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Abstract

Disease-associated SNPs generally do not implicate target genes, as most disease SNPs are 

regulatory. Many SNP-to-gene (S2G) linking strategies have been developed to link regulatory 

SNPs to the genes that they regulate in cis. Here, we developed a heritability-based framework for 

evaluating and combining different S2G strategies to optimize their informativeness for common 

disease risk. Our optimal combined S2G strategy (cS2G) included 7 constituent S2G strategies and 

achieved a precision of 0.75 and a recall of 0.33, more than doubling the recall of any individual 

strategy. We applied cS2G to fine-mapping results for 49 UK Biobank diseases/traits to predict 
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5,095 causal SNP-gene-disease triplets (with S2G-derived functional interpretation) with high 

confidence. We further applied cS2G to provide an empirical assessment of disease omnigenicity; 

we determined that the top 1% of genes explained roughly half of the SNP-heritability linked to all 

genes, and that gene-level architectures vary with variant allele frequency.

Editor summary:

A heritability-based framework for evaluation of SNP-to-gene linking methods is used to construct 

an optimal, combined approach and applied to 49 traits. Analysis of trait omnigenicity suggests 

gene-level architecture varies depending on variant frequency.

Introduction

While genome-wide association studies (GWAS) have successfully identified thousands of 

loci associated with human diseases and complex traits, they generally do not identify 

the underlying causal variants, target genes, cell-types and biological functions, thus 

limiting the translation of GWAS findings into discoveries that will enhance disease 

treatment1–3. Although recent advances in fine-mapping techniques have improved our 

ability to nominate causal variants4–7, identifying the underlying target genes remains 

a critical challenge, as causal variants are predominantly regulatory SNPs8–11 that do 

not necessarily regulate the closest genes12–17. Large gene expression quantitative trait 

loci (eQTL) data sets18,19 have proven useful in linking disease variants to their target 

genes through colocalization analyses20–24 or transcriptome-wide association studies14,17,25, 

but explain a limited proportion of disease SNP-heritability15,26,27, likely due to limited 

representation of disease-relevant cell-types/states28. Many other functional assays and 

computational approaches have recently been developed to link regulatory SNPs to their 

target genes in cis in a broad set of cell-types26,29–38; for example, EpiMap enhancers37 

and ABC enhancers34,38 are linked to their target genes using correlation of enhancer 

activity with gene expression across cell-types and a quantitative combination of enhancer 

activity and 3D contact frequencies, respectively. Combining SNP-to-gene (S2G) linking 

strategies has previously been proposed as an appealing approach to improve SNP-to-gene 

linking39–42. However, it is currently unclear how S2G strategies should be prioritized in the 

context of GWAS, limiting our ability to pinpoint disease genes.

Here, we developed a framework for evaluating and combining S2G strategies to optimize 

their informativeness for human disease risk, leveraging polygenic analyses of disease SNP-

heritability. We applied this framework to GWAS summary statistics for 63 diseases and 

complex traits, evaluating 50 S2G strategies and constructing an optimal combined S2G 

strategy (cS2G) informed by GWAS data. We applied cS2G to genome-wide fine-mapping 

results for 49 diseases and complex traits from the UK Biobank7,43 to pinpoint disease 

genes at thousands of GWAS loci and to enable an empirical assessment of the “omnigenic 

model”44–46.
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Results

Overview of Methods

A SNP-to-gene (S2G) linking strategy is defined as an assignment of raw linking values 

between each SNP and zero or more candidate target genes, which we converted into linking 

scores such that each SNP has a sum of linking scores ≤1 (Figure 1a; see Methods). We 

analyzed 50 S2G strategies that link SNPs to their target genes in cis (Supplementary Table 

1 and Supplementary Note), including 13 main strategies (Table 1). Correlations and overlap 

proportions between S2G strategies (Supplementary Table 2) indicate low concordance 

between the strategies. In our primary analyses, we restricted each S2G strategy by 

restricting each SNP to the gene(s) with the highest linking score, as we observed that 

this led to slightly higher precision (Extended Data Figure 1).

To evaluate each S2G strategy’s informativeness for pinpointing disease genes, we leveraged 

polygenic analyses of disease SNP-heritability (we denote SNP-heritability as h2 throughout 

the paper). We aimed to define and estimate parameters that correspond to an S2G strategy’s 

h2 coverage (proportion of total disease SNP-heritability that is linked to genes), precision 

(proportion of disease SNP-heritability linked to genes that is linked to the correct target 

gene), and recall (proportion of total disease SNP-heritability that is linked to the correct 

target gene). First, we defined h2 coverage as the proportion of SNP-heritability explained 

by all SNPs linked to one or more genes (weighted by their linking scores) (Figure 1b). 

Second, we defined precision as the relative excess SNP-heritability enrichment of SNPs 

linked to a critical gene set (see below) vs. SNPs linked to all genes, as compared to the 

(gold-standard) Exon S2G strategy; this definition is based on the intuition that a precise 

S2G strategy is more likely (than an imprecise strategy) to link a disease SNP to a critical 

gene (Figure 1c). Third, we defined recall as the product of the h2 coverage and precision. 

We estimated these quantities by applying stratified LD score regression (S-LDSC) to 

63 independent diseases and complex traits (average N=314K; Supplementary Table 3), 

meta-analyzing results across traits. We jointly analyzed SNP annotations derived from the 

50 S2G strategies for ~10M SNPs with a minor allele count ≥5 in a 1000 Genomes Project 

European reference panel47.

Our definitions of precision and recall rely on a critical gene set (see above). We used a 

non-trait-specific training critical gene set to construct an optimal combined S2G strategy 

(see below), and trait-specific validation critical gene sets to evaluate the optimal combined 

S2G strategy while avoiding overfitting. We defined the training critical gene set as the 

top 10% of genes with the most highly constrained exons and conserved promoters, and 

the validation critical gene set for a given trait as the top 10% of genes ranked by the 

PoPS method48; the excess overlap between the gene sets was limited (see Supplementary 

Figure 1 for distribution of overlap across diseases/traits) and did not impact our results 

(see Supplementary Note). These gene sets attained high SNP-heritability enrichment 

(Supplementary Table 4), validating their informativeness for disease.

We constructed combined S2G strategies as linear combinations of linking scores 

from constituent S2G strategies (Figure 1d). We developed an optimization framework 

maximizing the recall while constraining precision (defined using the training critical gene 
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set) to be ≥0.75; high precision is important for maximizing the utility of functional 

follow-up studies. The precision and recall of the resulting combined S2G strategies were 

subsequently evaluated using the validation critical gene sets.

Further details are provided in the Methods section. We have released open-source software 

implementing our framework (see Code Availability), and have made all S2G strategies, 

SNP annotations and critical gene sets analyzed publicly available (see Data Availability).

Evaluation of S2G strategies

We estimated the h2 coverage, precision and recall for the 50 S2G strategies (Supplementary 

Table 5); we used the (trait-specific) validation critical gene sets to perform these 

evaluations. Results for the 13 main S2G strategies are reported in Figure 2 and 

Supplementary Figure 2. The Exon and Promoter strategies attained high precision (1.00 for 

Exon (by definition) and 0.80 for promoters), but low h2 coverage (0.06–0.10) and thus low 

recall (0.05–0.10). On the other hand, the Closest TSS strategy attained low precision (0.34), 

but the highest h2 coverage (1.00) and recall (0.34). In addition to Exon and Promoter, 5 

other main S2G strategies attained high precision (>0.5) but low recall (0.02–0.13): the 2 

fine-mapped cis-eQTL strategies, the 2 enhancer-gene linking strategies informed by gene 

expression, and the scATAC-seq strategy. Interestingly, S2G strategies using fine-mapped 

cis-eQTLs26 attained significantly higher precision than S2G strategies using all cis-eQTL 

(0.68±0.07 vs. 0.40±0.04 in GTeX, 0.81±0.11 vs. 0.29±0.03 in eQTLGen), consistent with 

previous reports of low precision for strategies using all cis-eQTL17,49 and emphasizing the 

advantage of fine-mapped cis-eQTL for more precise analyses of GWAS data.

