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Preterm birth is associated with xenobiotics 
and predicted by the vaginal metabolome

William F. Kindschuh    1,12, Federico Baldini1,12, Martin C. Liu1,2,12, Jingqiu Liao1, 
Yoli Meydan1, Harry H. Lee1, Almut Heinken    3, Ines Thiele    3,4,5,6, 
Christoph A. Thaiss    7,8,9, Maayan Levy    7,9   & Tal Korem    1,10,11 

Spontaneous preterm birth (sPTB) is a leading cause of maternal and 
neonatal morbidity and mortality, yet its prevention and early risk 
stratification are limited. Previous investigations have suggested that 
vaginal microbes and metabolites may be implicated in sPTB. Here 
we performed untargeted metabolomics on 232 second-trimester 
vaginal samples, 80 from pregnancies ending preterm. We find multiple 
associations between vaginal metabolites and subsequent preterm birth, 
and propose that several of these metabolites, including diethanolamine 
and ethyl glucoside, are exogenous. We observe associations between 
the metabolome and microbiome profiles previously obtained using 16S 
ribosomal RNA amplicon sequencing, including correlations between 
bacteria considered suboptimal, such as Gardnerella vaginalis, and 
metabolites enriched in term pregnancies, such as tyramine. We investigate 
these associations using metabolic models. We use machine learning 
models to predict sPTB risk from metabolite levels, weeks to months before 
birth, with good accuracy (area under receiver operating characteristic 
curve of 0.78). These models, which we validate using two external cohorts, 
are more accurate than microbiome-based and maternal covariates-based 
models (area under receiver operating characteristic curve of 0.55–0.59). 
Our results demonstrate the potential of vaginal metabolites as early 
biomarkers of sPTB and highlight exogenous exposures as potential risk 
factors for prematurity.

Preterm birth (PTB), childbirth before 37 weeks of gestation, is the 
leading cause of neonatal death, and may lead to a variety of lifelong 
morbidities1,2. PTB also reflects a notable racial disparity, manifesting 
in a substantially higher PTB rate in Black women3. This disparity is 

driven by various factors, such as the persistent stress of systemic and 
environmental racism and a lack of access to maternal care4. Sponta-
neous preterm birth (sPTB), PTB not medically induced, accounts for 
two-thirds of all PTBs1. Despite extensive efforts, methods for early 
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separated from the rest of the cohort (PERMANOVA P < 0.001 for both), 
neither the metabolomes of women with CSTs IV-A and IV-B, nor with 
CST-II (dominated by Lactobacillus gasseri) and CST-III (dominated by 
Lactobacillus iners), were well separated from one another (P = 0.158 
and P = 0.155, respectively). Overall, these results demonstrate a strong 
but imperfect correspondence between the vaginal microbiome and 
metabolome.

Metabolite clusters associate with sPTB
Next, we performed de novo k-medoids clustering of the metabolome, 
revealing six ‘metabolite clusters’ (MCs A–F; Methods, Fig. 1c, Extended 
Data Fig. 3 and Supplementary Table 2), which are not as well separated 
as the separation of the vaginal microbiome to CSTs. The metabolite 
subpathway most enriched within each MC was polyamine metabolism, 
dipeptides, dicarboxylated fatty acids, glutamate metabolism, tricar-
boxylic acid cycle and dipeptides for MCs A–F, respectively (Fisher’s 
exact P < 0.05 for all). Amino-acid-related metabolites were similarly 
enriched in MCs A,B and D (P < 0.01, q < 0.1 for all), and xenobiotics 
in MC-C (Fisher’s exact P = 0.005, q < 0.1). While MCs A–D are mostly 
paired with Lactobacillus-dominated CSTs (54–93%), MC-F is composed 
entirely of CST-IV, and MC-E is evenly split (50% CST-IV; Fig. 1d and 
Extended Data Fig. 4a). Reciprocally, we found various enrichments 
of CSTs in MCs (Extended Data Fig. 4b).

Similar to the strong association between the global microbiome 
signature and self-identified race in this cohort (PERMANOVA P < 0.001; 
Extended Data Fig. 4c), we saw a significant difference between the 
metabolome of Black and White women (P < 0.001; Extended Data  
Fig. 4d). However, we found only mild differences between these sub-
groups in their assignments to MCs (Fig. 1e). Interestingly, while CSTs 
are only weakly associated with sPTB and only in White women (Fisher’s 
exact P = 0.047, q = 0.21; Fig. 1f and Extended Data Fig. 4e; similar to a 
previous analysis14), we found that several MCs are significantly asso-
ciated with sPTB in Black women (P = 0.047, P = 0.025 and P = 0.006, 
respectively, for MCs A, B and D; q < 0.1 for all; Fig. 1g and Extended Data 
Fig. 4f). However, we observed no significant associations with early 
PTB (<32 weeks; q > 0.1 for all, Extended Data Fig. 4g). Taken together, 
our results demonstrate that the metabolome structure in this cohort 
better captures associations with prematurity in Black women than the 
microbiome structure.

Multiple metabolites associate with sPTB
We next investigated associations between sPTB and specific metabo-
lites. We found four metabolites that are significantly associated with 
sPTB (Mann–Whitney P < 0.05, q < 0.1; Fig. 2a and Extended Data Fig. 5a). 

prediction, prevention or treatment of PTB are lacking1,5,6, and its preva-
lence remains high1.

The human microbiome is a strong biomarker of many complex 
diseases7–11. The vaginal microbiome, specifically, has been repeatedly 
associated with sPTB and other adverse pregnancy outcomes12–17. 
However, a clear consensus on the relationship between the vaginal 
microbiome and sPTB has yet to emerge18, and our knowledge of spe-
cific mechanisms underlying potential host–microbiome interactions 
in sPTB is lacking.

Metabolites produced or modified by the microbiome have 
emerged as a prominent factor with potential local and systemic effects 
on the host19–22. Their study has been facilitated by metabolomics, 
which enables the measurement of thousands of small molecules 
present in an ecosystem, and paired microbiome–metabolome stud-
ies have yielded potential mechanistic insights into host–microbiome 
interactions in various pathologies23,24. A few studies of the vaginal 
metabolome described associations with the microbiome, inflamma-
tion and PTB25,26. However, studies of demographic groups at high risk 
for sPTB, with measurements of a broad set of metabolites and which 
generate robust prediction models for sPTB, are still needed to advance 
our understanding of the role of the vaginal ecosystem in prematurity 
and other pregnancy outcomes.

Here, we measured the second-trimester vaginal metabolome of 
232 pregnant women, for whom the microbiota was previously char-
acterized using 16S ribosomal RNA gene amplicon sequencing14. We 
show that the vaginal metabolome partially corresponds to community 
state types (CSTs), reveal associations between metabolites measured 
in the middle of pregnancy and subsequent sPTB, and propose that 
some of these metabolites are of an exogenous source. Finally, we 
devise machine learning algorithms that use the vaginal metabolome 
to predict subsequent sPTB an average of 3 months before delivery, 
which we validate on two external cohorts. Our results demonstrate 
a promising approach for studying potential causes of prematurity 
as well as for early risk stratification, and highlight the need to study 
environmental exposures as a risk factor for sPTB.

Results
Vaginal microbiota and metabolome from a pregnancy cohort
We used mass spectrometry to profile 232 vaginal samples collected 
between 20 and 24 weeks of gestation from women with singleton preg-
nancies, for which the microbiota was previously characterized from 
the same timepoint14 (Supplementary Table 1 and Methods). All women 
with subsequent sPTB and available samples (N = 80), as well as similar 
term birth controls (TB; N = 152) were included (Table 1). As expected, 
PTB history was associated with sPTB (Fisher’s exact P = 3 × 10−4).

We quantified 635 identified metabolites, as well as 110 unnamed 
spectral features (Methods). Metabolites belonged to diverse biochem-
ical classes, including amino acids, lipids, nucleotides, carbohydrates 
and xenobiotics. Most metabolites (549) were measured in over 50% of 
the cohort, and 108 metabolites were present in all samples (Extended 
Data Fig. 1; for discussion of batch processing of the samples, see Sup-
plementary Note 1 and Extended Data Fig. 2). We have previously shown 
that similar measurements are in excellent agreement with measure-
ments by an independent certified medical laboratory27.

The vaginal metabolome partially preserves CST structure
The vaginal microbiome clusters to well-defined CSTs28. We demon-
strated the same for this cohort14 (permutational multivariate analysis 
of variance (PERMANOVA) P < 0.001; Fig. 1a), and investigated whether 
the vaginal metabolome recapitulates this structure. The metabolome 
was separated by CSTs (P < 0.001; Fig. 1b), and was generally associated 
with the microbiome (Mantel P < 0.001), as previously described29. 
However, specific CSTs were not as well separated. While the metabo-
lomes of women with CST-I (dominated by Lactobacillus crispatus) 
and CST-IV (enriched with diverse anaerobes) microbiomes were well 

Table 1 | Cohort characteristics

sPTB TB Difference (P value)

N 80 152

Race (N (%)) 0.417

 Black 57 (71.25%) 116 (76.3%) 0.568

 White 21 (26.25%) 30 (19.7%) 0.331

 Other 2 (2.5%) 6 (4%) 0.666

Nulliparous (N (%)) 29.0 (36.2%) 55.0 (36.2%) 0.894

PTB history (N (%)) 34 (42.5%) 28 (19.2%) 0.0003

GA at delivery 
(median weeks 
(range))

34 (21–36) 39 (38–39) <0.0001

BMI (kg m−2 
mean ± s.d.)

