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ABSTRACT
Background  Immunotherapy has revolutionized clinical 
outcomes for patients suffering from lung cancer, 
yet relatively few patients sustain long-term durable 
responses. Recent studies have demonstrated that the 
tumor immune microenvironment fosters tumorous 
heterogeneity and mediates both disease progression and 
response to immune checkpoint inhibitors (ICI). As such, 
there is an unmet need to elucidate the spatially defined 
single-cell landscape of the lung cancer microenvironment 
to understand the mechanisms of disease progression and 
identify biomarkers of response to ICI.
Methods  Here, in this study, we applied imaging mass 
cytometry to characterize the tumor and immunological 
landscape of immunotherapy response in non-small 
cell lung cancer by describing activated cell states, 
cellular interactions and neighborhoods associated with 
improved efficacy. We functionally validated our findings 
using preclinical mouse models of cancer treated with 
anti-programmed cell death protein-1 (PD-1) immune 
checkpoint blockade.
Results  We resolved 114,524 single cells in 27 patients 
treated with ICI, enabling spatial resolution of immune 
lineages and activation states with distinct clinical 
outcomes. We demonstrated that CXCL13 expression 
is associated with ICI efficacy in patients, and that 
recombinant CXCL13 potentiates anti-PD-1 response in 
vivo in association with increased antigen experienced T 
cell subsets and reduced CCR2+ monocytes.
Discussion  Our results provide a high-resolution 
molecular resource and illustrate the importance of 
major immune lineages as well as their functional 
substates in understanding the role of the tumor immune 
microenvironment in response to ICIs.

BACKGROUND
Immune checkpoint inhibitors (ICI) have 
transformed cancer care across a range of 
solid malignancies including non-small cell 
lung cancer (NSCLC). Despite the identifi-
cation of several correlative biomarkers of 

response such as programmed cell death-
ligand 1 (PD-L1) expression and tumor 
mutational burden, real-world data show 
that the majority of patients with NSCLC 
will not respond to ICI.1 2 This is the result 
of a multitude of resistance mechanisms that 
include, but are not limited to, aberrations 
in tumor neoantigen burden, effector T-cell 
infiltration, epigenetic modulation, T-cell 
exhaustion, the microbiome, and abnormal 
neovascularization.3 4 As such, there is a 
clear unmet need to understand the biology 
underlying ICI efficacy and identify strategies 
to potentiate ICI response.

Both the nature and level of immune infil-
trate within tumors have been shown to have 
important implications in the downstream 
response to ICIs.5 6 Antitumoral immunity 
requires highly organized, spatially coordi-
nated localization of immune cells within the 
tumor microenvironment and the ability to 
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resolve these interactions is critical to understand their 
behavior. Pioneering studies have recently provided 
a framework for interrogating complex cellular inter-
actions that mediate tumor evolution and response to 
therapy. For example, topological single-cell network 
analyses of the cellular architecture of breast cancer,7–9 
colorectal cancer10 and pancreatic cancer11 have revealed 
multicellular spatial features of the tumor microenvi-
ronment associated with clinical outcomes. High dimen-
sional imaging has also been applied to understand the 
mechanisms of therapeutic efficacy in cancer, including 
anti-HER212 or anti-cytotoxic T-lymphocytes-associated 
protein 4/programmed cell death protein-1 (PD-1) in 
melanoma.13 In lung cancer, although significant prog-
ress has been made to highlight the dynamic tumor 
immune microenvironment (TIME) using single-cell 
technologies,14–17 spatially-resolved single-cell imaging 
data sets are scarce. To address this knowledge gap, here, 
in this study, we perform highly multiplexed imaging 
mass cytometry to interrogate the single-cell spatial land-
scape of response to ICI in NSCLC.

METHODS
Patient cohort
Using RECIST 1.1 (Response Evaluation Criteria in Solid 
Tumours), response to treatment was defined as stable 
disease or partial/complete response at least 6 months 
after the initiation of immunotherapy, while absence 
of response was defined as progressing disease within 6 
months following initiation of the treatment. We used a 
cohort of successive patients that underwent an immuno-
therapy treatment upon recurrence and had given their 
consent to the biobank for the use of their clinical data 
and surgery, biopsy or cytology specimen (from primary 
lung tumor or metastases). Cases with a sufficient amount 
of tumor and adequate tissue quality were included in the 
tissue microarray (TMA) block. The pathologist who built 
the TMA was blinded to the response status of the patients 
and thus no bias was introduced in terms of selecting 
responders and non-responders. TMA was constructed by 
selecting one 1.0 mm core from the surgical tumor spec-
imen or biopsy from both responder and non-responder 
groups. Clinicopathological information for our cohort 
can be found in online supplemental tables 1,2.