The 50 S2G strategies included 27 S2G strategies based on physical distance to TSS. As 

expected, we observed that proximal closest TSS are likely to implicate target genes (e.g. 

precision of 0.78 for closest TSS range <1kb), whereas distal closest TSS are much less 

likely to implicate target genes (e.g. precision of 0.15 for closest TSS range 100–500kb) 

(Extended Data Figure 2 and Supplementary Table 5). We further determined that closest 

TSS are moderately likely to systematically implicate target genes: precision of 0.34, 

decreasing to 0.17 for 2nd closest TSS and 0.062 for 5th closest TSS. The mean value 

of 0.043 for 6th-20th closest TSS suggests that genes located in the same regions as causal 

disease genes have a slightly elevated probability of being causal. Further validation of our 

precision metric is provided in the Supplementary Note and Supplementary Figures 3–4.

We next investigated whether functionally informed S2G strategies restricted to trait-specific 

tissues and cell-types were more precise for the corresponding traits. We determined that 

S2G strategies defined using all available tissues and cell-types achieved higher precision 

than S2G strategies restricted to blood and immune cell-types (Extended Data Figure 3) 

in analyses restricted to 11 autoimmune diseases and blood cell traits (average N=257K; 

Supplementary Table 3), perhaps due to limited biosample size; these results support 

Code Availability
Code to estimate precision and recall of S2G strategies, and code to create combined S2G strategies have been made publicly available 
at https://alkesgroup.broadinstitute.org/cS2G/code and https://doi.org/10.5281/zenodo.6415925.
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including all available cell-types in current efforts to pinpoint disease genes17,27 (see 

Discussion).

In summary, we developed and validated a polygenic framework for evaluating S2G 

strategies, inferring high precision but low recall for many functionally informed S2G 

strategies, and low precision but relatively high recall for non-functionally informed 

strategies (such as Closest TSS).

Combining S2G strategies

We constructed an optimal combined S2G strategy (cS2G) by considering linear 

combinations of linking scores from 10 functionally informed main S2G strategies (Table 1), 

maximizing the recall while constraining precision to be ≥0.75 using the (non-trait-specific) 

training critical gene set. The resulting cS2G strategy included 7 constituent S2G strategies: 

Exon, Promoter, eQTLGen blood fine-mapped cis-eQTL, GTEx fine-mapped cis-eQTL, 

EpiMap enhancer-gene linking, ABC, and Cicero blood/basal (ordered from highest to 

lowest weight; Supplementary Table 6). The cS2G strategy linked 22% of common SNPs 

(minor allele frequency (MAF) ≥5%) to at least one gene and 99.6% of genes to at least 

one common SNP (average of 1.20 genes per linked common SNP and 79 common SNPs 

per linked gene). Despite the high weights for Exon and Promoter, 43% of linked common 

SNPs were not linked to the gene with closest TSS; the mean distance to the gene TSS 

for all cS2G links involving common SNPs was 96kb (Supplementary Figure 5). The 

number of common SNPs linked per gene was correlated to gene-body length (r2=0.13), but 

uncorrelated to gene-body length after correcting for exon and promoter length (r2=0.01). 

Strikingly, only 18% (resp. 3.3%) of the cS2G links were supported by at least 2 (resp. 3) 

of 7 constituent S2G strategies (Supplementary Table 7), consistent with the low correlations 

between the constituent S2G strategies (Supplementary Table 2). This provides a strong 

motivation for combining multiple S2G strategies.

We evaluated the cS2G strategy using the (trait-specific) validation critical gene sets and 

meta-analyzed the results across the 63 independent diseases and complex traits. The cS2G 

strategy attained h2 coverage of 0.44 (s.e. 0.01), precision of 0.75 (s.e. 0.06), and recall of 

0.33 (s.e. 0.03) (Figure 2 and Supplementary Table 5), more than doubling the precision 

and/or recall of any individual strategy; this implies that 33% of SNP-heritability can be 

linked to causal genes with 75% confidence using cS2G. Notably, cS2G attained much 

higher precision than two previously proposed combined strategies, GeneHancer39 (0.14) 

and Open Targets42 (0.33) (Supplementary Table 5). Additional experiments comparing 

cS2G strategy to alternative approaches for combining S2G strategies are described in the 

Supplementary Note and Supplementary Tables 8–11.

In summary, we constructed an optimal combined S2G strategy (cS2G), incorporating 7 

constituent S2G strategies, which more than doubles the precision and/or recall of any 

individual strategy; our evaluation of cS2G was based on validation critical gene sets that 

were distinct from the training critical gene set used to optimize cS2G.
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Validating the combined S2G strategy using curated examples

We sought to validate the combined S2G strategy using a manually curated list of 

17 disease-associated loci (including 12 loci from ref.50) containing 25 experimentally 

validated causal SNP-gene pairs (Table 2), and reflecting the very limited set of 

experimentally validated disease-associated SNP-gene pairs50. We restricted these analyses 

to SNPs that had a linked gene with cS2G linking score >0.5, consistent with our goal 

of attaining high precision for each individual SNP analyzed to maximize the utility of 

functional follow-up studies. 16 of the 25 pairs had a linked gene with cS2G linking score 

>0.5. The cS2G prediction of the target gene matched the experimentally validated gene 

for 11 of these 16 loci, yielding a precision of 11/16=0.69 (s.e.= 0.12) and a recall of 

11/25= 0.44 (s.e.=0.10) (Table 2 and Supplementary Table 12). The precision was lower 

than our estimate based on validation critical gene sets (0.75) (and lower than the precision 

of one constituent strategy; 0.78 (s.e.=0.14) for EpiMap), whereas the recall was higher 

than our estimate based on validation critical gene sets (0.33) (and higher than the recall 

of any constituent strategy); however, these differences were not statistically significant 

due to the small number of experimentally validated SNP-gene pairs (Supplementary 

Table 13). Interestingly, of the 11 pairs that were correctly linked to the experimentally 

validated gene, 8 pairs were linked by at least two cS2G constituent strategies. However, we 

failed to identify the well-studied rs1421085-IRX5/IRX3 link12, as none of the constituent 

S2G strategies linked rs1421085 to either IRX5 or IRX3; we also failed to identify the 

well-studied rs12740374-SORT1 link51, as rs12740374 is an exonic SNP for CELSR2, 

outweighing the link to SORT1 by the GTEx fine-mapped cis-eQTL strategy.

We obtained similar results when analyzing a larger curated list consisting of disease genes 

validated with high confidence without strictly requiring experimental validation42 (see 

Supplementary Note and Supplementary Tables 14–16).

In summary, these analyses provide a promising validation of the potential of cS2G to 

pinpoint causal disease genes.

Leveraging the cS2G strategy to pinpoint disease genes

In previous work, we showed that functionally informed fine-mapping under the PolyFun 

framework robustly identifies a large number of fine-mapped SNPs for 49 UK Biobank 

diseases/traits (using N=337K unrelated British samples7,43) with well-calibrated posterior 

inclusion probabilities (PIP)7. Here, we leveraged the high precision and recall of our 

combined S2G (cS2G) strategy to predict target genes of 9,670 predicted causal SNP-

disease pairs with PIP >0.5 from PolyFun analyses (7,675 unique SNPs) (Supplementary 

Table 17).

Restricting to SNPs that had a linked gene with cS2G linking score >0.5, we predicted 

7,111 causal SNP-gene-disease triplets (5,384 unique SNPs; 3,401 unique genes) (Figure 

3a and Supplementary Table 17). The mean PIP of the 7,111 SNP-gene-disease triplets was 

equal to 0.80. We further assigned a confidence score to each of the triplets by multiplying 

the PIP of the constituent SNP and its precision (see Methods and Supplementary Tables 

17–18). The average confidence score was 0.64, implying that 64% of the 7,111 SNP-gene-
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disease triplets (4,554 triplets) predict the correct causal SNP and target gene (Figure 3a 

and Supplementary Table 18). Distributions of confidence scores are reported in Figure 3b. 

Using cS2G, we detected 5,095 triplets with confidence score >0.5 (72% of its detected 

triplets), which is 1.84 times larger than what could be attained using any individual 

functionally informed constituent S2G strategy (only 2,763 for Exon, even though the 

Exon strategy had the highest confidence scores, consistent with its high precision), and 

1.58 times higher than what could be attained using the Closest TSS strategy (Figure 3b 

and Supplementary Table 18). In many instances, multiple causal SNPs were linked to the 

same gene (e.g. 119 genes were each linked to at least 5 different fine-mapped SNPs for 5 

different diseases/traits; Supplementary Table 19), implying that a single gene can be causal 

for different diseases/traits using different causal SNP-gene links; we note that SNPs linked 

to the same gene are generally not in LD with each other (mean r2=0.09 across 3,900 pairs).

