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Abstract

The mitochondrion is intimately linked to energy and overall metabolism and therefore the

morphology of mitochondrion can be very informative for inferring the metabolic state of

cells. In this study we report an approach for automatic classification of mitochondrial mor-

phologies using supervised machine learning to efficiently classify them from a large num-

ber of cells at a time. Fluorescence microscopy images of the chronic encysted form of

parasite Toxoplasma gondii were used for this development. Manually classifying these

morphologies from the hundreds of parasites within typical tissue cysts is tedious and error

prone. In addition, because of inherent biological heterogeneity in morphologies, there can

be variability and lack of reproducibility in manual classification. We used image segmenta-

tion to detect mitochondrial shapes and used features extracted from them in a multivariate

logistic regression model to classify the detected shapes into five morphological classes:

Blobs, Tadpoles, Lasso/Donuts, Arcs, and Other. The detected shapes from a subset of

images were first used to obtain consensus classification among expert users to obtain a

labeled set. The model was trained using the labeled set from five cysts and its performance

was tested on the mitochondrial morphologies from ten other cysts that were not used in

training. Results showed that the model had an average overall accuracy of 87%. There

was high degree of confidence in the classification of Blobs and Arcs (average F scores

0.91 and 0.73) which constituted the majority of morphologies (85%). Although the current

development used microscopy images from tissue cysts of Toxoplasma gondii, the

approach is adaptable with minor adjustments and can be used to automatically classify

morphologies of organelles from a variety of cells.

Introduction

There is an increasing interest in assessment of metabolic state at the cellular level in a variety

of fields. In many of these studies there is a need for classification of the morphology, i.e. form,
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of the mitochondrion, which is the subcellular organelle that plays a key role in cellular metab-

olism. In the present study, we developed an automated classification approach that could clas-

sify the morphologies of the mitochondrion within the poorly understood chronic form of the

parasite Toxoplasma gondii (T. gondii), termed a bradyzoite. Bradyzoites, numbering in the

hundreds are resident within tissue cysts, typically in the central nervous system and muscle.

The motivation for this development was that although these bradyzoites were long considered

to be non-replicative and metabolically quiescent [1], our prior work demonstrated that in

vivo they exhibit a surprising level of metabolic activity including the ability to replicate [2].

This form is additionally resistant to current drug treatments, making insights into their physi-

ology particularly relevant [3]. Inherent to parasite’s viability and the potential for growth is a

requirement for energy which is derived from the activity of a single mitochondrion [4] the

morphology of which is reflective of the parasite’s physiological state [5, 6].

T. gondii chronically infects a third of individuals globally [7]. In most healthy individuals,

the initial infection is asymptomatic and readily controlled by the immune system. However,

the immune system does not get rid of the parasite; instead, the parasites enter a second life-

cycle stage in tissue cyst that house slow growing bradyzoites. These tissue cysts retain the

potential to reactivate in the immunocompromised, especially in the case of HIV-AIDS, which

can result in toxoplasmic encephalitis that is lethal if not treated [7].

Image processing and machine learning methods have been successfully used by others in

mammalian cells to classify normal mitochondria [8], the effects of various stressors including

drug treatment on mitochondrial morphology [9, 10] and mitochondrial dynamics and plas-

ticity [11, 12]. In contrast to the mammalian cells which contain networks of mitochondria,

Toxoplasma gondii cells contain a single mitochondrion [4] which in the actively growing

tachyzoite form exhibits considerable plasticity [5, 6]. However, the status and dynamics of

mitochondrial morphology have not been investigated in bradyzoites within tissue cysts. This

is partially due to the high demand of time and trained specialists that would be required to

perform this manual process of classifying potentially thousands of mitochondrial objects

from fluorescent microscopy images of cysts containing bradyzoites. In addition, biological

heterogeneity introduces ambiguity which makes manual classification of some objects diffi-

cult leading to variation in classification by expert users and potential lack of reproducibility in

classification. In this study, we used image segmentation to detect fluorescently labelled mito-

chondrial objects and nuclei within microscopy images of tissue cysts. For a subset of these

images, trained specialists manually classified (labeled) each identified mitochondrial object’s

morphology within the five predefined classes. Features related to intensity, size, shape/ tex-

ture, and spatial relation to nearby nuclei were extracted from these objects and used in a

supervised machine learning approach to classify their morphologies. A small subset of these

results related to congruence among operators in manual classification of objects were previ-

ously reported in a conference proceedings paper [13].

