
RESEARCH ARTICLE

Follicular Lymphoma Microenvironment 
Characteristics Associated with Tumor Cell 
Mutations and MHC Class II Expression 
Guangchun Han1, Qing Deng2, Mario L. Marques-Piubelli3, Enyu Dai1, Minghao Dang1, Man Chun John Ma2, 
Xubin Li2, Haopeng Yang2, Jared Henderson2, Olga Kudryashova4, Mark Meerson4, Sergey Isaev4, 
Nikita Kotlov4, Krystle J. Nomie4, Alexander Bagaev4, Edwin R. Parra5, Luisa M. Solis Soto5, Simrit Parmar2, 
Fredrick B. Hagemeister2, Sairah Ahmed2, Swaminathan P. Iyer2, Felipe Samaniego2, Raphael Steiner2, 
Luis Fayad2, Hun Lee2, Nathan H. Fowler2,4, Christopher R. Flowers2, Paolo Strati2, Jason R. Westin2, 
Sattva S. Neelapu2, Loretta J. Nastoupil2, Francisco Vega3, Linghua Wang1,6, and Michael R. Green1,2,6,7

http://crossmark.crossref.org/dialog/?doi=10.1158/2643-3230.BCD-21-0075&domain=pdf&date_stamp=2022-6-24


	 SEPTEMBER  2022 BLOOD CANCER DISCOVERY | 429 

INTRODUCTION
Follicular lymphoma (FL) is an indolent lymphoma of 

germinal center B cells that maintain follicle-like architecture 
and interact closely with T cells and other immune cells. These 
immune interactions are critical to FL etiology (1) and can be 
perturbed by somatic mutations that are frequent in FLs (2–4). 
Understanding the lymphoma microenvironment (LME) of 
FL and the interplay between perturbed immune interactions 
and distinct LME T-cell populations will be important for 
designing rational immunotherapeutic strategies, but these 
concepts have yet to be comprehensively addressed using 
high-throughput approaches. Single-cell RNA sequencing  
(scRNA-seq) is a powerful and high-throughput approach 
that has revealed the deregulation of normal B-cell devel-
opmental programs and allowed for the characterization of 

targetable immune checkpoints and receptor–ligand pairs on 
LME T cells in FL (5, 6). However, these studies have been lim-
ited to a few patients and have not yet been used to investigate 
broader LME profiles or the relationship between somatic 
mutations, tumor B-cell expression profiles, and changes in 
the LME. Using scRNA-seq of FL lymph node biopsies, we 
characterized phenotypically distinct subsets of LME T cells, 
including a cytotoxic CD4 T-cell population, and validated 
in a large series that the composition of these T-cell subsets 
defines four distinct subtypes of LME in FLs. By integrat-
ing exome-sequencing and scRNA-seq data, we identified 
chromatin-modifying gene mutation-associated and -inde-
pendent perturbation of immune interaction genes encoding 
proteins such as major histocompatibility complex (MHC) 
class I and II on tumor cells, which is in turn associated with 
changes in the frequencies and targetable immune profiles of 
T-cell subsets in FL tumors.

RESULTS
scRNA-seq of Follicular Lymphoma

We performed scRNA-seq of 20 FL lymph node biopsies 
and three reactive lymph nodes (RLN) using the 10X Chro-
mium platform to profile the transcriptome, T-cell receptor 
(TCR), and immunoglobulin (Ig) repertoires (Supplementary 
Table S1). RLNs provide a control nonmalignant lymph node 
with active germinal centers for comparison with malignant 
FL lymph node tissue. Each biopsy was analyzed fresh to 
retain cell types that are sensitive to cryopreservation such as 
plasma cells. This study included 11 previously untreated and 
nine relapsed FLs (median 1 line of prior therapy; range, 1–6) 
that were grades 1 to 2 (n = 14) or 3A (n = 6) and 3 control 
RLN (n = 3) samples. We sequenced a median of 6,138 (range, 
635–11,070) cells per sample to a median of 57,933 (range, 
49,833–324,873) reads per cell and detected a median of 1,115 
(range, 447–2,979) genes per cell. After rigorous quality filter-
ing (Supplementary Fig. S1A), 137,147 cells were retained for 
subsequent analyses (Fig. 1A; Supplementary Fig. S1B–S1C). 
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We opted to use stringent doublet filtering criteria including 
the removal of B cells expressing canonical T-lineage markers  
or productive TCR rearrangements and vice versa. This may 
remove a minor subset of singlets with coexpression of B/T-
lineage markers or antigen receptors, but ensures that the 
analyses on retained cells are not confounded by potential 
doublet contamination. Unsupervised clustering analysis fol-
lowing batch-effect correction identified six major cell line-
ages: B-cell, T-cell, monocyte/macrophage, follicular dendritic 
cell (fDC), plasmacytoid dendritic cell (pDC), and erythroid 
cell clusters, as determined by cluster marker genes (Fig. 1B 
and C; Supplementary Table  S2). Cells from RLNs fell into 
T-cell, monocyte/macrophage, fDC, pDC, and B-cell clusters 
corresponding to quiescent, proliferating, and plasma cells 
(Supplementary Fig. S2A–S2D).

B cells were reclustered (Fig.  1D and E; Supplementary 
Fig. S3A), and cells were defined as either tumor or nonma-
lignant by the presence/absence of a clonal immunoglobu-
lin sequence (Fig. 1F; Supplementary Fig. S3B) or arm-level 
DNA copy-number alterations (Supplementary Fig.  S3C). 
Tumor immunoglobulin clonotypes were not detected for 
three tumors, presumably due to somatic hypermutation 
that interfered with primer binding. Clusters of nonmalig-
nant B cells (C2), plasma cells (C15), and proliferating B cells 