30.1 ± 7.8 30.6 ± 7.2 0.65

Age (years 
mean ± s.d.)

29 ± 6 28 ± 6 0.28

GA, gestational age; P, two-sided Fisher’s exact or Mann–Whitney U test. Bold indicates P < 0.05.
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Three of these, ethyl β-glucopyranoside (ethyl glucoside; P = 1.9 × 10−4, 
q = 0.065); tartrate (P = 4.8 × 10−4, q = 0.078); and diethanolamine (DEA; 
P < 10−10, q = 5 × 10−8), all higher in sPTB, appear to be of exogenous 
source30–36. We confirmed this using AMON37 (Methods), a method 
that predicts metabolite origins, which predicted that DEA and tar-
trate were of xenobiotic origin (no prediction could be made for ethyl 
glucoside; Supplementary Table 3). Of note, DEA is also associated 
with MC-A (P = 0.006, q = 0.014) and MC-D (P = 0.04, q = 0.07), the MCs 
we found to be enriched with sPTB (Fig. 1g). Despite their likely exog-
enous source, these metabolites were detected in >95% of this cohort 
(Extended Data Fig. 5b).

We further found lower levels of choline in women with subse-
quent sPTB (P = 5.5 × 10−4, q = 0.078; Fig. 2a,b). Choline is an essential 

nutrient38, and lower choline levels were previously found in cord blood 
from premature infants39. Choline is also a precursor of betaine40, 
an osmoregulator that was also negatively associated with sPTB 
(P = 0.007, q = 0.29; Fig. 2b). DEA is known to disrupt choline metabo-
lism41, and its dermal administration in mice depleted hepatic cho-
line42,43. We therefore propose that the higher levels of DEA in sPTB 
may also be linked to lower choline and betaine levels (Fig. 2b,c). DEA 
was further shown to be carcinogenic44 and teratogenic42 in mice. 
However, the relative nature of our metabolomic assay precludes 
quantitative comparison with levels measured in previous studies. 
Taken together, these results highlight a potential role of several 
metabolites in prematurity, some of which may arise exogenously from  
environmental exposures.
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Fig. 1 | Vaginal metabolome clusters are associated with PTB. a–c, UMAP 
ordination of microbiome (a, N = 503) and metabolomics data (b and c, N = 232), 
coloured by CSTs (a and b) or de novo clustering of metabolites data (c, MCs; 
Methods). The vaginal microbiome and metabolome are significantly separated 
by CSTs (PERMANOVA P < 0.001 for both), yet the separation is less clear in the 
metabolome. For similar plots coloured by maternal race, see also Extended Data 
Fig. 4c,d. d, The fraction of women whose metabolite profiles clustered to each 

MC, shown for each CST separately. e, Similar to d but shown for Black and White 
women separately. f, The fraction of White (top) and Black (bottom) women 
whose microbiomes belonged to each CST, separated by pregnancy outcome. 
g, Similar to f, for the fraction of women whose metabolomes clustered to each 
MC. We show a significant association of sPTB with MCs A, B and D among Black 
women (P = 0.047, P = 0.025 and P = 0.006, respectively, q < 0.1). Number above 
horizontal lines in d–g is two-sided Fisher’s exact P, q < 0.1.
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Metabolite associations interact with race and sPTB timing
As the metabolome differed between Black and White women, we 
performed the same association analysis while stratifying by race. 
Interestingly, we detected five additional metabolites negatively 
associated with sPTB (Mann–Whitney P < 0.05, q < 0.1; Fig. 2a and 
Extended Data Fig. 5a). In Black women, these included glycerophos-
phoserine (P = 3 × 10−5, q = 0.014), previously reported to be altered in 
pre-eclampsia45; spermine (P = 3.5 × 10−4, q = 0.07), previously shown to 
be increased in the blood of preterm infants46; hydroxybutyl carnitine 
(P = 2.6 × 10−4, q = 0.065), a ketocarnitine shown to be depleted in the 
blood of low-birth-weight full-term neonates47; and glutamate γ-methyl 
ester (P = 4.9 × 10−4, q = 0.078). Tyramine, a biogenic amine, was sig-
nificantly lower in samples from White women who delivered preterm 
(P = 2.8 × 10−4, q = 0.065; Fig. 2a). Tyramine was shown to co-localize with 
synaptic vesicles in the mouse uterine plexus, highlighting a possible 
role in uterine contractions48. Altogether, these results highlight the 
potential connection among vaginal metabolites, metabolite levels in 
other organs and sPTB.

As several participants in this cohort (N = 13, N = 11 in Black women) 
were treated with intravaginal progesterone before or close to sample 

collection (at weeks 18–23 of gestation), we performed the same analy-
sis only in women not treated with vaginal progesterone. One associa-
tion, between glutamate γ-methyl ester and TB in Black women (Fig. 2a) 
no longer passed correction for multiple hypothesis testing (P = 0.002, 
q = 0.12; Extended Data Fig. 5c). However, we found an additional seven 
metabolites to be associated with TB in Black women (all P < 0.05; 
q < 0.1; Extended Data Fig. 5c). These included proline (P = 6 × 10−4, 
q = 0.082), which accounts for about a quarter of the amino acid resi-
dues of collagen49, and is integral to the extracellular matrix; spermine, 
a polyamine important for placental angiogenesis50, which was lower in 
Black women with subsequent sPTB (P = 4 × 10−4, q = 0.08) and betaine 
(P = 9 × 10−4, q = 0.091). N-acetylarginine (P = 0.0015, q = 0.102), which 
is produced from proline and is necessary for the synthesis of polyam-
ines such as spermine, was also lower in Black women with subsequent 
sPTB. Both disordered placental angiogenesis and extracellular matrix 
remodelling have been associated with sPTB51.

Earlier preterm deliveries are associated with worse outcomes1. 
Therefore, we next investigated associations between vaginal metabo-
lites and subsequent very and extremely preterm deliveries (gestational 
age at birth <32 and <28 weeks, respectively). We limited this analysis 
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of association. Only metabolites with at least one association with FDR <0.1 are 
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of three metabolites with significant associations with sPTB. P, two-sided Mann–
Whitney U. c, Illustration summarizing some of the literature regarding the three 
metabolites shown in b. DEA, which is associated with sPTB, was shown to inhibit 
choline uptake41. Choline and betaine, both associated with TB, are important 
for membrane lipid synthesis and osmoregulation38,40. d, Same as a, with 
stratification by GAB, performed among Black women. Middle legend applies to 
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to Black women, due to their high proportion among such deliveries 
(21 of 26 and 14 of 15, respectively). We identified 13 metabolites that 
were associated only with these earlier sPTBs (P < 0.05, q < 0.1; Fig. 2d). 
The phospholipids palmitoyl sphingomyelin and palmitoyl dihydro 
sphingomyelin were both negatively associated with extremely PTB 
(P = 8.7 × 10−4, q = 0.061 and P = 0.0011, q = 0.069, respectively). Citraco-
nate was likewise negatively associated with extremely PTB (P = 0.0014, 
q = 0.075), and was previously found to have lower concentrations in 
placental mitochondria of women with severe pre-eclampsia52. We 
also found several sugar or sugar alcohol metabolites to be higher 
in early PTB, including mannose (P = 4 × 10−4, q = 0.052), previously 
associated with uropathogens such as Escherichia coli53; arabinose 
(P = 9 × 10−4, q = 0.061), previously associated with bacterial vagino-
sis (BV)54 and mannitol/sorbitol (P = 1.7 × 10−4, q = 0.022), previously 
associated with PTB55. Ethylenediaminetetraacetic acid (EDTA), an 
additional xenobiotic whose likely exogenous source56–58 was also con-
firmed by AMON (Methods and Supplementary Table 3), was increased 
in extremely and very PTB (P = 8 × 10−4, q = 0.061 and P = 1.6 × 10−4, 
q = 0.044, respectively). EDTA was shown to be cytotoxic in vagi-
nal epithelial cells59, and is teratogenic in rats at non-maternotoxic 
doses57,60. EDTA was detected in 100% of women in this cohort 
(Extended Data Fig. 5b), which is expected given its presence in the 
sample collection buffer, yet this is unlikely to explain these associa-
tions. Overall, we found that metabolite associations with sPTB interact 
with both race and sPTB timing, and detected an additional sPTB- 
associated xenobiotic.