Methods

The cysts were harvested as described previously from brains of mice infected with T gondii
[2]. This study was carried out in strict accordance with the recommendations in the Guide

for the Care and Use of Laboratory Animals of the National Institutes of Health. All experi-

mental procedures involving use of animals were approved by the Institutional Animal Care

and Use Committee (IACUC) at the University of Kentucky (protocol #2018–3083, date of

approval 1/24/2019). All infections by i.p. injection were conducted on animals mildly anes-

thetized with 30% isoflourane using a drop jar method. Animal work in this study was

restricted to the infection of mice with Toxoplasma gondii with the purpose of generating

PLOS ONE Automatic classification of mitochondrial shapes

PLOS ONE | https://doi.org/10.1371/journal.pone.0280746 February 2, 2023 2 / 17

https://doi.org/10.1371/journal.pone.0280746


tissue cysts for analysis. As the development of tissue cysts is dependent on the symptomatic

acute phase of infection, animals were not medicated with either anti-parasitic or anti-inflam-

matory agents. Mice were euthanized by CO2 asphyxiation followed by cervical dislocation, a

method that was approved by the institution’s IACUC. Fluorescence microscopy images were

acquired following accumulation of the mitochondrion targeting reagent MitoTracker (Invi-

trogen). Nuclei from the bradyzoites were stained with DNA dye DAPI (Invitrogen). An opti-

cal section of the tissue cyst illuminated the mitochondria and the nuclei as shown in Fig 1.

The visualized mitochondrion and nucleus provide a spatial relationship of individual brady-

zoites within labeled cysts which was found to be helpful in classifying the mitochondrial mor-

phology, with the nucleus providing a morphological point of reference within the parasite.

The developed program performs image processing for object detection, extracts features of

the detected objects and collects user input on the object’s morphological classification. The

classification information collected from the user along with the extracted features for each

object was then used as the gold standard to train a logistic regression algorithm. The time-

consuming process that a trained user would perform of manually identifying and classifying

the individual objects and their shapes from within fluorescence-based images of tissue cyst

was automated by using the trained machine learning algorithm to predict the classification of

objects detected in new images. The program with a customizable and user-friendly graphical

user interface (GUI) was developed in MATLAB using its App Designer, Image Processing,

Computer Vision, and Optimization toolboxes.

Image processing

The 8-bit grayscale images underwent linear intensity scaling, adjusting the pixel intensity

range to that of the full range of resolution, 0 to 255. Image contrast was enhanced using a top

hat and bottom hat filter [14] as described in Eq 1. The addition of the top hat filtered image to

the original image emphasized the foreground making the bright spots brighter, while the

Fig 1. Examples of images showing actively respiring mitochondria illuminated via MitoTracker (top), and

nuclear objects.

https://doi.org/10.1371/journal.pone.0280746.g001
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subtraction of a scaled bottom hat filter enhanced the perimeter of the bright objects. In imple-

menting the erosion and dilation processes of the filters a disc shaped structuring element was

used with a radius of 10 pixels for the top hat filter and a radius of 3 pixels for the bottom hat

filter.

½J� ¼ ½TophatðIÞ� þ ½I� � 10�½BottomhatðIÞ� ð1Þ

To automatically detect the objects of interest, which were the active mitochondrion

(“Mito”) or nuclei (“DAPI”) the Otsu method was used to determine a starting threshold. This

method minimizes interclass variance while maximizing between-class variance of the inten-

sity distributions of the foreground and background pixel values [15]. The starting threshold

was used to create binary images.

Initial evaluation of this starting threshold showed that a more conservative value was better

to accurately capture the objects of interest within the Mito images, especially their shape

which was the key attribute being investigated. Therefore, the default, i.e., starting threshold

for the Mito image analysis was set to be equal to 40% of the Otsu threshold. Implementing

this threshold separated background pixels from pixels representing the target objects and was

able to segment the target objects sufficiently from each other as determined by expert users.

