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Abstract

Biomaterials serve as the basis of implants, tissue engineering scaffolds, and multiple other 

biomedical therapeutics. New technologies, such as single cell RNA sequencing (scRNAseq), 

are enabling characterization of the response to biomaterials to an unprecedented level of 

detail, facilitating new discoveries in the complex cellular environment surrounding materials. 

We performed scRNAseq and integrated data sets from multiple experiments to create a single 

cell atlas of the biomaterials response that contains 42,156 cells from biological extracellular 

matrix (ECM)-derived and synthetic polyester (polycaprolactone, PCL) scaffold biomaterials 

implanted in murine muscle wounds. We identified 18 clusters of cells, including natural killer 

(NK) cells, multiple subsets of fibroblasts, and myeloid cells, many of which were previously 

unknown in the response to biomaterials. To determine intra and intercellular signaling occurring 

between the numerous cell subsets, including immune-stromal interactions in the cellular response 

to biomaterials, we developed Domino (github.com/chris-cherry/domino), a computational tool 

which allows for identification of condition specific intercellular signaling patterns connected 
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to transcription factor activation from single cell data. The Domino networks clustered into 

signaling modules and cellular subsets involved in signaling independent of clustering, defining 

interactions between immune, fibroblast, and tissue-specific modules with biomaterials-specific 

communication patterns. We then validated the results of Domino using an Il17ra−/− knockout 

model and found significant changes in gene expression for the transcriptional targets linked to 

IL17 by Domino. Further compilation and integration of biomaterials single cell data sets will 

delineate the impact of materials chemical and physical properties and biological factors, such as 

anatomical placement, age, or systemic disease, that will direct biomaterials design.

Introduction

Biomaterials serve as the basis of medical devices that first entered into clinical practice 

in the 1960s. After evidence of the body’s reaction to biomaterials emerged, the foreign 

body response (FBR) was defined and characterized. The FBR process initiates with an 

immune response and may develop into chronic inflammation and fibrosis around the 

implant1,2. This fibrosis is a major challenge in the design of therapeutic biomaterials. 

As the field of regenerative medicine and tissue engineering developed decades later, 

biomaterial design turned to building scaffolds that created a desired biological response, 

such as mobilizing stem cells, promoting vascularization and stimulating tissue development 

instead of causing FBR3. Biomaterial scaffolds are also employed as a tool to engineer 

tissue models to probe mechanisms of tissue development and disease, such as cancer in 

controlled three dimensional environments4. While previous foundational research described 

a number of key cell responses to biomaterials, recent technology development now enables 

an unprecedented ability to map cell responses and tissue composition. Armed with a 

comprehensive understanding of the cells responding to biomaterials, the local tissue 

environment, and cell interactions, we can better design biomedical implants and tissue 

engineering scaffolds to avoid FBR and understand mechanisms of clinical adverse events.

Developments in high parametric flow cytometry are expanding the tools available to 

evaluate which cells are responding to implantation of biomaterials based on expression 

of protein surface markers characteristic of a specific cell type. This technology enabled 

the discovery of more rare cell types responding to biomaterial implants, such as, CD4+ 

T helper cells expressing interleukin (IL)-4 and IL17 and B cells5,6. Single cell RNA 

sequencing (scRNAseq) is another method that can be applied to evaluate responses 

to biomaterials that uses unbiased identification of groups of cells based on gene 

expression without any a priori knowledge of cellular phenotypes or markers7. The resulting 

clusters of cells can be phenotyped based on their gene expression profiles and mapped 

back to experimental condition. scRNAseq has transformed experimental approaches and 

understanding in cancer8, autoimmunity9,10, and infection responses11,12 but has not been 

widely applied to biomaterials. Application of scRNAseq to the biomaterials response will 

provide new understanding of cellular response that may transform their design.

Cells from the innate and adaptive immune system respond to biomaterials when they are 

implanted in the body. Subsequently, fibroblasts are activated and programs of fibrosis 

and/or tissue repair develop. The communication network between the immune and stromal 
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compartments in the cellular response to biomaterials is unknown. The application of 

scRNAseq introduces even more cell types that contribute to the response to biomaterials, 

creating a complex network of communication in the tissue. Reconstruction of cellular 

communication networks (ligand-receptor activity) from scRNAseq data sets can provide 

insight into tissue microenvironments and physiological responses despite missing cell types 

and limited sequencing depth to elucidate biological mechanisms and potential therapeutic 

targets. Computational tools currently available for ligand-receptor signaling analysis of 

scRNAseq data sets correlate expression of ligands and receptors across groups of cells 

with no phenotypic connection13–15 or require an a priori gene set16. Use of this method to 

identify signaling pathways connected with downstream phenotypic changes is not possible 

without a previously defined gene set which is not currently available for responses to 

biomaterials.

Here, we applied scRNAseq to biologic and synthetic biomaterial scaffolds implanted in 

muscle defects. We used integration techniques similar to those from the Human Cell 

Atlas17 and the Tabula Muris Consortium18 to pool multiple single cell data sets including 

sorted cells and to provide a single cell atlas of response to biomaterials. We believe 

the atlas and analysis techniques detailed here will provide a foundation for integration 

with data sets from other biomaterials and tissues in the future. The resulting atlas 

contains ~42,000 cells from a single murine wound model treated with both biologic 

and synthetic biomaterials. We identified new cell types responding to synthetic and 

biologic biomaterials and determined cell types not captured for single cell analysis 

through flow cytometry comparisons. To reconstruct cell communication networks that 

develop in response to biomaterials, we developed Domino, a computational program 

that reconstructs intracellular communication based on transcription factor activation. We 

link transcription factor activation with expression of receptors and their possible ligands. 

This process generates signaling hypotheses with specific, testable downstream biological 

function through transcription factor activation in specific cell types. Application of Domino 

to the biomaterials atlas defined signaling modules for stromal, immune, and tissue-specific 

cells independent of clustering. The signaling predictions identified validated signaling 

and identified new pathways associated with regeneration and fibrotic wound healing. To 

validate Domino’s use in other contexts, we applied it to a previously published dataset from 

Alzheimer’s patients19 and identified new signaling pathways specific to diseased or healthy 

brain.

Results

A single cell atlas of the biomaterials tissue microenvironment

To construct a single cell atlas of the biomaterials microenvironment, we integrated single 

cell RNA sequencing (scRNAseq) data sets from multiple experiments and different cell 

preparations. Synthetic and biologic scaffolds were implanted in a murine model of 

volumetric muscle loss (VML) and compared to wound alone. The VML injury provides 

a combination of tissue damage and response to biomaterials and provides a pocket for 

biomaterial implantation20. A biologic scaffold derived from the extracellular matrix (ECM) 

of small intestinal submucosa (SIS) served as a model for a scaffold used in preclinical 
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and clinical application of tissue repair that induces a Type 2 immune environment6,21. We 

evaluated polycaprolactone (PCL) as a model synthetic biomaterial. While the bulk form of 

PCL is a component of medical devices, we used a particulate form of PCL to fill the small 

murine tissue defect. PCL induces a Type 17 immune environment and fibrosis1,5. When the 

ECM and PCL materials are implanted in muscle, they induce significant changes in gene 

expression in the bulk tissue as measured by Nanostring™ after 1 week (Fig. 1A). Of the 770 

genes that were tested, 397 were differentially expressed between PCL and saline and 194 

between ECM and saline. Of the differentially expressed genes, 216 were unique to PCL 

and 13 were unique to ECM, confirming that the biomaterials induced different responses 

at the global tissue level (Supplementary Table 1). The differential functional outcomes in 

tissue morphology in response to the two materials is visible histologically 6 weeks after 

implantation in the model (Extended Data Fig. 1A) with the ECM implants showing injury 

resolution and muscle fibers while PCL treated wounds demonstrate increased collagen 

fibers and fibrosis similar to previously published results.