(C6) included cells from both FL and RLN samples (Fig. 1D 
and E). Notably, plasma cells included those originating 
from the malignant clone, as determined by the presence 
of the same immunoglobulin clonotype as that observed in 
malignant B cells (Fig. 2A and B; Supplementary Table S3), 
indicating that a subset of malignant clones have the ability 
to terminally differentiate rather than being developmen-
tally “stalled.” In one of these cases, we observed differences 
in the hierarchies of immunoglobulin somatic hypermu-
tation between malignant B cells and tumor clonotype-
bearing plasma cells (Fig. 2C and D), suggesting that there 
may be clonal differences in the potential to terminally dif-
ferentiate. A central cluster (C0) was also found to contain 
cells from multiple samples but consisted exclusively of 
clonal malignant B cells from FLs, suggesting that tumor 
cells from a subset of cases have shared transcriptional 
characteristics. The FL tumors in the shared C0 cluster 
were not enriched for any given mutation (Supplementary 
Fig. S3A) and consisted of both grades 1 to 2 and grade 3A 
tumors, but tended to have relatively less extensive inferred 
copy-number variations (Supplementary Fig.  S3C) and 
more frequently originated from treatment-naïve tumors  
(Supplementary Table  S1), suggesting that tumor B cells 
from relapsed FLs have a greater intersample divergence 
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Figure 1.  Overview of major cell types and clusters from scRNA-seq of 20 FL tumors. A and B, Uniform Manifold Approximation and Projection (UMAP) 
plots show 137,147 cells from 20 FL tumors and 3 RLN controls by sample ID (A) and cluster ID (B). Major cell types are annotated in B. C, Bubble plot of cell 
lineage marker genes are shown for B-cell, T-cell, NK-cell, erythroid, monocyte/macrophage (MM), plasmacytoid dendritic cell (pDC), and follicular dendritic 
cell (fDC) clusters. D–F, UMAP plots show reclustering of 99,610 B cells by cluster ID (D), sample ID (E), and immunoglobulin clonotype (F). Among B-cell 
clusters, we identified those corresponding to nonmalignant B cells (C2), proliferating cells (C6), and plasma cells (C15). A malignant B-cell cluster bearing 
cells from multiple samples was identified (C0). The contribution of each sample to each cluster is shown in the bar graph in E, with many clusters consisting 
of tumor B cells from a single sample as determined by immunoglobulin clonotype (F) or patterns of inferred copy-number variation (Supplementary Fig. S1).
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Figure 2.  Plasma cells linked to malignant FL clones. A, UMAP plot showing reclustering of plasma cells (n = 1,275), colored by sample ID. B, Bar 
plot showing fractions of plasma cells carrying the same clonal expanded immunoglobulin clonotypes, heavy (IgH) and light (Igk/l) chain, as observed in 
malignant B cells in 6 FL tumors. C, the IgH and IgK CDR3 sequences for the representative case FL-17 and fractions of malignant B and plasma cells with 
detectable BCR. D, Reconstruction of the immunoglobin variable region gene lineage tree (igTree) based on somatic hypermutation of immunoglobulin 
genes using scBCR-seq data. Each tree node represents a single mutation (point mutations, deletions, or insertions) separating the CDR3 sequences and 
the size of the node corresponds to the number of cells carrying a specific CDR3 sequence.

in transcriptional profiles compared with treatment-
naïve FLs that may be associated with chromosomal DNA 
copy-number changes.

Tumor-Infiltrating T Cells within the Follicular 
Lymphoma Microenvironment

T cells comprised a median of 87.6% (range, 73.8%–98.9%) 
of the nonmalignant cells within the LME (Fig. 3A). We fur-
ther characterized phenotypically distinct subsets of CD4 and 
CD8 T cells by partitioning T cells into major subsets (CD4, 
CD8, proliferating T, NKT; Supplementary Fig.  S4A–S4B), 
followed by subclustering analysis (Fig. 3B-D; Supplementary 
Table S4). We did not observe any significant difference in the 
frequencies of T-cell clusters between grades 1 to 2 and 3A 
or between previously untreated and relapsed tumors (Sup-
plementary Table S5). Clusters of CD8 T cells included naïve 
(CCR7, SELL, and IL7R), effector (CD8Eff; granzymes A/B/K 
and PRF1), and exhausted (CD8Exh; high expression of inhibi-
tory immune-checkpoint genes such as TIGIT and LAG3, and 
a high exhaustion score) subsets (Fig. 3B and C). Trajectory 
analysis showed that these represent a functional contin-
uum from naïve through to exhausted states (Supplementary 
Fig.  S5A). Subclustering analysis of CD4 T cells identified 
four transcriptome states, each with a unique expression of 
specific marker genes (Fig.  3D; Supplementary Fig.  S5B), 
including naïve (CCR7, SELL, and IL7R), T-regulatory (Treg; 
FOXP3, CTLA4, and IL2RA), T follicular helper (TFH; PDCD1, 
TOX, TOX2, CXCR5, and CD40LG), and cytotoxic CD4 T cells 
(CD4CTL; GZMA/K, NKG7, and EOMES), all of which were 
detected in both FL and RLN samples. Although naïve, Treg 
and TFH cells are well-described components of FL (1, 7, 8), 
there are no prior reports of CD4CTL cells in the LME of FL 
or any other germinal center-derived lymphoma. CD4CTL 
cells express CD4 but not CD8A/B, expressed a high cyto-
toxicity gene signature score that is comparable with CD8 
T cells (Supplementary Fig.  S6), and with GZMK being the 
top marker gene having expression detectable in 89.6% of 
cells. The EOMES transcription factor, which has been impli-
cated in CD4CTL development (9, 10), was also expressed 
within a subset of cells. In addition, CD4CTL cells bear some 

similarities to TFH cells, including high expression of CXCL13 
and PDCD1, and are transcriptomically most closely related 
to TFH cells by trajectory analysis (Supplementary Fig. S5B). 
Although cytotoxic CD4 T cells were not reported by prior 
scRNA-seq studies of FL, reanalysis of an independent 
data set from Roider and colleagues (ref.  8; Supplemen-
tary Fig.  S7A–S7C) identified a population showing similar 
expression profiles (Supplementary Fig.  S7D). We further 
validated the presence of CD4CTL cells within the neoplastic 
follicles of an independent series of previously untreated FL 
tumors (n  =  17) using multispectral immunofluorescence 
(mIF) imaging. Coexpression of the CD3, CD4, and GZMK 
genes that were characteristic of CD4CTL was detected <2% of 
other quiescent T-cell and natural killer (NK)/NKT cell sub-
sets and was, therefore, used together (CD3+CD4+GZMK+) 
as the most comprehensive phenotype to capture CD4CTL 
by mIF. The EOMES transcription factor was additionally 
analyzed to define EOMES-negative and EOMES-positive 
subsets of CD4CTL. As expected from the scRNA-seq data, 
mIF analysis of FL tumors identified both EOMES-positive 
and -negative CD4CTL cells, consistent with the scRNA-seq 
data, with an average density of 346 (range, 64–856) and 192 
(range, 41–420) cells/mm2, or 1.94% (range, 0.36%–5.03%) 
and 1.08% (range, 0.24%–2.2%) of all cells, inside the neo-
plastic follicle for CD3+CD4+GZMK+ and CD3+CD4+GZMK+ 
EOMES+ cells, respectively (Fig.  3E and F; Supplementary 
Fig. S8). There was no apparent association between CD4CTL 
frequency and tumor grade. Thus, our scRNA-seq analysis 
revealed a cytotoxic CD4 T-cell component within nonma-
lignant lymph nodes and the FL microenvironment. Further 
investigation is required to determine the functional charac-
teristics of CD4CTL.

Hierarchical Clustering of scRNA-seq–Defined T-cell 
Subset Signatures Identifies Four Major Follicular 
Lymphoma Microenvironment Subtypes