The nuclear objects within the DAPI images appeared more defined, therefore the starting

threshold for these images was defaulted to 80% of the Otsu threshold, excluding a greater

number of lower value pixels and preventing under-segmentation. To better segment the

nuclear objects within the DAPI images, especially those within proximity of each other, a

watershed segmentation [16] was applied. In order to prevent over segmentation, which can

occur with the watershed method, a height transform [17] was applied before watershed seg-

mentation to suppress peaks of one standard deviation of the image pixel values or less. Since

the threshold selection was important in appropriately segmenting the objects of interest, a

slider was added to the GUI to allow for expert users to adjust the starting threshold as needed

and observe the resulting changes to the binary image immediately.

To locate each individual object of interest within the Mito binary image the Moore-Neigh-

bor tracing algorithm with Jacob’s stopping criterion was used [14]. The resulting boundaries

were superimposed onto the original image to enable extraction of each object’s pixel intensi-

ties and geometric information. A total of 22 features were extracted for each object. Features

related to pixel intensities were maximum, mean, minimum, and mean squared error between

the original and enhanced object. Features related to the object’s size were area, perimeter,

major axis, minor axis, and extent. Those related to shape and texture were circularity, eccen-

tricity, aspect ratio, the number of dominant peaks found in the histogram of gradients, inten-

sity variance, intensity standard deviation, hole count, size of all holes, number of segments

found in the object after using watershed transform, and ratio of intensity at extrema. The last

three features, distance to closest nuclei centroid, distance to closest nuclei extrema, and dis-

tance to closest mitochondrial object centroid, were related to an object’s location relative to

the location of nuclei within the corresponding DAPI image.

The objects identified in the Mito image were then filtered to exclude objects that were

smaller than a specified size or lower than specified pixel intensity values as they would typi-

cally be ignored in manual evaluation. Extracted features of minimum axis length and maxi-

mum intensity of each object were compared against user selected ‘low size’ and ‘low intensity’

for exclusion based on these criteria. The ‘low size’ exclusion criterion defaulted to half a

micron (seven pixels) to exclude objects with a minor axis, or width, less than this value in

microns. The ‘low intensity’ exclusion criterion defaulted to the same threshold used for binar-

ization, and therefore did not exclude any objects unless increased by the user to exclude
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objects that were dimmer and may have occurred due to over segmentation. Once these exclu-

sion criteria were updated the user could observe their effect as the objects excluded would not

have a colored bounding box around them within the original or binary images shown in the

GUI.

We used the mitochondrial profiles observed in tachyzoites, which is the fast growing form

of T gondii, as the main morphologies to classify the objects identified in the Mito images

because nothing is currently known about these morphologies in bradyzoites. These included

Lasso (ring), Arcs (linear and curvilinear), Tadpoles (sperm-like) and Blobs (collapsed) forms

[5, 6]. Sample images of each class are depicted in Fig 2. After initial analysis several objects

appeared with a similar shape to the Lasso class but were markedly smaller in size. These were

referred to as “donut” shape, and a Donut class was added. Although the Lasso class, associated

with actively replicating intracellular tachyzoites [4–6] were not observed in the tissue cysts

imaged during the development of this application, its detection remains a possibility with

larger sample sizes.

Three expert users were involved in providing user feedback and manually classifying

objects by providing the labels to be used during the machine learning phase. Initially, as a

group, the users developed the following qualitative and quantitative descriptors to best define

the mitochondrial morphological classes, these descriptors helped guide selection of features

to be used in the machine learning approach.

The Lasso/donut class appeared as ring or loop shaped with a visible hole in the middle that

is considered to reflect the normal morphology of a functioning mitochondrion in actively

growing tachyzoites [4–6]. Notably, while lasso forms are large, often tracing out the outline of

the parasite while enclosing the nucleus [4–6], donuts which are significantly smaller and do

not encircle the nucleus, may represent a feature of bradyzoites. The Tadpole class (also

Fig 2. Representative images for different classes of observed mitochondrial morphologies in encysted

bradyzoites.

https://doi.org/10.1371/journal.pone.0280746.g002
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described as sperm like [6]), has a bulbous bright end with a tail or linear string like protrusion

that is often thinner, fainter, and equal to or greater than the diameter of the head. The Arc

class can be dumbbell shaped with fairly uniform arms and a thin connection; it is often con-

nected in the shape of an arc but may also include more linear shapes. The Blob class were

punctate, circular in shape, ranging in brightness, and typically smaller (between 0.5 microns

and 1 micron in diameter). An ‘Other’ class was added to include those not belonging to the

above classes because the morphological diversity of encysted bradyzoites’ mitochondrial pro-

files has not been analyzed in detail before. These tended to include more complex and mor-

phologically diverse branched forms.