Sample staining and IMC antibody panel
An imaging mass cytometry (IMC) antibody panel was 
designed to include 14 cell lineage markers, 11 co-stim-
ulatory/inhibitory markers, 6 immune signaling markers 
and four tissue structural markers. Clone information is 
available in online supplemental table 3. Previous opti-
mization was done for 19 out of 35 antibodies.18 The 
remaining antibodies were either purchased precon-
jugated (Fluidigm) or conjugated to metal isotopes by 
the Single Cell and Imaging Mass Cytometry Platform 
at the Goodman Cancer Institute (McGill University), 
using Maxpar Conjugation Kits as per the manufacturer’s 

protocol (Fluidigm). Multiple control tissues were 
included during optimization, including appendix, 
placenta, normal lung, spleen, tonsil and thymus, to 
enable evaluation of expected staining patterns. Staining 
and incubation were performed using a Ventana 
Discovery Ultra auto-stainer platform (Roche Diagnos-
tics). Briefly, formalin-fixed paraffin-embedded (FFPE) 
slides were incubated in EZ Prep solution to allow for 
deparaffinization at 70°C, followed by antigen-retrieval 
at 95°C using standard Cell Conditioning 1 solution. 
Slides were then removed from the machine, rinsed with 
1× phosphate-buffered saline (PBS), and incubated in 
Dako Serum-free Protein Block solution for 45 min prior 
to applying a cocktail containing the metal-tagged anti-
bodies in Dako Antibody Diluent overnight at 4°C. Slides 
were washed with 0.2% Triton X and 1× PBS, and then 
incubated with the metal-conjugated anti-biotin antibody 
in Dako Antibody Diluent (1 hour, room temperature 
(RT)). Slides were once again washed with 0.2% Triton X 
and 1× PBS, counterstained with Intercalator-Ir (1:400 in 
1× PBS, 30 min at RT), rinsed with distilled water (5 min) 
and air-dried. Acquisition was performed with a Hype-
rion Imaging System and Fluidigm commercial acqui-
sition software (Fluidigm). A frequency of 200 Hz was 
used to laser-ablate the cores at a resolution of roughly 
1 µm, and for our cohort, laser power was used at instru-
mental setting ‘3’. A 1 mm2 area (approximate size of one 
core) required approximately 2 hours of run time. Note, 
while all markers adequately stained control tissue, for 
a few markers, we were not confident in the accuracy of 
staining in every core across our entire lung adenocarci-
noma cohort, and thus these markers were not used for 
downstream interpretation (CD39, CD40, TIM3, B7H4, 
VISTA, CCR7, CCR5, PD-1). Representative images of 
each antibody in control tissues are included in online 
supplemental figure S1a.

Cell segmentation and lineage assignment
We first segmented cells using a novel cell segmentation 
pipeline. The details can be found using the following 
link: https://biorxiv.org/cgi/content/short/2022.02.​
27.482183v1. To evaluate the existence of a marker at a 
particular location, we created a multilevel image stack 
based on staining intensity for each marker where each 
mask/level within the stack is generated using k-means 
clustering19 and a mixture of generalized gaussian 
models.20 To overcome challenges related to signal-to-
noise ratio and to extract markers with low expression we 
considered six levels for each marker in our panel and 
the appropriate mask was subsequently manually curated 
for each marker. For each mask:
1.	 A median filter with a particular window size (3×3) is 

used to convolve the grayscale image.
2.	 The k-means algorithm is used to cluster each pixel in 

the image into six groups of intensity levels.
3.	 All groups up to a particular intensity level are consid-

ered as foreground (1) and the rest as background (0) 
for each channel.
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4.	 To both avoid noisy regions and obtain smoother bi-
nary masks, we applied a morphological blob removal 
process where binary blobs of a particular area are re-
moved from masks.

5.	 An additional binary mask obtained using the adaptive 
binarization method with a sensitivity of 0.4 was used as 
a channel-specific morphological operation. The mask 
is then amalgamated with the mask obtained in step 4. 
This process allows to improve the accuracy of select 
markers.

We considered the curated mask for each lineage 
marker ‍Mk‍ across each cell ‍ci‍, where ‍k = 1, . . . , n‍ and ﻿‍ n‍ 
is the number of lineage markers. Let us assume that 

‍p
j
ci‍ is the ‍jth‍ pixel that lies in the surrounding of ‍ci‍ and 

each pixel has the following presence vector based on the 
lineage markers:

	﻿‍ E
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where ‍pMi =
{
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}
‍ determines whether the 

pixel ‍p
j
ci‍ is positive for a particular marker. To assess 

whether each pixel within a cell is positive or nega-
tive for a select marker, we determined the majority 
vector by summing over the presence of all vectors as: 
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where ‍Nci‍ is the number of pixels in the cell ‍ci‍. The 
maximum value in vector ‍Mci‍ is used for cell type assign-
ment. Cell lineages are assigned in hierarchal rank 
priority order (figure 1B).

Costimulatory/inhibitory marker analysis
We first calculated the mean staining intensity for each 
antibody in all 16 cell lineages. We then calculated the 
Z-score for each marker across all cell lineages. For 
comparison between responders and non-responders, we 
only evaluated cell lineages with a Z-score >1. The justi-
fication for this approach is that with very low staining 
intensity, the relative staining intensity in responders 
compared with non-responders can seem inflated (eg, a 
staining intensity of 0.2 vs 1 will give a fivefold relative 
increase for potentially background staining of a marker 
for a given cell type). These results can be visualized in 
figure 1G.

Cell–cell pairwise interaction analysis
To identify significant pairwise interaction/avoidance 
between cells, we performed a permutation-test-based 
analysis of spatial single-cell interactions.21 P values less 
than 0.01 were deemed significant. Interacting cells were 
defined as those within six pixels (6 µm).