The abundance of phenotypically distinct LME T-cell 
populations that we characterized by scRNA-seq was highly 
variable across patients (Fig. 3A). We therefore assessed their 
representation across a large external validation series of bulk 
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gene-expression profiling (GEP) from 1,269 FLs compiled 
from 15 data sets (11–24) using hierarchical clustering of 
the scRNA-seq–derived signatures. Specifically, marker genes 
from each CD4 and CD8 T-cell cluster were used to infer 
the abundance and frequencies of each cell type using a 
microenvironment classification approach (25, 26) to define 
sets of tumors with similar LME T-cell profiles (Fig.  4A). 
Signatures from malignant and nonmalignant B cells were 
also analyzed but were not utilized for the T cell–based clus-
tering. Signatures from CD4CTL and CD8Exh populations had 
multiple overlapping genes and may therefore be partially 
confounded during analysis due to some genes contributing 
to the single sample gene set enrichment analysis (ssGSEA) 
scores of both CD4CTL and CD8Exh signatures. However, 
these signatures have a sufficient number of unique genes 
(89 genes for CD8Exh, 179 genes for CD4CTL) to make them 
amenable for discrimination using the approach that we used 
for clustering. Based on the median scaled ssGSEA scores of 
T-cell populations, samples were clustered into four groups 
using hierarchical unsupervised clustering. After clustering, 
using a similar approach, the values for B-cell signatures 
were calculated and projected onto the heat map. Analysis 
revealed four distinct subtypes of LME in primary human FL 
based on the relative abundance of these T-cell subsets: (naïve, 
n = 461) high in CD8Eff, CD8 naïve, and CD4 naïve; (warm, 
n  =  288) high in CD8Exh, Treg, TFH, and CD4CTL; (depleted, 
n  =  418) high in malignant B cells and depleted of T-cell 
subsets; (intermediate, n  =  102) high in malignant B cells 

and depletion of CD8Eff, CD8 naïve, and CD4 naïve. Failure-
free survival (FFS) data were available for a subset of 137 
advanced-stage FL patients treated with first-line R-CHOP, 
from Pastore and colleagues (14). Patients with naïve, warm, 
and intermediate LME subsets showed similar trends for FFS 
(Fig.  4B). Compared with these collective subsets, patients 
with a T cell–depleted LME had a significantly inferior FFS 
(log-rank P  =  0.05, Fig.  4C). We did not observe any differ-
ence in grade or stage between LME subsets (Supplementary 
Fig. S9A–S9D). The T-cell landscape as defined by scRNA-seq 
cell composition and measured in bulk GEP data, therefore, 
defines four distinct LME subsets in primary human FL, 
including a T cell–depleted subset with an inferior clinical 
outcome following R-CHOP chemotherapy.

Multiple Mechanisms of MHCII Loss on  
Follicular Lymphoma Tumor B Cells

Mutations in chromatin-modifying genes (CMG) are a 
hallmark of FL (27) and affect the expression of genes 
in tumor B cells through epigenetic dysregulation. The 
most frequently mutated CMGs (KMT2D, CREBBP, and 
EZH2) have each been implicated in deregulating interac-
tions between tumor cells and T cells (3, 4, 28), leading us 
to hypothesize that these mutations may underlie tumor 
cell–intrinsic gene-expression changes that drive differen-
tial LME T-cell profiles. Using the whole-exome sequenc-
ing of tumors with available DNA (n = 19; Supplementary 
Table S6; Fig. 5A), we applied single-cell differential GEP to 
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immunofluorescence images show the abundance of cytotoxic CD4 T cells within tumors with low (E) or high (F) abundance within the neoplastic follicle. 
Scale bar, 50 μm.
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identify genes that were significantly altered in association 
with these mutations (Fig.  5B; Supplementary Tables  S7). 
Only genes with a high variant allele frequency (>20%) were 
considered, to avoid the confounding effect of subclonal var-
iants that cannot be genotyped at the single-cell level using 
our scRNA-seq approach. Collectively, the union of genes 
with significantly reduced expression (FDR q-value  <0.05, 
fold change  >1.2; n  =  355; Supplementary Table  S7) in 
association with one or more of these mutations was signifi-
cantly enriched for genes involved in immune cell interac-
tions (P = 1.4 × 10−7) including those with a role in antigen 
processing and presentation (P  =  2.2  ×  10−29), confirming 
that these mutations alter genes involved in immune cell 
interactions (Fig.  5C). In line with prior reports, CREBBP 
and EZH2 mutations were both associated with reduced 
expression of multiple genes involved in antigen presen-
tation through the MHC molecules (refs. 3, 28; Fig.  5D; 
Supplementary Table  S8), which present antigens that are 
recognized by T-cell receptors and therefore affect T-cell 

activation. Mutations of CREBBP were detected in nine 
tumors, cooccurred with EZH2 mutations in three out of 
four EZH2-mutant tumors, and were predominantly associ-
ated with lower MHCII expression (Fig. 5C–E). In contrast, 
EZH2 mutations were selectively associated with lower MHC 
class I (MHCI) expression (Fig.  5C and D). KMT2D muta-
tions were also associated with reduced expression of a 
subset of MHCI genes and cooccurred with EZH2 mutations 
in three of four EZH2-mutant tumors. Using nonmalignant 
B cells from RLNs as a reference to define normal expres-
sion levels of MHCI and MHCII genes that were found to 
be deregulated in association with somatic mutations, we 
observed that loss of MHCI and/or MHCII was not restricted 
to EZH2 and/or CREBBP-mutant tumors (Fig. 5F). Specifi-
cally, MHCII loss was most prevalent and observed in 58% 
(11/19) of tumors, but 27% (3/11) of MHCII-low tumors 
had no detectable CREBBP or EZH2 mutations. Further, one 
CREBBP-mutant tumor showed minimal change in MHCII 
expression. CMG mutations in FL are therefore associated 
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with perturbed expression of immune interaction genes on 
tumor B cells, but additional mechanisms exist for MHCI 
and MHCII loss, such as B2M (29) or CIITA (30) muta-
tions, respectively (Fig. 5F), that are likely to have an equal 
impact on tumor-infiltrating immune cells via deregulation 
of immune synapse formation.

Frequencies of Lymphoma Microenvironment T Cells 
Are Associated with Tumor B-cell MHCII Expression

Having observed different patterns of LME T cells in 
FL, and mutation-associated changes in MHCI and MHCII 
expression on tumor B cells, we next evaluated whether these 
features were associated. Tumor MHCII loss was more signifi-
cantly associated with LME T-cell frequencies than somatic 
mutations of CREBBP, EZH2, or KMT2D (Supplementary 
Table  S9) and was more frequent than MHCI loss, so we 
focused on this feature. MHCII-low tumors had significantly 

reduced levels of CD8Exh (Fig.  6A–C) and CD4CTL subsets 
(Fig. 6D and E) that are high in the “warm” LME subtype and 
low in the “depleted” LME subtype. In contrast, MHCII-low 
tumors had significantly higher frequencies of naïve CD4 and 
CD8 T cells, features of the “naïve” LME subtype, though to a 
lesser degree of significance (Fig. 6A). Deconvolution of pseu-
dobulk transcriptomes from our scRNA-seq cohort using the 
Kassandra algorithm similarly supported these observations 
(Supplementary Fig. S10A). Analysis of TCR clonotypes did 
not reveal any significant difference in CD4 or CD8 T-cell 
clonality between LME subtypes (Supplementary Fig. S10B–
S10C). Despite a relatively modest sample size, we observed 
both a quantitative and qualitative relationship between 
MHCII expression/status and the frequencies of CD8Exh 
(Fig. 6C) and CD4CTL (Fig. 6E) subsets. We, therefore, sought 
to validate the association between MHCII expression and 
CD4CTL abundance in an independent series by performing 
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IHC staining for HLA-DR in FL tumors for which mIF imag-
ing of CD4CTL had been performed (Fig. 3E and F). Tumors 
were scored by two trained hematopathologists according to 
their staining intensity for HLA-DR within the neoplastic fol-
licle (Fig. 6F), highlighting 6 MHCII-high tumors (score 2), 8 
MHCII-low tumors (scores 0–1), and 3 tumors with reactive 
(R) MHCII-high cells that likely correspond to macrophages 
within a background of MHCII-low cells. CD3+CD4+GZMK+ 
cells, the phenotype best encompassing the majority of 
CD4CTL, were significantly higher in frequency within the 
neoplastic follicles of MHCII-high tumors compared with 
MHCII-low tumors (Fig.  6F; one-tailed t test P  =  0.027). In 
mantle cell lymphoma, tumor cell immunopeptidome pro-
filing revealed the presentation of tumor idiotype peptides 
in MHCII that were recognized by CD4CTL in the periph-
eral blood (31). We, therefore, reasoned that loss of MHCII 
may be selectively acquired in cells that have accumulated 
immunogenic mutations in their idiotype sequences, and 
thus may be restricted to immunogenic clades of the immu-
noglobulin hierarchy. By evaluating paired single-cell BCR 
sequencing data, we only found a single anecdotal example 