Capturing manual classification

The developed program automatically identified the objects of interest and isolated them for

manual classification that were used as labels during machine learning. A GUI was developed

based on feedback from the users to facilitate the process [13]. The user interface displayed the

Mito image and the corresponding DAPI image. First, the default settings were reviewed and

updated, if needed, by a designated lead user to best identify each mitochondrial object. These

settings were used by all users who subsequently performed independent manual classification

to ensure that they were classifying the same objects.

Machine learning for classification

For the automation of the classification of mitochondrial morphologies, a supervised logistic

regression algorithm was implemented. The linear regression hypothesis (Eq 2) was used with the

sigmoid function (Eq 3) to determine the probability that a given object’s features were associated

with a class on a scale of 0 to 1 [18]. Each class was evaluated individually to determine the proba-

bility of the object belonging to the specific class, then compared to the probability determined for

each class to select the class with the maximum likelihood. This was done by creating a gold stan-

dard vector Y, to consist of 1’s for the class being evaluated and 0’s for all other classes.

hðxMÞ ¼ y0x
M
0
þ y1x

M
1
þ � � � yNx

M
N ð2Þ

g zð Þ ¼
1

1þ e� z
ð3Þ

in the equation above, xM
0

= 1 and θN parameter sets the contribution from each of the N features.

x is a matrix composed of M rows, one for each object, and N+1 columns of features with the

value of xM
0

= 1 added to allow for the simplification of Eq 2. h(x) is a column vector with M rows,

each row representing the predicted class for each M object. θ is a parameter row vector with the

first column, θ0, being constant with a value of 1, and the following columns representing the coef-

ficiants defining the contribution of each N feature.

Since the different features had varying numerical ranges, the features were first normal-

ized, i.e. scaled using Eq 4, to allow for the efficient calculation of the optimum θ parameter to

minimize the cost function (Eq 5). The cost function determines the error or how closely the

hypothesis (i.e. predicted class from Eq 2) compares to the gold standard (Y) [18].

XM
N ¼

XM
N � meanðXNÞ

stdðXNÞ
ð4Þ

J yð Þ ¼
1

M
PM

i¼1
� Y ðiÞ logðhðXðiÞÞÞ � ð1 � Y ðiÞÞ logð1 � hðXðiÞÞÞ
� �

þ
l

2M
PN

j¼1
y

2

j ð5Þ
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½superscript ðiÞ represents the ith row; or object�

A regularization parameter, λ, was included in the cost equation to prevent overfitting and

to generalize the model for future predictions by adding a cost for the parameter vector used

and limiting the algorithms overall fit to the training set. Optimal θ parameters were found

using the function ‘fminunc’ in MATLAB which implements a quasi-Newton method [19]. An

optimal θ parameter vector was obtained for each class, essentially creating 5 models for pre-

diction. Then using the logistic regression (Eq 2) trained for each class a probability for each

class was evaluated for every M object as described in Eq 6, which selects the class associated

with the model that resulted in the greatest value as the prediction [18, 20].

predictionM ¼ max½hblobðX
MÞ; htadpoleðX

MÞ; hdonutðX
MÞ; harcðX

MÞ; hotherðX
MÞ� ð6Þ

The prediction vector, predictionM, was then compared with the gold standard vector Y, to

determine the overall accuracy or percent of all objects that were correctly classified as well as

the sensitivity, specificity, precision, and F score per class as described in Eqs 7–10 to analyze

the trained algorithm’s performance.

Sensitivity ¼
True Positives

True Positivesþ False Negatives
ð7Þ

Specificity ¼
True Negatives

True Negativesþ False Positives
ð8Þ

Precision ¼
True Positives

True Positivesþ False Positives
ð9Þ

F score ¼
2 � Sensitivity � Precision
Sensitivityþ Precision

ð10Þ

Validation of classification

The manual classification, machine learning based automatic classification and validation of

automatic classification was performed in three steps. The first step used a set of 5 randomly

chosen images to determine whether certain morphologies were readily classifiable and to

evaluate the congruency between users’ classification. The results showed the agreement

between 2 of the 3 users to be remarkably high (96%) and modest between all 3 users (57%)

[13].