Functional metabolite sets enriched for sPTB associations
We next checked whether functional groups of metabolites (for 
example, Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways61; Supplementary Table 4) are enriched for associations with 
sPTB, even if changes to any specific metabolite are small (Methods). 
We found significant enrichment in proline and arginine metabo-
lism (P = 0.0018, q = 0.058; Extended Data Fig. 5d), consistent with 
our findings regarding proline and N-acetylarginine (Extended Data  
Fig. 5c). Additionally, and again consistent with the association between 
tyramine and TB among White women (Fig. 2a), we found an enrichment 
in metabolites related to the endocrine system among White women 
(P = 0.0045, q = 0.077; Extended Data Fig. 5d). We further identified 
lipid-metabolism-related metabolites to be enriched for associa-
tions with early sPTB among Black women (P = 0.0019, q = 0.032 and 
P = 0.0047, q = 0.038 for very and extremely PTB, respectively; Extended 
Data Fig. 5d), potentially related to other lipid metabolism alterations 
reported in PTB62. Notably, we identified a global enrichment of xeno-
biotics associated with sPTB among Black women (P = 0.006, q = 0.054; 
Extended Data Fig. 5d), consistent with our finding regarding specific  
metabolites (Fig. 2).

A network of microbe–metabolite associations in sPTB
We next investigated the correlations between the estimated absolute 
abundances of microbial species and sPTB-associated metabolites 
(Methods). Contrary to metabolite associations with sPTB, we found 
weak interactions between microbe–metabolite associations and both 
race and sPTB timing (Supplementary Note 2). Our results replicate 
multiple known associations, such as between Dialister species or 
Enterococcus faecalis and tyramine63,64 (Spearman ρ > 0.54, P < 10−10, 
q < 0.1 for all; Fig. 3a and Extended Data Fig. 6a), as well as evidence for 
choline metabolism in G. vaginalis65 and Corynebacterium aurimuco-
sum66 (ρ = 0.34, P < 10−6, q = 1.7 × 10−5 and ρ = 0.40, P = 4 × 10−4, q = 0.006, 
respectively). Additionally, higher tyramine concentrations were 
previously found in BV67, supporting the associations we found with 
BV-associated microbes (Fig. 3a).

We note that xenobiotics positively associated with sPTB have 
significantly weaker correlations with vaginal microbes than those 
observed for the rest of the metabolites (Mann–Whitney P = 0.024). 

DEA, for example, shows only weak correlations with all vaginal 
microbes (ρ < 0.23, q > 0.1 for all microbes). This observation provides 
further support for an exogenous source for these metabolites.

We found the strongest and most numerous correlations 
for tyramine (35 associations, Spearman 0.27 < ρ < 0.73; Fig. 3a), 
which was higher in TB among White women (Fig. 2a). Eight out of 
the 35 tyramine-correlated microbes are also correlated with cho-
line, which was enriched in TB across all women (Fig. 2a). Interest-
ingly, many of the species positively correlated with TB-associated 
metabolites, including Atopobium vaginae, G. vaginalis, several 
Prevotella species, BV-associated bacteria (BVAB) and many others, 
were previously reported to be associated with negative outcomes, 
such as BV68, PTB13–15,17 and other adverse pregnancy69 and neonatal70 
outcomes. We found a similarly paradoxical negative correlation 
between Staphylococcus epidermidis, previously associated with 
BV71 and late-onset sepsis in preterm neonates72, and both tartrate 
and ethyl glucoside (ρ = −0.28, P = 6.9 × 10−4, q = 0.009 and ρ = −0.26, 
P = 0.0015, q = 0.016, respectively; Fig. 3a), which were positively 
associated with sPTB. Therefore, even as many of these associations 
were known, our results also suggest complex interactions among 
suboptimal vaginal microbes, sPTB-associated metabolites and  
health outcomes.

Metabolic models support microbiome production  
of tyramine
To gain some mechanistic insight into the correlations we found, we 
used community-level metabolic models73, which integrate genetic 
and biochemical knowledge to predict the metabolic output of each 
microbiome sample (community net maximal production capacity73 
(NMPC); Methods). Our models show accurate predictions for several 
metabolites known to be produced by the vaginal microbiome63,74, such 
as putrescine and histamine (Spearman ρ = 0.64 between NMPCs and 
metabolomic measurements, N = 214, P < 10−10 and ρ = 0.54, N = 167, 
P < 10−10, respectively; Extended Data Fig. 7a,b).

Two sPTB-associated metabolites, tyramine and choline, were 
represented in our models. As our models predicted that choline was 
not affected by the vaginal microbiome (NMPCs of 0 for all women), 
we focused on tyramine, which previous studies suggest is produced 
by vaginal microbes63,74. Following genomic curation (Methods), the 
predictions of our models were highly accurate (Spearman ρ = 0.62, 
N = 229, P < 10−10; Extended Data Fig. 7c). Interestingly, we found that, 
among White women, while the measured levels of tyramine were 
enriched in TB (Mann–Whitney P = 2.8 × 10−4; Fig. 3b), its predicted 
microbiome output was not, and was even somewhat higher in sPTB 
(P = 0.26; Fig. 3c). This stems from lower accuracy in tyramine predic-
tions in White women who delivered preterm (Spearman ρ = 0.19 versus 
ρ = 0.65, P = 0.02 for difference in ρ’s; Fig. 3d).

This difference in accuracy could not be explained by the rep-
resentation of microbes in the metabolic models, which was in fact 
lower in Black women (Mann–Whitney P = 0.05, Extended Data  
Fig. 7d), probably due to the generally higher vaginal microbial diver-
sity in this population75. Furthermore, tyramine prediction accuracy 
was not sensitive to constraints on metabolite uptakes or to the rep-
resentation of low-abundance taxa (Methods, Supplementary Table 5  
and Extended Data Fig. 7e). As these analyses suggest that lower 
tyramine prediction accuracy in White women with sPTB is not the 
result of a modelling artefact, the different accuracy could stem from 
a difference in strains, functional capacity or a non-microbial effect. 
Either phenomenon also has the potential to explain the aforemen-
tioned paradoxical microbial associations with tyramine (Fig. 3a). The 
possibility of a microbial difference or a host effect is also supported 
by AMON37, which predicts that tyramine is either microbial or host 
derived (Supplementary Table 3). Overall, our results demonstrate 
the utility of metabolic models in studying microbiome–metabolome 
interactions, and raise intriguing hypotheses for further investigation.
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Early prediction of sPTB risk using the vaginal metabolome
Early diagnosis of pregnancies with high risk for prematurity is cru-
cial for the development of prevention and intervention strategies. 
We therefore explored whether we can use clinical, microbiome or 

metabolome data, collected ~3 months before delivery (mean ± s.d. of 
14.5 ± 4.2 weeks), to predict subsequent sPTB. We used boosted deci-
sion trees, which were superior to alternative models (Extended Data 
Fig. 8a). For microbiome- and metabolome-based models, we trained 
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Fig. 3 | Microbe–metabolite correlations and metabolic models suggest 
sources for sPTB-associated metabolites. a, A network of microbial 
correlations with metabolites associated with sPTB. Ellipses, microbial species; 
blue and red diamonds, metabolites enriched in TB and sPTB, respectively; blue 
and red edges, negative and positive Spearman correlations with FDR < 0.1, 
|ρ| > 0.25, respectively; edge width, median ρ. For the same network without 
grouped nodes, see Extended Data Fig. 6a. b,c, Box and swarm plots (line, 
median; box, IQR; whiskers, 1.5× IQR) of tyramine levels, as measured (b) and 
predicted with metabolic models (Methods; c), comparing preterm and term 
deliveries and stratifying by maternal self-identified race. White women who 
delivered preterm had lower measured vaginal levels of tyramine (P = 0.0002), 

yet our metabolic models predict higher, albeit non-statistically significant, 
microbiome production of tyramine in women who delivered preterm (P = 0.18 
and P = 0.26 for all and White women, respectively). P, Two-sided Mann–Whitney 
U. d, Tyramine production derived from microbiome metabolic models (NMPC; 
Methods; Y axis) plotted against measured tyramine levels (X axis) and coloured 
by race and birth outcome (legend). While our models are generally accurate 
for tyramine (Spearman ρ = 0.62, P < 10−10 across all women), the accuracy for 
White women who delivered preterm was significantly lower (Spearman ρ = 0.19, 
P = 0.02 for comparing correlation strength versus the correlation in other 
women, two-sided Fisher R-to-z transform), suggesting a difference in strains, 
functional capacity, or a non-microbial interaction not captured by our models.
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composite predictors, such that a separate model was used for White 
and Black women. Despite the smaller effective sample size for each 
model, this resulted in better performance (Extended Data Fig. 8b). We 
evaluated all models on held-out samples using nested cross-validation 
without test data leakage (Methods).