of this (Supplementary Fig. S11) with all remaining MHCII-
low tumors having uniformly low expression throughout the 
immunoglobulin hierarchy. Thus, the frequencies of FL LME 
T-cell subsets, including cytotoxic CD4 T cells, are correlated 
with tumor B-cell MHCII expression.

Tumor B-cell MHCII Expression Is Associated with 
Differential Expression of Immunotherapeutic 
Targets on Lymphoma Microenvironment T Cells

Having observed changes in T-cell frequencies correlated with 
MHCII expression on tumor B cells, we next explored differ-
ences in gene-expression profiles of LME CD4 and CD8 T cells 
by MHCII status using single-cell differential gene-expression  
analysis (Supplementary Tables  S10–S11; Fig.  7A–F). Cells 
were clustered within the space of the differentially expressed 
genes (DEG), which revealed three clusters for both CD4 and 
CD8 T cells that had a significantly different representations of 
cells originating from MHCII-high versus MHCII-low tumors 
(Fig. 7A, CD8, P = 3.8 × 10−67; Fig. 7D, CD4, P = 2.1 × 10−61). 
The DEGs include markers of T-cell activation, transcription 
factors, and multiple targetable cell-surface immune-checkpoint 
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molecules (e.g., LAG3, TIGIT, and CTLA4). C1 clusters that 
have the lowest frequency of cells from MHCII-low tumors 
expressed the highest level of these genes, in comparison with 
the C3 clusters that have the greatest frequency of cells from 
MHCII-low tumors and express low levels of these genes. This 
is suggestive of higher levels of T-cell activation and exhaustion 
in tumors that have retained MHCII expression, as supported 
by the composition of cell types (Fig.  7B and E) and GSVA 
analysis of a previously described exhaustion score (Fig. 7C and 
F). Tumors with higher levels of T-cell exhaustion dominate the 

activated/exhausted C1 cluster (Supplementary Fig. S12A), with 
the frequency of cells in the CD4 and CD8 activated/exhausted 
C1 cluster being highly correlated in each tumor (Supplemen-
tary Fig.  S12B), in line with variable levels of both CD4 and 
CD8 T-cell activation/exhaustion being associated with high 
MHCII expression.

We next assessed the expression of pairs of markers that are 
targetable using current immune-checkpoint therapies (ICT), 
within the CD4 and CD8 T-cell compartments (Fig. 7G; Sup-
plementary Table S12). FL tumors with low MHCII showed a 
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dual expression of pairs of ICT targets in CD8 T cells from MHCII-low (blue) and MHCII-high (yellow) tumors, in the same ranked order. I, Scatter plots 
show the coexpression of the ICT targets LAG3 and TIGIT on CD8 T cells from MHCII-low (blue) and MHCII-high (yellow) tumors. J, The CITI shows the dual 
expression of pairs of ICT targets in CD4 T cells from MHCII-low (blue) and MHCII-high (yellow) tumors, in the same ranked order. K, Scatter plots show 
the coexpression of the ICT targets TNFRSF4 (OX40) and CTLA4 on CD4 T cells from MHCII-low (blue) and MHCII-high (yellow) tumors.
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uniformly lower expression of each individual ICT target on 
both CD4 and CD8 LME T cells, and a concordantly reduced 
expression of all ICT target pairs (Fig. 7G). We summarized this 
as a combination immunotherapy index (CITI), corresponding 
to the fraction of cells expressing both targets from each ICT 
pair, and compared CITI between CD8 and CD4 T cells from 
MHCII-high and MHCII-low tumors (Fig. 7H–K). For all evalu-
able pairs of ICT targets, the fraction of cells expressing both 
targets was uniformly lower in MHCII-low tumors compared 
with MHCII-high tumors. Within the CD8 T-cell compart-
ment, LAG3 and TIGIT showed the highest CITI in MHCII-
high tumors and significantly reduced frequency in MHCII-low 
tumors (fold change = 4.3; FDR q-value = 1.6 × 10−3; Fig. 7H 
and I). Among ICT pairs with the highest CITI in CD4 T cells 
from MHCII-high tumors were TNFRSF4 (aka. OX40) and 
CTLA4, which also showed significantly reduced frequency in 
MHCII-low tumors (fold change  =  3.9; FDR q-value  =  0.01; 
Fig. 7J and K). Thus, tumor cell MHCII expression correlates 
with the frequency and targetable immune profile of LME T 
cells in FL, highlighting subsets of FL that are likely to have dif-
ferential responses to specific immune-checkpoint blockade.

DISCUSSION
FL is an indolent disease, with some patients having equiva-

lent overall survival to age-matched controls (32, 33). Decreas-
ing the use of cytotoxic chemotherapy in the treatment of FL 
is therefore a priority. The LME of FL is a complex ecosystem 
that includes large numbers of T cells that provide survival sig-
nals that are integral to disease etiology, offering an attractive 
opportunity for immunotherapeutics that target critical nex-
uses. However, single-agent checkpoint blockers such as anti–
PD-1/PD-L1 are largely ineffective in FL (34). Understanding 
the characteristics of the FL LME and how it is modulated by 
tumor-cell-intrinsic characteristics is, therefore, an important 
step toward the rational design of combination immunothera-
peutic strategies that may have increased efficacy.

Prior scRNA-seq studies of FL and DLBCL have provided 
insight into major immune cell populations and highlighted 
critical receptor–ligand pairs that likely regulate T-cell activity 
(6–8). The large number of cells that we sequenced afforded us 
the power to identify an additional transcriptionally distinct 
subset of CD4 T cells expressing effector molecules such as 
granzymes and perforin (CD4CTL). These cells have not been 
previously appreciated as a component of the FL LME, and 
have been infrequently described in other cancers such as blad-
der cancer (35) and mantle cell lymphoma (31). CD4CTL play an 
important role in antiviral immune responses (36), and their 
development in this context has been shown to be mediated 
by the transcription factors T-bet or EOMES (36). Consistent 
with this, we observed high expression of EOMES in a subset 
of the CD4CTL that we defined. Interestingly, CD4CTL were also 
detected within RLN samples, suggesting that these cells may 
be a normal component of the lymph node microenvironment. 
In addition, we identified multiple potential therapeutic tar-
gets on CD4CTL, including markers of exhaustion phenotype 
such as CTLA4, LAG3, and HAVCR2 (a.k.a. TIM-3). Khodadoust 
and colleagues (31) identified cytotoxic CD4 T cells within the 
peripheral blood of mantle cell lymphoma patients following 
tumor idiotype vaccination and showed that cytotoxic CD4 

T cells recognizing idiotype peptides presented in MHCII are 
capable of killing cognate tumor cells (31). Furthermore, we 
have shown that loss of MHCII expression on FL tumor cells 
is associated with reduced proliferation of CD4 T cells (28). It 
is therefore plausible that loss of MHCII by FL tumor cells is 
a mechanism of immune escape from CD4CTL and results in 
their reduced proliferation and underrepresentation within 
the FL LME. In line with this, we observed reduced frequencies 
of CD4CTL in tumors with low MHCII expression. Future stud-
ies are needed to characterize the role of CD4CTL in normal and 
malignant lymphoid tissues, and whether these cells can be 
targeted to induce antilymphoma immunity.

