (http://epigenomegateway.wustl.edu/browser/) along with correspond-

ing RNA and ATAC-seq profiles. Browser shots from WashU track sessions were included in v4C and interaction map anecdotes.

RefSeq gene track locations were also shown. Samtools99 and bedtools100 were used for formatting gene track locations and

sequencing profiles. Pybedtools101 was used for processing bedfiles in python environment.

Cis-regulatory module analysis
Generation

cis-Regulatory Modules (CRMs) are defined as the transcription factors motif footprints present in proximal or distally looped regions

to a target gene’s transcription start site (TSS). The proximal region, or promoter region, is defined as 500 bp downstream and 2 kb

upstream of the TSS, or the entire H3K27acHiChIP anchor region, if it includes the promoter region, if one is present. CRMs attributes

include the number of unique and total loops contained within the CRM, the number of ATAC peaks present in the CRM, and the

identity and TPM expression of the target gene. Since each RNA, ATAC, and HiChIP information is cell type-specific, the CRM for

a target gene is also cell type specific. CRMs were extracted from the processed ATAC, HiChIP, and RNA data using a package

we built pan-omics. In addition to the actual CRMs for a target gene, randomly looped CRMs were generated as a proxy for model

testing, by randomly scrambling HiChIP anchor regions with a fixed number of total and unique loop counts. HiChIP anchor regions

were also linked to the nearest TSS promoter. Original code to generate CRMs is available onGithub at https://github.com/mguo123/

pan_omics and Zenodo at https://zenodo.org/record/6981951 (https://doi.org/10.5281/zenodo.6981951).

Cell type specificity prediction

Various combinations of CRM attributes, pending on whether the attribute was derived from ATAC, ATAC footprinting, and/or HiChIP

data were used to predict cell type using various machine learning architectures. Random forest classifiers from Python package

scikit-learn with minimal hyperparameter tuning (number of estimators = 200, features are square-rooted) was found to have the

best performance and confusion matrices showing positive predictive values were created. Additional performance metrics such

as auROC, auPRC, sensitivity, specific, and accuracy were determined. Additionally, the% of CRM’s needed to achieve a given level

of performance was determined.

Cooperativity of TF DMC analysis

Pairwise enrichment from the CRM setup between motifs was calculated using a Fisher Exact test and a Bonferroni-corrected p

value < 0.05 was used to determine putatively cooperative motif pairs. Genesets connected to DMCs from the different configura-

tions (promoter-promoter, promoter-enhancer, enhancer-enhancer) were determined, and distribution of configurations acrossmotif

pairs was determined. DMCs were determined based on the genomic presence in cis of the motif pairs occurring on more than 20

genomic instances for the differentially expressed genes in the matching RNA-seq cell type data. A total of 838 DMCs across the 15

normal cell types, 155 DMCs from the 3 squamous cell carcinoma cell lines, and 53 DMCs from the 2 melanoma cell lines were ex-

tracted (see Table S4, MPRA DMC categories, for a full list of the 838 extracted DMCs). This list was further curated down to 239

DMCs to be tested for 6 of the different cell types in an MPRA setup (see Table S5, MPRA DMC categories, for a list of the 239

DMCs tested via MPRA).
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GWAS enrichment method
GWAS SNV information was downloaded from GWAS catalog57 in January 2019. SNVs associated with major cancer types (esoph-

ageal squamous cell carcinoma, cutaneous squamous cell carcinoma, ovarian cancer, lymphoma, renal cell carcinoma, pancreatic

cancer, breast cancer, lung cancer, colon cancer, prostate cancer, bladder cancer, endometrial cancer, thyroid cancer, basal cell

carcinoma, melanoma), autoimmune diseases (dermatomyositis, eosinophilic esophagitis, systemic sclerosis, systemic lupus ery-

thematosus, rheumatoid arthritis, asthma, inflammatory bowel disease, ulcerative colitis, and type 1 diabetes mellitus), and skin dis-

eases (cutaneous inflammation, acne, psoriasis, basal cell carcinoma, cutaneous squamous cell carcinoma, alopecia areata, atopic

dermatitis, and rosacea) were retrieved and defined as index SNVs. The SNV list was then expanded by adding SNVs within a linkage

disequilibrium (LD) block of r2 > 0.8 to the GWAS SNVs. The LD information was obtained from Haploreg v458 (http://archive.

broadinstitute.org/mammals/haploreg/data/). The SNVs located in exon or UTR regions were removed, to yield 254960 SNVs for

this analysis. To perform the enrichment, regions of cell type-specific HiChIP anchors overlapped with ATAC peaks were defined

as cell type-specific regulatory regions. bwa102 was used to preformat sam files. ‘‘bedtools shuffle’’ was used to create 1000 permu-

tations of the cell type specific regulatory regions, excluding blacklisted regions on ENCODE. The number of SNVs that fall in the

permuted regions were recorded and used to construct a null distribution. Empirical p values were calculated by counting the times

where the number of SNVs in the original regulatory regions were less than the number of SNVs in a given permutation, then dividing

by 1000. 5% FDR cutoff was used as the significance threshold (Benjamin-Hochberg method). Fold changes were determined by

finding the ratio of the number of SNVs in the original regulatory regions to the mean of the number of SNVs in the permuted

data. Motifs present at SNP loci with the reference and alternate allele were determined using R package motifBreakR.109

MPRA analysis
RNA/DNA read analysis

DNA plasmid library and MPRA library reads were sequenced and analyzed using the same approach. Fastq read files from MPRA

sequencing were pre-processed as such: reads were trimmed to only include the 20 bp barcode section in the correct orientation.