Neighborhood identification
Cellular neighborhoods were generated by employing a 
‘window’ capture strategy. The window was composed of 
the 10 cells in closest proximity to a given cell as previ-
ously described.22 A window can be defined as a frequency 
vector containing the types of X (as indicated) closest 
cells to a given cell. The window vectors are computed 
for each cell. Cells were then clustered using scikit-learn, 

a software machine learning library for Python, and Mini-
BatchKMeans clustering algorithm V.0.24.2 with default 
batch size=100 and random_state=0. Windows were clus-
tered based on cellular composition into seven cellular 
neighborhoods using MiniBatchKMeans clustering algo-
rithm with k=7. Every cell is allocated to a cellular neigh-
borhood based on their defining window vector. The 
counts of cells within each neighborhood were compared 
between responders and non-responders.

T-distributed stochastic neighbor embedding
Plots were generated in MATLAB (V.2019b- default 
parameters). Expression data were normalized to the 
95th percentile for visualization purposes.

Cell lines
All cell lines were cultured in DMEM (Dulbecco’s Modi-
fied Eagle’s Medium) media supplemented with 1% 
penicillin and streptomycin and 10% fetal bovine serum. 
LLC1 and B16-F10 cell lines were purchased from The 
American Type Culture Collection. HKP1 and MC38 cells 
were generous gifts from V Mittal and N Beauchemin, 
respectively. MC38 cells were passaged in vivo as previ-
ously described.23

Animal models
Animal protocols were approved by the McGill University 
Animal Care Committee (MCGL-7953) and in line with 
the standards set by the Canadian Council on Animal 
Care. Mice were housed in pathogen-free conditions. 
C57BL/6 male mice were injected subcutaneously with 
5×105 HKP1 cells, 3×105 MC38 cells, 5×105 LLC1 cells 
or 5×103 B16-F10 cells resuspended in 1:1 Matrigel:PBS 
at 5–7 weeks of age. Recombinant CXCL13 (Peprotech; 
rCXCL13) was administered at 1.25 µg peritumorally per 
mouse on the day the tumors became palpable (between 
day 4–6 post-injection, depending on the cell line). The 
rCXCL13 was administered every 2 days thereafter, until 
the trial endpoint was reached. Anti-PD-1 (InVivoPlus – 
BioXcell; clone: J43) and IgG (non-reactive polyclonal 
Armenian hamster Ab) (InVivoPlus – BioXcell; clone: 
NA) were resuspended in pH 7.0 dilution buffer (InVivo-
Pure – BioXcell) at a concentration of 10 mg/kg per 
mouse and injected intraperitoneally 2 days after tumors 
became palpable. The injections were repeated every 
3 days until the endpoint was reached. Weight was moni-
tored once weekly and tumor volume was measured via 
caliper two to three times weekly once the tumors became 
palpable.

Immunohistochemistry
Three 6-week-old treatment naïve C57BL/6 male mice 
were injected in the flank with 5×105 HKP1, 3×105 
MC38 or 5×105 LLC1 resuspended in 1:1 Matrigel:PBS. 
FFPE sections (4 µm) were prepared for each sample 
and subjected to routine H&E staining. Immunohisto-
chemistry directed against alpha-CD8 (Abcam; clone: 
EPR21769; 1:500 dilution) was performed on FFPE 
slides on a Ventana BenchMark XT automated system. 
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Figure 1  Single cell spatial landscape of response to ICI in NSCLC. (A) Schematic of IMC acquisition of multiplexed 
images from 27 patients with NSCLC, involving laser ablation of metal-conjugated antibodies, CyTOF acquisition, single-
cell phenotyping and characterization of the prevalence and interactions of immune cells. (B) Cell assignment hierarchy. 
(C) Representative images of antibody staining and corresponding single-cell segmented images for responders and non-
responders. (D) Average expression of markers in indicated cell populations. (E) Kaplan-Meier overall survival analysis for 
11 patients with NSCLC treated with ICI (responders n=6, non-responders n=5). (F) Frequency of cancer and immune cell 
populations in responders and non-responders to immune checkpoint inhibitors as a proportion of total cells. Non-Cl Mo - 
responders versus non-responders: *p=0.017316. (G) Ratio of average marker intensity in cancer and immune cell populations. 
Green represents higher intensity in responders, gray in non-responders and white was not calculated. Median±IQR. Statistical 
analysis (E: log-rank test, F: Mann-Whitney test). Cl Mo, classical monocyte; CyTOF, cytometry by time of flight; DC, dendritic 
cell; ICI, immune checkpoint inhibitor; IMC, imaging mass cytometry; Int Mo, intermediate monocyte; M1-like MAC, M1-like 
macrophage; M2-like MAC, M2-like macrophage; NK cell, natural killer cell; Non-Cl Mo, non-classical monocyte; NSCLC, non-
small cell lung cancer; Tc, cytotoxic T cell; Th, helper T cell; TMA, tissue microarray; Treg, regulatory T cell.
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Steps were performed in line with the Ventana discovery 
ULTRA staining module (Roche Diagnostic). Briefly, 
deparaffinization was followed by cell conditioning using 
conditioner #1 at 95°C for 56 min and primary antibody 
incubation for 60 min. Then, one Drop of Omap anti-RB 
HRP (Roche Diagnostic) was applied with a 16 min incu-
bation followed by incubation with one drop of hematox-
ylin (Roche Diagnostic) for 16 min. Finally, one drop of 
bluing reagent (Roche Diagnostic) was used for 4 min.