To generate the scRNAseq data sets we created single cell suspensions from the muscle 

tissue with and without biomaterials for application to 10X and Drop-seq. Single cell 

suspensions from whole tissue preparations were enriched for CD45+ cells to enable 

capture of less frequent cell populations and processed with Drop-seq. Fluorescence 

activated cell sorting (FACS) was used to apply mesenchymal/fibroblasts (CD45-CD19-

CD31-CD29+) to Drop-seq. Finally, a previously published data set of sorted macrophages 

(CD45+F4/80hi+Ly6c+CD64+) was included22 (Extended Data Fig. 1A-C). Most samples 

collected were from young mice (6 week old at time of surgery) during the acute phase of 

injury one week after surgery. A detailed description of age, time of harvest, treatment, and 

sorting methodology for each of the samples in the atlas is provided in Supplementary Table 

2. The resulting dataset includes 42,156 cells with an average of 198,000 reads and 1,167 

genes per cell after filtering low-quality cells and genes across multiple time points and ages. 

To determine whether the integration of sorted cell data sets caused biases with clustering 

due to increased numbers of the sorted cell populations, we compared outcomes of the 

whole tissue analysis with and without the sorted cell data sets (Extended Data Fig. 1D). 

While inclusion of the macrophage and fibroblast sort data increased these populations and 

their resolution, cell populations present only in the unsorted dataset maintain clear, distinct 

phenotypes by both clustering and UMAP. The integrated dataset, including cells from 

sorted and CD45+ enriched whole tissue single cell suspensions, is used for all subsequent 

analyses.

Identification of immune and stromal single cell clusters in the response to biomaterials

Unsupervised clustering identified 18 distinct clusters: nine CD45- clusters, eight CD45+ 

clusters, and one cluster of cycling cells with both CD45+ and CD45- cells (Fig. 1B). We 

used expression of canonical marker genes, as well as similarity of gene expression profiles, 

to classify clusters (Fig. 1C, D, Supplementary Table 3). The CD45+ clusters included 

a mixed cluster of T and natural killer (NK) cells (Cd3d, Ngk7) (T/NK), dendritic cells 

(Ccr7, Cst3) (DC), and mast cells (Cpa3, Fcer1a, Hdc) (Mast), as well as five clusters 

of monocytes and/or macrophages (Cd11b, Cd14, Adgre1) (Fig. 2A-B). The myeloid 

clusters were composed of an anti-inflammatory macrophage cluster (Cd163, Retnla) (Mac 
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R2), a cluster performing antigen presentation (Cd74, H2-Ab1) (Mac/Mo AP), a type 17 

inflammatory cluster (Il36γ) (Mac/Mo Il36γ)22, and a cluster of cells showing response 

to interferons (Ifit2, Isg15) (Mac/Mo Ifn) (Fig. 2C, D, and Extended Data Fig. 2A). 

To determine differences in gene expression profiles associated with different scaffold 

materials, we compared cells from an ECM or PCL treated wound with saline treated cells 

with in each cluster using differential expression. We then used gene set enrichment analysis 

with Hallmark gene sets to identify how phenotypes of each cluster changed with respect to 

untreated injury (saline) and then compared the enriched sets for PCL and ECM, identifying 

sets of genes that are uniquely varying in one of the two conditions (Supplementary Table 

4). In both mast and dendritic cells, tumor necrosis factor alpha (TNF-α) signaling increased 

only in the PCL environment (Fig. 2E). A number of genes associated with TNF-α signaling 

and inflammation were also uniquely expressed in the PCL treated dendritic and mast cells 

(Fig. 2F).

The T cell/NK cell subset included cells expressing Cd4, Cd8, Foxp3, and γδ markers, 

but there was not adequate expression resolution to differentiate other T cell functional 

populations like Type 2 or Type 3 T cells using common cytokine markers Il4 and 1l17 or 

transcription factors Gata3, or Rorc which were either not detected in our data set or had 

dispersed expression patterns across all T cell subsets (Extended Data Fig. 3). From flow 

cytometry data, including intracellular staining, there were CD4+ T cells and gamma deltas 

expressing different cytokines in the cellular response to biomaterials that were not captured 

with scRNAseq5,6. This is consistent with other publicly available single cell datasets that do 

not differentiate effector T cells and recent evidence that only low throughput sorting based 

scRNAseq techniques like SMART-Seq2 capture expression of these rare transcripts23,24. 

This further supports the need to integrate flow cytometry and single cell analysis to fully 

capture the immune profile in tissues.

The CD45- clustering identified multiple types of mesenchymal, stromal, and fibroblast-like 

cells. Five clusters were identified as involved in specialized tissue formation, including 

Schwann cells (Mpz, Mbp, Plp1) (Neuro), pericytes (Rgs5, Acta2, Mcam) (Pericyte), 

endothelial cells (Cd31, Cavin2, Ptprb) (Endo), satellite cells (Pax7, Des, Myf5) (Satellite), 

and myoblasts (Acta1, Tnnt3, Mylpf) (Muscle), as well as four clusters of fibroblasts 

(Col1a1, Pdgfra, Postn) (Fig. 3A). Two of the fibroblast clusters expressed Osr1 (Fig. 3B), 

a transcription factor indicating stemness25. CytoTRACE, an algorithm used to score cells 

for stemness, gave high stemness scores to the same two clusters (Fig. 3B), suggesting these 

two populations serve a stem-like role in the wound environment (Fib pre 1, Fib pre 2). 

Of the remaining two fibroblast clusters, one appeared cartilage-like based on expression of 

Tnmd, Thbs4, and Prg4 (Fib cart) and one appeared to be involved in immune regulation 

based on expression of cytokines Cxcl14 and Ccl11 (Fib immune)(Fig. 3C and Extended 

Data Fig. 4). Like the immune populations, we used differential expression to identify genes 

that changed with ECM or PCL treatment compared to saline within each of the stromal 

clusters (Supplementary Table 4). Interestingly, gene set enrichment analysis identified a 

robust increase in TNF-α signaling in PCL treated endothelial cells with respect to saline 

while endothelial cells from an ECM treated wound showed a strong decrease in TNF-α 
signaling (Fig. 3D). TNF-α signaling has previously been shown to inhibit wound healing26. 

Combined with the enrichment of the TNF-α gene set in PCL treated myeloid cells, these 
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findings suggest that TNF-α in response to synthetic materials drives inflammation and 

inhibits wound healing. Further, endothelial cells from a PCL treated environment were 

enriched for transforming growth factor beta (TGF-β) signaling. TGF-β signaling is active 

in fibrotic environments like the foreign body response27. Finally, Myc signaling, which 

has been associated with chronic wounds28, was only decreased in fibroblast precursor cells 

from an ECM treated wound, suggesting that decreased Myc signaling may play a role in the 

decreased fibrosis associated with biologic scaffolds by influencing fibroblast differentiation 

(Fig. 3E).