Tumor B cells have been studied in FL and other germi-
nal center-derived lymphomas by scRNA-seq and found to 
have a perturbed expression of genes and signatures that are 
normally dynamically regulated during B-cell development 
(5, 8). Deregulation of normal B-cell development programs 
via somatic mutations is a hallmark of FL and has been 
thought to result in a “block” in terminal differentiation 
(27). However, our use of freshly processed tumors in this 
study allowed us to retain plasma cells, which we observed 
to bear tumor immunoglobulin rearrangements in multiple 
cases. To the best of our knowledge, this is the first direct 
evidence that FL tumor cells can retain the potential to 
terminally differentiate.

Here we also evaluated for the first time in the context of 
lymphoma using scRNA-seq the relationship between tumor 
cell gene-expression changes and somatic mutations. Loss of 
MHCII is common in FL and diffuse large B-cell lymphoma 
and has been linked to recurrent mutations in CREBBP and 
EZH2 (3, 28). We not only confirmed this association at the 
single-cell level but also identified multiple cases of FL with 
CREBBP and EZH2 mutation-independent loss of MHC expres-
sion. Furthermore, we found that the MHCII expression status 
is more significantly associated with LME T-cell characteristics 
than somatic mutations. Responses to therapy in FL are likely 
to be influenced by the LME, as has previously been indicated by 
bulk gene-expression microarray (37) and NanoString analysis 
(38). For example, Tobin and colleagues recently showed that 
FLs with low immune infiltration were enriched for cases with 
the progression of disease within 24 months (38). By leveraging 
our discovery-based derivation of T-cell signatures from scRNA-
seq data to deconvolute immune cell frequencies from bulk 
expression data, we identified four major LME subtypes of FLs 
characterized by a different abundance of LME T cells, includ-
ing a “depleted” subtype with relatively lower frequencies of all 
LME T-cell subsets. A “depleted” LME subtype was associated 
with reduced FFS in R-CHOP–treated patients, consistent with 
prior observations from Tobin and colleagues (38) in the setting 
of FL and by Kotlov and colleagues in the setting of diffuse large 
B-cell lymphoma (25). However, associations between LME 
characteristics and outcome in FL were observed within the 
context of rituximab-chemotherapy (R-chemo) regimens and 
therefore need to be prospectively evaluated with alternative 
first-line therapies such as bendamustine and rituximab (BR) 
or revlamid and rituximab (R2). Furthermore, we expect that FL 
LME subtypes or other associated LME characteristics are likely 
to be associated with differential responses in subsequent lines 
of therapy with chimeric antigen receptor (CAR) T cells, immu-
notherapies or T-cell engagers. We provided some evidence 
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for this by demonstrating that the expression of immuno-
therapeutic targets is significantly different in tumors with 
high or low MHCII expression, including higher frequencies of 
LAG3+TIGIT+ CD8 T cells and CTLA4+TNFRSF4+ CD4 T cells 
in tumors with high MHCII. Importantly, a combination of 
CTLA4-blocking and TNFRSF4-agonist antibodies have shown 
efficacy in lymphoma preclinical models (39). Our hypothesis 
that tumor MHCII expression may be associated with differen-
tial response to immunotherapy is also consistent with obser-
vations in classic Hodgkin lymphoma, in which expression of 
MHCII on malignant Reed-Sternberg cells is associated with 
response to PD-1 blockade (40). Moreover, MHCII can be thera-
peutically modulated using HDAC3-selective inhibitors (41) or 
EZH2 inhibitors (3), suggesting that MHCII-related LME pro-
files may be potentially amenable to therapeutic manipulation. 
We, therefore, posit that it is important to evaluate responses to 
immune therapies within the context of FL LME subtypes and/
or other characteristics such as tumor cell MHCII expression, 
in the event that high response rates are observed only within 
patients with specific LMEs and therefore appear underwhelm-
ing in an unselected population and/or in order to identify 
opportunities for rational therapeutic combinations.

Caveats to this study include the lack of mutation data for 
tumors evaluated by bulk GEP to validate the relationship 
between tumor microenvironment subtype and mutations of 
CREBBP or EZH2. However, the relationship between CREBBP 
mutations and MHCII expression is well established and has 
been independently validated by multiple groups (28, 41–43). 
Tumor MHCII status also cannot be predicted from bulk GEP 
data due to highly variable frequencies of tumor-infiltrating T 
cells and other antigen-presenting cells that express MHCII, 
and will therefore require prospective validation using orthog-
onal approaches. Consistent with our scRNA-seq data, T-cell 
subsets that express high levels of exhaustion markers (CD4CTL 
and CD8Exh) were also correlated in their relative representa-
tion across these LME subtypes defined by GEP deconvolution. 
We also chose to restrict our analysis to mutations with a high 
variant allele frequency so as to avoid the possible confound-
ing effects of subclonal mutations on tumor B-cell expression 
profiles. Although CREBBP mutations have been found to 
be predominantly clonal and invariable from site-to-site and 
during disease evolution of FL (28, 44), Haebe and colleagues 
recently showed site-to-site variability in expression patterns of 
malignant B cells including variable MHCII expression in some 
cases (7). Subclonal patterns of gene expression have also been 
shown to be important in therapeutic resistance in B-cell lym-
phoma (8). However, the relative representation of immune cell 
populations is remarkably consistent between sites, suggesting 
that tumor site sampling bias may only have a limited impact 
on LME profiles. Nonetheless, patterns of clonal heterogeneity 
linked with subclonal mutations, and the spatial relation-
ships between subclones and unique LME components, will 
be important considerations as single-cell technologies are 
developed that allow for simultaneous and spatially resolved 
genotyping and GEP.

In conclusion, the results of this work have important 
implications for FL biology and therapy. We show that the FL 
LME is highly variable across patients, influenced by tumor-
cell–intrinsic characteristics such as somatic mutations and 
MHCII expression, and associated with patient outcome. 

Specifically, we implicate mutation-driven loss of MHCII as a 
potential mechanism of evasion from a cytotoxic CD4 T-cell 
population, and highlight differential expression of immu-
notherapeutic targets in MHCII high and low tumors. These 
observations provide insight into the potential selective 
advantage of MHCII loss in FL, and an important context in 
which to design and evaluate cellular or immune-therapeutic 
strategies to improve the outcomes of FL patients.