Spectral flow cytometry
Tumors were isolated, mechanically dissociated and 
filtered through a 40 µm mesh. Red blood cell lysis was 
performed with BD Pharm Lyse buffer (BD Biosciences). 
Samples were enriched for leukocytes using Percoll 
centrifugation, pH 8.5–9.5 (25°C) (Sigma-Aldrich). Dead 
cell exclusion was performed with LIVE/DEAD Aqua 
(Thermo Fisher Scientific) as per manufacturer instruc-
tions. Samples were incubated with Fc block for 20 min 
(1:100; BD Biosciences), followed by incubation with anti-
bodies (30 min, online supplemental table 4 including 
marker, color, dilution, clone and supplier). Cytek 
Aurora (SpectroFlo) was used for spectral flow cytometry. 
OneComp eBeads (eBioscience) and/or tumor cells were 
used for compensation controls. Dead cells and debris 
were excluded from analyses using forward scatter × side 
scatter and LIVE/DEAD stain. Mouse immune popula-
tions were defined as seen in online supplemental figure 
5; CD8 antigen experienced T cells were gated as previ-
ously described.24 FlowJo V.10.8.0 (BD) was used for anal-
ysis. Tumors with significant ulceration were excluded 
from analysis.

For the Uniform Manifold Approximation and Projec-
tion (UMAP), the DownSample and UMAP FlowJo 
plugins were used. Briefly, samples that had more than 
5000 live CD45+ cells were included. Individual samples 
were downsampled on the CD45+ live population to yield 
the same number of cells per treatment group in each 
trial for a total of 34,880 cells per treatment group. All 
samples were concatenated and the UMAP plugin was 
run on the CD45+ live cells using the Euclidean setting 
with 15 nearest neighbors, 0.5 minimum distance, 0.2 
number of components and the compensated parameters 
were included. B cells, monocytes, Ly6C− Ly6G− CD11b+ 
cells, Tregs, dendritic cells, CD4+ T cells, neutrophils, 
CD8+ T cells, and other cells were gated on the concat-
enated sample as shown in online supplemental figure 
5. The same procedure was repeated to run a UMAP on 
T cells for all samples that had more than 2000 T cells. 
Antigen experienced CD8+ and CD4+ T cells were gated 
on the concatenated sample as shown in online supple-
mental figure 5.

Statistical analysis and workflow
Statistical analyses were performed using GraphPad 
Prism V.9 statistical software. All image analysis steps were 
performed in Python (V.3.7.12) and MATLAB (V.2019b). 
Data were expressed as mean±SEM or median±IQR; p 

values<0.05 were considered significant (or as indicated). 
Log-rank (Mantel-Cox) test was used for survival analyses.

RESULTS
To characterize the immune microenvironment 
underlying ICI response, we performed IMC on surgi-
cally resected samples from 27 patients with NSCLC 
(figure 1a–d, online supplemental tables 1,2). Our opti-
mized panel included 35 antibodies targeting 14 cell 
lineage markers, 11 co-stimulatory/inhibitory markers, 
6 immune signaling markers and four tissue structural 
markers, allowing us to define up to 15 cellular lineages 
with functionally diverse identities (online supplemental 
figure S1a,b, online supplemental table 3). Images were 
segmented into individual cells using a combination of 
classical and modern machine learning-based computer 
vision algorithms25 (online supplemental figure 1C). This 
fully automated approach eliminates bias and enables 
high-throughput segmentation across a variety of diverse 
tissue types. Using this approach, we detected 114,524 
spatially-resolved cells within the tumor niche. A super-
vised hierarchical lineage assignment approach was then 
used to classify each cell based on canonical lineage 
markers for major immune populations, tumor cells or 
blood vessels (figure 1B).

As the TIME at different anatomical locations is known 
to regulate tumor growth, metastasis, and therapeutic 
responses,26 patients were first separated based on the 
location of tumor resection (lung vs metastases). Eleven 
patients in our cohort had tumors resected from the lung; 
six responders and five non-responders (figure 1e), and 
the single-cell spatial landscape of the tumor immune 
contexture was compared. We first assessed the frequency 
of immune populations between responders and non-
responders. The most significantly elevated immune 
population in responders compared with non-responders 
was CD14− CD16+ non-classical monocytes (figure  1f), 
which are known for their ability to patrol the vascula-
ture in a steady state. However, studies have shown that 
non-classical monocytes are not restricted to tissue-repair 
responses and can exhibit context-dependant inflam-
matory features which may include T-cell activation and 
inflammatory cytokine production.27 28 Therefore, we 
explored the functional status of adaptive immune cells 
by comparing the mean expression intensity of functional 
markers across immune subsets between responders and 
non-responders (figure  1g, online supplemental figure 
2a-b). As expected, responders expressed higher levels 
of PD-L1 on cancer cells and increased expression of 
CD45RO on T cells, a marker for memory T cells that 
correlates with ICI response (figure 1g).29 In responders, 
we also observed elevated expression of LAG3 on CD8+ 
T cells (figure  1g).30 Of note, one of the most upregu-
lated markers on CD8+ T cells in responders was CXCL13 
(figure 1g), an emerging biomarker for immunotherapy 
efficacy.31 CD8+ T cells expressing high levels of PD-1 
have been shown to constitutively express CXCL13 in 