The second step involved classifying the objects within the initial 5 images with all three

users as a group to obtain a consensus “gold standard” classification to be used to train the

machine learning algorithm. We also obtained manual classifications for 5 new images to eval-

uate (blinded) the trained algorithms’ performance. To determine the effect, if any, of chang-

ing the settings during segmentation and isolation of objects, the effects of the changed

settings chosen by the lead user at a separate time for the first 5 images were evaluated and the

2 images where the largest differences in object counts were observed were selected for further

analyses. These 2 images were classified twice, once with the initial settings and again with the

new settings to evaluate the impact the change in settings had on the class distributions classi-

fied by each user. The gold standard which was used for training the machine learning algo-

rithm and was determined in two sittings. In the first sitting all the objects from one of the

initial 5 images, from the first step were reviewed. Due to having no objects that the users
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unanimously agreed which were Lassos and the observation of multiple Donut shaped objects

the addition of the Donut class was made at this point prior to the individual classifications. In

the second sitting, only the objects where all three users did not already have an agreement on

from their individual classifications (for the remaining 4 images) were reviewed to determine

a consensus classification to be included in the gold standard. The performance of the trained

algorithm was then evaluated against the classifications made by each individual user of the 5

new images in step 2.

In the third step, we used the trained algorithm to predict the class for objects identified in

10 new images (which were not used in training of the model) from which the users individu-

ally (not as a group) selected objects at random to see what the automatic class determination

for that object was and noted whether they agreed or disagreed with the classification, hence

this was a non-blinded evaluation of the machine learning’s performance.

Results

Manual classification: Individual and consensus

The congruency between users for the first 5 images in step 1, before introduction of the

Donut class showed that 57% of the objects were classified similarly by all three users, 96%

were classified the same by 2 of the 3 users, and 4% of the objects had no agreement between

users as to which class they should be placed [13]. In step 2 of classifications for these images

after the addition of the Donut class, 71.8% of the objects were classified similarly by all users,

98.8% were classified the same by 2 of the 3 users, and 1.2% of objects had no agreed upon clas-

sification. Step 2 showed higher congruency in Blob classification as compared to the first time

the objects of these images were classified in step 1. In classifications in both steps, Blobs were

the most frequent class to occur as well as the most likely to be uniformly recognized by all

users. There was an increase in instances in step 2 where all three users agreed for the Arc and

Other classes, but the agreement for Tadpoles remained unchanged.

For all 5 images from which a gold standard classification was determined, there were a

total of 1,138 objects detected. As stated above, the majority of objects were classified as

belonging to the Blob class with a count of 625, followed by 345 Arcs, 81 Tadpoles, 50 Others,

and 37 Donuts. Comparing these consensus (i.e. gold standard) distributions to that of each

user’s step 2 individual classification, the following matches were determined (%): 83.4 for

user 1, 86.7 for user 2, and 87.1 for user 3. Objects for each class where there was 100% agree-

ment between users and which matched the gold standard are shown in Fig 3.

To visualize the trends for each class by feature as observed in the gold standard classifica-

tion for the first 5 images, Fig 4 shows a boxplot for each class for each of the 22 features. The

top of the box marks the 75th percentile and the bottom the 25th percentile with a red line

indicating the median, the red ‘+’ markers indicate the outliers which are greater than one and

a half times the interquartile range. One observed trend was in the circularity and extent fea-

tures, in which higher values were seen for the Blob class followed by the Donut class, while

the eccentricity and aspect ratio features were highest for the Tadpole and Arc class. As

expected, a telling feature of the Donut class was the presence of holes which correlates with

the higher hole size, while a telling feature of the Tadpole class was a bright head with a narrow

and/or dim tail which correlates to the higher extrema intensity ratio.