METHODS
Sample Collection and Single-Cell Preparation

FL tumor specimens and reactive lymph node specimens (Supple-
mentary Table S1) were obtained with written informed consent in 
accordance with protocols approved by the review board of the Uni-
versity of Texas MD Anderson Cancer Center (protocols 2005-0656 
and PA19-0420) and the Declaration of Helsinki. Race and ethnicity 
data were not available. Reactive lymph node biopsies were obtained 
due to suspicion for lymphoma, but diagnosed as RLN by pathol-
ogy review of an alternate core taken during the same biopsy. All 
samples were mechanically dissociated into single-cell suspension. 
PBS containing 0.04% UltraPure BSA (50 mg/mL) was used for cell 
washing and resuspension to minimize cell losses and aggregation. 
Cell viability was assessed by trypan blue examination, and samples 
with more than 80% viable cells were chosen for Chromium Single-
Cell Immune Profiling Solution, according to Chromium Single-Cell 
5′ Library and Gel Bead Kits User Guide (v1 Chemistry). Briefly, the 
final cell concentration was adjusted to  ∼1,000 cells/μL, single-cell 
suspension mixed with reverse transcription (RT) master mixture was 
loaded on a 10X Genomics single-cell instrument. GEMs were broken 
and single-strand cDNA was cleaned up with DynaBeads. Amplified 
cDNA quality and quantity were assessed by High Sensitivity D5000 
DNA Screen Tape analysis (Agilent Technologies) and Qubit dsDNA 
HS Assay Kit (Thermo Fisher Scientific).

Single-Cell RNA-Library Construction and Sequencing
We used the 10X Genomics Single-Cell 5′ Library Kit (PN-1000020) 

to construct indexed sequencing libraries following the manufacturer’s 
protocol. Sequencing with indexing the Chromium i7 Samplex index 
Kit (PN-120262) was conducted on an Illumina NovaSeq sequencer 
with 2 × 100 bp paired reads to achieve a depth of at least 50,000 read 
pairs per cell.

Single-Cell V(D)J Enrichment Library Construction  
and Sequencing

The Chromium Single-Cell V(D)J Enrichment Kit (Human B Cell, 
PN-1000016; Human T-cell, PN-1000005) from 10X Genomics was 
used to enrich immune repertoire, TCR or B-cell immunoglobulin 
(Ig) transcripts. Fifty nanograms of enriched BCR or TCR products 
was used for library construction, according to the manufacturer’s 
protocol. The single-cell V(D)J enriched library was indexed by the 
Chromium i7 Samplex index Kit (PN-120262) and multiple samples 
were pooled and sequenced in a lane of an Illumina HiSeq 4000 at 
2 × 150 bp with a minimum depth of 5,000 read pairs per cell.

scRNA-seq Bioinformatics
Raw Sequencing Data Processing, Quality Check, Data Filtering, 

and Normalization.  The raw scRNA-seq data were preprocessed 
(demultiplex cellular barcodes, reads aligned (genome reference 
build: hg19), and feature-barcode matrix) using Cell Ranger (10X 
Genomics, v3.0.2). Detailed QC metrics were generated and evalu-
ated. Genes detected in  <3 cells and cells where  <200 genes had 
nonzero counts were filtered out and excluded from subsequent 
analyses. Low-quality cells where  >15% of the read counts derived 
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from the mitochondrial genome were also discarded. In addition, 
cells with a number of detected genes  >6,000 were discarded to 
remove likely doublet or multiplet captures. The resulting cells were 
further filtered using the following criteria to clean additional possi-
ble doublets: (i) The cells with both productive BCRs and TCRs were 
removed. (ii) For the T, NK, myeloid, and B cells derived from unsu-
pervised clustering analysis, we further cleaned out cells expressing 
discrepant canonical markers. For example, in the T and NK cell lin-
eages, the cells or cell clusters that have productive BCRs, or express 
lineage-specific B or myeloid cell markers were removed. Similarly, 
in the myeloid cell populations, the cells or cell clusters that have 
productive TCRs/BCRs, or expressing canonical T or B-cell mark-
ers were removed. Finally, cell clusters that have productive TCRs 
or express T-cell lineage markers were removed from malignant/ 
nonmalignant B-cell lineages. We next performed batch-effect cor-
rection on LME cell populations using Harmony (45). The results 
of principal component analysis, uniform manifold approximation 
and projection (UMAP; ref. 46) plots, and sample-by-cluster distri-
bution were carefully reviewed. Seurat (version 3.2.0; ref.  47) was 
applied to the filtered gene–cell matrix to generate the normalized 
UMI counts using the NormalizeData function.

Unsupervised Cell Clustering and Dimensionality Reduction.  Seurat 
version 3 was applied to the normalized gene–cell matrix to iden-
tify highly variable genes. The elbow plot was generated with the 
ElbowPlot function of Seurat (48) and, based on which, the number 
of significant principal components (PC) was determined. Differ-
ent resolution parameters for unsupervised clustering were then 
examined in order to determine the optimal number of clusters. For 
this study, the first 100 PCs calculated using the top 2,000 highly 
variable genes identified by Seurat were used for unsupervised clus-
tering analysis with the resolution set to 0.5, yielding a total of 31 
cell clusters. Dimensionality reduction and 2-D visualization of the 
single-cell clusters were performed using UMAP3 with Seurat func-
tion RunUMAP.

Determination of Major Cell Types and Cell States.  To determine 
the cell types and cell states, cluster marker genes were calculated 
using FindAllMarkers function in Seurat R package. The significant 
DEGs (FDR q-value < 0.05; fold change > 1.2) were examined and an 
integrative approach was used to determine cell types and states. The 
major cell type (CD4 and CD8) was defined by marker gene expres-
sion (CD3D, CD4, CD40LG, CD8A, and CD8B) by 10×  transcriptome 
and CapID sequencing data. The functional state of each cluster (e.g., 
activated, memory, exhausted, and regulatory) was determined using 
markers described by Sade-Feldman and colleagues (49) and Zheng 
and colleagues (50).

Inferring Cell-Cycle Stage, Hierarchical Clustering, DEGs.  The cell-
cycle stage was computationally assigned to each individual cell 
using the R code implemented in Seurat based on expression profiles 
of the cell-cycle–related signature genes, as previously described 
(51). DEGs were identified for each cluster using the FindMarkers 
function of Seurat R package, and the DEG list was filtered with the 
default criteria to select genes that are expressed in 10% or a greater 
fraction in the more abundant group with the absolute expression 
fold change >1.2 and FDR q-value <0.05. Hierarchical clustering was 
performed for each cell type using the Ward’s minimum variance 
method. Heat map was then generated using the heat map function 
in pheatmap R package for selected DEGs.

TCR V(D)J Sequence Assembly, Paired Clonotype Calling, TCR Diver-
sity and Clonality Analysis, and Integration with scRNA-seq Data.  Cell 
Ranger v3.0.2 for V(D)J sequence assembly was applied for TCR 
reconstruction and paired TCR clonotype calling. The CDR3 motif 
was located and the productivity was determined. The clonotype 
landscape was then assessed and the clonal fraction of each identified 

clonotype was calculated. The TCR clonotype diversity matrix was 
calculated using the tcR R package (52). TCR clonality was defined 
as 1-Peilou’s evenness and was calculated on productive rearrange-
ments as previously described (53). Clonality values approaching 
0 indicate a very even distribution of clone frequencies, whereas 
values approaching 1 indicate an increasingly asymmetric distribu-
tion in which a few clones are present at high frequencies. The TCR 
clonotype data were then integrated with the T-cell phenotype data 
inferred from single-cell gene-expression analysis based on their 
shared unique cell barcodes.