While single cell identified new populations in the cellular response to biomaterials, 

comparison of the scRNAseq dataset with multiparametric flow cytometry revealed several 

populations that were missing or underrepresented. Both eosinophils and neutrophils that 

comprise a large portion of the CD45+ population in ECM and PCL, respectively (Extended 

Data Fig. 5), were not captured in the single cell analysis. Recent work on granuloctyes, 

including basophils and neutrophils, demonstrate the challenge in capturing these cells and 

the requirement for additives to preserve their integrity for single cell29–31. The lymphoid 

populations in our single cell dataset were also limited compared to flow cytometry.

We next examined differences in cellular composition of clusters in the ECM and PCL 

environments. The number of cells in a particular cluster varied depending on experimental 

condition and biomaterial (Fig. 1E, F, and Supplementary Table 5). In particular, there 

were considerably more endothelial cells, mast cells, and anti-inflammatory macrophages 

(Mac R2) in the ECM implants compared to other conditions. The anti-inflammatory 

population has been associated with regeneration previously22, and increased endothelial 

cell populations may suggest increased vascularization which has been associated with 

regeneration32. The saline condition contained most of the Il36γ producing myeloid 

population. IL36γ producing myeloid populations have been previously shown to be 

dependent in IL17 signaling in wound healing22. Cell population comparisons in different 

experimental groups changed substantially when the total number of CD45+ cells from flow 

cytometry is used to predict total cell number for each of the CD45+ clusters (Extended 

Data Fig. 2C). Many clusters with similar proportions among the conditions, such as 

the inflammatory myeloid (Mac-Mono Inflam), have drastic differences in predicted cell 

number due to the ~10 fold increase in CD45+ cell number in the ECM environment 

compared to saline as determined by flow cytometry.

While there were proportional differences and signs of gene expression changes between 

some clusters in the different biomaterial environments, additional factors beyond cell 

composition may be responsible for the phenotypic differences observed experimentally 

between PCL and ECM environments. We hypothesized that differences in signaling 

between cells or groups of cells in the different biomaterial-tissue environments may 

be critical for determining the divergent physiological outcomes in these materials. 

Furthermore, differences in signaling and transcriptional activation may capture changes 

resulting from epigenetic and other changes that are not detected in standard single cell 

expression analysis.
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Development of a computational program to generate inter- and intracellular signaling 
networks from single cell RNA sequencing data

To further analyze the biomaterial single cell dataset, we developed a program to generate 

inter- and intracellular signaling networks. Intercellular communication can be modeled 

as the result of four biological steps (Fig. 4A). Ligands (L) are produced by signaling 

cells, ligands bind to and activate receptors (R) on target cells, receptor activation triggers 

a signaling cascade, and transcription factors (TF) at the end of the cascade initiate 

transcription of specific genes. These transcriptional changes then lead to phenotypic 

changes in the target cell population. Domino reconstructs cell communication events in 

reverse to identify signaling connected with specific changes in transcription factor activity 

(Fig. 4B).

The signaling networks that Domino constructs can be used to identify signaling specific to 

experimental condition. The dataset is first split by condition, for example, cells from ECM-

treated tissue and cells from PCL-treated tissue (Fig. 4C). We then generate a signaling 

network for each treatment, containing all TF, R, and L predicted to be active in each 

condition (Fig. 4D). We compare the two networks to identify members specific to each 

(Fig. 4E), identifying TF, R, and L predicted as active in only one condition. The network 

members active in only one condition can then be used to identify signaling pathways that 

are specific to that condition (Fig. 4F).

To reconstruct cell communication, Domino first uses the SCENIC gene regulatory network 

analysis pipeline33 to generate transcription factor activation scores from raw counts data. 

SCENIC uses transcription factor expression as input data with a gradient boosting machine 

(GBM) to predict gene expression of other genes. It extracts co-expression modules from 

the fitted GBM, prunes the modules for presence of cis-regulatory motifs upstream of target 

genes on the genome, and scores gene regulatory networks on a cell-by-cell basis with area 

under the recovery curve across the ranking of genes in a cell. Second, Domino connects 

transcription factor scores with receptor expression using Pearson correlation. Receptors 

highly correlated with transcription factors are potential candidates for activation of TFs. 

To ensure correlation is not due to transcription factor targeting of the receptor, Domino 

excludes receptors found that are predicted as targets of specific transcription factors. 

Finally, CellphoneDB, a publicly available ligand-receptor database13, is queried to identify 

potential ligands for receptors.

The L-R-TF linkages that Domino assembles from the cell communication reconstruction 

form a global signaling network for the dataset irrespective of any clustering. This 

independence from clustering allows for unsupervised exploration of L-R-TF activation 

in single cell data sets. Because Domino starts from activated transcription factors instead 

of receptors or ligands like other programs, signaling pathways in a target cell population 

can be identified in the absence of ligand expression which may not be captured by single 

cell analysis. The process also naturally selects for receptors which are more likely to be 

activated in vivo, rather than looking at all expressed receptors. Further, transcription factors 

are typically well documented in literature, making connection of specific ligand-receptor 

pairs with a hypothesized biological change possible. While generation of the signaling 
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network is independent of clustering information, cluster labels can be used to generate an 

intercluster signaling network if desired (Extended Data Fig. 6).

Domino identifies signaling patterns associated with biomaterial conditions

We then applied Domino to the biomaterials atlas to determine global signaling networks 

for the ECM (Fig. 5A) and PCL (Fig. 5D) tissue environments. Labeled, high resolution 

networks are available as supplementary files. Both the ECM and PCL signaling networks, 

receptors, and transcription factors clustered into modules of signaling in fibroblasts, 

immune cells, or tissue-specific cells when visualized with a force-directed graph. 

This clustering represents unsupervised assembly of both signaling patterns, as well as 

groups of cells involved in each signaling pathway, and demonstrates the importance of 

communication between immunestromal-tissue cell modules.

ECM specific transcription factors were enriched in fibroblasts, tissue-specific cells, and 

immune cells according to their modules as predicted by Domino (Fig. 5B). Many of their 

predicted receptors were specific to the ECM signaling network. Taken together, these pairs 

of transcription factors and receptors represent a number of signaling pathways which may 

be specifically activated in response to ECM (Fig. 5C). We show Esrra as a downstream 

target of Il4ra in myeloid cells in ECM, confirming alternative activation of macrophages. 

Esrra activates anti-inflammatory macrophages34 which are induced by IL4 and have been 

shown to be active in response to ECM. While there is nearly no detectable Il4 in the single 

cell dataset (Extended Data Fig. 7B), we were able to detect signaling through Il4ra because 

we base signaling on activation of transcription factors. IL4 has been shown to be abundant 

in the ECM environment21 but is likely not detected in the single cell dataset due to dropout 

as the primary IL4 producers are eosinophils, TH2 cells, and potentially ILC2s6,35,36.

We further show activation of Sox17 in endothelial cells linked to expression of the receptor 

Osmr activated by Osm (Fig. 5C) from myeloid populations (Extended Data Fig. 7B). Sox17 
has been shown as critical for endothelial cell proliferation in response to injury37 but has 

not been identified in ECM response. This signaling may be responsible for the increased 

proportion of endothelial cells in ECM and posits a mechanism for myeloid involvement 

in wound healing and a critical immune-tissue module communication. Finally, we also 

identify activation of Ctcf, a muscle-specific transcription factor38, in fibroblasts linked to 

Tnfrsf12a or TweakR, recently shown to improve burn wound healing39. The ligand for 

TweakR, Tnfsf12 or Tweak, has elevated expression in both fibroblast and macrophage 

populations (Extended Data Fig. 7B). To our knowledge, TweakR has not been demonstrated 

as active in the ECM response. These three findings identify IL4, OSM, and TWEAK 

signaling pathways between fibroblasts and myeloid cells as potential therapeutic targets to 

promote regenerative wound healing and highlight the importance of immune-tissue module 

signaling.