The UMI from index 2 was processed and joined to the barcode. The barcode + UMI sequences were collapsed to remove PCR du-

plicates. The 20 bp barcode sequences were saved, and aligned to theMPRA library using bowtie2.110 Counts for each barcodewere

determined and summed across all sequencing lanes performed through Novogene. RNA counts were normalized to plasmid frac-

tions as done previously.20 Briefly, MPRA counts were multiplied by the plasmid fractions, converted to fractions, then multiplied by

the total count across the MPRA library for the sample. These processed counts were then run through the regularized log transfor-

mation (rlog) from DESeq2113 to get a normalized MPRA signal for each barcode in each cell type. Normalized counts were used in

further downstream analysis and visualization.

DMC GO terms

GO biological process enrichment for the DMCs was performed by extracting target genes for each DMC in the corresponding cell

type-specific CRMs. GO analysis was performed using ClusterProfiler108 and a hypergeometric test p value cut off of p < 0.05 was

used. Panels were plotted using R ggplot2 and pheatmap packages.

DMC class determination

For each DMC genomic instance in the corresponding cell type, a Mann-Whitney U test was used, with an fdr-corrected significance

threshold of 0.05, to determine the significance for the following DMC mutation configurations:

1. A_B > scrA_scrB.

2. scrA_B > scrA_scrB.

3. A_scrB > scrA_scrB.

Each DMC instance was graded as synergy, redundancy, buffer, or driver motif A or driver motif B (the driver motif A and B were

merged into a single category in subsequent analysis), using the following rules:

d Synergy (AND) = (A_B > scrA_scrB) AND NOT(scrA_B > scrA_scrB) AND NOT(A_scrB > scrA_scrB)

d Redundancy (OR) = (A_B > scrA_scrB) AND (scrA_B > scrA_scrB) AND (A_scrB > scrA_scrB)

d Buffer (XOR) = NOT(A_B > scrA_scrB) AND (scrA_B > scrA_scrB) AND (A_scrB > scrA_scrB)

d Single Driver A = (A_B > scrA_scrB) AND NOT(scrA_B > scrA_scrB) AND (A_scrB > scrA_scrB)

d Single Driver B = (A_B > scrA_scrB) AND (scrA_B > scrA_scrB) AND NOT(A_scrB > scrA_scrB)

If a DMC instance failed to meet any of the above classifications, then it was labeled as ‘‘other.’’ Simulations were then run for a

given category from a particular cell type. First, we randomly assigned the actual MPRA value to a DMC configuration (A_B, scrA_B,

A_scrB, or scrA_scrB). Then we classified each simulated DMC interaction into the defined groupings (Synergy, Redundancy, Buffer,

Single Driver, or No deterministic relationship (‘other’). Pie charts of simulations versus observed DMC genomic instance categories

were plotted using R. Themode class for each DMC across all instances was used to determine DMCclass determination, where ties

were broken by manual inspection to ensure subthreshold significant trends were observed. See Table S5 for the annotated

consensus classification for the 239 DMCs tested via MPRA.
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DMC cancer versus normal synergy score
Normalized MPRA RNA counts for each genomic instance from corresponding cancer versus normal cell types were used to calcu-

late a synergy score difference. First, synergy scores for cancer (Sc) and normal (Sn) cell types were determined by subtracting the

MPRA signal from the configuration of the native genomic sequence (A_B) to the motif configuration where both motifs were scram-

bled (scrA_scrB). The difference between normal cell type and cancer synergy scores (Sdiff = Sc - Sn) was calculated and represents

the putative modulation of DMC activity due to disease. A one-sided Wilcoxon signed rank test (p < 0.10) was used to determine if

there is a significant difference in sign and magnitude of Sdiff for cancer versus normal DMCs.

DMC cell type and state-specificity determination
NormalizedMPRARNA counts for each genomic instance, averaged across the 10 respective barcodes, was calculated for each cell

type in the MPRA assay (colon, MC, KC, GM12878, A431, and COLO). These MPRA signals for each genomic instance were used to

calculate a cell type-specificity score. The MPRA signal from the cell type from which the DMC was originally identified was

compared against the mean MPRA signal from the other five cell types via a one-sided Wilcoxon signed rank test (p < 0.10) to deter-

mine if there is a significant difference in MPRA signal between cell types.
e13 Cell Genomics 2, 100191, November 9, 2022
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