The SNP-gene-disease triplets predicted by cS2G included 2,163 triplets involving distal 

regulatory fine-mapped SNPs that were not in the gene body (or promoter) of the target 

gene, of which 532 were supported by at least 2 of the functionally informed constituent 

S2G strategies used by cS2G (Supplementary Table 17). We highlight 4 examples (Figure 

4). Briefly, these examples included instances where two independent fine-mapped SNPs 

were linked to the same gene (Figure 4a and Figure 4b) and instances where the functionally 

informed constituent S2G strategies either implicated (Figure 4c) or failed (Figure 4d) to 

implicate a plausible critical tissue/cell-type (Supplementary Table 20), highlighting both the 

benefit of aggregating S2G links across multiple cell-types to infer SNP-gene pairs, and the 

challenge of identifying the causal cell-type of action. Further details of each example are 

provided in the Supplementary Note.

In summary, our cS2G strategy predicted 5,095 causal SNP-gene-disease triplets with 

high confidence, far more than any other S2G strategy; these triplets represent, to 

our knowledge, the largest high-confidence SNP-gene-disease resource with S2G-derived 

functional interpretation to date.

Leveraging the cS2G strategy to assess disease omnigenicity

Previous work has proposed an “omnigenic model” in which all genes expressed in disease-

critical cell-types impact the function of core disease genes and thus impact disease SNP-

heritability44–46. This work raises intense interest in estimating components of disease 

SNP-heritability contributed by each gene, but this has yet to be empirically assessed, due to 

the challenges of linking SNPs to genes. We leveraged our combined S2G (cS2G) strategy 

to estimate the SNP-heritability causally explained by SNPs linked to each gene for 49 UK 

Biobank diseases/traits (Supplementary Table 21) with functionally informed genome-wide 

fine-mapping results (not restricted to GWAS loci) available for all MAF ≥0.1% SNPs7. 

We re-estimated the SNP-heritability linked to ranked gene sets by running S-LDSC11,52,53 

on summary statistics computed from N=122K European-ancestry UK Biobank validation 

samples that were distinct from the training samples used for fine-mapping (to avoid 

winner’s curse; see Methods and ref.7). We also estimated the effective number of causal 

genes (Ge) for each trait (using fourth moments of per-gene effects, analogous to Me 
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for SNPs54), and estimated this quantity separately for per-gene h2 linked to common 

(MAF≥5%) and low-frequency (0.1%≤MAF<5%) SNPs.

The top 200 (resp. top 2,000) genes explained 52±6% (resp. 96±8%) of the disease SNP-

heritability linked to genes in cis using the cS2G strategy (h2
gene, which captures 53±3% 

of h2), meta-analyzed across a subset of 16 independent diseases/traits (Figure 5a and 

Supplementary Tables 22–23). Estimates directly based on the N=337K training samples 

used for fine-mapping were very similar, implying minimal effects of winner’s curse 

(Figure 5a). Results were similar when restricting to genes expressed in disease-critical 

cell-types55 (as proposed in ref.44) (Supplementary Figure 6) and when using a restricted 

set of N=49K validation samples that were unrelated to the N=337K training samples 

(Supplementary Figure 7). Interestingly, repeating the analysis using the Closest TSS S2G 

strategy implicated a far more polygenic gene-level architecture that required the top 

1,000 (resp. top 10,000) genes to explain 48±2% (resp. 85±2%) of h2
gene (Figure 5a and 

Supplementary Table 22); these results demonstrate the benefits of using more precise S2G 

strategies to infer more accurately infer gene-level architectures. We caution that the primary 

analysis using cS2G may still slightly overestimate gene-level polygenicity, because even 

the cS2G strategy is not perfectly precise. We further caution that all our findings pertain to 

effects of SNPs in cis (see Discussion), potentially leading to underestimation of gene-level 

polygenicity.

We estimated the effective number of causal genes (Ge) for each trait. Estimates of Ge varied 

widely, from 3,289 (neuroticism) to 1,375 (height) to 80 (total cholesterol) with a median 

of 540 (across 16 independent traits), and were strongly correlated (log-scale r=0.99) to 

estimates of the effective number of independently associated SNPs (Me; median=1,991), a 

SNP-based measure of disease/trait polygenicity54 (Figure 5b and Supplementary Table 24; 

the strong correlation provides a validation of both Ge and Me).

We further estimated Ge,common (resp. Ge,low-frea) by restricting per-gene h2 explained by 

causal SNPs to the SNP-heritability causally explained by common (resp. low-frequency) 

SNPs linked to each gene. Gene-level architectures were more polygenic for common vs. 

low-frequency SNPs, with median Ge,common of 427 vs. median Ge,low-freq of 157 (median 

ratio of 2.8) across the 16 independent traits (Figure 5c and Supplementary Table 21), 

consistent with more polygenic SNP architectures for common vs. low-frequency SNPs 

due to the action of negative selection (Me,common / Me,low-freq=3.9 in ref.54). Surprisingly, 

there was low concordance between genes underlying gene-level architectures for common 

vs. low-frequency SNPs (Extended Data Figure 4 and Supplementary Table 24–25). 

However, we observed consistent excess overlap between the top 200 genes contributing 

to h2
gene,common (resp. h2

gene,low-freq) and two disease-specific gene sets56,57 (Extended Data 

Figures 5–6), suggesting that common and low-frequency variant gene-level architectures 

are driven by different genes pertaining to similar biological processes.

In summary, our cS2G strategy provided a quantitative assessment of the “omnigenic 

model”44–46, implicating a far less polygenic gene-level architecture than the Closest TSS 

S2G strategy. We inferred a more polygenic gene-level architecture for common variants 
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as compared to low-frequency variants, with little overlap between genes underlying these 

gene-level architectures despite shared biological processes.

Discussion

We developed a polygenic framework to evaluate and combine S2G strategies; in particular, 

our framework is a substantial advance over previous approaches for evaluating S2G 

strategies using curated lists of disease-associated SNP-gene pairs42,48 (see Supplementary 

Note for further discussion). We applied our framework to construct a combined S2G 

(cS2G) strategy that achieved a precision of 0.75 and a recall of 0.33, more than doubling 

the precision and/or recall of any individual strategy. We applied cS2G to fine-mapping 

results for 49 UK Biobank diseases/traits to predict 5,095 causal SNP-gene-disease triplets 

(with S2G-derived functional interpretation) with high confidence, including 2,163 triplets 

involving distal regulatory fine-mapped SNPs that were not in the gene body (or promoter) 

of the target gene; notable examples included CDKN1C in type 2 diabetes, BCL6 in asthma, 

PDCD1 in eczema, and LAMP1 in HDL, all of which were supported by multiple S2G 

strategies. We further applied cS2G to provide a quantitative assessment of the “omnigenic 

hypothesis”44–46, concluding that the top 200 (1%) of ranked genes explained roughly half 

of the SNP-heritability linked to all genes; this implies that gene-level architectures in cis are 

largely driven by a relatively modest number of top genes.

Our findings have several implications for downstream analyses. First, we recommend 

that GWAS fine-mapping studies employ cS2G to powerfully link fine-mapped SNPs to 

their target genes; we note that, as with previous S2G approaches, cS2G can be combined 

with similarity-based approaches leveraging genome-wide patterns of associated genes (as 

proposed in ref.48). Second, our framework can be used to optimize (and combine) S2G 

strategies that may be developed in the future; the development of new S2G strategies 

remains a key priority, as our cS2G strategy—despite its large improvement over other 

S2G strategies—attained a modest recall of 33%, implying that only 1/3 of disease SNP-

heritability can be explained by causal disease SNPs linked to their correct target genes. 

