Table 3.
Results of the training sets using five machine learning algorithms.
| model | accuracy | precision | recall | f1 | auc_pr | auc_roc |
|---|---|---|---|---|---|---|
| Logistic regression | 0.6376 | 0.5693 | 0.6145 | 0.5910 | 0.3864 | 0.7025 |
| Random forest | 0.8119 | 0.7027 | 0.7719 | 0.7357 | 0.6621 | 0.8854 |
| Support vector machine | 0.6789 | 0.5829 | 0.6291 | 0.6051 | 0.4513 | 0.7480 |
| KNN | 0.8486 | 0.7754 | 0.6073 | 0.6811 | 0.6197 | 0.8702 |
| XGBoost | 0.9954 | 0.9972 | 0.9868 | 0.9920 | 0.9993 | 0.9999 |