The PCL specific transcription factors and their predicted receptors were also organized by 

enrichment in specific cell modules (Fig. 5E). In contrast to ECM, the PCL transcription 

factors associated with tissue-specific cell subsets had modest to low expression levels 

suggesting less activation of the tissue module (Fig. 5E). Instead, the tissue-specific 

module shared expression patterns similar to fibroblasts which may suggest suppression 
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of tissue-specific regenerative programs. We first used Domino to examine signaling patterns 

associated with Myc or TGF-β signaling, the signaling patterns enriched in the PCL treated 

environment by differential expression and gene set enrichment analysis (Extended Data Fig. 

8). Domino identified TGF-β signaling upstream of Myc in fibroblast precursors. It further 

identified Notch3 as a potential regulator of Myc signaling in endothelial cells. Interestingly, 

Notch signaling through Notch3 between synovial fibroblasts and endothelial cells has 

been shown to drive inflammation in rheumatoid arthritis40. Our findings suggest that this 

signaling pathway is also active in the PCL-treated wound and further that it functions 

through activation of Myc in target populations.

Domino also identified a linkage between Tgfbr2 and both Sox11 and Sox4 (Fig. 5F) in 

fibroblasts triggered by Tgfb1 produced by myeloid populations (Extended Data Fig. 7C). It 

was previously demonstrated that Sox4 and Sox11 induce transformation of synoviocytes 

to fibroblast-like synoviocytes in rheumatoid arthritis41. These cells are thought to be 

responsible for the inflammatory environment that drives RA disease, but their existence 

and involvement in the biomaterials response was unknown. These findings suggest that 

induction of an inflammatory phenotype in fibroblasts driven by Sox4 and Sox11 may 

partially regulate TGF-β driven fibrosis. We also identify Pirb in the myeloid population 

correlated with pro-inflammatory transcription factor Irf4. While no readily accepted ligand 

for Pirb is known, it is an immune checkpoint regulating anti-inflammatory effects in 

myeloid populations42. This suggests that Pirb may be a novel target to reduce chronic 

inflammation associated with fibrosis in response to biomaterials.

To validate our findings experimentally, we used NanoString to probe gene expression in 

sorted myeloid cells (CD45+ CD3-CD11b+) and T cells (CD45+CD3+) for genes predicted 

by Domino to be active only in ECM or PCL. Domino correctly predicted changes in gene 

expression for 7 of the 9 overlapping genes in the NanoString panel (Extended Data Fig. 

9A). To validate the prediction of receptors upstream of transcription factors activated in 

the biomaterial environments, we used a Il17ra−/− model where IL17 signaling is abrogated 

and fibrosis reduced 5. We chose to investigate the IL17 signaling pathway to demonstrate 

Domino’s ability to identify signaling patterns in the absence of ligand expression. Il17 
expression is not detected in any cells in our scRNAseq data set but Domino identified 

it as active in the PCL environment targeting Smarca4 and Mef2a in stromal populations 

(Extended Data Fig. 9B, C). Bulk RNA sequencing of Il17ra−/− and wild type animals 

with PCL implants identified a number of genes significantly up or downregulated in 

the knockout animals (Extended Data Fig. 9D). These differentially expressed genes were 

enriched for both transcription factor modules predicted as targets of Il17 by Domino with 

one of the two statistically significant after multiple testing correct (Extended Data Fig. 9E). 

These findings indicate that blocking Il17 signaling led to the changes in transcription factor 

activation and gene expression predicted by Domino.

Finally, to test applicability of Domino in other data sets and diseases, we analyzed a 

publicly available dataset of healthy brain and brain with Alzheimer’s disease (AD)19. 

This is a good validation data set because the original authors perform gene regulatory 

network analysis. This allows us to compare whether Domino identifies new transcriptional 

signatures that would not be found by traditional gene regulatory network analysis. Both 
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the AD and healthy signaling networks clustered into modules associated with cell types 

(Extended Data Fig. 10A, D). The results for AD indicated IL17RB as a potential receptor 

upstream of FOS, which is active in AD43, and NTRK3 upstream of BHLHE40 in 

astrocytes (Extended Data Fig. 10B, C). BHLHE40 has been linked with autoimmunity44, 

connecting it with IL17 signaling45, which has been demonstrated as involved in AD46. 

Domino also identified signaling pathways specific to healthy brain (Extended Data Fig. 

10E). In astrocytes NTRK2 targeted PAX6. Polymorphisms in NTRK2 are correlated with 

AD47, and PAX6 activates neurogenesis in astrocytes48 (Extended Data Fig. 10F). Finally, 

SOX10, a transcription factor promoting survival of myelin-producing oligodendrocytes49, 

was activated by ACVR1C in healthy oligodendroctyes. While many of these transcription 

factors were present in the original author’s supplementary data, none were highlighted as 

notable findings, meaning connection of signaling with transcriptional activity allowed for 

identification of transcriptional signatures associated with signaling which were previously 

buried.

Outlook

While the presented atlas represents a powerful resource for integration with future single 

cell data sets and investigation of biomaterials response, it is bound by the same limitations 

as single cell RNA sequencing. Only the top 10% of transcript from each cell is captured, 

making identification of more subtle changes in gene expression difficult and changes in 

lower expressed genes impossible. Cost limitations can also prevent higher numbers of 

biological replicates. Domino reconstructs signaling networks between modules of cells 

connected with transcriptional changes in cells independent of clustering analysis. Networks 

can be compared to identify signaling specific to conditions even with limited sample 

numbers or absence of key cell types. Domino was also able to capture cell interactions or 

influence with cells that were lost in scRNAseq (eosinophils) or where ligand expression 

was not captured with the limited depth of RNA sequencing in single cell. However, Domino 

is based solely on correlations and does not have rigorous statistical testing; therefore, 

it may be best suited for hypothesis generation with experimental validation. Future 

experimental validation may include knockdown of key predicted transcription factors and 

pharmacological activation or inhibition of specific signaling pathways.

In the present study, we used biomaterials implanted in a muscle wound. The muscle wound 

is easily accessible and allows a substantial volume of material to be implanted in the 

small murine model. Clinically, multiple tissues such as skin, dermis, and muscle may be 

manipulated and damaged when an implant is placed in the body. However, the severity of 

the tissue trauma and the tissue type may impact the response to biomaterials. We used two 

types of biomaterials to represent a spectrum of biomaterials response. Other biomaterials 

may fall within the spectrum of the synthetic PCL and biological ECM materials and 

exhibit a combination of the immune and tissue response. Previous studies characterizing 

the Type 3 immune response to synthetic materials confirmed that all of the materials tested 

induced a similar immune response albeit to different degrees5. ECM materials derived from 

skin (dermis), bone, SIS and urinary bladder matrix are clinically available for numerous 

applications with demonstrated success in tissue reconstruction50,52. Research continues to 

elucidate mechanisms of tissue response and wound healing of ECM materials which can 
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vary depending on the processing conditions and animal model. The physical properties 

and form of a biomaterial can also alter the body’s response. The particle form of the 

ECM and PCL may induce a greater immune response compared to larger implant forms. 