Third, our results highlight the advantages of enhancer-gene linking strategies such as 

EpiMap and ABC in future efforts to improve S2G strategies; their advantages include 

cost effective experiments targeting multiple cell-types (EpiMap and ABC provide links 

for 833 and 167 cell-types, respectively), and high potential for linking rare variants to 

genes. Fourth, our findings support the hypothesis that rare variant association studies58,59 

will provide biological insights complementary to those of GWAS—both because we 

observed little overlap between genes underlying common variant and low-frequency variant 

gene-level architectures, and because we determined that low-frequency variant gene-level 

architectures were less polygenic (median ratio of 2.8); we expect these differences 

to be even more pronounced for rare variant architectures. Finally, cS2G can improve 

identification of gene sets that are enriched for disease SNP-heritability (although it has 

not been optimized for this specific purpose; Supplementary Figure 8, also see ref.55); 

we further note the importance of including appropriate SNP annotations in the model 

used by S-LDSC in analyses of enriched gene sets, in order to avoid biased enrichment 

estimates (see Methods and Supplementary Figure 9). Investigating the relative performance 
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of different combined S2G strategies in analyses of gene sets that are enriched for disease 

SNP-heritability is a direction for future research.

We note several limitations of our work. We included all available tissues and cell 

types in the constituent S2G strategies of cS2G, as we observed that this led to higher 

precision (Extended Data Figure 3), perhaps due to limited biosample size. However, S2G 

links involving disease-critical tissues/cell-types are central to understanding biological 

mechanisms (Figure 4, Supplementary Table 20, Supplementary Note). As larger data 

sets become available, it may become practical to define disease-specific combined 

S2G strategies that restrict to disease-critical tissues and cell types, furthering the goal 

of pinpointing the causal cell-types of action of SNP-gene-disease triplets. Additional 

limitations are discussed in the Supplementary Note. Despite these limitations, our results 

convincingly demonstrate both the advantages of using our polygenic framework to evaluate 

and combine S2G strategies, and the effectiveness of using our cS2G strategy to pinpoint 

disease genes.

Methods

Ethics statement

This study relied on analyses of publicly available genetic and genomic datasets and so did 

not require ethical approval.

SNP-to-gene (S2G) strategies

A SNP-to-gene (S2G) linking strategy k is defined as an assignment of a raw linking value 

Ak,j,g, between each SNP j and zero or more candidate target genes g, which we converted 

into a linking score ψk,j,g such that each SNP has a sum of linking scores ≤1 (we allowed 

Σg ψk,j,g < 1 to allow for incomplete SNP-to-gene linking; see below). We considered 

only links related to a list of 19,995 genes, including 17,871 protein-coding genes, that 

pass our quality control procedure (see Data Availability). Specifically, we selected genes 

in Ensembl61 (grch37, accessed on 2019-04-24), GENCODE60 (release 19), and RefSeq62 

(refGene, version 2017-03-08) databases that have a unique identifier in all the datasets, 

overlapping starting and ending gene positions, and similar strand information. We verified 

that restricting our analysis to 17,871 protein-coding genes (instead of 19,995 protein-coding 

and non-protein-coding genes) had little impact on our results (Supplementary Figure 10).

We considered 50 S2G strategies (Table 1, Supplementary Table 1, and Supplementary 

Note); in each case we first considered raw linking values Ak,j,g, which we next converted 

into linking scores ψk,j,g. For all but one strategy (Hi-C distance, see Supplementary Note), 

we converted raw linking values Ak,j,g (as defined above) into linking scores ψk,j,g such that 

each SNP has a sum of linking scores over genes being 0 or 1 (linking score ψk,j,g should 

not be interpreted as probabilities). We note that some S2G strategies include instances of 

SNP-gene links with low linking scores, based on the definitions of raw linking values for 

each strategy. When an S2G strategy linked a SNP to multiple genes, we restricted each 

S2G strategy such that each SNP was restricted to the gene(s) with the highest linking score 

(regardless of whether this linking score was high or low in absolute terms; no specific 
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threshold), as we observed that this led to slightly higher precision (Extended Data Figure 

1).

Correlations and overlap proportions between the S2G strategies were computed on all 

SNP-gene links observed by at least one of 34 S2G strategies (we omitted 6th closest TSS 

to 20th closest strategy and Hi-C due to computational constraints) (Supplementary Table 2). 

Overlap proportion between a strategy k and a strategy k’ is defined as the proportion of 

SNP-gene links reported by strategy k that are also reported by strategy k’ (these values are 

not symmetric). We defined a subset of 13 independent S2G strategies (different from the 13 

main strategies) with r2 < 0.1 when comparing h2 coverage, precision or recall estimates.

We note that the functionally informed S2G strategies are derived from functional assays 

with widely varying biosample sizes. For example, PCHi-C datasets used 17/27 cell-types, 

enhancer maps such as EpiMap or ABC used multiple functional assays for 127 and 833 

cell-types, and cis-eQTLs such as GTeX and eQTLGen used 17,382 and 31,684 RNA-seq 

samples. Thus, our evaluation of S2G strategies should not be viewed as an evaluation of the 

underlying functional assays.

Evaluation of S2G strategies

To evaluate each S2G strategy’s informativeness for pinpointing disease genes, we aimed to 

define and estimate parameters that correspond to an S2G strategy’s h2 coverage (proportion 

of total disease SNP-heritability that is linked to genes), precision (proportion of linked 

disease SNP-heritability that is linked to the correct target gene), and recall (proportion of 

total disease SNP-heritability that is linked to the correct target gene).

First, we defined h2 coverage as the proportion of SNP-heritability explained by all SNPs 

linked to one or more genes (weighted by their linking scores):

ℎ2 coverage(k) = ℎ(genes:all,S2G:k)
2 /ℎ2 (1)

where ℎ(genes:all,S2G:k)
2  is the SNP-heritability explained by common SNPs linked all genes 

using k, and h2 is the SNP-heritability explained by common SNPs.

Second, we defined precision as the relative excess SNP-heritability enrichment of SNPs 

linked to a critical gene set (see below) vs. SNPs linked to all genes, as compared to the 

(gold-standard) Exon S2G strategy. More precisely, the precision of an S2G strategy k was 

defined as

precision(k) = gene − enricℎment (k) − 1
gene − enricℎment (Exon) − 1 (2)

with

gene − enricℎment (k) = ℎ(genes:critical, S2G:k)
2

ℎ(genes:all, S2G:k)
2 / M(genes:critical, S2G:k)

M(genes:all, S2G:k)
(3)
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where ℎ(genes:critical,S2G:k)
2  is the SNP-heritability explained by common SNPs linked to the 

critical gene set using k, M(genes:critical,S2G:k) is the number of common SNPs linked to the 

critical gene set using k, and M(genes:all,S2G:k) is the number of common SNPs linked to all 

genes using k. We note that this definition relies on the hypothesis that genes in the critical 

gene set are enriched for causal disease genes (as observed empirically, see below), and 

the hypothesis that the Exon S2G strategy is a perfectly precise strategy (even though it 

suffers from low h2 coverage). Third, we defined recall as the product of the h2 coverage and 

precision.

We estimated these quantities using polygenic analyses of disease SNP-heritability by 

applying stratified LD score regression (S-LDSC; v1.0.1) with the baseline-LD model 

(v2.2)11,52,53 to 63 independent diseases and complex traits (average N = 314K; 

Supplementary Table 3), meta-analyzing results across traits. All traits had z-score>6 for 

non-zero SNP-heritability, following previous recommendations52. We removed the major 

histocompatibility complex (MHC) region during the regression step because of its unusual 

LD patterns and genetic architecture11. We analyzed SNP annotations for ~10M SNPs 

with a minor allele count ≥5 in a 1000 Genomes Project European reference panel47. We 

jointly considered the 97 SNP annotations of the baseline-LD model v2.2 (refs.52,53), 50 

S2G-derived SNP annotations constructed by restricting SNPs linked to genes of the critical 

gene set, and 30 S2G-derived SNP annotations constructed by restricting SNPs linked to 

all 19,995 genes (we did not include SNP annotations constructed using all genes for 

the 20 closest TSS S2G strategies, as these would include all SNPs), for a total of 177 

SNP annotations. Jointly considering all these S2G-derived SNP annotations was crucial to 

maximize the accuracy of ℎcritical ∩ k
2  (Supplementary Figure 9). This strongly demonstrates 

the importance of including appropriate SNP annotations in the model used by S-LDSC in 

analyses estimating the proportion of SNP-heritability explained by enriched gene sets55, 

in order to avoid biased enrichment estimates. We note that precisions from preliminary 

analyses of Extended Data Figure 1 were estimated using the baseline-LD model and S2G-

derived SNP annotations constructed from the Exon, Promoter, Gene body, Gene body +/− 

100kb, and Closest TSS S2G strategies; using this restricted set of S2G strategies attenuated 

the bias of ℎcritical ∩ k
2 .