Our models using clinical (age, body mass index (BMI), race, 
PTB history and nulliparity) and microbial abundance data, obtained 
limited accuracy (area under the receiver operating characteristic 
curve (auROC) of 0.59, area under the precision-recall curve (auPR) 
of 0.46 for clinical data; auROC = 0.55, auPR = 0.41 for microbiome 
data; P = 0.12 for difference between the models; Methods and  
Fig. 4a,b). Notably, using metabolomics data, we were able to generate 
a model with superior accuracy (auROC = 0.78, auPR = 0.61, P < 10−10 for 
comparison with either clinical or microbiome models; Methods and 
Fig. 4a,b). Lastly, a model combining clinical, microbiome and metab-
olomics data obtained similar accuracy to the metabolome-based 
model (auROC = 0.76, auPR = 0.62, P = 0.44 versus metabolome-based 
model; Extended Data Fig. 8c,d), with metabolites as the most promi-
nent contributors to the model (Extended Data Fig. 8e). This sug-
gests that metabolite measurements are a sufficient representation 
of information contained in these three data types with respect  
to sPTB.

Our metabolome-based model is superior or similar in accuracy 
to several previously published models, such as those using amniotic 
fluid metabolomics (auROC 0.65–0.70, N = 24) (ref. 76), maternal serum 
metabolome and clinical data (auROC 0.73, N = 164) (ref. 77), maternal 
urine and plasma metabolome (auROC 0.69–0.79, N = 146) (ref. 78), 
blood cell-free RNA measurements (auROC 0.81, N = 38) (ref. 79) or vagi-
nal protein biomarkers (auROC 0.86, N = 150, sPTB N = 11) (ref. 80), many 
of which have small sample sizes, lack demographic diversity or focus 
on high-risk cohorts. Overall, our results demonstrate the promising 
utility of vaginal metabolites as early and accurate biomarkers of sPTB.

We next evaluated the same models, without retraining, for 
predicting extremely and very PTB in Black women from the same 
held-out data (that is, only the ground-truth classification of outcome 
changed). Interestingly, while the metabolome-based model showed 
a slight decrease in accuracy (auROC of 0.69 and 0.73 for extremely 
and very PTB, respectively, compared with auROC of 0.77 for sPTB in 
Black women; P = 4.3 × 10−4 and P = 0.001, respectively; Extended Data  
Fig. 8f), our microbiome-based model showed increasing accuracy 
(auROC of 0.69 and 0.62, respectively, compared with auROC of 0.55; 
P = 0.031 and P = 0.49, respectively; Extended Data Fig. 8g). These 
results may reflect the potentially increased involvement of the vaginal 
microbiome in earlier sPTBs1.
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Fig. 4 | Metabolomics-based prediction of subsequent sPTB. a,b, Receiver 
operating characteristic (ROC, a) and precision-recall (PR, b) curves comparing 
sPTB prediction accuracy for models based on clinical (auROC = 0.59, auPR = 
0.46), microbiome (auROC = 0.55, auPR = 0.41) and metabolomics (auROC = 
0.78, auPR = 0.61) data (legend), evaluated in nested cross-validation (Methods). 
N = 232 for all. Shaded lines show results from five independent outer 10-fold 
cross-validation draws (Methods). c, ROC curve evaluating the performance 
of our metabolomics-based predictor on two external cohorts. Despite a 

challenging replication setting, with different inclusion criteria, measured 
metabolites and batch effects, our predictor obtains relatively accurate 
predictions without retraining (auROC = 0.66, auROC = 0.65, for the Ghartey 
2017 (N = 50) and 2015 (N = 20) cohorts, respectively; Methods). d, Effect on total 
prediction (SHAP-based83; X axis) for the ten most predictive metabolites in our 
metabolome-based predictor, sorted with descending importance. Each dot 
represents a specific sample, with the colour corresponding to the relative level 
of the metabolite in the sample compared with all other samples.
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Metabolome-based predictor replicates in external cohorts
To test the generalizability of our metabolome-based model, we vali-
dated its accuracy in two independent cohorts (Methods): a case–control 
study of 20 women (10 PTB), mostly (75%) White, at high risk for PTB, with 
samples collected at 24–28 weeks of gestation (‘Ghartey, 2015’) (ref. 81);  
and a case–control study of 50 women (20 PTB), mostly (88%) Black, 
presenting with symptoms of preterm labour and no PTB history, with 
samples collected at 22–34 weeks of gestation (‘Ghartey, 2017’) (ref. 55).

This validation was extremely challenging: due to the different 
inclusion criteria and population structure, substantial batch effects in 
metabolomics measurements across different studies82 and finally, as 
data were generated 4–6 years earlier, only a small fraction of metabo-
lites used by our predictor were measured (34% and 39%). To emphasize 
this, only one and two (for Ghartey 2015 and 2017, respectively) of the 
ten associations we detected between vaginal metabolites and sPTB 
(Fig. 2a) could be examined in these cohorts (Methods), of which none 
were significant (Mann–Whitney P > 0.05). These sPTB-associated 
metabolites are probably important features for prediction, making 
generalization across these cohorts difficult. Despite this challenging 
setting, our metabolome-based predictor, trained only on the 232 
samples profiled here, without any retraining or adaptation, provided 
relatively accurate predictions in both external cohorts (auROC = 
0.65, auPR = 0.67 and auROC = 0.66, auPR = 0.58 for Ghartey 2015 and 
2017, respectively; Fig. 4c and Extended Data Fig. 8h,i). These results 
demonstrate the robustness of the vaginal metabolome and of our 
predictive approach to study specific biases.

Model interpretation reveals other contributing features
To obtain insights into the features used by the models, we assessed the 
contribution of each feature towards the prediction for each sample 
using SHapley Additive exPlanations (SHAP)83 (Supplementary Table 6).  
As expected, six of the ten most predictive metabolites, namely DEA, 
tyramine, arabinose, glutamate γ-methyl ester, mannitol/sorbitol and 
mannose, were also identified in our association analysis, with a similar 
direction of association (Figs. 2 and 4d). We additionally found that high 
pipecolate levels and low levels of lactosyl-N-palmitoyl-sphingosine 
and orotidine contribute to sPTB predictions. Of these, pipecolate 
was shown to be elevated in women with BV84.

A similar analysis of our microbiome-based predictor also cap-
tured previously detected associations between vaginal microbes and 
sPTB, including those of Mobiluncus mulieris14 and Finegoldia magna85, 
and of Lactobacillus14 and Dialister species15 (Extended Data Fig. 8j). 
These results highlight the interpretability of our models and their 
ability to model complex non-linear interactions, enabling us to expose 
associations not detected by univariate analyses.

Discussion
In this study, we measured the second-trimester vaginal metabolome 
of 232 pregnant women. We show that it is associated with the vaginal 
microbiome, and that metabolite signatures are enriched for sPTB 
among Black women. We identify multiple metabolites that are associ-
ated with sPTB, across the cohort and separately for Black and White 
women. Our results highlight exogenous metabolites with strong asso-
ciations with sPTB, which we suggest constitute important risk factors. 
We further uncover intriguing interactions between TB-associated 
metabolites and potentially suboptimal microbes, and propose a dif-
ference in the vaginal metabolism of tyramine in White women who 
delivered preterm. Finally, we demonstrate that metabolome-based 
models can predict subsequent sPTB weeks to months in advance, 
potentially paving the way for early diagnostics.

We detected several sPTB-associated xenobiotics: DEA, ethyl glu-
coside, tartrate and EDTA, which prior literature and a functional analy-
sis37 suggest are of exogenous source. DEA, a chemical with no known 
natural source86, commonly used in drilling and metalworking fluids35, 
and to which reproductive-aged women are highly exposed87, and ethyl 

glucoside, present in alcohol-containing products31, are both precur-
sors or ingredients in hygienic and cosmetic products30,33. Tartrate and 
EDTA are used as food additives32,58 and are also common in hygienic 
and cosmetic products32,57. While we have not identified the sources 
of these metabolites, the fact that all are documented in hygienic and 
cosmetic products raises concern that some of these products may 
increase the risk of sPTB. Our results coincide with recent studies rais-
ing concerns regarding environmental exposures in pregnancy88,89, and 
identify these chemicals in the reproductive tract. Further study is war-
ranted to identify the sources of these metabolites and to disentangle 
their effects on the host, microbiome and pregnancy outcomes, so that 
policy recommendations can be made regarding their use in various 
products and during pregnancy.

The cohort we analysed included a majority of Black women, offer-
ing an opportunity to study PTB in women who are disproportionately 
burdened by PTB and other adverse pregnancy outcomes, while also 
represented in small numbers in many studies. However, we urge cau-
tion in drawing conclusions from differences in associations between 
Black and White women, as maternal self-identified race represents 
a complex array of pre-existing differences, disparities and clinical 
covariates at the time of sampling. Nevertheless, we note that the 
enrichment of sPTB associations among the xenobiotic metabolite set 
in Black women may potentially reflect disparities in environmental and 
exogenous exposures90,91, consistent with reports that Black women 
have greater exposures to endocrine disrupting chemicals through 
personal care products92,93 and with studies that identified exogenous 
chemicals as possible drivers of PTB94,95. Metabolomic exposure pat-
terns could contribute to the association between racial disparities in 
prematurity rates and racial differences in the vaginal microbiome96.