Particulate forms of synthetic and biological materials are used clinically today53,54 and the 

particles may mimic wear particles from larger devices, however they may not provide a 

direct correlation to the response to larger implants. Further research into the response to 

biomaterials in preclinical and clinical environments will continue to uncover the complexity 

in the immune and tissue responses and the many factors that contribute to patient outcomes.

Defining cell communication networks using Domino provides an unsupervised method 

to analyze single cell data sets that constructs and evaluates signaling networks using 

transcription factor activation. It generated signaling networks with modules connecting 

immune, stromal, and tissue-specific cell types independent of clustering information for 

both the biomaterial atlas. Comparison of networks yielded signaling pathways unique to 

experimental conditions, such as immune-tissue interactions in ECM, as well as tissue 

module suppression and inflammatory fibroblasts in the context of PCL. Communication 

between immune and tissue modules is an area of growing interest in tissue repair as 

demonstrated in immune-satellite signaling in muscle55 and lymphatic-stem cell signaling 

in skin56. We believe Domino provides a new resource for unsupervised exploration 

of condition specific signaling patterns and generation of biologically testable signaling 

hypotheses that can be applied to an expanding biomaterials atlas and multiple other 

applications.

Overall, the biomaterial atlas describes new cell populations not previously defined in the 

response to biomaterials, including NK cells and fibroblast subsets. The dataset and analysis 

methodology described here provides a cornerstone for future biomaterials development. 

Further expansion of the biomaterials atlas will enable comparison between a wide range 

of biomaterials implanted in different tissue environments and define cell signaling and 

communication patterns that regulate outcomes. This knowledge may facilitate better design 

of biomaterials to achieve desired responses such as tissue tolerance or repair and reduced 

incidence of adverse events associated with the foreign body response.

Methods

Volumetric muscle loss surgery

Animal procedures were performed in adherence to approved JHU IACUC protocols. 

Surgeries were performed when animals were 10 weeks of age. The bilateral traumatic 

muscle defect was created as previously described20. The defects were filled with 30 mg of a 

synthetic material or biological scaffold material. PCL was employed as a synthetic material 

(particulate, Mn = 50,000 g/mol, mean particle size < 600 μm, Polysciences). In turn, as 

a biological scaffold material, decellularized urinary bladder matrix (Matristem, Acell) was 

implanted from 0.05 ml of a 400 mg/ml suspension in phosphate buffered saline (PBS). 

Control surgeries were injected with 0.05 ml of PBS as a no implant control. All materials 

were UV sterilized prior to use. Mice were given subcutaneous carprofen (Rimadyl, Zoetis) 

at 5 mg/kg for pain relief. For the sample harvest, mice were euthanized at 1 and 6 weeks 

post-surgery.
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Flow Cytometry

Tissue samples were obtained by cutting the quadriceps femoris muscle from the hip to just 

above the knee. Tissues were finely diced manually with standard razor blades and digested 

for 45 min at 37°C with 1.67 Wünsch U/mL (0.5 mg/mL) Liberase TL (Roche Diagnostics, 

Sigma Aldrich) and 0.2 mg/mL DNase I (Roche Diagnostics, Sigma Aldrich) in RPMI-1640 

medium supplemented with L-Glutamine and 15 mM HEPES (Gibco). The digested tissues 

were then pestled through 70 μm cell strainers (ThermoFisher Scientific) with RPMI-1640 

(supplemented as before), and then washed twice with 1X DPBS. A Percoll (GE Healthcare) 

density gradient centrifugation was used to enrich the leukocyte fraction and remove blood 

and debris from the muscle samples and centrifuged at 2100 x g for 30 min with the 

lowest acceleration and no brake. Cells were washed 1X DPBS, stained with a viability 

live/dead amine reactive dye, washed with 1X DPS, blocked with anti-mouse TruStain FcX 

(BioLegend), and surface stained (Supplementary Table 6). Flow cytometry was performed 

using an Attune NxT Flow Cytometer (ThermoFisher Scientific) with a Violet, Blue, Green, 

and Red laser configuration. All subsequent analyses were performed on Live singlet cells 

using Windows based FlowJo™ software v10 (Benton Dickinson), license supplemented 

courtesy of the Johns Hopkins Bloomberg Flow Cytometry and Immunology Core.

NanoString Gene Expression Analysis

Muscles harvested from animals treated with ECM or PCL were processed following 

the previously described preparation method for flow cytometry. Myeloid (CD45+CD3-

CD11b+) and T (CD45+CD3+) were then sorted into FisherSci TRIzol™ Reagent. Qiagen 

RNeasy Mini Kits were used to purify RNA following TRIzol RNA extraction. Purified 

RNA was quantified using an Agilent 2100 Bioanalyzer RNA 6000 Nano Kit according to 

manufacturer’s protocol. All RNA samples had RNA integrity score (RIN score) greater 

than 8.0. For samples processed with NanoString, the NanoString™ nCounter© system 

was used with the nCounter© Fibrosis Gene Expression Panel following manufacturer’s 

recommendations with three biological replicates of each condition. Finally, the nSolver© 

software suite was used to analyze gene expression counts using the Advanced Analysis 2.0 

module with default QC settings comparing the ECM and PCL samples with saline samples 

as a reference. To determine genes specific to ECM or PCL, we removed statistically 

significant genes in both ECM and PCL with the same direction of fold change. Volcano 

plots were generated using the EnhancedVolcano R package.

Bulk RNA sequencing

Muscles from Il17ra−/− or wild type mice treated with VML and PCL were collected 1 week 

after surgery, submerged in Trizol reagent, and minced and grinded in Trizol after which 

the same isolation protocol was followed as the sorted cells described in the NanoString 

section. Libraries were then prepared with the Illumina TruSeq RNA Library Prep Kit V2 

and sequencing at a depth of 30M unique reads per sample using an Illumina HiSeq. The 

reads were aligned using STAR against the GENCODE Release 23 annotations and genome. 

Finally, differential expression was calculated using edgeR with default parameters using 

genotype as the only variable in the design matrix. The fgsea package was then used to 

calculate enrichment of transcription factor modules using -log(p) for the ranking statistic.
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Histological staining

After harvest, muscle samples were fixed in 10% neutral buffered formalin for 48 hours 

followed by ethanol and xylenes dehydration and paraffin embedding. Sections were 

rehydrated by ethanol gradient before staining. We used the Masson’s Trichrome Stain Kit 

(Sigma Aldrich) following manufacturer’s guidelines. Slides subsequently were dehydrated 

by ethanol gradient, mounted using Fisher Chemical Permount Mounting Medium, and 

imaged with a Zeiss Axio Observer with Apotome.2 (Zeiss) with Zeiss Zen Blue software 

ver. 2.5 (Zeiss).

Collection of single cell data sets

Three separate data sets are presented as components of the atlas. The myeloid sorted 

data set was previously collected and published with a full description of methodology22. 

Briefly, macrophages were sorted (CD45+F4/80hi+Ly6c+CD64+) and input into the 10X 

Genomics Chromium© instrument with the first version of the 3’ gene expression single 

cell profiling kit. Drop-seq, a single cell microfluidics encapsulation technique, was used 

to prepare libraries for both the sorted stromal populations (CD45-CD19-CD31-CD29+) and 

CD45+ enriched cell populations. For the CD45+ enriched populations, dead cells were 

removed using the Miltenyi Biotec Dead Cell Removal Kit followed by Miltenyi Biotec 

CD45 MicroBeads to separate CD45+ and CD45- cells. After separation, an equal amount 

of CD45+ and CD45- cells were pooled directly prior to input to Drop-seq. Drop-seq was 

run following the McCarroll Lab’s December 2015 iteration of their published protocol57 

available from their website (http://mccarrolllab.org/dropseq/).