We estimated values of h2 coverage and gene-enrichment for each disease/trait, estimated 

their standard errors using a genomic block-jackknife with 200 blocks, meta-analyzed 

results across the 63 independent traits using a fixed-effect meta-analysis, and used these 

values to estimate precision and recall. Precision and recall were estimated from meta-

analyzed h2 coverage and gene-enrichment values (instead of meta-analyzing precision 

and recall across traits) to guarantee robust estimates. Precision and recall standard errors 

were estimated by using the 200 h2 coverage and gene-enrichment estimates from the block-

jackknife procedure, but meta-analyzed using the same h2 coverage and gene-enrichment 

standard errors. We note that performing fixed effect meta-analyses when computing overall 

estimates of precision/recall assigns low weights to traits with large standard errors. For 

example, including 5 traits with low SNP-heritability (< 0.02, despite z-score>6 for non-zero 

SNP-heritability) had little impact on our results: when removing these traits, estimates 
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of precision changed from 0.747 (s.e. 0.061) to 0.753 (s.e. 0.062) and estimates of recall 

changed from 0.330 (s.e. 0.027) to 0.332 (s.e. 0.027).

Training and validation critical gene sets

Our definitions of precision and recall rely on a critical gene set. We used a non-trait-

specific training critical gene set to construct an optimal combined S2G strategy, and 

trait-specific validation critical gene sets to evaluate the optimal combined S2G strategy 

while avoiding overfitting (for comparison purposes, we also used the validation critical 

gene sets to evaluate individual S2G strategies). Training and validation critical gene sets 

rely on information from exons and promoters to guarantee high-confidence SNP-gene links.

We defined a non-trait-specific training critical gene set as the top 10% of genes with the 

most highly constrained exons and conserved promoters. Specifically, for each gene we 

multiply its pLI score79 (estimating gene probability to be intolerant to loss-of-function 

mutations) by the fraction of bases of its promoter (defined using the Promoter S2G 

strategy) that is conserved (defined using 4 baseline-LD conserved SNP annotations80,81) 

(note that 17,554 out of our 19,995 genes had a pLI score). As we observed a correlation 

between this score and gene body length (r = 0.18), we created 10 bins of genes based on 

their gene body length, and selected the genes with the top 10% of this score (1,760 genes in 

total).

We defined the validation critical gene set for a given trait as the top 10% of genes ranked by 

the PoPS method48 (we note that PoPS gene scores are based on a leave-one-chromosome-

out approach, implying that gene scores should be independent of their surrounding SNPs). 

By default, the initial step of PoPS is to apply MAGMA82 to compute gene-level association 

statistics, which relies on linking SNPs to genes using a gene body S2G strategy. To limit 

the impact of the gene body S2G strategy in our analyses, we modified PoPS to only link 

SNPs that are in exons or promoters (note that this led to nearly similar SNP-heritability 

enrichment and gene-enrichment values; Supplementary Table 4). 16,728 out of our 19,995 

genes had a PoPS score, leading to validation critical gene sets with 1,673 genes.

Across the 63 diseases/traits analyzed, the overlap between the training gene set (which 

does not vary across disease/traits) and the validation gene sets (which does vary across 

diseases/traits) had a mean of 20% (vs. 10% expected by chance), mean of 20%, standard 

deviation of 4.1%, and range from 13%−28% (Supplementary Figure 1). We also observed 

substantial excess overlap of housekeeping genes (1,997 genes ) in the training critical gene 

set (357 genes; excess overlap = 2.0) and validation critical gene sets (median of 281 genes 

across 63 traits; median excess overlap = 1.7).

Combining S2G strategies

We constructed combined S2G strategies as linear combinations of linking scores from K 
S2G strategies. Specifically, for each SNP j and gene g we computed a combined S2G 

linking score

Ψj, g ∝ ∑kwk × ψk, j, g (4)
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where ψk,j,g is the linking score between SNP j and gene g for S2G strategy k, and wk is 

the weight associated to strategy k. We used Ψj,g = Σk wk × ψk,j,g when ΣgΣk wk × ψk,j,g 

< 1, and Ψj,g = Σk wk × ψk,j,g / ΣgΣk wk × ψk,j,g otherwise; allowing Σg Ψj,g to be < 1 

allows to give small combined S2G linking scores to SNPs with linking score available only 

for imprecise S2G strategies. Here, we allowed weights wk to have a maximum value of 

100, to prioritize S2G strategies with higher precision in the case where two S2G strategies 

link the same SNP to different genes. For example, if we have an S2G strategy 1 with high 

precision and low recall and an S2G strategy 2 with reasonable precision and high recall, 

then assigning weights of 100 and 1 allows to create a combined S2G strategy that will 

leverage the high precision of S2G strategy 1 when a SNP is linked to different genes using 

S2G strategies 1 and 2, while maximizing recall using S2G strategy 2.

To estimate the optimal weights wk, we developed an optimization framework to identify 

the weights maximizing the recall while constraining precision (defined using the training 

critical gene set) to be ≥0.75. Indeed, providing high precision maximizes the utility 

of functional follow-up studies. First, we computed for each SNP its expected per-SNP 

heritability by meta-analyzing across the 63 independent traits the S-LDSC regression 

coefficients estimated with the baseline-LD model and the 80 S2G-derived SNP annotations 

of the training gene set and all genes. Second, we defined a function taking as input a 

vector of weights w, computed for each SNP the expected per-SNP heritability linked to the 

critical gene set and to all genes using the 80 S2G-derived SNP annotations, and outputting 

precision and recall. Finally, we found the vector w maximizing recall while constraining 

precision to be ≥0.75. (We note that the precision of 0.75 for the cS2G strategy computed 

using the validation critical gene sets is independent of the threshold of precision ≥0.75 

in the training critical gene set used to optimize the cS2G strategy (estimated precision 

using the training critical gene set was equal to 0.81 during the optimization process; 

Supplementary Table 8).) Specifically, we considered a grid of values for w, going from 0 

to 2.5 with a 0.1 step, and the values 5, 7.5, 10, 25, 50, 75, and 100 (33 total values). We 

created a custom optimization framework that (a) starts by giving a weight of 1 to the Exon 

strategy and 0 to all other S2G strategies investigated, (b) computes precision and recall by 

increasing a single value of w at a time (the higher weight on the grid), and keeps for next 

step the weight vector maximizing recall (constraining precision to be ≥0.75), (c) computes 

precision and recall by decreasing a single value of w at a time (the lower weight on the 

grid), and keeps for next step the weight vector maximizing recall (constraining precision 

to be ≥0.75), (d) computes precision and recall by randomly modifying a single value of 

w at a time, and keeps for next step the weight vector maximizing recall (constraining 

precision to be ≥0.75), and (e) restarts from (b) till the recall does not improve. We repeated 

this algorithm 5 times, and kept the weight vector providing the maximum recall. We 

note that we investigated 5 different optimization algorithms from the R software (methods 

Nelder-Mead, BFGS, CG, L-BFGS-B and SANN from the optim function; R version 3.6.1 

was used in our analyses), but none of them reached higher recall than our algorithm. When 

giving as a starting point the outputs of our custom algorithm, these 5 algorithms did not 

converge to significantly different weight vectors and recalls.

We note that we allowed weights to have a maximum value of 100, to prioritize S2G 

strategies with higher precision in the case where two S2G strategies link the same SNP to 
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different genes. For example, in the case of our cS2G strategy (Supplementary Table 6), if 

a SNP is linked to gene A through the Exon S2G strategy (weight = 100), and to gene B 

through the Cicero S2G strategy (weight = 1), then the cS2G linking score is 100/101 for 

gene A (stronger evidence from Exon), and 1/101 for gene B. We note that weights of 10 

and 0.1 for Exon and Cicero (rather than 100 and 1), would have assigned the same linking 

scores in the case of the SNP described above, but would have assigned lower linking scores 

to SNPs that are linked to genes only through Cicero. However, we note that fixing the 

weights of the 7 constituent S2G strategies of the cS2G strategy to the same value only 

slightly underperformed cS2G in both precision and recall (0.71 vs. 0.75 and 0.31 vs. 0.33, 

respectively; Supplementary Table 8), as expected given the low overlap of SNPs annotated 

by these 7 strategies (Supplementary Table 7).