We used community-scale metabolic models to investigate micro-
bial tyramine metabolism, which have important limitations. Model 
curation is an ongoing effort, and thus models may not be tailored to 
each sample or may lack representation of niche-specific metabolic 
capabilities. Another limitation stems from the resolution of 16S rRNA 
amplicon sequencing, which identifies taxa at the species or genus 
level, precluding strain-specific modelling. Despite these limitations, 
our models accurately predicted several metabolites, and offered 
insights regarding potential sources of tyramine.

Our predictive modelling approach has several noteworthy limita-
tions: (1) our use of a case–control cohort enriched for sPTB limits our 
ability to assess population-level predictive value, and further valida-
tion is required in prospective studies. (2) As this cohort was focused 
on sPTB, we are unable to assess if our models are specific to sPTB or 
are detecting a general risk for adverse pregnancy outcomes. (3) The 
use of race in our models, while common throughout medicine97, is 
controversial and creates issues in implementation98. This was driven 
by differences in both sample size and the vaginal metabolome itself 
between Black and White women in this cohort, and resulted in an 
overall increased accuracy. (4) Finally, there is additional unexplored 
potential in using even earlier samples for prediction. A larger sample 
size, and combination with other sources of data, such as maternal 
urine or serum metabolomics, vaginal metagenomics or cell-free RNA 
measurements, could further improve prediction accuracy.

Our results demonstrate the utility of vaginal metabolites as early 
biomarkers of PTB, and identify xenobiotic metabolites as potentially 
modifiable sPTB risk factors, which may also disproportionately affect 
Black women. The strong associations we observe motivate the inves-
tigation of the vaginal microbiome and metabolome in the context of 
other adverse pregnancy outcomes such as pre-eclampsia, indicated 
PTB and BV.

Methods
Study design and cohort description
We analysed banked samples from the previously collected  
and described Motherhood and Microbiome cohort (NCT02030106) 
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(ref. 14). This cohort was approved by the institutional review board at 
the University of Pennsylvania (IRB 818914) and the University of Mary-
land School of Medicine (HP-00045398), and all participants provided 
written informed consent. The Motherhood and Microbiome cohort 
recruited 2,000 women with a singleton pregnancy before 20 weeks 
of gestation. Women were followed to delivery, and sPTB was defined 
as delivery before 37 weeks of gestation with a presentation of cervi-
cal dilation and/or premature rupture of membranes. Of these, the 
vaginal microbiota of 503 women was previously characterized via 
16S rRNA gene amplicon sequencing (V3–V4 region) of vaginal swabs 
collected between 20 and 24 weeks of gestation, and total bacterial 
load was assessed using the TaqMan BactQuant assay14. For this study, 
out of women with available microbiome data, all available samples 
were selected from women who delivered preterm (N = 80), in addi-
tion to samples from 152 controls who delivered at term. The selected 
cervicovaginal samples were replicates of those used for 16S rRNA 
gene sequencing, collected using a double shaft dacron swab. Cervi-
covaginal swabs were either self-collected or collected by a research 
coordinator during a study visit14.

Statistics and reproducibility
No data was excluded from analysis in the present study. As the study 
was observational, there was no allocation or randomization. The study 
included all available samples who delivered preterm (N = 80), and 
no statistical methods were used to pre-determine sample sizes; our 
sample size is similar to those reported in previous publications25,26. 
Samples were randomly distributed across metabolomics batches 
and metabolomics analysis was performed by Metabolon, who were 
blinded to the outcome assessment of each sample. Two-sided Mann–
Whitney U tests (SciPy 1.5.2) and logistic regression (Statsmodels 
0.12.1) were used to identify associations between metabolite levels and 
sPTB. Two-sided Fisher’s exact tests (R stats 3.6.1) were used to identify 
associations among MCs, CSTs, race and sPTB. PERMANOVA tests 
(scikit-bio 0.5.6) were used to identify associations among the micro-
biome, metabolome, CST, race and metabolomics batches. Metabolite 
set enrichment analysis (Methods) was used to identify associations 
between metabolite sets and sPTB. Spearman correlations were used 
to measure the agreement between metabolite levels and NMPCs and 
between metabolite levels and microbial abundances. Fisher R-to-z 
transform was used to compare correlations measured within sub-
groups. Evaluation of machine learning models was performed using 
scikit-learn 0.24.2. pandas 1.1.5 and NumPy 1.18.5 were used for data 
processing. Robust assessment of generalization error of predictive 
models was achieved via nested cross-validation.

Metabolomics profiling and preprocessing
Metabolite levels were measured from vaginal swabs by Metabolon, 
using an untargeted liquid chromatography–tandem mass spectrom-
etry (LC-MS/MS) platform99. For discussion of batch processing of the 
sample, see Supplementary Note 1 and Extended Data Fig. 2. We note 
that swab lot number, sterile swabs for blank processing and sample 
collector (coordinator or self-collection) are not available. While this 
limits analysis of potential batch effects, we find batch confounding 
(for example, swab lot associated with sPTB) unlikely as samples were 
collected before delivery and outcome determination.

Following a methanol-based small-molecule extraction, sam-
ples were divided into 5 µl aliquots and each was resuspended in 
an appropriate extraction solvent and separated via one of four 
chromatography techniques. Each chromatographic method was 
optimized for the extraction of hydrophobic, basic or polar com-
pounds. The chromatographic method used for the quantification 
of each metabolite is provided in Supplementary Table 4. Isotopi-
cally labelled or halogenated standards were added to all aliquots 
at fixed concentrations before extraction to serve as retention 
time markers. Following extraction, compounds were subjected to 

electrospray ionization and measured via tandem mass spectrometry 
by a Q-Exactive Hybrid Quadrupole-Orbitrap high resolution mass 
spectrometer. Data-dependent acquisition mode was used to generate 
fragmentation spectra of high-intensity m/z peaks detected during 
the first round of mass spectrometry. m/z peaks were identified and 
annotated by Metabolon using proprietary software and comparisons 
to their database of retention indices and fragment ion spectra. The 
areas under annotated m/z peaks were taken as metabolite measure-
ments. A comprehensive overview of all chromatographic and mass 
spectrometry parameters is available in Supplementary Table 7. Pro-
cess blanks (negative controls) were run with each metabolomic plate, 
and metabolites were considered present only if they were detected 
with levels that were at least three times higher than these controls. 
Detected levels of the xenobiotics highlighted in this study, in vaginal 
samples and negative controls, are shown in Extended Data Fig. 5e, 
demonstrating the same. For the mass error of these xenobiotics, see 
also Extended Data Fig. 5f, showing high identification quality com-
pared with other non-xenobiotic metabolites.

While the majority of named metabolites (N = 556) were tier 1 
identified by Metabolon via fragmentation spectra matches to experi-
mentally measured library standards, only tier 2 assignments are avail-
able for independent identification due to the proprietary nature of 
the Metabolon platform. Metabolite measurements were volume 
normalized to the volume of buffer used, which may not necessarily 
account for differences in the original tissue. This was followed by 
robust standardization27 of the log (base 10) transformed values (sub-
tracting the median and dividing by the standard deviation calculated 
while clipping the top and bottom 5% of outliers). The Shapiro–Wilk 
test was used to determine that log (base 10) transformed values devi-
ated from normality for the majority of metabolites (389 of 635 named 
metabolites). For this reason, non-parametric tests were used in sub-
sequent metabolomic analyses.

Microbiome data processing
All microbiome-based analyses were done using data previously pro-
cessed with DADA2 (ref. 100) and SpeciateIT14, available from Supplemen-
tary Data 2 of ref. 14. A single exception to this are predictive models, 
which were trained on 97% clustered operational taxonomic units 
(OTUs) using the USEARCH pipeline101. We obtained raw sequences 
from the database of Genotypes and Phenotypes (dbGaP) under study 
accession: phs001739.v1.p1. Primers were aligned to reads and then 
trimmed, followed by end merging and quality filtering (-fastq_maxee 
1.0). The filtered reads were then pooled together, dereplicated, clus-
tered with a 97% threshold and chimera filtered with the UPARSE algo-
rithm to produce the OTU count matrix.

Global microbiome and metabolome structure
PERMANOVA analysis was performed using Bray–Curtis distance for 
microbiome data and the Canberra distance for metabolites data, 
which is robust to outliers and sensitive to differences in common 
features. De novo clustering of metabolite vectors was done using the 
k-medoids algorithm (scikit-learn-extra 0.2.0), also with the Canberra 
distance. We determined the optimal number of clusters by comparing 
the within cluster sum of square error and the gap statistic for cluster-
ing solutions with k between 1 and 15 (Extended Data Fig. 3a,b). To check 
the robustness and consistency of these clusters, we performed 100 
random selections of 209 (90%) of the 232 samples, recreating clusters 
de novo with the same procedure for each random subset. Many of the 
resulting subsets (36) had over 95% of samples assigned to the same 
metabolite cluster as the original assignment (Supplementary Table 2),  
with an average assignment accuracy of 86% across all random subsets 
(Extended Data Fig. 3g), demonstrating that our metabolite clusters 
are indeed consistent. Uniform manifold approximation and projec-
tion (UMAP)102 was performed using the Python umap-learn pack-
age102, with n_neighbors of 15 and min_dist of 0.05 for microbiome data 
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and n_neighbors of 15 and min_dist of 0.25 for metabolomics data. To 
further describe each metabolomics cluster, Fisher’s exact test was 
used to identify metabolite super and subpathways enriched among 
metabolites associated with each cluster (P < 0.05).