Analysis of Large-Scale Copy-Number Variations.  To quantify the 
level of aneuploidy, profiles of copy-number variation (CNV) inferred 
by inferCNV (https://github.com/broadinstitute/inferCNV) using 
scRNA-seq data were aggregated using a similar strategy adopted 
from a previous study (54). We first computed arm-level CNV scores 
as the mean of the squares of CNV values across each chromosomal 
arm. The arm-level CNV scores were further aggregated across all 
chromosomes by taking the average.

Whole-Exome Sequencing Data Processing and Genotyping QC
Library Preparation and Hybrid Capture Sequencing.  Genomic 

DNA (gDNA) was extracted from these remaining cells of pre-
pared 10X single-cell suspension using AllPrep DNA/RNA Mini Kit 
(QIAGEN). Fifty to 200  ng of gDNA was applied to DNA library 
preparation using the KAPA HyperPlus Kit (Roche), according to 
the manufacturer’s protocol. TruSeq adapters (Bioo Scientific) were 
utilized at the recommended ratio to input DNA. Library quality was 
assessed by High Sensitivity D1000 DNA Screen Tape analysis (Agi-
lent Technologies) and Qubit dsDNA HS Assay Kit (Thermo Fisher 
Scientific). Libraries were 6-plexed in equal quantities and a 1 μg of 
pooled libraries were enriched by hybrid capture using a Nimblegen 
SeqCap Exome v3 (Roche), according to the manufacturer’s protocol. 
Each capture pool was sequenced on a lane of a HiSeq4000 to gener-
ate 2 × 100 bp reads.

Somatic Mutation Calling, Filtering, and Functional Annotation.  
Mutation detection and filtering were performed without the use of 
paired germline control, as previously described (18). Raw FASTQ 
files were assessed for quality using FASTQC. Samples with high-
quality metrics were run through our in-house pipeline. FASTQ 
files were (i) aligned to the human genome (hg19) using BWA-Mem 
(55); (ii) deduplicated using Picard MarkDuplicates; (iii) realigned 
around InDels using GATK (56); and (iv) recalibrated by base score 
using GATK (56). On-target rate and coverage over the targeted 
region were calculated by Picard CalculateHSMetrics. All samples 
achieved our standard minimum threshold of >50× average on-target 
coverage, with an average of 93.7×  (minimum 63×, maximum 171×; 
Supplementary Table  S1). For samples with additional sequencing 
performed to obtain sufficient coverage, FASTQC was performed on 
individual sequencing events and bam files from the same sample 
were merged using BamTools Mappings Merger following alignment. 
Variants were called by GATK Unified Genotyper and VarScan2 (57). 
Only variants called by both tools, with a minimum coverage of 
30× and ≥3 supporting reads were retained, which we have previously 
shown to provide a sensitivity of 96.7% and specificity of 92.9% (28). 
All variants were annotated using SeattleSeq (58). To avoid mapping 
artifacts in repetitive regions, all variants within RepeatMasker or 
tandemRepeat annotated regions were filtered from the data set. All 
variants in dbSNP build 32 or the Genome Aggregation Database 
(gnomAD) were removed (59) to control for potential germline vari-
ants. We have shown previously that this approach effectively filters 
germline variants (18). Only genes previously shown to be recurrently 
targeted by somatic mutation in FL, genes with mutations present 
within ≥3 tumors, and variants with >20% variant allele fraction were 
considered for analysis.

https://github.com/broadinstitute/inferCNV
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Validation of the scRNA-seq Signatures with a  
Public scRNA-seq Data Set

To additionally validate that the identified signatures were expressed 
in the proposed cell types, we used a public scRNA-seq data set includ-
ing B-cell lymphoma data (8). The data were downloaded and analyzed 
according to best practices (60). In brief, cells with high mitochondrial 
expression (>10% of total UMIs per cell) were excluded from further 
analysis. After the selection of 2,000 highly variable genes and the 
removal of expression linked with the total unique molecular identifier 
(UMI) counts and the percent of mitochondrial UMIs, cells from dif-
ferent patients were integrated using Harmony (45). Using the Leiden 
algorithm (ref. 61; with resolution = 1.5), based on the community graph 
constructed on the first 15 Harmony components and with 50 local 
neighborhoods (Supplementary Fig. S7A–S7C). Gene signature scores 
were calculated using the scanpy (62) package function score_genes. 
Next, we used median scaling to calculate the z-score for each of the 
gene signatures across the defined cell populations and compared the 
value of the corresponded cell population with others (Supplementary 
Fig. S7D). The CD4_Naive, Treg, and CD8_Eff signatures had the high-
est Z-scores in the corresponding cell types. The CD8Exh and CD4CTL 
groups had comparable Z-scores within the Roider and colleagues’ data 
set (8) due to lower sequencing depth compared with this study, and the 
overlap of highly expressed genes between cluster markers.

Lymphoma Microenvironment Identification with Public 
Bulk RNA-seq Data Sets Using Unsupervised Clustering

Marker gene signatures from CD4 and CD8 T-cell clusters identi-
fied from the scRNA-seq analysis (Supplementary Table  S4) were 
utilized for clustering with 15 bulk FL cohorts (11–24): GSE127462, 
GSE53820, GSE93261, ICGC_MALY_DE, GSE66166, GSE55267, 
GSE37088, E-MTAB-6088, E-MEXP-2305, GSE132929, GSE103944, 
GSE32018, GSE48047, GSE142334, and GSE16131. RNA-seq data 
sets were processed using Kallisto (63). To estimate the intensity of 
each of the gene sets in bulk expression data (bulk RNA-seq or micro-
array data), gene signature scores were quantified using in-house 
python implementation of ssGSEA (64) as previously described in 
Kotlov and colleagues (25) and Bagaev and colleagues (26) and below. 
After exclusion of non-FL samples, expression data were subjected to 
ssGSEA, which is a method of estimating the expression intensity 
of custom genesets (in this case obtained from the scRNA-seq). For 
each gene set, a score within each sample is ascertained, resulting in a 
score matrix for each expression data set. Gene signature scores were 
median scaled within each data set and combined to increase the 
number of samples (n = 1,269). LME subtype identification was per-
formed on the combined score matrix, and a hierarchical clustering 
approach was utilized (signature scores of the gene sets were used as 
features, a distance matrix was calculated using the Euclidian metric). 
We revealed four major clusters that contained 461, 288, 418, and 
102 samples each (Fig. 4).