Leveraging the combined S2G strategy to pinpoint disease genes

We analyzed 9,670 predicted causal SNP-disease pairs with posterior inclusion probability 

(PIP) >0.50 from functionally informed fine-mapping of 49 UK Biobank diseases/traits 

using PolyFun + SuSiE using N=337K unrelated British UK Biobank samples7,43. SNPs 

in the MHC region were removed from the fine-mapping analyses7. We selected a PIP 

threshold of 0.5 as this threshold was carefully validated using simulations in ref.7, and a 

threshold of 0.5 was also used for cS2G linking score and triplet confidence score. For this 

purpose, we created S2G and cS2G strategies for 19M imputed UK Biobank SNPs with 

MAF ≥ 0.1% (we note that these analyses include both SNPs and indels, but we use the 

term SNP throughout the manuscript for simplicity). We predicted causal SNP-gene-disease 

triplets by restricting to SNPs that had a linked gene with cS2G linking score >0.5 (98% 

of the cS2G linked SNPs). We note that the proportion of fine-mapped SNPs linked by the 

cS2G strategy (5,384/7,675 = 0.70) was higher than its h2 coverage (0.44) due to the excess 

of exon and promoter SNPs (2,629/5,384 SNPs are in exons or promoters, consistent with 

the use of functional priors in fine-mapping analyses).

We further assigned a confidence score to each SNP-gene-disease triplet with a cS2G linking 

score >0.5 by multiplying their corresponding PIP and precision. To account for the excess 

of exon and promoter SNPs, we assigned the precision of Exon (i.e. 1.00) if the link was 

validated through the Exon S2G strategy, the precision of Promoter (i.e. 0.80) if the link was 

validated through the Promoter S2G strategy, and an estimated precision for SNPs that are 

not in exons or promoters (precisionOther) otherwise. We estimated precisionOther for an S2G 

strategy k using the following formula

precision (k) = coverageExon (k) × precision (Exon) + coverageProm(k)
× precision(Promoter) + coverageotℎer(k) × precisionotℎer(k) (5)

where coverageExon, coveragePron, and coverageOther are the proportion of h2 coverage 

explained by SNPs in exons, promoters, and SNPs that are not in exons or promoters, 

respectively.

To predict the candidate cell-type of action for these triplets, we (i) focused on SNP-gene 

pairs provided by GTEx fine-mapped cis-eQTL, EpiMap enhancer-gene linking, and/or 

ABC, (ii) restricted to cell-types where the SNP-gene pair has been observed (out of 54, 833 
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and 167, respectively), and (iii) reported the cell-type with the most significant regression 

coefficient in an S-LDSC analysis conditioned to the baseline model (as performed in 

refs.11,56).

Leveraging the combined S2G strategy to empirically assess disease omnigenicity

To estimate the SNP-heritability explained by SNPs linked to each gene g for 49 UK 

Biobank diseases/traits (per-gene SNP-heritability h2
gene,g), we used PolyFun + SuSiE 

estimates of posterior mean squared causal effect sizes for 19M imputed SNPs with MAF 

≥0.1% (β j
2) estimated on N=337K unrelated British UK Biobank samples7,43 (SNPs in 

the MHC region were removed from these analyses7). First, we computed unadjusted 

per-gene SNP-heritability ℎgene,g
′2 = ∑jΨj, g × β j

2, where Ψj,g is the cS2G linking score 

between SNP j and gene g. Then, we computed (adjusted) per-gene SNP-heritability 

ℎgene,g
2 = ∑jΨj, g

+ × β j
2, with Ψj, g

+ = Ψj, g × ℎgene, g
′2 /∑g′ (Ψj, g′ × ℎgene, g′

′2 ) being a trait specific 

cS2G linking score. The motivation of this additional step is to improve the cS2G linking 

scores of SNPs linked to multiple genes by integrating evidence from β j
2 linked to a 

single gene; we note that this step changed per-gene SNP-heritability for only a small 

number of genes, as most SNPs linked using cS2G have large cS2G linking score (87% of 

the linked SNPs have a maximum cS2G linking score >0.95) (see Supplementary Figure 

11). We also estimated per-gene SNP-heritabilities linked to common SNPs (MAF≥5%) as 

ℎgene, common, g
2 = ∑j ∈ common SNPS Ψj, g × β j

2, and per-gene SNP-heritabilities linked to low-

frequency SNPs (0.1%≤MAF<5%) as ℎgene, low − freq, g
2 = ∑j ∈ low − freq SNPS Ψj, g × β j

2. 

We note that these estimates of per-gene SNP-heritabilities do not account for LD between 

probabilistically fine-mapped SNPs, leading to genome-wide underestimation of variance 

explained by SNPs; this underestimation could in principle vary across genes. However, this 

limitation does not impact our main conclusions, because (i) it impacts only estimates of 

per-gene SNP-heritabilities derived from PolyFun + SuSiE, and not S-LDSC estimates of 

proportions of h2
gene explained by the resulting 8 gene sets (see next paragraph) as reported 

in Figure 5a; and (ii) estimates of proportions of h2
gene derived from PolyFun + SuSiE 

(based on N=337K training samples) and S-LDSC estimates of proportions of h2gene (based 

on N=122K new validation samples) were strongly concordant (Figure 5a).

To estimate the proportion of SNP-heritability linked to genes (h2
gene) explained by genes 

with the top per-gene SNP-heritability, we partitioned genes into 8 gene sets ranked by 

per-gene SNP-heritability explained (top 100, 200, 500, 1,000, 2,000, 5,000, 10,000 and 

19,995), and re-estimated the SNP-heritability linked to each ranked gene set by running 

S-LDSC with the baseline-LD model on summary statistics computed from N=122K 

European-ancestry UK Biobank samples that were distinct from the N=337K British UK 

Biobank samples used to estimate β j
2 and ℎgene,g

2  (in order to avoid winner’s curse, analogous 

to what was performed in ref.7). We defined h2
gene as the SNP-heritability linked to all 

19,995 genes. The proportion of h2
gene explained by the X top genes was computed as the 

proportion of SNP-heritability explained by the X top genes divided by h2
gene. The standard 

error of the proportion of h2
gene explained by the X top genes was computed as the standard 
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error of the proportion of h2 explained by the X top genes divided by h2
gene (viewing 

the denominator h2
gene as a constant); we believe this to be a reasonable approximation, 

as the numerator has greater uncertainty than the denominator (except when including all 

genes), and the errors are correlated such that this approximation is conservative. We note 

that a ratio of meta-analyzed values (meta-analyzed proportion of SNP-heritability explained 

by X top genes divided by meta-analyzed proportion of SNP-heritability explained by all 

genes) is more robust than a meta-analyzed value of ratios (meta-analyzing the proportion 

of SNP-heritability explained by X top genes divided by the proportion of SNP-heritability 

explained by all genes). In Figure 5a, we forced the s.e. of the proportion of h2
gene explained 

by all genes (a quantity that must equal 1) to be 0.

We estimated the effective number of causal genes (Ge) for each trait using per-gene 

SNP-heritability and the formula of ref.54. Specifically, we defined Ge = 3G/κ, with G the 

total number of genes and κ = E ℎgene, g
2 /E ℎgene, g

2 2
. These estimates relied on per-gene 

SNP-heritability explained by causal SNPs, and were thus directly based on the N=337K 

samples used for fine-mapping; as noted above, the impact of winner’s curse on our analyses 

was minimal. We extended this formula to per-gene h2 linked to common and low-frequency 

SNPs to estimate Ge,common and Ge,low-frea, respectively. Per-gene h2 were directly estimated 

on the N=337K samples used for fine-mapping as we observed that the impact of winner’s 

curse on our analyses was minimal.

Statistics and reproducibility

No statistical method was used to predetermine sample size. We restricted our analyses 

to well-powered (z-score>6 for non-zero SNP-heritability52) GWAS datasets of European 

ancestry. We removed the MHC region during the S-LDSC regression step11. We did not use 

any study design that required randomization or blinding.
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Extended Data

Extended Data Figure 1: S2G strategy linking each SNP to best gene leads to higher precision 
than linking SNPs to multiple target genes.
We report the precision of S2G strategies linking SNPs to target genes using three difference 

approaches for converting raw linking values into linking scores: by assigning to each gene 

with non-zero raw linking value the same linking score (unweighted), by assigning to each 

gene a linking score proportional to its raw linking value (weighted), and by retaining 

only the gene(s) with the highest linking score (best gene). Values were estimated using 

non-trait-specific training critical gene set and meta-analyzed across 63 independent traits. 
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Error bars represent 95% confidence intervals around meta-analyzed values. For most of the 

S2G strategies the precision was very similar (except for EpiMap, ABC and Open Targets), 

but the precision was generally highest for the “best gene” strategy. However, we note that 

this choice does not reflect biological reality, in which a regulatory element may target more 

than one gene, and that refinements to this choice are a direction for future research.