Differential abundance testing and metabolite set enrichment 
analysis
Differential abundance tests between metabolite levels were done 
using the two-sided Mann–Whitney U test for metabolites that were 
present in at least half of the cases. All associations with early PTB were 
calculated using only samples from Black women, due to their high 
proportion among these deliveries (21 of 26 for childbirths <32 weeks 
of gestation and 14 of 15 for childbirth <28 weeks). To identify func-
tional sets of metabolites that were perturbed between sPTB and TB, 
we compared, for each set, the Mann–Whitney P values for differential 
abundance between PTB and sPTB for metabolites within the set to 
the same P values for metabolites outside the sets, using an additional 
Mann–Whitney U test. We calculated significance by comparing the P 
value of the latter test to 10,000 similar P values calculated on random 
permutations of sPTB and TB labels. For functional sets, we used defi-
nitions of super and subpathways provided by Metabolon, as well as 
KEGG61 pathways. False discovery rate (FDR) correction was performed 
separately for each metabolite set type.

Prediction of metabolite origins using AMON
AMON37 is a method that uses functional annotations according to the 
KEGG database61 to predict metabolite origins for all metabolites that 
could be matched to a KEGG entry (N = 334 of 635 named metabolites). 
We used PICRUSt2 (ref. 103) to generate functional profiles for each 
sample, and then applied AMON37 to predict whether metabolites that 
had matching entries in the KEGG Database are products of human 
or microbial metabolism. When both were false, we interpreted the 
metabolite to be a xenobiotic.

Microbe–metabolite correlations
To identify associations between microbes and metabolites, we esti-
mated microbial absolute abundance by multiplying the relative abun-
dances of each taxon by the total 16S rRNA copy number for the sample, 
obtained using the TaqMan quantitative polymerase chain reaction 
(qPCR)-based panel14,104,105, and calculated Spearman correlations 
with the levels of metabolites we found to be associated with sPTB. 
Across all correlation network analyses (Fig. 3a and Extended Data Figs. 
6a,c–e) we included correlations with at least 22% of paired measure-
ments, corresponding to 50 samples of 232 for Fig. 3a. All correlation 
measurements used available data without imputation, and correction 
for multiple testing was performed via the Benjamini–Hochberg FDR 
method. To determine whether edges in our network were influenced 
by race (Extended Data Fig. 6b) or by the severity of sPTB (Extended 
Data Fig. 6f), we used a two-sided Fisher R-to-z transform to com-
pare these correlations in Black women to the same correlations in 
White women, as well as to compare these correlations in Black women 
who delivered before 32 weeks to the same correlations in all other  
Black women.

Creating and interrogating vaginal microbiome models
Microbiome metabolic modelling was done using Microbiome Mod-
eling Toolbox (COBRA toolbox commit: 71c117305231f77a0292856e2
92b95ab32040711) (refs. 73,106), using models from AGORA2 (ref. 107). All 
computations were performed in MATLAB version 2019a (Mathworks), 
using the IBM CPLEX (IBM) 12.10.0 solver.

For each sample, tailored microbiome models were created 
through the compartmentalization technique108: metabolic recon-
structions of species present in the sample are merged into a shared 
compartment, and input and output compartments are added. The 
shared compartment enables microbes to share metabolites while 

input and output compartments are present to enable compounds 
intake and secretion. Coupling constraints are added as in refs. 109,110 
to ensure a dependency between relative abundances and each spe-
cies network fluxes. Finally, sample-specific microbiome biomass 
objective functions, composed by the sum of each microbial biomass 
multiplied by the corresponding relative abundance value, are added 
to each microbiome model.

To interrogate the secretion potential of each sample-specific 
microbiome model, we computed NMPCs using the pipeline mgPipe.m 
of the Microbiome Modeling Toolbox73 (Supplementary Table 8). NMPC 
calculation accounts for maximal microbiome compound production 
and uptake rates, and aims at predicting the overall contribution of 
microbiomes to the metabolism of specific compounds73. To later 
assess prediction accuracy, we computed Spearman correlations 
between NMPCs and the corresponding metabolite measurements 
without imputation.

To support and improve the accuracy of our tyramine predic-
tions, we validated the presence of the TDC gene, coding for tyrosine 
decarboxylase. For each species represented in our metabolic models 
(N = 95), we used Prodigal111 to predict open reading frames in up to 
200 randomly selected Refseq112 assemblies, and searched them for 
evidence of TDC using the hmmsearch function of Hmmer3.3.2 (ref. 113) 
and a profile hmm for TDC114 (NCBI HMM accession TIGR03811.1). We 
then curated our metabolic models, making sure that the correspond-
ing reaction exists in models for which at least one assembly contained 
the corresponding gene.

To compile the metabolic models, we matched between the spe-
cies detected in the microbiome samples and those present in AGORA2 
(ref. 107) (Supplementary Table 9). To increase the representativeness 
of our models, we added three representatives for abundant vaginal 
species without a corresponding AGORA2 model that were present 
with >5% relative abundance in at least 20 samples (listed in Supple-
mentary Table 9). The only species that passed this threshold, which 
was not included in our models was Candidatus Lachnocurva vaginae 
(BVAB1), for which no suitable AGORA model was available. To generate 
species-level models, we combined metabolic models from available 
strains using the function createPanModels.m of the Microbiome 
Modeling Toolbox73. Altogether, our microbiome metabolic models 
included 95 different species, with an average of 20 species in each sam-
ple. As the vaginal microbiome has a very skewed distribution28, this 
resulted in a median (interquartile range (IQR)) of 96.7% (88.4–98.8%) 
of the total abundance across samples represented by our models 
(Extended Data Fig. 7d).

As a test of the sensitivity of our models to the lack of representa-
tion of low-abundance microbes, we performed simulations where we 
iteratively removed the ten least abundant species from consideration 
by our models, and evaluated the accuracy of our models in predicting 
the well-modelled metabolites tyramine, putrescine and histamine. As 
expected, as our models account for the abundance of each microbe, 
and as the vaginal microbiome has a skewed distribution, our models 
were not sensitive to the representation of low-abundance microbes 
(Extended Data Fig. 7e), even when removing 70 out of 95 models.

Metabolic modelling requires environmental conditions such 
as media and carbon source availability115. We therefore formulated a 
‘general vaginal media’ (Supplementary Table 10), as the union of all 
metabolites present in at least 50 samples to which a corresponding 
metabolite was identified in AGORA, assuming them to be present in 
an unlimited (that is, very high) concentration. This vaginal media 
was applied to each microbiome model input compartment in the 
form of constraints on metabolite uptake reactions, constraining 
uptake of compounds not present in the environment to zero. Uptake 
of specific gut-related dietary compounds, automatically performed in 
mgPipe, was disabled acknowledging the different metabolic environ-
ment in the vagina, and essential metabolites required for achieving 
microbiome growth, together with their respective flux value, were 
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detected and added to the vaginal media using the fastFVA and find-
MIIS functions of the COBRA toolbox106. A comparison of the ‘general’ 
media to subgroup-specific media, defined as metabolites present in 
75% of samples from Black and White women separately, with uptake 
fluxes constrained to the mean value across the subgroup, and to 
a person-specific media, in which uptake fluxes were constrained 
for each sample separately, showed similar accuracy with respect to 
tyramine predictions (Supplementary Table 5).

Training, testing and validation of sPTB classifiers
We constructed predictive models separately using the clinical (age, 
race, parity status, history of sPTB and BMI), microbiome and metabo-
lomics data, as well as a combination model consisting of all of these 
data types combined. As race had very strong interactions with micro-
biome and metabolomics data, we trained a composite predictor for 
microbiome, metabolomics and combination models, whereas a sepa-
rate model was trained for Black women. Despite the smaller sample 
size for each model, this empirically improved prediction performance 
(Extended Data Fig. 8b). Microbiome-based models used absolute 
abundances, calculated from USEARCH-processed OTUs as described 
above. In cases where qPCR-based total load was not available (N = 14), 
it was imputed to the mean total load using only training samples.