The effect of change in settings on class distribution and congruency for the 2 images that

were classified twice is shown in Fig 5. The congruency was comparable; with new settings,

73.9% of the objects were classified similarly by all users, and 98.1% of the objects were classi-

fied the same by 2 of the 3 users. When the original settings were used, 75% of the objects were

classified similarly by all users, and 98.7% of the objects were classified the same by 2 of the 3
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users. The distribution of classes identified by each user for the images remained relatively

consistent with a slight decrease in Blobs and increase in Arcs in the images with new settings.

There was a total of 927 objects that were classified from the new set of 5 images in step 2

that had not previously been analyzed. Of the 927 objects 697 (75.2%) were placed in the same

class by all 3 users, i.e. they were classified similarly by all users. A total of 918 (99%) objects

were classified as belonging to the same class by 2 out of the 3 users. These results consistently

showed Blobs as the most frequent class to occur and a high congruency amongst users recog-

nizing this class. The agreement for and frequency of occurrence for the Arc, Donut, and

Other classes were comparable to the results from the first five images with a slight increase in

congruency for Tadpoles.

Machine learning performance

Objects from the first image from which consensus gold standard was obtained (each image

consisted of one cyst), which had 334 objects, was initially used to train the machine learning

algorithm. Once the optimal θ parameter arrays were determined (one for each of the five clas-

ses), referred to as Model 1, the overall training accuracy was found to be 86.8%. This was the

fraction of the number of objects that were classified correctly by the algorithm regardless of

class for the same 334 objects used in training. The breakdown per class, in Table 1, showed a

high degree of performance for the Blob, Donut, and Arc classes. The sensitivity, or recall, is

the percentage of actual positives predicted accurately (true positive rate) while specificity is

the percentage of actual negatives predicted accurately (true negative rate). Precision also

called positive predictive value is the number of true positives divided by the number of pre-

dicted positives. Lastly, the F score uses the calculated sensitivity and precision values to pro-

vide a single metric to compare the performance for each class [18].

Testing Model 1 on the remaining 11 images (remaining 4 from initial set, 2 from the same

set but with new settings, and 5 new images) that were classified individually produced an

overall accuracy of 73.8%, 82.8%, and 82.6% when compared with classifications by user 1, 2,

and 3 respectively. The overall accuracy was computed as the percent of objects where the

Fig 3. Objects classified that had agreement among all users and matched the gold standard for Blobs (A), Donuts (B),

Tadpoles (C), Arcs (D), and Others (E).

https://doi.org/10.1371/journal.pone.0280746.g003
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predicted class matched that of the user’s classification. A summary of the objects that were

identified by each user in the test set is shown in Fig 6. The performance breakdown by the

user is given in Tables 2–4. The performance for Model 1 for the Blob class remained high and

there was overall high specificity for all classes.

When the algorithm was trained using all 1,138 object classifications from the first 5 images

(Model 2), the training accuracy, i.e. class prediction made using the training set was 84.8%

Fig 4. Depiction of the 22 normalized features and their distribution for each class from the 1138 gold standard

objects.

https://doi.org/10.1371/journal.pone.0280746.g004
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with the performance breakdown per class as given in Table 5. The training performance

remained similar to that when training with objects from one image. The breakdown per class

is visually shown for the manual classifications and predicted classification in Fig 7.

Testing Model 2 on the set of 5 new images that were classified individually produced an

accuracy of 76.9%, 83.1%, and 85% for user 1, 2, and 3 respectively. A summary of the number

of the total objects of each class that were identified by each user in this test set is shown in in

Fig 8. The performance breakdown by user is given in Tables 6–8. The overall accuracy for

each user increased and the performance for the Blob class remained high along with the over-

all high specificity for all classes.

In the final validation step 3, a total of 438 objects were collectively validated by one of the

three users, of which the same 24 objects were randomly selected by two users for validation.

These results are summarized in Table 9 and showed 87% of the validated objects were

Fig 5. Percentage of all objects classified separated by classification and user for the 2 repeat images with original

settings (A) and new settings (C). Percentage of all objects classified separated by classification and the percent

agreement between users for the 2 repeat images with original settings (B) and new settings (D).

https://doi.org/10.1371/journal.pone.0280746.g005

Table 1. Training performance of model 1 using labels from the first gold standard image.