Extended Data Figure 2: Precision of 27 S2G strategies based on physical distance to TSS.
We report precision of the closest TSS strategy as a function of the distance between a SNP 

and its closest TSS (a) (numbers between parentheses represent the fraction of common 

SNPs linked by the strategy), and the precision of the ith closest TSS (each strategy links 

100% of the SNPs) (b). Values were estimated using trait-specific validation critical gene 

sets and meta-analyzed across 63 independent traits. Error bars represent 95% confidence 

intervals around meta-analyzed values. The mean value of 0.043 for 6th-20th closest TSS 

suggests that genes located relatively close to causal disease genes have a slightly elevated 

probability of being causal. Numerical results including values of recall and corresponding 

standard errors are reported in Supplementary Table 5.
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Extended Data Figure 3: Precision of functional S2G strategies using all available cell-types and 
tissues or restricted to blood and immune cell-types and tissues.
We report the precisions of functional S2G strategies built using either all available cell-

types and tissues (All CT; in light color) and/or blood and immune cell-types and tissues 

(Blood CT; in dark color) meta-analyzed across 63 independent traits (All traits; in blue) and 

11 blood cell traits and autoimmune diseases (Blood traits; in red) (UK Biobank all auto-

immune diseases, Crohn’s Disease, Rheumatoid Arthritis, Ulcerative Colitis, Lupus, Celiac, 

Platelet Count, Red Blood Cell Count, Red Blood Cell Distribution Width, Eosinophil 

Count, White Blood Cell Count; see Supplementary Table 3). Error bars represent 95% 

confidence intervals around meta-analyzed values. We considered 5 S2G strategies with data 

available for cell-types and tissues: GTEx cis-eQTLs (GTEx), GTEx fine-mapped cis-eQTL 

(GTEx fine-mapped), Roadmap enhancer-gene linking (Roadmap), EpiMap enhancer-gene 

linking (EpiMap), and Activity-By-Contact (ABC). We considered 3 S2G strategies with 

data available only for blood and immune cell-types and tissues: eQTLGen fine-mapped 

blood cis-eQTL (eQTLGen fine-mapped), PCHi-C (blood), and Cicero blood/basal (Cicero). 

We observed 1) that S2G strategies using data from all cell-types and tissues were more 

precise than S2G strategies restricted to blood and immune cell-types and tissues in both 

analyses of all traits (light blue vs. dark blue) and blood cell traits and autoimmune diseases 

(light red vs. dark red), and 2) that S2G strategies using data from blood and immune 

cell-types and tissues are more precise in all traits than in blood cell traits and autoimmune 

diseases (dark blue vs. dark red).
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Extended Data Figure 4: Proportion of common and low-frequency variant heritability linked to 
genes explained by each individual gene.
We report the proportion of common and low-frequency variant heritability linked to 

genes (h2
gene,common and h2

gene,low-freq, respectively) explained by each individual gene 

in 16 independent UK Biobank traits. Genes in the top 200 genes (top 1% of all genes) 

contributing to both h2
gene,common and h2

gene,low-freq are denoted in red (median of 26 genes 

across the 16 traits), genes in the top 200 genes contributing to only h2
gene,common (resp. 

h2
gene,low-freq) are colored in black (resp. blue) (median of 174 genes each), and remaining 

genes are colored in grey (median of 19,621 genes, with values close to 0 on both axes). We 
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observe low concordance between per-gene contributions to gene architectures for common 

vs. low-frequency SNPs.

Extended Data Figure 5: Excess overlap between top genes contributing to common and low-
frequency variant heritability linked to genes and disease-specific Mendelian disorder genes.
We report the excess overlap between phenotype-specific Mendelian disorder genes57 and 

the top 200 genes contributing to common and low-frequency variant heritability linked 

to genes (left), and the gene enrichment of disease-specific Mendelian disorder genes (i.e. 

[SNP-heritability linked to Mendelian disorder genes / SNP-heritability linked to all genes] / 

[number of Mendelian disorder genes / total number of genes]) across common and low-

frequency variants (right). Each dot represents a disease/trait - Mendelian disorder gene set 

pair, and is colored by the Mendelian disorder gene set. These two results suggest that both 

the set of top 200 genes and the per-gene heritability estimates are unlikely to be driven by 

noisy estimates arising from finite sample size. We restricted analyses to 21 traits analyzed 

in ref. 57.
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Extended Data Figure 6: Excess overlap between top genes contributing to common and low-
frequency variant heritability linked to genes and differentially expressed gene sets.
We report the excess overlap between 205 differentially expressed gene sets56 and the top 

200 genes contributing to common and low-frequency variants heritability linked to genes 

across 16 independent UK Biobank traits. Each dot represents a differentially expressed 

gene set, and is colored by the tissue category. We generally observed excess overlap for 

disease-critical tissues/cell types. We observed high correlations between excess overlaps 

for common vs. low-frequency variant architectures, suggesting that common and low-
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frequency variants architectures are driven by different genes pertaining to similar biological 

processes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Overview of S2G framework.
(a) Toy example of SNP linked to two genes (arrow widths denote linking scores). (b) Toy 

example of h2 coverage. Strategy 1 (which links SNPs with larger effects on disease) has 

more h2 coverage than strategy 2, which has more h2 coverage than strategy 3 (which links 

SNPs with smaller effects on disease). (c) Toy example of using critical gene sets to define 

precision. Strategy 1 (which links the middle SNP with high effect on disease to the gene 

from the critical gene set) is more precise than strategy 2 (which links the middle SNP to 

both genes), which is more precise than strategy 3 (which links the middle SNP to the gene 

that is not from the critical gene set). Recall is defined as the product of the h2 coverage 

and precision. (d) Toy example of combined S2G strategy. The combined S2G strategy is a 

linear combination of constituent S2G strategies.
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Figure 2: Accuracy of individual S2G strategies and combined S2G (cS2G) strategy.
We report the precision and recall of the 13 main S2G strategies from Table 1 and the 

cS2G strategy (estimated using trait-specific validation critical gene sets and meta-analyzed 

across 63 independent traits). Colored font denotes the cS2G strategy and its 7 constituent 

S2G strategies (gray font in parentheses denotes the Closest TSS strategy). Numbers in 

parentheses in legend denotes the proportion of common SNPs that are linked to at least 

one gene (as in Table 1). We note that our evaluation of these S2G strategies is impacted 

by their widely varying underlying biosample sizes (see Methods), in addition to differences 

in functional assays and SNP-to-gene linking methods. Standard errors are reported in 

Supplementary Figure 2, and numerical results are reported in Supplementary Table 5; 

standard errors for all S2G strategies linking >2.5% of common SNPs were ≤0.12 for 

precision and ≤0.03 for recall, with smaller standard errors for S2G strategies linking larger 

proportions of common SNPs.
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Figure 3: SNP-gene-disease triplets identified by cS2G and other S2G strategies.
(a) We report the number of SNP-gene-disease triplets identified by cS2G, its 7 constituent 

strategies, and the Closest TSS S2G strategy. For each strategy, we estimated the number 

of correct triplets based on the mean confidence score across triplets; the estimated number 

of correct triplets is denoted as a colored bar, and the estimated number of incorrect triplets 

is denoted as a grey bar. (b) We report the distribution of confidence scores of SNP-gene-

disease triplets for each S2G strategy. The median value of confident scores is displayed as 

a band inside each box; boxes denote values in the second and third quartiles; the length of 

each whisker is 1.5 times the interquartile range, defined as the width of each box; the height 

of each box is proportional to the total number of triplets linked by each strategy (7,111, 

9,664, 2,763, 3,889, 2,589, 2,604, 1,029, 674 and 943 for the 9 plotted S2G strategies). The 

list of SNP-gene-disease triplets predicted by cS2G is reported in Supplementary Table 17. 