Data and code availability

All raw data, processed files, and commented code are made available at 

GEOXXXXXXXXXX. Domino, our software package for analysis of intercellular 

communication, and sctools, a set of functions used in our code, are available at github.com/

chris-cherry.

Data preprocessing and batch effect correction

Seurat was used for most processing steps where other software is not specified58. All 

cell counts were pruned of cells with UMI counts below 250, cells with more than 10% 

mitochondrial genes, and genes expressed in fewer than 0.1% of cells. We then normalized 

and scaled the data with regression on UMI count to account for batch effect and percent 

mitochondrial genes and calculated principle components using the top 2000 most variable 

genes. For muscle data sets we then corrected the principle components for batch effect 

using Harmony59. There are inevitably differences between experimental batches when 

running single cell RNA sequencing. Harmony and other batch effect correction algorithms 

are designed to align different batches prior to downstream clustering and dimensional 

reduction. UMAP and shared nearest neighbor graph construction with subsequent Louvain 

clustering was then run on principle components.
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Cluster composition by condition

To calculate contribution of condition by cluster, we used only the CD45+ enriched samples 

to avoid biases in clusters containing sorted cells (i.e. fibroblasts and macrophages). Clusters 

from CD45+ and CD45- cells were normalized separately to avoid slight differences in 

percent of CD45+ cells from enrichment by sample skewing normalization. For each sample, 

total number of cells by cluster were calculated and then normalized to the total of CD45+ 

or CD45- cells in the dataset for the sample. The proportions of each sample were then 

averaged by condition to determine a condition-level average. Finally, in order to calculate a 

projected cell number, calculated proportions by sample (% of CD45+ cells) were multiplied 

by the total number of CD45+ cells determined by flow cytometry. CD45- cells were not 

calculated due to inclusion of large amounts of debris in flow cytometry data without a 

positive marker.

Phenotypic assignment of clusters

Seurat’s CellCycleScoring function was used to score cells based on expression of a 

subset of genes previously identified as associated with the G2M or S phase60. Differential 

expression testing for clusters was run using Mann-Whitney U tests. Each cluster was 

compared against all other clusters. The resulting gene expression profiles were examined 

to determine cluster phenotype. In many cases, unique expression of marker genes 

was sufficient to determine cluster identity. For the fibroblast clusters, we additionally 

used CytoSCAPE to determine stemness and assign precursor clusters. Finally, we cross-

referenced the source publication for the macrophage dataset to determine precursor 

macrophage clusters22.

Intracluster differential expression and gene set enrichment

For each cluster, cells from PCL or ECM treated animals were compared to cells from saline 

treated animals using Mann-Whitney U test across all genes with Benjamini-Hochberg 

correction for multiple tests. The resulting fold-changes and adjusted p-values were collated 

and saved in tables. The fgsea package was then used for gene set enrichment analysis 

(GSEA) using the Broad Institute’s Hallmark gene sets with sign(foldchange)*-log(p) as 

the ranking statistic from each comparison (PCL vs saline and ECM vs saline). Finally, the 

results were collated and saved in tables. The tables from both analyses are available as 

supplementary table 4.

Gene regulatory network analysis

We used the SCENIC 33 analysis pipeline to identify modules of genes targeted by 

transcription factors and calculate cell level enrichment scores. Genome ranking databases 

and cis-regulatory motif annotations were obtained from cisTarget Databases. First, we 

used Arboreto to fit a stochastic gradient boost machine using transcription factor counts 

to predict gene counts. Modules of genes targeted by transcription factor were then 

formed from the adjacencies, including genes with feature importances greater than the 

95 percentile. The modules were then pruned, cross-referencing the motif annotations and 

ranking databases to remove modules with less than 80% of genes mapping to regions near 

binding sites for transcription factors or with less than 20 gene targets. Finally, enrichment 
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for these modules was calculated using AUCell to identify cells with enrichment of genes 

targeted by transcription factors.

Construction of a global signaling network

A list of human ligands, receptors, and their signaling relationships was obtained from 

CellphoneDB2 13. We then used biomaRt 61 to convert genes from HGNC to MGI symbols, 

taking all conversions for each gene when multiple were found. Prior to calculating 

signaling relationships, counts matrices were pruned for genes expressed in fewer than 2.5% 

of cells. Pearson correlations were calculated between transcription factor activation scores 

and normalized, z-scored expression for identified receptors across all cells. Correlation 

between receptors which were determined as transcription factor targets by gene regulatory 

network analysis were then set to zero. This prevents targets of transcription factors which 

would be correlated with transcription factor activation from being interpreted as upstream 

of its transcription factor. Finally, transcription factors and receptors were considered 

signaling connections if Pearson correlation was greater than 0.3 with a maximum of ten 

receptors per transcription factor. For all receptors connected with transcription factors, 

ligand signaling partners were identified from the CellphoneDB2 database. Ligands that 

were not found in the dataset were excluded.

Comparison of condition specific global signaling networks

In order to identify intracellular signaling patterns associated with an independent variable, 

we first split the single cell data by that variable. More specifically, we split the volumetric 

muscle dataset by treatment with ECM or PCL and the Alzheimer’s dataset by disease 

status of the patients. We then constructed a global signaling network for each of the 

separate data sets with identical parameters. Finally, we identified network items specific 

to each condition by set subtraction. Transcription factors or receptors only present in one 

condition’s signaling network were considered as potentially condition specific.

Cluster specific subnetwork identification

In order to identify intracellular signaling patterns within a cluster with ligands responsible 

for their activation, we first identified active transcription factors by cluster using Mann-

Whitney U tests. For each cluster, the top over-expressed genes were selected based on 

p-value with positive log fold change as compared to all other clusters. Transcription factors 

with p-values below .001 were included with up to 10 transcription factors per cluster. We 

then generated a signaling subnetwork for each cluster by pruning all network items not 

connected to the cluster enriched transcription factors.

Prediction of intercellular signaling networks

Using the cluster specific signaling subnetworks, we identified ligands most likely to be 

responsible for activation of cellular phenotype for each target cluster. It’s important to 

note that in the data sets we’ve analyzed there tend to be many ligands below detection 

threshold, so we don’t use signaling pathways without expressed ligands in construction 

of intercellular signaling networks. To calculate intercluster signaling with ligands found 

in the data set, we first averaged z-scored ligand expression by cluster. We then generated 
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a signaling score by summing the averaged z-scores by cluster. The signaling represents 

whether a particular cluster is over- or under-expressing the ligands predicted to activate the 

target cluster. These values are used as directed, weighted edges between clusters as nodes to 

construct an intercellular signaling network.

Extended Data

ED Fig. 1. Experimental overview of the assembled datasets.
A, All data sets were taken from mice after volumetric muscle loss treatment. After surgical 

excision of a large portion of the quadriceps, the wound site was filled with a biomaterial 

or saline control and stapled shut. Mice were then harvested 1 or 6 weeks after surgery. 