https://dx.doi.org/10.1136/jitc-2022-005545
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https://dx.doi.org/10.1136/jitc-2022-005545
https://dx.doi.org/10.1136/jitc-2022-005545
https://dx.doi.org/10.1136/jitc-2022-005545
https://dx.doi.org/10.1136/jitc-2022-005545
https://dx.doi.org/10.1136/jitc-2022-005545
https://dx.doi.org/10.1136/jitc-2022-005545
https://dx.doi.org/10.1136/jitc-2022-005545
https://dx.doi.org/10.1136/jitc-2022-005545
https://dx.doi.org/10.1136/jitc-2022-005545
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the context of NSCLC, permitting immune cell recruit-
ment to tertiary lymphoid structures and mediating an 
improved response to PD-1 blockade.32

To determine the frequency of activated cell types 
beyond their intensity of expression, we compared the 
prevalence of activated cell types between responders 
and non-responders. We observed a significantly greater 
prevalence of PD-L1+ cancer cells, LAG3+CD4+ T helper 
cells and increased LAG3+Ki-67− T cells in responders 
compared with non-responders highlighting the associ-
ation between increased T-cell exhaustion and response 
to ICI (online supplemental figure 2c-e). With recent 
high profile studies establishing a strong link between 
CXCL13 expression and immunotherapy efficacy,31 33 we 
next further examined the relationship between CXCL13 
expressing cells and response to ICI in our dataset. 
Consistent with prior reports, we found significantly 
more CXCL13+ T cells in responders compared with 
non-responders (figure  2A, online supplemental figure 
2f-h). Interestingly, we found that 63% of the cells 
expressing CXCL13 were not T cells, but rather endo-
thelial cells, macrophages, monocytes, B cells and cancer 
cells (figure 2B), indicating that this important ligand has 
multiple cellular sources within the tumor niche.

To interrogate spatially nuanced cell–cell interac-
tions between components of the TIME, we employed 
a permutation tests strategy to quantify the likelihood 
of pairwise interaction or avoidance between cells from 
distinct lineages (figure  2C).7 Tumor cells had almost 
exclusive homotypic (tumor–tumor) interactions in both 
responders and non-responders. B cells had a stronger 
tendency to interact with CD8+ cytotoxic T cells, CD4+ 
helper T cells and MHCII+ dendritic cells in responders 
(figure  2C)—all crucial cell types in the formation of 
tertiary lymphoid structures (TLS). Although we did not 
see distinct TLS within our 1 mm2 cores, these structures 
are found within or proximal to tumors, allow for local 
presentation of antigen and maintain T cell-mediated 
antitumor responses.34 35 They have been associated with 
improved prognosis across several malignancies and their 
density has been correlated with improved response to 
ICI in melanoma, sarcoma, and a cohort of solid tumors 
irrespective of CD8+ T cell density and PD-L1 status.36–39 
Non-classical monocytes, which we discovered were 
enriched in responders (figure 1F), were more likely to 
interact with T cells from responders compared with non-
responders (figure  2C), consistent with the notion that 
they may influence the functional status of T cells.27 28 
Interestingly, macrophages, regardless of the polarization 
state, had a higher tendency for interaction with most cell 
types in the TIME of responders, suggestive of a global 
active macrophage population with ICI response.

To further elucidate the spatially-resolved TIME land-
scape of ICI response, we created cellular neighborhoods 
where we identified the 10 nearest spatial neighbors 
for each individual cell. Then, we reclassified each cell 
based on their spatially defined cellular neighborhood 
(CN).22 Using this approach, we discovered seven CNs 

that recapitulated both novel and known tissue archi-
tectures, which we named: tumor stroma, vascular 
niche, pan-immune-1 and pan-immune-2, tumor core, 
lymphoid-enriched, and monocyte-enriched neighbor-
hoods (figure  2D). Interestingly, despite identifying no 
differences in the number of endothelial cells between 
responders and non-responders (figure  1F), we found 
that the vascular niche CN was significantly enriched in 
responders (figure  2E). The close proximity between 
endothelial cells and both B and T lymphocytes which 
demarcates this CN, may indicate an enrichment of 
high endothelial venules in the responder cohort. These 
specialized endothelial cells are required for the mainte-
nance of immune responses by contributing to lympho-
cyte migration and have been associated with improved 
response to ICIs in patients with metastatic melanoma.40 41 
Interestingly, within the vascular niche (CN2), CXCL13+ 
endothelial cells were exclusively found in responders 
(three out of six patients; compared with zero out of five 
non-responder patients, online supplemental figure 2i). 
This trend suggested that beyond T cells, the expression 
of CXCL13 by other cell types in the TIME may also be 
associated with response.

We next assessed the composition of patient samples 
from metastases (eight responders and eight non-
responders, online supplemental table 2, online supple-
mental figure 3a). In contrast to tumors resected from 
the lung, we found no significant associations between 
response to ICI and prevalence of cancer, immune or 
endothelial cell types (online supplemental figure 3b). 
Moreover, we found no association between prevalence of 
CXCL13+ T cells and response to ICI, including for both 
CD4+ and CD8+ subsets (online supplemental figure 3c). 
These findings highlight that tissue-specific features of 
the TIME may have a profound impact on therapeutic 
response and that elucidating these features is important 
to develop effective biomarkers of immunotherapy 
efficacy.