(Model 1) Blob Tadpole Donut Arc Other

Sensitivity 0.97 0.41 0.91 0.85 0.45

Specificity 0.91 0.99 1 0.90 0.98

Precision 0.92 0.63 1 0.82 0.64

F score 0.95 0.5 0.95 0.84 0.53

https://doi.org/10.1371/journal.pone.0280746.t001
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accurately predicted. A breakdown per class of the validated objects’ predicted class to manual

classification is presented in Table 10. Looking at each user individually: user 1 validated 173

objects indicating 89% were correct, user 2 validated 122 objects indicating 88% were correct,

and user 3 validated 167 objects indicating 86% were correct.

Discussion

The motivation for the development of the approach described here was to investigate the

mitochondrial morphology to better understand the metabolic activity and replication

Fig 6. Summary of the number of objects each user classified as one of the five classes for the objects in the 11 test images along with

the trained algorithm’s predicted classifications.

https://doi.org/10.1371/journal.pone.0280746.g006

Table 2. Testing performance of model 1 against classifications by User 1.

(Model 1) Blob Tadpole Donut Arc Other

Sensitivity 0.84 0.12 0.33 0.91 0.21

Specificity 0.92 0.99 0.99 0.76 0.98

Precision 0.95 0.56 0.53 0.45 0.21

F score 0.89 0.20 0.41 0.60 0.21

https://doi.org/10.1371/journal.pone.0280746.t002

Table 3. Testing performance of model 1 against classifications by User 2.

(Model 1) Blob Tadpole Donut Arc Other

Sensitivity 0.89 0.27 1 0.83 0.29

Specificity 0.89 0.99 0.99 0.87 0.98

Precision 0.93 0.62 0.42 0.75 0.19

F score 0.91 0.38 0.59 0.79 0.23

https://doi.org/10.1371/journal.pone.0280746.t003
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potential of T. gondii bradyzoites. However, the approach can serve as a template for develop-

ing automated classification of morphologies of a variety of sub-cellular organelles where there

is some ambiguity and potential for variation and lack of reproducibility in manual classifica-

tion due to inherent biological diversity and operator fatigue. The advantage of automated

approaches of classification are the ability for processing large numbers of objects. In addition,

in situations where there is ambiguity in manual classification [13], automated approaches

trained using consensus classification can be advantageous as they apply consistent logic for

classification and thus minimize the potential for variation and bias.

T. gondii bradyzoites within tissue cysts have been found to be metabolically active with het-

erogeneous replication [2]. Therefore, classification of mitochondrial morphologies that are

Table 4. Testing performance of model 1 against classifications by User 3.

(Model 1) Blob Tadpole Donut Arc Other

Sensitivity 0.86 0.24 1 0.92 0.24

Specificity 0.96 0.98 0.99 0.84 0.98

Precision 0.97 0.49 0.39 0.67 0.31

F score 0.92 0.32 0.57 0.78 0.27

https://doi.org/10.1371/journal.pone.0280746.t004

Table 5. Training performance of model 2 against all gold standard labels.

(Model 2) Blob Tadpole Donut Arc Other

Sensitivity 0.97 0.36 0.67 0.84 0.36

Specificity 0.89 0.99 0.99 0.89 0.99

Precision 0.91 0.69 0.86 0.77 0.64

F score 0.94 0.47 0.76 0.80 0.46

https://doi.org/10.1371/journal.pone.0280746.t005

Fig 7. Class distributions for the initial 5 images. The gold standard classifications are in the top row and the

predictions made by Model 2 are in the bottom row.

https://doi.org/10.1371/journal.pone.0280746.g007
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Fig 8. Summary of the number of objects each user classified as one of the five classes for the objects in the 5 test images along with the

trained algorithm’s predicted classifications.

https://doi.org/10.1371/journal.pone.0280746.g008

Table 6. Testing performance of model 2 against User 1 classifications.

(Model 2) Blob Tadpole Donut Arc Other

Sensitivity 0.86 0.27 0.37 0.85 0.29

Specificity 0.90 0.99 0.99 0.81 0.97

Precision 0.95 0.75 0.55 0.49 0.17

F score 0.905 0.39 0.44 0.62 0.28

https://doi.org/10.1371/journal.pone.0280746.t006

Table 7. Testing performance of model 2 against User 2 classifications.