Young (6 week) or aged (104 week) old animals were used. Representative histological 

images of PCL and ECM treated muscles 6 week after injury are shown stained by Masson’s 

Trichrome. Muscle fibers are stained red and connective tissue is stained blue. The posterior 

(P) is labeled and the location of original defects circled. B, At time of harvest, cells 

were isolated one of three ways after digestions. For macrophages, cells were sorted as 

CD45+F4/80HiLy6c+, for fibroblasts cells were sorted as CD45-CD19-CD29+, and for 

the all-cell dataset CD45+ cells were enriched to ~50% using MACS beads. C, Data sets 

were integrated for analysis using Harmony. A complete summary of available data sets 

is given in Supplementary Table 2. D, Enrichment of fibroblasts and macrophages due to 

inclusion of sorted fibroblast and macrophage data sets. The sorted fibroblasts (left) and 

macrophages (right) are shown in comparison to the CD45+ enriched sample (middle). E, 

Cells by condition. Cells are colored by condition plotted on UMAP dimensions. Cells were 

plotted in order of ECM, PCL, Saline, and Naïve.
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ED Fig. 2. Expression characteristics of the CD45+ cluster, and comparison with flow cytometry.
A, Gene expression for myeloid cluster markers. Single cell gene expression for marker 

genes used to identify myeloid clusters in tandem with CD14, CD11b, and F4/80 expression 

are shown as violin plots. B, Comparison of flow cytometry cell proportions to single 

cell proportions. Myeloid (CD45+CD11b+) and T cell (CD45+CD3+) numbers by flow 

cytometry given as raw counts (top left) and percent of the CD45+ population (top right) 

from ECM, PCL, or saline treated animals. Mean values are plotted with standard error 

shown on error bars. CD45- and CD45+ count values are shown, which were used to project 

single cell proportions to predicted raw numbers. Project single cell counts are shown by 

cluster (middle) by multipltying raw CD45+ and CD45- counts from flow cytometry with 

cluster proportions of CD45+ or CD45- populations from single cell (bottom).
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ED Fig. 3. Subset clustering of T/NK cells.
A, Clustering of T/NK cells. After subsetting to only T/NK cells, principle component 

analysis, clustering, and UMAP was run following the same procedures as the whole dataset. 

The five resulting clusters are visualized in the T/NK cell specific UMAP space. B, Gene 

expression for T and NK cell markers.
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ED Fig. 4. Expression characteristics of the CD45- cluster.
A, Marker gene expression for non-fibroblast CD45- cell populations. Up to three 

characteristic gene markers are shown for each cluster by violin plot of normalized gene 

expression data. Fibroblast markers were used to identify the four fibroblast clusters Fib 

pre 1, Fib pre 2, Fib immune, and Fib cart. B, Stemness markers for fibroblasts. Pdgfra 

expression and clusters are shown to demonstrate location of fibroblasts with a dotted line 

drawn surrounding the fibroblasts. Stem marker Osr1 and CytoTRACE score, an algorithm 

used to score cells for stemness, is shown below. C, Expression of characteristic markers for 

the tenocyte-like and immune fibroblast clusters.

ED Fig. 5. Flow cytometry of neutrophils and eosinophils.
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A, Cells were gated on scatter (FSC_A, SSC_A) followed by doublet discrimination 

(FSC_A, FSC_H), selection of CD45+ live cells (Fixable Yellow-, CD45+), and selection of 

myeloid cells (CD3-, CD11b+). This population was used to identify eosinophils (Ly6g low, 

Siglec F+) and neutrophils (Ly6g+, Siglec F-) of correct size (FSC_A, SSC_A). B, Numbers 

of CD45+ cells, eosinophils, and neutrophils from ECM, PCL, or saline treated animals 

one week after surgery (top). Eosinophil and neutrophil amounts as proportion of CD45+ 

cells are given below. Data are mean ± SEM. Statistics shown are after analysis of variance 

(ANOVA) followed by Dunnett’s multiple comparison testing where P is adjusted p value.

ED Fig. 6. Identification of intercluster signalling with Domino.
A, Identification of cluster-specific signaling subnetworks. Transcription factors enriched by 

cluster are identified by Wilcoxon rank sum and networks pruned for disconnected nodes to 

generate signaling subnetworks relevant for biological activation of clusters. B, Calculation 

of intercluster signaling networks. Once phenotypically relevant receptors are identified 

by cluster specific signaling subnetworks, cluster-cluster signaling scores are calculated 

by cluster averaged scaled expression of ligands present in cluster-specific subnetworks. 

Every potential cluster-cluster combination is scored, and these weights used to generate an 

intercluster signaling network.
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ED Fig. 7. Signalling pathways for ECM and PCL treated cells visualized with their known 
ligands.
A, A UMAP plot with clusters labeled for reference when viewing feature plots. B, ECM 

specific signaling pathways specified in Figure 3. Each pathway contains gene expression 

of ligands and receptors from each pathway, as well as transcription factor activation scores 

for the predicted transcription factor target. Ligands completely absent from the data set are 

not shown, although they may still be viable targets for a target receptor. C, PCL specific 

signaling pathways specified in Figure 3. No readily accepted ligands for Pirb have been 

identified, so the Pirb Irf4 pathway is not shown.
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ED Fig. 8. Myc signaling in the PCL-treated wound.
Gene expression of ligands and receptors predicted to be involved in activation of Myc in the 

PCL Domino signaling network for cells from PCL treated animals (top and middle). Myc 

expression values are SCENIC transcription factor activation scores (bottom). A reference of 

clusters is provided in the bottom left.
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ED Fig. 9. In vivo validation of signalling predictions by Domino.
A, Nanostring gene expression profiling for receptors and transcription factors identified 

as enriched in either ECM or PCL for specific cell types. After identifying genes specific 

to either ECM or PCL within the myeloid or T cell populations in Domino, we used 

Nanostring to probe expression of those genes in sorted myeloid (CD45+CD11b+) or T cells 

(CD45+CD3+). Of the 9 genes found to overlap between Domino and Nanostring, 7 were 

predicted correctly and 2 incorrectly. Error bars are standard error. B, The Domino global 

signaling network for PCL as seen in Figure 5. The region surrounding the IL17 signaling 

pathway is enlarged and the components labeled. C, Expression of Il17rc and activation 

of it’s predicted transcription factor targets Smarca4 and Mef2a in the PCL signaling 

network. D, Volcano plot for bulk RNA sequencing of IL17ra−/− and wild type animals one 

week after VML. Direction of log fold change indicates expression in IL17ra−/− animals 

compared to wild type. An FDR threshold of 0.05 was used to designate genes as significant. 

E, Gene set enrichment analysis (GSEA) of Domino transcription factor modules predicted 

as downstream of IL17 in the PCL signaling network. Both modules predicted to interact are 

shown. Genes from the edgeR bulk RNA seq comparison with respect to wild type ordered 

by FDR were used to calculate enrichment for genes present in the Domino transcription 

factor modules. Movement of the running enrichment score (green line) above zero indicates 

enrichment of genes in the module in the statistically significant portion of expressed genes 

while movement below zero indicates enrichment of genes in the module in the lower 

FDR portion of the genes. P values calculated by GSEA adjusted by Benjamini-Hochberg 

correction are shown.
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ED Fig. 10. Pathological signaling found from a public dataset of Alzheimer’s Disease.
A, The Alzheimer’s disease (AD) global signaling network. two modules of receptors and 

transcription factors are readily apparent and labeled based on enrichment of transcription 

factors by cluster. B, Heatmaps of transcription factor activation score for AD-specific 

transcription factors (left) and correlation of transcription factor activation score with 

receptor expression (right). Transcription factors are binned according to their membership 

to the astrocyte or oligodendrocyte modules from the AD global signaling network. Cells are 

ordered and colored according to their cluster. Receptors found only in AD are marked with 

arrows. Connections between receptor and transcription factors are marked with an ‘x’ on 

the correlation heatmap. C, Example feature plots of gene expression and activation scores 

for specific receptor-transcription factor pairs identified by domino in the AD condition. 