Samples were split into training and test sets using 10-fold 
cross-validation (‘outer folds’), block-stratified for deciles of gesta-
tional age at birth (GAB), and for microbiome, metabolomics and 
combined models, also stratified for race. To account for stochastic-
ity in the division to ten folds, we repeated this process five times. 
Train–test sterility was strictly maintained. To tune the optimal set 
of hyperparameters (including parameters for feature engineering 
and selection), and to obtain a robust estimate of the generalization 
error, we used nested cross-validation. In this extension of the train-
ing–test–validation framework, the training set was further split to five 
folds (‘inner folds’), on which we used 1,000 iterations of a random set 
of hyperparameters (Supplementary Table 11). Once more, to account 
for stochasticity, we repeated this process five times. We selected the 
best hyperparameter set as the model with the top average auROC 
score out of the top five most accurate models based on average R2 for 
sPTB classification, based on performance on the inner folds. We then 
used these hyperparameters to train a model on the entire training 
data for the outer fold, and evaluated it on the held-out test data. Of 
note, in this framework, hyperparameters are selected using strictly 
the training data of each outer 10-fold cross-validation fold, and are 
evaluated just once on the test set. Our prediction pipeline included 
standardization and imputation (for metabolomics data), optional 
principal component analysis (PCA) transformation, and feature selec-
tion using sparsity, SHAP83 feature importance, information gain and/
or Spearman correlation, followed by prediction using LightGBM116, 
with all steps performed strictly using training data. The selected 
models were then evaluated, without retraining, on classification of 
extremely (GAB <28 weeks) or very (GAB <32 weeks) PTB on the outer 
fold. Benchmark analyses (Extended Data Fig. 8a,b) were done using 
10-fold cross-validation, repeated five times. We assessed the signifi-
cance of the difference in auROC between two models by computing 
z-scores of the normal distributions of auROCs117.

To obtain a final model for interpretation and validation, we 
trained new composite models on the entire cohort (N = 232), using 
the hyperparameters selected for each of the outer folds (50 models), 
and picked the model with the best auROC on the same cohort (training 
fit). The final parameter set for each model is listed in Supplementary 
Table 12. For validation on external vaginal metabolome datasets, we 
note that information on maternal race at the subject level was not 
available to us. We therefore applied the metabolomics model used for 
non-Black women, without retraining or adaptation, to metabolomics 
data from the Ghartey 2015 (ref. 81) cohort, as this cohort contained 
mostly White women; and similarly applied the metabolomics model 

used for Black women to metabolomics data from the Ghartey 2017 
(ref. 55) cohort. For validation of associations of metabolites with sPTB 
(Fig. 2a) in these cohorts, we note that, of the ten metabolites in Fig. 2a, 
only the six that apply to all and White women can be validated in the 
Ghartey 2015 cohort, of which only one was measured; and only the 
nine that apply to all and Black women can be validated in the Ghartey 
2017 cohort, of which only two were measured.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The 16S rRNA gene amplicon sequencing data and the associated sam-
ples and subjects’ metadata analysed in this study are publicly available 
in the database of Genotypes and Phenotypes (dbGaP) under accession 
number phs001739.v1.p1 as well as in Supplementary Data 2 of ref. 14. 
Raw metabolomics data are available in Supplementary Table 1. Mass 
spectral data are available from MetaboLights under accession number 
MTBLS702 (https://www.ebi.ac.uk/metabolights/MTBLS702). Addi-
tional information regarding xenobiotics is provided in Supplementary 
Table 13. The KEGG Database is available at https://www.genome.jp/
kegg/, and the AGORA models are available at https://www.vmh.life/.

Code availability
Scripts to reproduce the analysis are available in a GitHub repository: 
https://github.com/korem-lab/PTB_Metabs_2021. The mgPipe pipeline 
is available within the COBRA toolbox (https://github.com/opencobra/
cobratoolbox).
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a bMetabolite super pathways Metabolite prevalences

Extended Data Fig. 1 | Prevalence and super pathway of assayed metabolites. 
a, Distribution of metabolite super pathways among assayed metabolites. 
Metabolite super pathway assignments were provided by Metabolon.  
b, Distribution of metabolite prevalences across samples. Gray distribution 

reflects prevalences of all metabolites (N = 745). Blue distribution only 
reflects prevalences of named metabolites (N = 635). Dashed lines distinguish 
metabolites prevalent in more than 80% (N = 352) and more than 20% of  
samples (N = 694).
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Extended Data Fig. 2 | Robustness of analyses to metabolomics batch effects. 
a, b, UMAP ordination of metabolomics data (N = 232), same as Fig. 1b, colored by 
Pos Early, Pos Late, and Polar platform batches (a; 2 batches) and by Neg platform 
batches (b; 3 batches). See Supplementary Table 4 for which metabolites were 
measured by each platform. Limited batch effect is noted, which is statistically 
significant only for the 3 batches (PERMANOVA P = 0.09 and P = 0.023 for 2 and 
3 batches, respectively). c, The fraction of samples from each batch (y-axis; top, 
Pos Early, Pos Late, and Polar platform batches; bottom, Neg platform batches) 
whose metabolite profiles clustered to each metabolite cluster (MC; x-axis), 
shown for each MC separately. No significant batch effect was detected in MC 
assignments (Two-sided Fisher’s exact P > 0.05 for all without FDR correction).  
d, Heatmap showing odds ratio for sPTB (color bar) for each metabolite from  
Fig. 2a (x-axis) using a logistic regression model adjusting for batch (according to 
the appropriate platform for the metabolite, Supplementary Table 4), stratified 

by maternal race (y-axis). The exact odds ratio and confidence interval are 
written in the cell for all statistically significant associations (FDR < 0.1). e, sPTB 
classification accuracy (auROC, x-axis) for a prediction model similar to those 
used for the entire cohort (Fig. 4, Methods), that is: trained and evaluated in cross 
validation on batch 1 (N = 114; orange; auROC = 0.66; one-sided permutation 
P = 0.44 for lower accuracy than random draw); trained on batch 1 (N = 114) 
and evaluated on batch 2 (N = 118; violet; auROC = 0.66; P = 0.46); trained 
and evaluated in cross validation on batch 2 (N = 118; magenta; auROC = 0.66; 
P = 0.44); and trained on batch 2 (N = 118) and evaluated on batch 1 (N = 114; 
brown; auROC = 0.69; P = 0.66). Gray histogram (black line, KDE) shows accuracy 
of models evaluated in cross-validation on random samples (N = 116) from this 
cohort (mean auROC = 0.67). This analysis demonstrates that a prediction model 
trained on one of the two batches generalizes well to the other batch, and that 
both accuracies are to be expected given the limited sample size.
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Extended Data Fig. 3 | Characteristics of metabolite clusters. a, b, Within 
cluster sum of squared distances (a) and gap statistic (b) for k-medoids 
clustering using Canberra distances with k from 1 to 15. A shoulder (a) and 
peak (b) are visible for k = 6. c, Heatmap showing metabolite levels for each 
subject (rows) and metabolite (columns). Subjects are sorted by their assigned 
metabolites cluster (MC) and metabolites are clustered hierarchically using 
Canberra distance and Ward linkage. The color above each column reflects 

metabolite annotations (legend to the right). d-f, Same as Fig. 1c, using PCA (d), 
Canberra distance-based PCoA (e) and t-SNE (f). g, Histogram of consistency 
of MC assignment, defined as the fraction of samples assigned to the same MC 
(x-axis) in 100 iterations in which we randomly selected 90% (209 women) of the 
cohort, and generated 6 metabolite clusters de novo. The analysis shows that 
many of the iterations (36 iterations, 36%) had over 95% consistency, with an 
overall mean consistency of 86%.
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Extended Data Fig. 4 | Metabolite clusters correspond to CSTs. a, Distribution 
of CSTs within each metabolite cluster, for all (top; N = 232), White (middle; 
N = 51) and Black (bottom; N = 173) women. Each group of bars corresponds to a 
single metabolite cluster and bars within a group sum to 100%. b, Same as Fig. 1d, 

stratified by race. P - two-sided Fisher’s exact p-values, q < 0.1. c, d, Same as  
Fig. 1b, c, colored by maternal race. P - PERMANOVA. e,f, Same as Fig. 1f, g, 
performed for all women combined. g, Same as Fig. 1g, for association with early 
sPTB (gestational age at birth < 32).
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Extended Data Fig. 5 | Metabolites altered in sPTB. a, Box and swarm plots 
(line, median; box, IQR; whiskers, 1.5*IQR) of the levels of metabolites associated 
with sPTB, comparing preterm and term deliveries and stratifying by maternal 
self-identified race. P – two-sided Mann-Whitney U. b, Distribution (kernel 
density estimation) of four xenobiotics associated with sPTB or early sPTB across 
this cohort. Samples with no metabolite detected are excluded. c, Same as Fig. 2a, 
for women not treated with progesterone. d, Heatmap showing metabolite sets 
altered in sPTB in various subsets of this cohort. Colors correspond to two-sided 
p-value of metabolite set enrichment analysis (Methods). Only associations 

with FDR < 0.1 are shown. e, Raw intensity levels measured across samples for 
the same four xenobiotics as in b, compared to measures from plate negative 
process controls. Box mid-line, median; box, IQR; whiskers, 1.5*IQR; vertical 
line, min:max range; dot, mean; N.D., not detected. N = 232 for Diethanolamine; 
N = 230 for ethyl glucoside; N = 221 for tartrate; N = 232 for EDTA. f, Mass error for 
spectral matching (y-axis) for the same xenobiotics, compared to the mean mass 
error for all non-xenobiotic, tier 1 metabolites, showing that the four xenobiotic 
metabolites had very good identification quality.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Networks of microbial correlations with PTB-
associated metabolites. a, Same as Fig. 3a, but with each microbial taxa 
represented as an individual node. b, Volcano plot where every point represents 
a microbe–metabolite association. X-axis displays the difference between 
spearman ρ’s calculated separately among Black and White women. Y-axis 
displays the significance of the difference, using the two-sided Fisher’s R-to-z 
transform. Horizontal maroon line designates p = 0.05. Gold points indicate 