(Model 2) Blob Tadpole Donut Arc Other

Sensitivity 0.92 0.43 0.80 0.77 0.38

Specificity 0.86 0.99 0.98 0.91 0.97

Precision 0.92 0.80 0.22 0.79 0.17

F score 0.91 0.56 0.35 0.78 0.24

https://doi.org/10.1371/journal.pone.0280746.t007

Table 8. Testing performance of model 2 against User 3 classifications.

(Model 2) Blob Tadpole Donut Arc Other

Sensitivity 0.89 0.52 0.83 0.83 0.32

Specificity 0.95 0.99 0.98 0.88 0.97

Precision 0.97 0.78 0.28 0.71 0.24

F score 0.93 0.62 0.43 0.78 0.27

https://doi.org/10.1371/journal.pone.0280746.t008
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present within the bradyzoites can inform about the metabolic state of the bradyzoite as a func-

tional state of any given cell is likely to be associated with the particular morphology of the

mitochondrion [5, 6]. Image processing and classification algorithms can facilitate the analyses

of larger numbers of images than what would be possible by the current tedious and time-con-

suming process of manually classifying the mitochondria from the thousands of possible bra-

dyzoites within a cyst. This increased throughput will allow the gathering of information about

the biology of this parasite at a scale that is not possible using current approaches.

The developed program helped to facilitate the manual classification of mitochondrial

shapes, obtaining consensus classification, and these classifications were used in the evaluation

of a machine learning approach for the automation. A common machine learning method

used in object detection for multi-class classification is multinomial logistic regression

approach with a one vs all methodology [18], which was used in this study to predict the

detected objects’ morphological class. With the extracted features and user labeled data col-

lected via the developed program, this approach proved to be successful for the mitochondria

morphology classification problem presented here, with achieving up to 85% overall accuracy,

i.e., the fraction of correctly classified objects regardless of class.

Blob morphology (condensed or punctate mitochondrial profile) was the simplest to clas-

sify with a readily apparent appearance which likely resulted in the high level of congruency

among users and the higher accuracy that was also seen for the trained machine learning algo-

rithm. Most of the objects were identified as belonging to the Blob morphology, with lower

incidences of Tadpole and Arc morphologies which was not surprising as the Tadpoles and

Arcs are associated with more active parasites and bradyzoites’ metabolic activity was expected

to be low [5]. When training the algorithm with gold standard classifications of objects from

one image compared with that of five images, there was a slight decrease in training accuracy

but the testing accuracies slightly increased. With the larger training set, the model was better

generalized to fit the new test data but these differences in accuracy were minimal, suggesting

objects from one image may be sufficient for training but that more may be somewhat helpful.

The trained machine learning performance resulted in a high degree of confidence in the pre-

diction of Blobs and Arcs which make up a majority of morphological classes present in most

bradyzoites. It is noteworthy that in the final validation step, the prediction accuracy was

determined from a testing set which as much larger and de-novo from the training set, which

mimics real-world use for these types of machine learning based automated classification

approaches.

Table 9. Summary of validation of classifications.

validated correct incorrect %correct %incorrect

All (excl duplicates) 438 381 57 86.98 13.01

All (incl duplicates) 462 404 58 87.44 12.55

https://doi.org/10.1371/journal.pone.0280746.t009

Table 10. Breakdown of validation by class.

Manual classification (excluding duplicates)

%error (of 13%) Predicted class Blob Tadpole Donut Arc Other

5 Blob [209] 5 11 3 3

1.6 Tadpole 1 [19] 0 6 0

0 Donut 0 0 [14] 0 0

4.3 Arc 5 9 0 [125] 5

2.1 Other 0 2 3 4 [14]

https://doi.org/10.1371/journal.pone.0280746.t010
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Conclusion

Results of our study suggest that a computerized approach can be used to successfully auto-

mate the classification of the majority of mitochondria morphologies within encysted brady-

zoites which can minimize the burden of manually evaluating these images and present

opportunities for hybrid workflows involving partial automation. A hybrid workflow would

automatically classify objects that were predicted to belong to a class with higher accuracy and

where there was overall high congruency, such as seen with the Blobs. The classes which

attained lower accuracy and which were also of low incidence could be presented to the user

for manual classification, thus dramatically reducing the time required for manual

classification.
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