D, The healthy global signaling network. Two modules of receptors and transcription 

factors are readily apparent and labeled based on enrichment of transcription factors by 

cluster. E, Heatmaps of transcription factor activation score for healthy-specific transcription 

factors (left) and correlation of transcription factor activation score with receptor expression 

(right). Transcription factors are binned according to their membership to the astrocyte or 

oligodendrocyte modules from the global signaling network. Cells are ordered and colored 

according to their cluster. Receptors found only in the healthy signaling network are marked 

with arrows. Connections between receptor and transcription factors are marked with an 

‘x’ on the correlation heatmap. F, Example feature plots of gene expression and activation 

scores for specific receptor-transcription factor pairs identified by domino in healthy cells.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: A Single Cell Atlas of the Biomaterials Immune Microenvironment.
A, NanoString gene expression analysis of mRNA isolated from whole muscle samples of 

animals treated ECM or PCL compared to saline treated animals. nSolver© software with 

default parameters was used for statistical testing with adjusted P ≤ 0.05 defining differential 

expression. B, Overview of cell clusters identified in the composite scRNAseq dataset. 

UMAP plots with cluster labels (left) and gene expression levels of Cd45 and Cd29 (right) 

are shown. C, Heatmap of up to 10 differentially expressed genes with highest log fold-

change from each cluster. Cells are ordered and labeled by cluster with random sampling of 

up to 100 cells per cluster to ensure visibility of small clusters. D, Gene markers for single 

cell subsets. The dotplot shows expression of genes associated with cluster identity. Cluster 

averaged gene expression values after normalization to the maximum averaged expression 

are shown. E, Composition of cluster by condition. Cluster labels and colors are shown 

adjacent to pie charts of normalized number of cells by condition. Prior to comparison of 

conditions, cells were normalized to the total number CD45+ or CD45- cells by sample. The 

resulting values are compared across condition. Cycling cells are not shown. Only samples 

from non-sorted samples were used to calculate proportions (see methods). F, Visualization 

of cells by condition on UMAP. Each UMAP shows cells only from a given condition 

colored by cluster.

Cherry et al. Page 29

Nat Biomed Eng. Author manuscript; available in PMC 2023 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: CD45+ cells drive inflammation in response to synthetic materials A, Immune markers 
for T and NK cells.
Clusters are shown adjacent to Cd45, Nkg7, and Cd3d gene expression. The T/NK cell 

cluster and myeloid clusters are circled with dotted outlines. B, Gene expression for myeloid 

and macrophage cell markers. Clusters are shown adjacent to Itgam, Cd14, and F4/80 gene 

expression. Myeloid and macrophage clusters are circled and labeled. Gene expression 

for cluster specific monocyte, macrophage, dendritic cell, and mast cell markers are then 

shown in C and D. E, Plots of enrichment scores comparing cells from differing conditions 

within myeloid clusters with the Broad Institute’s Hallmark TNFa signaling via NFkB 

gene set. Genes were ordered by –log(p) after differential expression with MannWhitney 

U test between PCL and Saline cells from the dendritic cell (left) or mast cell (right) 

clusters. A larger enrichment score indicates over-representation of the gene set within the 

differentially expressed genes and a negative score indicates under-representation. Adjusted 

pvalues are after Benjamini-Hochberg correction of p values from fgsea. F, Gene expression 

for leading edge genes from gene set enrichment analysis in E. Violin plots show expression 

for dendritic cells (top) or mast cells (bottom) grouped by treatment condition.
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Figure 3: Myc activation and TGF-β signaling influence fibroblast differentiation in response to 
materials.
A, Marker gene expression for non-fibroblast CD45- cell populations. Up to three 

characteristic gene markers are shown for each cluster by violin plot of normalized gene 

expression data. Fibroblast markers were used to identify the four fibroblast clusters Fib 

pre 1, Fib pre 2, Fib immune, and Fib cart. B, Stemness markers for fibroblasts. Pdgfra 
expression and clusters are shown to demonstrate location of fibroblasts with a dotted line 

drawn surrounding the fibroblasts. Stem marker Osr1 and CytoTRACE score, an algorithm 

used to score cells for stemness, is shown below. C, Expression of characteristic markers 

for the tenocyte-like and immune fibroblast clusters. D, Gene set enrichment for intracluster 

differential expression using Hallmark gene sets. Genes were ordered by –log(p) after 

differential expression with Mann-Whitney U test comparing PCL or ECM to saline. A 

larger enrichment score indicates over-representation of the target gene set and a negative 

score indicates under-representation. P values are from fgsea after Benjamini-Hochberg 

correction.
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Figure 4: Generation of intercellular and intracellular signaling networks.
A, A model of biological ligand-receptor signaling. Ligands expressed in a signaling 

cell bind and activate receptors on a target cell. Subsequent protein-protein signaling 

triggers activation of transcription factors in the nucleus and expression of target genes. 

B, Reconstruction of a dataset-wide signaling network. SCENIC is used to estimate 

transcription factor gene regulatory modules, as well as transcription factor activation 

scores on a cell-by-cell level. Receptors expression levels are correlated with transcription 

factor activation scores across the entire dataset with exclusion of receptors present in the 

transcription factor modules. Public receptor-ligand databases and then queried to identify 

ligands capable of activation receptors. C, Identification of condition specific signaling 

patterns. In order to identify signaling specific to experimental conditions, the dataset 

is first split by condition, for example PCL and ECM treated cells. Domino is run on 

each to identify a signaling network specific to each condition. D, Members of signaling 

networks represent transcription factors, receptors, and ligands that are predicted as active 

in each condition. E, Comparison of network members from each condition identifies 

transcription factors, receptors, and ligands that are only predicted as active in one condition. 

F, Condition specific members can be used to identify signaling pathways which are only 

active or are differentially activated in an experimental condition.
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Figure 5: Domino identifies biomaterials condition specific signaling.
A, The ECM global signaling network. Three modules of receptors and transcription factors 

are readily apparent and labeled based on enrichment of transcription factors by cluster. 

B, Heatmaps of transcription factor activation score for ECM-specific transcription factors 

(left) and correlation of transcription factor activation score with receptor expression (right). 

Transcription factors are binned according to their membership to the fibroblast, tissue, or 

immune modules from the ECM global signaling network. Cells are ordered and colored 

according to their cluster. Receptors found only in the ECM condition are marked with 

arrows. Connections between receptor and transcription factors are marked with an ‘x’ on 

the correlation heatmap. C, Example feature plots of gene expression and activation scores 

for specific receptor-transcription factor pairs identified by domino in the ECM condition. 

D, The PCL global signaling network. Three modules of receptors and transcription factors 

are readily apparent and labeled based on enrichment of transcription factors by cluster. 

E, Heatmaps of transcription factor activation score for PCL-specific transcription factors 

(left) and correlation of transcription factor activation score with receptor expression (right). 

Transcription factors are binned according to their membership to the fibroblast, tissue, or 

immune modules from the PCL global signaling network. Cells are ordered and colored 

according to their cluster. Receptors found only in the PCL condition are marked with 

arrows. Connections between receptor and transcription factors are marked with an ‘x’ on 

the correlation heatmap. F, Example feature plots of gene expression and activation scores 

for specific receptor-transcription factor pairs identified by domino in the fibrotic (PCL) 

condition.
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