Deconvolution to Determine Tissue Cell Composition from 
Pseudobulk Gene-Expression Data

A deconvolution algorithm, Kassandra (65), was used for cell 
deconvolution to further reconstruct the cell composition of each 
LME from bulk RNA-seq. The Kassandra algorithm uses a two-stage 
hierarchical learning procedure for gradient boosting a LightGBM 
model that included training on artificial RNA-seq mixtures of dif-
ferent cell types. This stepwise approach allowed the model to adapt 
using information from other cell types and allowed all data sets hier-
archically to be included for artificial transcriptome creation. Addi-
tionally, a transcripts per million (TPM)-based mathematical noise 
model was developed to take into account technical variability caused 
by different sequencing methods. The algorithm estimates the RNA 
proportion of a cell type from bulk RNA-seq from a sample, which 
is converted into cell percentage if the RNA concentration of a cell 

type is known (66). Kassandra was trained on over 9,400 tissue and 
blood-sorted cell RNA profiles for microenvironment reconstruction. 
Accounting for technical and biological variability, inclusion of aber-
rant cancer cell expression, and quantification and normalization 
of transcript expression produced a robust algorithm. Accuracy was 
confirmed on over 4,000 H&E tissue slides and 1,000 normal and 
tumor tissues with scRNA-seq, cytometry, or IHC comparisons.

Next, the Kassandra algorithm was applied to our scRNA-seq data. 
For this application, we converted the original scRNA-seq data to 
pseudobulk RNA-seq. To create the pseudobulk RNA-seq, all expres-
sion vectors (umi counts) of cells belonging to each patient sample 
were summarized, normalized to the sum of umi counts, and multi-
plied by 1 million. Therefore, for each patient, we created a pseudob-
ulk expression vector that was approximate to TPM. The pseudobulk 
expression vector was then analyzed by the Kassandra ML algorithm 
for deconvolution of this pseudobulk RNA-seq to predict the per-
centages of major cell populations (Supplementary Fig.  S10). Spe-
cifically, the Kassandra algorithm via python was applied to first to 
predict the RNA proportions on different hierarchical levels (main 
cell populations: B cells, CD4 T cells, CD8 T cells, NK cells, mono-
cytes, macrophages, neutrophils, fibroblasts, endothelium, other; 
additional T-cell populations: T helpers, Treg, CD8 T cells with high 
PD1 phenotype, and CD8 T cells with low PD1 phenotype) and sec-
ond to convert RNA signals into cell proportions by precalculated 
Kassandra transformation coefficients (that converts the RNA levels 
to absolute cell numbers for the designated cell populations).

Construction of Immunoglobulin Hierarchy Tree
The immunoglobulin hierarchy tree was constructed using the 

Alakazam module of the Immcantation analysis framework (67). 
BCR data output from Cell Ranger was first reformatted to a compat-
ible file format using the change-10x.sh tool (version 2.7.0). V(D)J gene 
annotations for these cells were determined with IGBLAST (version 
1.14.0; ref. 68). The ParseDb.py function was used to extract produc-
tive sequences for downstream clonotype analysis. For simplicity, 
the heavy-chain information was used to reconstruct the Ig-specific 
lineage tree. The CreateGermlines.py function was used to reconstruct 
the germline sequences of BCRs. The IMGT database was used in 
germline sequence reconstruction. We used the function DefineClones.
py with the dist parameter set to 0.15 to cluster BCR sequences and 
define clonal groups, and then selected cells with expression values 
from the major expanded clones to construct the hierarchy tree. For 
a selected expanded clone, the Ig lineage hierarchy tree was recon-
structed using the buildPhylipLineage function with default param-
eters. The buildPhylipLineage builds the lineage tree of a set of unique 
Ig sequences via maximum parsimony through an external call to the 
dnapars application of the PHYLIP package (version 3.697; ref. 69). 
Distance between two sequences is calculated using seqDist. The 
igraph R package (version: 1.2.6) was used for visualization.

Statistical Analysis
In addition to the bioinformatics approaches described above for 

scRNA/TCR-seq data analysis, all other statistical analysis was per-
formed using statistical software R v3.5.2. Analysis of differences in 
immunologic features (continuous variables) between patient groups 
(MHC II high vs. MHC II low) was determined by the nonparametric 
Mann–Whitney U test. To control for multiple hypothesis testing, we 
applied the Benjamini–Hochberg method to correct P values, and the 
false discovery rates (q-values) were calculated. All statistical signifi-
cance testing was two-sided and results were considered statistically 
significant at P < 0.05 and FDR q-value <0.10 unless otherwise stated.

Multiplex Immunofluorescence Staining and Image Analysis
Multiplex immunofluorescence (mIF) staining was performed 

using a similar method that has been previously described and 
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optimized (70, 71). Briefly, 4-μm-thick formalin-fixed, paraffin-
embedded TMA sections were stained using a mIF panel contain-
ing antibodies against CD19 (clone LE-CD19, Dako), granzyme K 
(clone HPA063181, Sigma-Aldrich), EOMES (clone EPR21950-2411, 
Abcam), CD4 (clone EPR6855, Abcam), HLA-DR (clone EPR3692, 
Abcam), CD8 (clone C8/144B, Thermo Scientific), and CD3ε  (clone 
D7AA6E, CST). All the markers were stained in sequence using 
their respective fluorophore containing in the Opal 7 kit (cat. 
#NEL797001KT; Akoya Biosciences) and the individual tyramide signal  
amplification fluorophore Opal Polaris 480 (cat. #FP1500001KT, 
Akoya Biosciences). The staining TMA was imaged using the Vectra
Polaris spectral imaging system (Akoya Biosciences) using the fluo-
rescence protocol at 10 nm  λ  from 420  nm to 720  nm. The slide 
was scanned in low magnification at   ×10 and then each individual 
core in a high magnification at  ×20. Each marker was analyzed at 
single-cell level, and a supervised algorithm (InForm image analysis 
software, Akoya Biosciences) for phenotyping was built for each 
marker. Cell density for each marker and possible combinations were 
consolidated using R studio 3.5.3 (Phenopter 0.2.2 packet, Akoya 
Biosciences). Data for cores in which CD19 segmentation failed or 
high background was observed were filtered from the analysis. For 
tumors that had multiple cores on the TMA, the median value of the 
independent cores was used for statistical analysis.

IHC for HLA-DR
Lymph node formalin-fixed paraffin-embedded FL tissues were used 

to build a tissue microarray (TMA) carrying 3 cores with 1 mm diameter 
for each case (72). The IHC protocol is briefly described: TMA blocks 
were sectioned at 4 μm thickness and stained using Leica Bond RX auto-
mated stainer (Leica Biosystems). The antigen retrieval was performed 
with Bond ER Solution #1 (AR9961, Leica Biosystems) equivalent to 
citrate buffer, pH 6.0 for 20 minutes at 100°C. Primary antibody against 
HLA-DR (clone EPR3692; cat. #ab92511, dilution 1:4,000) was used 
and incubated for 15 minutes at room temperature. The antibody was 
detected using the Bond Polymer Refine Detection kit (DS9800, Leica 
Biosystems) with Diaminobenzidine (DAB) as chromogen. All the slides 
were counterstained with hematoxylin, dehydrated, and coverslipped. 
Tonsils were used as an external positive control. All cores were analyzed 
using standard microscopy by two pathologists, and the intensity was 
scored based on the predominant pattern (0: negative, 1: weak, 2: strong, 
R: weak with reactive cells) in the intrafollicular area.

Data Availability
Raw sequencing data are available through the European Genome-

Phenome Archive (EGA), Accession EGAS00001006052. Single-cell 
RNA-sequencing data have been uploaded in a browsable format to the 
Chan Zuckerburg cellxgene repository (https://cellxgene.cziscience. 
com/collections/968834a0–1895–40df-8720–666029b3bbac).
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