Numerical results are reported in Supplementary Table 18.
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Figure 4: Examples of high-confidence SNP-gene-disease triplets identified by cS2G.
We report four examples where cS2G predicts target genes for distal regulatory fine-mapped 

SNPs (i.e. not in promoter or gene body) for (a) type 2 diabetes, (b) asthma, (c) eczema, 

and (d) high-density lipoprotein (HDL) cholesterol. We plot the −log10 GWAS P values 

of each SNP (top) and the gene body of the genes in the locus (bottom). Fine-mapped 

SNPs are denoted as purple squares, target genes are denoted in green, and constituent S2G 

strategies implicating the target gene are denoted in purple. All fine-mapped SNPs in these 

examples have posterior inclusion probability (PIP) >0.9 for the corresponding disease/trait, 

except rs13099273 for asthma (PIP=0.58). S2G links for all 13 main S2G strategies are 

reported in Supplementary Table 17, and tissues/cell-types for constituent strategies of cS2G 

are reported in Supplementary Table 20. GTEx: GTEx fine-mapped cis-eQTL; eQTLGen: 

eQTLGen blood fine-mapped cis-eQTL; EpiMap: EpiMap enhancer-gene linking; ABC: 

Activity-By-Contact; Cicero: Cicero blood/basal.
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Figure 5: Empirical assessment of disease omnigenicity using cS2G.
(a) We report the proportion of SNP-heritability linked to genes (h2

gene) explained by 

genes ranked by top per-gene h2, as inferred using three approaches (see text). Grey 

shading denotes 95% confidence intervals for cS2G-validation and Closest TSS-validation 

around meta-analyzed values. We forced the s.e. of the proportion of h2
gene explained 

by all genes to be 0 (see Methods). We note that values greater than 1 are outside the 

biologically plausible 0–1 range, but allowing point estimates outside the biologically 

plausible 0–1 range is necessary to ensure unbiasedness. Results were meta-analyzed across 

16 independent UK Biobank traits. (b) We report the effective number of causal SNPs54 

(Me) and the effective number of causal genes (Ge) for 49 UK Biobank diseases/traits, 

with representative traits in colored font. (c) We report the effective number of causal 

genes for per-gene h2 linked to common SNPs (Ge,common) and the effective number of 

causal genes for per-gene h2 linked to low-frequency SNPs (Ge,low-frea) for 49 UK Biobank 

diseases/traits, with representative traits in colored font. In (b) and (c), red squares denote 

median values across 16 independent traits and correlations are computed on log-scale 

values. Numerical results are reported in Supplementary Table 22 and Supplementary Table 

24. AID: Autoimmune disease; BMI: Body mass index; Cholesterol: Total cholesterol; T2D: 

Type 2 diabetes.
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Table 1:

Description of the 13 main SNP-to-gene (S2G) strategies.

S2G strategy Description % SNPs 
linked

h2 coverage

High confidence (2)

 Exon* Exons60 +/− 20bp 2.3% 9.8%

 Promoter* TSSs61 +/− lkb ∩ promoter annotations11,30 2.0% 5.8%

Non-functionally informed (3)

 Gene body Gene body62,60,61 43.1% 55.4%

 Gene±100kb Gene body62,60,61 +/− 100kb56 73.2% 85.4%

 Closest TSS Gene with closest TSS61 100% 100%

Fine-mapped cis-eQTL (2)

 GTEx fine-mapped cis-eQTL* Fine-mapped GTeX v8 cis-eQTLs18,26 in 54 cell-types 9.5% 19.4%

 eQTLGen fine-mapped blood cis-eQTL* Fine-mapped eQTLGen cis-eQTLs19,26 in blood 2.2% 6.2%

Enhancer-gene linking (3)

 Roadmap enhancer-gene linking Correlation between Roadmap enhancers and gene expression 
across 127 cell-types29,30,32

8.6% 16.3%

 EpiMap enhancer-gene linking* Correlation between EpiMap enhancers and gene expression 
across 833 cell-types37

7.5% 13.8%

 Activity-By-Contact (ABC)* Hi-C linked enhancers in 167 cell-types34,38 7.7% 17.3%

PCHi-C (2)

 Jung PCHi-C Promoter capture Hi-C in 27 cell-types35 39.9% 43.9%

 Javierre PCHi-C blood Promoter capture Hi-C in 17 blood cell-types31 27.2% 35.5%

scATAC-seq (1)

 Cicero blood/basal* Correlation between scATAC-seq peaks and gene promoter 
peaks across 61,806 blood/basal cells33,36

1.0% 2.9%

*
included in our combined S2G strategy (cS2G).

For each of 13 main S2G strategies (in 6 categories), we provide a brief description and report the % SNPs linked (proportion of common SNPs 

that are linked to at least one gene) and h2 coverage (meta-analyzed across 63 independent traits). When combining S2G strategies, we did not 
include the 3 non-functionally informed strategies because a fundamental goal of cS2G is to provide functional interpretation of GWAS findings. A 
description of all 50 S2G strategies analyzed is provided in Supplementary Table 1.
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Table 2:

Validation of combined S2G (cS2G) strategy using experimentally validated causal SNP-gene pairs associated 

to disease.

Position (hg19) SNP Gene Disease/trait
cS2G prediction

Gene Score Annotations

1:109,817,590 rs12740374 SORT1 LDL50,51 CELSR2* 0.91 Exon

1:162,020,969 rs7539120 NOS1AP QT interval63 - - -

2:60,718,043 rs1427407
BCL11A Fetal hemoglobin level50,64

- - -

2:60,725,451 rs7606173 BCL11A 1.00 EpiMap, ABC, Cicero

3:38,767,315 rs6801957 SCN5A QRS prolongation65 SCN5A 1.00 EpiMap, ABC

4:90,674,431 rs356168 SNCA Parkinson’s disease50,66 SNCA 1.00 EpiMap, ABC

5:56,031,822 rs17432750

MAP3K1 Breast cancer50,67

MAP3K1 0.66 EpiMap

5:56,052,695 rs62355900 - - -

5:56,053,479 rs74345699 - - -

5:56,134,276 rs16886397 MAP3K1 1.00 ABC

6:12,903,957 rs9349379 EDN1 Vascular diseases68 PHACTR1 1.00 GTEx

6:105,706,878 rs1743292
BVES Cardiac QT interval and QRS duration50,69

- - -

6:105,720,538 rs1772203 POPDC3 1.00 ABC

6:117,210,052 rs339331 RFX6 Prostate cancer50,70,71 RFX6 1.00 EpiMap, ABC

6:135,418,635 rs7775698

MYB Fetal hemoglobin level50,72

MYB 1.00 EpiMap

6:135,418,637 rs66650371 - - -

6:135,431,640 rs9494142 HBS1L 1.00 ABC

7:12,284,008 rs1990620 TMEM106B Fronto-temporal dementia50,73 - - -

8:11,351,220 rs1382568
BLK Systemic lupus50,74

- - -

8:11,351,912 rs922483 BLK 0.76 Exon, ABC, Cicero

8:81,290,387 rs2370615 PAG1 Allergy50,75 ZBTB10 0.51 ABC, Cicero

10:12,307,894 rs11257655 CAMK1D Type 2 diabetes50,76 CAMK1D 0.90 GTEx, EpiMap

10:6,094,697 rs61839660 IL2RA Inflammatory bowel disease77 IL2RA 1.00 ABC, Cicero

16:53,800,954 rs1421085 IRX5/IRX3 Obesity12,50 - - -

20:55,990,405 rs737092 RBM38 Red blood cell count78 RBM38 0.96 eQTLGen, ABC

*
: rs12740374 was linked to SORT1 using GTEx with cS2G linking score = 0.07 (which is less than 0.5). Predicted genes that match the 

experimentally validated gene are denoted in bold font.
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For each of 25 experimentally validated causal SNP-gene pairs at 17 disease- associated loci, we report the cS2G predictions: predicted gene 
with cS2G linking score >0.5 (if applicable), corresponding cS2G linking score, and constituent S2G annotation(s). Further details are provided 
in Supplementary Table 12. GTEx: GTEx fine-mapped cis-eQTL; eQTLGen: eQTLGen blood fine-mapped cis-eQTL; EpiMap: EpiMap enhancer-
gene linking; ABC: Activity-By-Contact; Cicero: Cicero blood/basal.
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