associations where there is a difference in sign between the correlations among 
Black and White women. c, d, Same as a, for associations only among Black (c) 
and White (d) women. e, Same as a, for metabolites associated with extremely 
or very PTB among Black women. f, Same as b, for difference in associations 
between Black women who delivered extremely or very preterm and the rest of 
the Black women in the cohort.
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Extended Data Fig. 7 | Metabolic models provide accurate predictions of 
putrescine, histamine, and tyramine. a–c, Putrescine (a), histamine (b), and 
tyramine (c) predictions derived from microbiome metabolic models (NMPC; 
Methods; y-axis) plotted against measured metabolite levels (x-axis), showing 
good accuracy for all (Spearman ρ = 0.64; ρ = 0.54; and ρ = 0.62, respectively, 
P < 10−10 for all). d, Model coverage (y-axis; line, median; box, IQR; whiskers, 
1.5*IQR), described as the fraction of total sample abundance represented by 
metabolic models, for each subgroup separately. Samples from White women 

had higher model coverage compared to samples from Black women, despite 
the lower accuracy for tyramine prediction in the former group. N = 173 for Black 
women; N = 21 for White women with sPTB; N = 30 for White women with TB.  
e, Spearman ρ between metabolic model predictions (NMPCs) and metabolite 
measurements (y-axis) for models that only contain a maximum of N most 
abundant species (x-axis). As our metabolic models account for the abundance 
of each microbe, and as the vaginal microbiome has a skewed distribution, our 
models are robust to lack of representation of low-abundance microbes.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Performance and features of prediction models 
for sPTB. a, Receiver operating characteristic (ROC) curve comparing the 
performance of different sPTB prediction algorithms on metabolomics data. 
LightGBM (auROC = 0.81) outperforms logistic regression (auROC = 0.78, 
P = 0.017 for auROC comparison against LightGBM), support vector classification 
(auROC = 0.76, P = 2.9 × 10−4) and elastic net (auROC = 0.72, P = 0.004). b, ROC 
curve comparing the performance of a composite model stratified for race 
against a model trained on all samples. A model trained on samples from all 
women achieves the same accuracy as a model trained only on samples from 
Black women when evaluated in 10-fold cross-validation on sPTB prediction for 
Black women (auROC of 0.83 and 0.82, respectively). However, a model trained 
on samples from all women significantly underperforms a model trained only 
on samples from women who do not identify as Black when evaluated in 10-fold 
cross-validation on the same subgroup (auROC of 0.64 vs. 0.80, P = 4 × 10−7 for 
auROC comparison). Demonstrating that a different model is learned on each 
subgroup, models trained separately on each subgroup do not generalize as well 
to the other subgroup (auROC of 0.64 and 0.65). c, d, ROC (c) and precision-recall 
(PR; d) curves, evaluated in nested cross-validation, comparing sPTB prediction 

accuracy for models based on metabolomics data alone (auROC = 0.78, 
auPR = 0.61), and on metabolomics data combined with microbiome and clinical 
data (‘combination’; auROC = 0.76, auPR = 0.62; P = 0.44). e, SHAP83-based effect 
on total prediction (x-axis) for the top 10 features used in our combination 
models, sorted with descending importance. Each dot represents a sample, with 
the color corresponding to the metabolite level in the sample compared to all 
samples. f, g, ROC curves for the same metabolome-based (f) and microbiome-
based (g) models as in Fig. 4a,b, when prediction is evaluated for extremely  
(<28 weeks of gestation) and very (<32 weeks) PTB. The microbiome-based 
models show increasing accuracy for predicting extremely and very PTB (auROC 
of 0.69 and 0.62, respectively, compared to auROC of 0.55 for all sPTB, P = 0.03 
and P = 0.49, respectively). h, i, PR curve for sPTB prediction on two external 
cohorts, obtained using our metabolome-based predictor without retraining or 
adaptation. j, Same as (e) for the microbiome-based model. Shaded lines in a–d, 
f, g show results from five independent 10-fold cross validation draws (Methods). 
p-values for comparisons between ROC curves are based on the two-sided test 
described in ref. 117.

http://www.nature.com/naturemicrobiology
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No data collection was performed, and hence no software was used for data collection.

Data analysis The Microbiome Modeling Toolbox (COBRA toolbox commit: 71c117305231f77a0292856e292b95ab32040711) (https://github.com/
opencobra/cobratoolbox).  All metabolic modeling computations were performed in MATLAB version 2019a (Mathworks, Inc.), using the IBM 
CPLEX (IBM, Inc.) solver, version 12.10.0.  
Python 3.7.9 was used for all statistical analysis using the following packages: 
SHAP version 0.35.0 
scipy version 1.5.2  
umap version 0.4.6  
skbio version 0.5.6  
statsmodels version 0.12.1  
R version 3.6.1 
rpy2 version 3.4.2  
lightgbm version 3.2.1 
scikit-learn version 0.24.2 
scikit-learn-extra version 0.2.0 
pandas version 1.1.5 
numpy version 1.18.5 
usearch version 11.0.667 
PICrust2 version 2.4.1 
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AMON version 1.0.0 
Scripts to reproduce the analysis are available at the GitHub repository: https://github.com/korem-lab/PTB_Metabs_2021

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The 16S rRNA gene amplicon sequencing data and the associated samples and subjects’ metadata analyzed in this study are publicly available in the database of 
Genotypes and Phenotypes (dbGaP) under accession number phs001739.v1.p1 as well as in Supplementary Data 2 of ref. 14. Raw metabolomics data is available in 
Table S1. Mass spectral data is available from MetaboLights under accession number MTBLS702 (https://www.ebi.ac.uk/metabolights/MTBLS702). Additional 
information regarding xenobiotics is provided in Table S13. The KEGG Database is available at https://www.genome.jp/kegg/ and the AGORA models are available at 
vmh.life. 

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Analysis regarding sex is inapplicable as this study only included pregnant females. Additional information regarding gender is 
not available to us.

Population characteristics This was a nested case-control study from the Motherhood & Microbiome cohort. Sample selection is detailed below. 
Population characteristics are provided in Table 1. In brief, the study included 80 women who delivered preterm and 152 
women who delivered at term. Study groups were matched in all relevant characteristics, including age (29±6 vs. 28±6), BMI 
(30.1±7.8 vs. 30.6±7.2), and maternal race (71.25% Black women vs. 76.3% Black women.).

Recruitment This study did not involve recruitment. We analyzed banked samples from the previously collected and described 
Motherhood & Microbiome (M&M) cohort (NCT02030106), described in Elovitz et al, Nat. Commun. 2019. The M&M cohort 
recruited 2,000 women with a singleton pregnancy prior to 20 weeks of gestation. Women were followed to delivery, and 
spontaneous preterm birth was defined as delivery before 37 weeks of gestation with a presentation of cervical dilation and/
or premature rupture of membranes. 

Ethics oversight All participants provided written informed consent and the study was approved by the Institutional Review Board at the 
University of Pennsylvania (IRB #818914) and the University of Maryland School of Medicine (HP-00045398).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We analyzed banked samples from the previously collected and described Motherhood & Microbiome (M&M) cohort. For this study, out of all 
women with available microbiome data, all available samples from weeks 20-24 of gestation from women who delivered preterm 
spontaneously (N = 80) were selected, in addition to samples from 152 matched controls (1:~2) who delivered at term. Sample size was 
selected by availability and not by sample size calculation.

Data exclusions No data was excluded.

Replication The metabolomics-based prediction algorithm described in the manuscript was successfully validated in two external cohorts.  
These two external cohorts were ill-suited to replicate specific associations: only a small fraction of the metabolites that were measured in our 
dataset were also measured in the validation cohorts (18% and 32%). Of the 11 significant associations in Figure 2a, 6 can be validated in the 
Ghartey 2015 cohort (which is mostly composed of White women), and 9 can be validated in the Ghartey 2017 cohort (which is mostly 
composed of Black women). Of these, only one and two metabolites were measured in the Ghartey 2015 and 2017 cohorts, respectively. Of 
these three associations that could be replicated, none were significant. We attribute this to differences in study design, inclusion criteria, and 
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target population, as well as to the small sample size of both of these cohorts.  
The manuscript also details numerous findings that were supported by existing literature.

Randomization The study was an observational study with no intervention and therefore allocation and randomization is not relevant to the study. 

Blinding No blinding was performed for outcome assessment as this was an observational study. Metabolon Inc. were blinded to the outcome 
assessment of each sample during metabolomics processing. Furthermore, clinical metadata was required for the multi-omic analyses 
performed.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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