Given that CXCL13 expression as a biomarker of 
response to ICIs has been established,31 33 and our finding 
of enhanced CXCL13+ T cells in responders versus non-
responders (figures 1G and 2A), we next tested the func-
tional relevance of CXCL13 in immunotherapy efficacy. 
As multiple cell types were found to express CXCL13 in 
the TIME (figure 2B), we reasoned that treating tumors 
with rCXCL13 may lend insight into its putative ability 
to potentiate anti-PD-1 efficacy as a combination therapy. 
Using syngeneic mouse models of cancer, we combined 
anti-PD-1 with peritumoral injection rCXCL13, to mimic 
its high levels within the tumor niche of ICI responders 
agnostic of its cellular source (see figure 3A for trial sche-
matic). We selected models that recapitulated key TIME 
archetypes including (1) ‘immune-infiltrated, ICI sensi-
tive’, where CD8+ T cells are abundant and functional 
within tumors that display sensitivity to ICI (HKP1 lung 
cancer cells38 39; figure  3B,C); (2) ‘immune-infiltrated, 
ICI resistant’, where CD8+ T cells are also abundant 
but remain dysfunctional, so tumors are resistant to ICI 
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Figure 2  Cell–cell communication and spatial neighborhoods associated with response to ICI in NSCLC. (A) Prevalence of 
CXCL13+ T cells, CXCL13+ Th and CXCL13+ Tc across non-responders and responders as a proportion of T cells. CXCL13+ 
T cells – non-responders versus responders: *p=0.021645. CXCL13+ Th non-responders versus responders: *p=0.021645. 
(B) Pie chart indicating the relative proportion of cell types expressing CXCL13 (n=11). (C) Heatmap indicating significant 
pairwise cell-type interaction (red) or avoidance (blue) summarized across the two-sided permutation tests on individual images 
(n=11 images; 1000 permutations each). (D) Heatmap of seven cellular neighborhoods discovered in 11 patients with NSCLC. 
(E) Number of cells per cellular neighborhood in non-responders and responders to ICI (CN2 – non-responders vs responders 
*p=0.0303). Median±IQR. Statistical analysis (A, E: Mann-Whitney test). Cl Mo, classical monocyte; ICI, immune checkpoint 
inhibitor; Int Mo, intermediate monocyte; M1-like MAC, M1-like macrophage; M2-like MAC, M2-like macrophage; NK cell, 
natural killer cell; NSCLC, non-small cell lung cancer; Tc, cytotoxic T cell; Th, helper T cell; Treg, regulatory T cell.
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Figure 3  Recombinant CXCL13 (rCXCL13) potentiates anti-PD-1 efficacy. (A) Schematic of experimental setup. C57BL/6 male 
mice were inoculated with 500,000 HKP1, 300,000 MC38 or 500,000 LLC1 cells into the flank. Representative CD8 IHC and 
H&E of (B) HKP1, (D) MC38, and (F) LLC1 treatment-naive tumors. Tumor growth curves of C57BL/6 wildtype mice inoculated 
with (C) HKP1, (E) MC38, or (G) LLC1 tumors with indicated treatments. Tumor sizes are shown as mean±SEM. HKP1 - 
rCXCL13+anti-PD1 versus PBS+anti-PD-1: ****p<0.0001, PBS+anti-PD1 versus PBS+IgG: **p=0.0067. MC38 - rCXCL13+anti-
PD1 versus PBS+anti-PD-1: ***p=0.0001. Statistical analysis (C, E, G: two-way analysis of variance with Tukey multiple 
comparisons test). Scale bar on the H&E and IHC represents 100 µm. CRC, colorectal cancer; ICI, immune checkpoint inhibitor; 
IHC, immunohistochemistry; NK cell, natural killer cell; NSCLC, non-small cell lung cancer; PBS, phosphate-buffered saline; 
PD-1, programmed cell death protein-1; rCXCL13, recombinant CXCL13; Tc, cytotoxic T cell; Treg, regulatory T cell.
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(MC38 colorectal cancer cells23; figure  3D,E); and (3) 
‘immune desert’ (also known as ‘immune cold’), with few 
or no detectable CD8+ T cells rendering these tumors also 
resistant to ICI (LLC1 lung cancer cells; figure 3F,G).5 42 
Interestingly, across models, we observed differences in 
the ability of rCXCL13 to potentiate anti-PD-1 efficacy. 
In HKP1 ‘infiltrated-sensitive’ tumors, treatment with 
anti-PD-1 alone significantly decreased tumor volume 
compared with IgG control, as expected; however, the 
addition of peritumoral rCXCL13 further potentiated 
anti-PD-1 response (figure  3B,C, online supplemental 
figure 4a). Remarkably, peritumoral administration of 
rCXCL13 was able to induce anti-PD-1 response even in 
MC38 ‘infiltrated-resistant’ tumors that were insensitive 
to anti-PD-1 therapy alone (figure  3D,E, online supple-
mental figure 4b). This finding was confirmed in a second 
‘infiltrated-resistant’ model of B16–F10 melanoma, where 
treatment with rCXCL13 was sufficient to sensitize tumors 
to anti-PD-1 (online supplemental figure 4c-d). Finally, in 
LLC1 ‘desert-resistant’ tumors that are largely devoid of 
infiltrating T cells, we observed no effect of anti-PD-1 on 
tumor volume, nor was rCXCL13 able to improve efficacy 
(figure 3F,G, online supplemental figure 4e). These data 
demonstrate the ability of CXCL13 to enhance the sensi-
tivity of tumors to anti-PD-1 as long as they are sufficiently 
immune-infiltrated.

To characterize the immune changes associated 
with rCXCL13 and anti-PD-1 combination therapy, we 
performed spectral flow cytometry on tumor tissues 
using a 22-plex antibody panel to define 21 function-
ally distinct immune populations (online supplemental 
figure 5, online supplemental table 4). Key differences 
were observed in immune frequencies between models 
(figure 4A–C). As expected, HKP1 and MC38 immune-
infiltrated tumors had high frequencies of CD8+ T cells 
compared with LLC1 immune-desert tumors (figure 4A–C, 
online supplemental figures 6-8). Echoing our IMC find-
ings in patients (figure  1F), we also found that mono-
cytes were associated with ICI response in our mouse 
models. Particularly, when comparing treatment-control 
experimental groups (IgG and PBS), CCR2− monocytes 
(resembling non-classical monocytes in humans14 43) were 
enriched in HKP1 ICI-sensitive tumors, whereas CCR2+ 
monocytes (resembling classical monocytes) were the 
dominant subset in MC38 and LLC1 ICI-resistant tumors 
(figure  4D, online supplemental figures 6-8). Consis-
tently, when rCXCL13 was combined with anti-PD-1, we 
observed an enrichment in the CCR2− monocyte frac-
tion in all models (figure  4E–G). figure  3C,Efigure  3G 
Although non-classical monocytes are typically restricted 
to the blood vessels in steady state, they are found within 
tumors in mice and humans.14 Similarly, classical mono-
cytes are known for their pro-inflammatory functions; 
however, paradoxically, they can adopt potent immuno-
suppressive roles in the TIME.44 Reinforcing the exis-
tence of unique monocyte functional states in cancer, our 
data reinforce a putative role for the balance of monocyte 
subsets in the context of immunotherapy, and suggest 

that targeting specific monocyte subsets may augment ICI 
response.44

We next quantified differences in the functional status 
of T cells across models and treatment groups as a reflec-
tion of ICI efficacy. In HKP1 ‘infiltrated-sensitive’ tumors, 
despite no significant increase in total CD8+ or CD4+ 
T cells when rCXCL13 was combined with anti-PD-1, 
we found an enrichment in CD11a+CD49d+ antigen-
experienced CD4+ T cells in response to combination 
therapy where efficacy was highest (figure  4H, online 
supplemental figure 6). We also discovered a significant 
increase in MHCII+ dendritic cells within these tumors, 
which are critical regulators of adaptive immunity and 
ICI efficacy in cancer (figure  4I, online supplemental 
figure 6).45 Interestingly, in the MC38 ‘infiltrated-
resistant’ model, combining rCXCL13 with anti-PD-1 
similarly increased CD11ahi antigen-experienced CD8+ 
T cells (figure  4J). However, we concurrently observed 
an increase in total CD8+ T-cell frequencies (figure 4K, 
online supplemental figure 7), potentially underlying the 
ability of rCXCL13 to induce ICI sensitivity in this model 
(in contrast to HKP1 tumors, which are sensitive to ICI 
from the outset and therefore may not need this addi-
tional boost). Consistent with this notion, we saw minimal 
changes in the T-cell compartment in LLC1 ‘desert-
resistant’ tumors (figure  4L,M, online supplemental 
figure 8), aligning with their inability to respond to any 
of the treatment groups. These data provide functional 
evidence that rCXCL13 can enhance T-cell function to 
improve ICI efficacy in immune-infiltrated tumors, even 
in cases of inherent resistance to PD-1 blockade.

DISCUSSION
Spatial single-cell technologies enable the visualization 
of a substantial number of cell lineages, functional states 
and coordinated cellular neighborhoods within the 
tumor niche.46 In breast,7 12 47 48 colorectal,49 and pancre-
atic cancer,11 these approaches have led to the discovery 
of novel features of the tumor microenvironment that are 
associated with clinical outcomes.7 49 Here, we report one 
of the first single-cell spatially-resolved dissections of ICI 
efficacy in lung cancer. Using imaging mass cytometry, 
we visualized 114,524 cells within the tumor niche of 27 
patients with lung cancer treated with ICI. This analysis 
identified non-classical monocytes, distinct T-cell interac-
tions, and CXCL13 as critical mediators of ICI response. 
Importantly, using murine models of lung, melanoma and 
colorectal cancer, we demonstrate that CXCL13 function-
ally contributes to ICI efficacy and provide mechanical 
insights that parallels what we observe in human correla-
tive studies.

Remarkably, despite the large time frame for some 
patients between sample collection and treatment with 
ICI, we observed elevated levels of canonical biomarkers 
of response to ICI in our responder cohort. Namely, 
we observed higher PD-L1 expression on cancer cells, 
with elevated LAG3 and CXCL13 expressing T cells. 
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This suggests that there may be an immunological and 
microenvironmental ‘memory’ within lung tumors that 
preserves a coordinated immune response over time.

CXCL13 is a canonical regulator of B-cell recruitment 
and organization within lymphoid organs, and can orches-
trate the formation of tertiary lymphoid structures.50 51 
Recently, the role of this chemokine has gained signifi-
cant interest in the context of response to immune check-
point blockade across multiple tumor types. A pan-cancer 

meta-analysis of 1000 patients with ICI-treated cancer 
determined that out of all genes upregulated in CD8+ 
tumor infiltrating lymphocytes positive for a clonal neoan-
tigen multimer, CXCL13 was the most upregulated in ICI 
responders compared with non-responders.31 Moreover, 
using a patient-derived tumor fragment platform, high 
CXCL13 protein levels were found to be predictive of ICI 
efficacy to the same extent as the presence of PD-1 high 
T cells.33 In NSCLC, CD4+ T cells expressing PD-1 and 

Figure 4  The rCXCL13 and anti-PD-1 lead to recruitment of antigen-experienced T cells. Uniform Manifold Approximation 
and Projection (UMAP) of total CD45+ cells from combining all treatment groups in (A) HKP1, (B) MC38 or (C) LLC1 models. 
(D) Average frequency of CCR2− monocytes in IgG+ PBS control tumors. Average frequency of CCR2− monocytes in (E) HKP1, 
(F) MC38, (G) LLC1. UMAP plot of all T cells highlighting antigen-experienced CD4+ and CD8+ T-cell abundance in (H) HKP1, 
(J) MC38 or (L) LLC1 models with indicated treatments. Average frequency of dendritic cells in (I) HKP1 or CD8+ T cells in 
(K) MC38 and (J) LLC1 models. Mean±SEM. Statistical analysis (D–M: one-way analysis of variance with Tukey multiple 
comparisons test). PBS, phosphate-buffered saline; PD-1, programmed cell death protein-1; rCXCL13, recombinant CXCL13; 
Tregs, regulatory T cells.
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CXCL13 were found to interact with antigen-presenting 
cells in the tumor microenvironment to mediate the anti-
tumor effects of anti-PD-1 therapy.52 These studies shed 
important light on the role of CXCL13-expressing T cells 
in shaping ICI response, but the effects of CXCL13 as 
an effector molecule itself remain poorly understood. 
Indeed, in our data set, 63% of the CXCL13 producing 
cells are not T cells. Given the canonical role of CXCL13 
as a secreted chemokine, we demonstrate that rCXCL13, 
agnostic of cellular source, potentiates the effects of anti-
PD-1 across ICI-sensitive and ICI-resistant models, and 
highlights how CXCL13 is an important mediator of 
immunotherapy efficacy, beyond serving as a correlative 
biomarker.31 33

Through our in vivo functional analyses, we discovered 
that soluble CXCL13 exerts its effects in the tumor immune 
microenvironment through its impact on two distinct 
immune cell populations. First, rCXCL13 increases the 
prevalence of antigen-experienced CD8+ and CD4+ T 
cells, which are then re-invigorated by the addition of 
anti-PD-1. Second, the combination of rCXCL13 and 
anti-PD-1 reduces the levels of CCR2+ monocytes relative 
to CCR2− monocytes in the tumor microenvironment 
in association with improved ICI efficacy. This aligns 
with our imaging mass cytometry discoveries in patient 
samples, where we observed an increase in non-classical 
monocytes in ICI responders versus non-responders. 
Monocytes expressing CCR2 can become highly immu-
nosuppressive in the tumor microenvironment53 and the 
combination of CCR2 antagonists and anti-PD-1 inhibi-
tors have shown synergism in terms of reducing tumor 
volume in preclinical models.54 55 Blockade of CCR2 has 
also been associated with an increased influx of CD8+ 
T cells into subcutaneous tumors.54 Therefore, these 
findings suggest CXCL13 may elicit its effects in part by 
disarming immunosuppressive monocyte signals.

A limitation of our study includes the small sample 
size, which is not representative of the prevalence of ICI 
response in patients with NSCLC. Additionally, a 1 mm 
core per patient does not capture the well-known tumor 
heterogeneity that might exist within a primary lesion, nor 
does it capture features of tumor evolution throughout 
the patient trajectory of recurrence and progression over 
time. However, such tissue cores are highly representa-
tive of what may be captured by a routine clinical core 
needle biopsy—the mainstay of diagnosis and biomarker 
analysis that currently inform the entire therapeutic 
strategy offered to the vast majority of patients with locally 
advanced or metastatic NSCLC.

Overall, our multidimensional interrogation of 
ICI response in NSCLC highlights the complexity of 
TIME features that robustly associate with ICI efficacy. 
Future studies on how spatial and phenotypic TIME 
cellular relationships influence treatment outcomes are 
warranted and may lead to more accurate biomarkers of 
response. From a practical perspective, while we recog-
nize the limited clinical applications of rCXCL13 as an 
intervention strategy, we demonstrate that CXCL13 is 

mechanistically active as a soluble effector molecule 
within the tumor microenvironment and is able to poten-
tiate anti-PD-1 therapy. Future studies should focus on 
targeting the pathways involved in the repression of 
CXCL13 production by immune cells, or on enhancing 
CXCL13-mediated cellular interactions.
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