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 Abstract: It has been documented that Ca2+ overload and increased production of reactive oxygen 
species play a significant role in reperfusion injury (RI) of cardiomyocytes. Ischemia/reperfusion 
induces cell death as a result of necrosis, necroptosis, apoptosis, and possibly autophagy, pyropto-
sis and ferroptosis. It has also been demonstrated that the NLRP3 inflammasome is involved in RI 
of the heart. An increase in adrenergic system activity during the restoration of coronary perfusion 
negatively affected cardiac resistance to RI. Toll-like receptors are involved in RI of the heart. An-
giotensin II and endothelin-1 aggravated ischemic/reperfusion injury of the heart. Activation of 
neutrophils, monocytes, CD4+ T-cells and platelets contributes to cardiac ischemia/reperfusion in-
jury. Our review outlines the role of these factors in reperfusion cardiac injury. 
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1. INTRODUCTION 
 Despite all the achievements of cardiovascular medicine, 

the mortality rate in acute myocardial infarction (AMI) re-
mains high [1]. Unfortunately, to date, no drug is available, 
which could effectively prevent reperfusion injury occurring 
after the restoration of coronary perfusion in patients with 
AMI and in patients with cardioplegic arrest [2]. Moreover, 
according to some investigators, reperfusion injury is re-
sponsible for up to 50% of the final size of infarction [3, 4]. 
Infarct size increased from 6 h (27%) to 24 h of reperfusion 
(41%) with no further increase at 48 and 72 h of reperfusion 
after a 60-min coronary artery occlusion (CAO) in dogs [5]. 
In our opinion, a more detailed understanding of the patho-
genesis of myocardial reperfusion injury will greatly facili-
tate the development of more effective pharmacological in-
terventions for the treatment of myocardial infarction.  

Interventions to decrease infarct size will have no effect 
unless coronary blood flow is restored. It is generally ac-
cepted that infarct size can only be affected by the restora-
tion of coronary blood flow. Thus, the death of cardiomyo-
cytes in the ischemic zone is almost complete 6 h after CAO  
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[6]. Therefore, reperfusion only results in positive effects if 
performed no later than 6 h after the onset of AMI. A few 
studies indicate that it is possible to limit infarct size without 
reperfusion [7]. These investigators suggest that the cardio-
protective effect can be attributed to their anti-inflammatory 
action. After the restoration of blood flow in the ischemic 
myocardium, events develop very quickly. Intravenous ad-
ministration of the selective P2Y12 receptor antagonist 
cangrelor before cardiac reperfusion reduces infarct size by 
approximately 50%, while injection of cangrelor 10 min 
after reperfusion does not affect infarct size in rabbits [8]. 
Administration of the κ-opioid receptor agonist U50,488 5 
min prior to reperfusion can prevent reperfusion cardiac in-
jury in rats [9]. However, U50,488 did not exhibit the in-
farct-reducing effect if this compound was injected 10 sec 
after reperfusion. It is our hypothesis that pharmacological 
agents should be administered prior to reperfusion so that 
they can penetrate into the ischemic zone before the restora-
tion of coronary perfusion, relying upon collateral blood 
flow. However, it can also be hypothesized that drugs with 
the anti-inflammatory effect can initiate the infarct-reducing 
effect after the restoration of coronary blood flow. When 
NLRP3 inhibitor was administered 1 h after reperfusion it 
reduced infarct size in mice [10]. However, the NLRP3 in-
hibitor had no effect if it was administered after 3 hours of 
reperfusion. The NLRP3 inhibitor OLT1177 exhibited a 
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strong infarct-reducing effect if it was administered 1 hour 
after reperfusion [11]. The infarct-limiting effect was mark-
edly weakened if this inhibitor was administered 2 hours 
after the restoration of coronary blood flow. This effect 
completely disappeared when this compound was adminis-
tered after 3 hours of reperfusion. The aforementioned study 
indicates the presence of early reperfusion injury of the heart 
which develops very rapidly (5 - 10 min after the onset of 
reperfusion) as well as delayed cardiac reperfusion injury 
which develops in the two - three hours of reperfusion. 

2. CA2+ OVERLOAD 

Reperfusion leads to rapid leaking of protons and lactic 
acid from the extracellular space. Rapid recovery of extracel-
lular pH stimulates the Na+/H+ exchanger and the Na+/HCO3

- 
symporter, which results in extrusion of protons from the 
cell and rapid normalization of intracellular pH, massive Na+ 
influx and intracellular Ca2+ overload due to the gain of 
2Na+/Ca2+ exchange [12]. The importance of the Na+/H+ 
exchanger and the Na+/HCO3

- symporter in RI of the heart 
has been confirmed by Cohen et al. [3] and Rodriguez-
Sinovas et al. [13]. In studies in the isolated rabbit heart, a 
90-min CAO and a 2 h-reperfusion were performed [3]. Hy-
percapnic buffer reperfusion (pH 6.9, 2 min) was demon-
strated to decrease the infarct size/area at risk (IS/AAR) ratio 
by above 60% [3]. In a study that was performed in pigs with 
CAO and reperfusion [13], it was documented that acidic 
(Krebs solution at pH 6.4 for the first 3 min of reperfusion) 
cardiac reperfusion carried out after CAO, resulted in a de-
crease in the IS/AAR ratio by approximately 30%. These 
experiments indicate that the Na+/H+ exchanger and the 
Na+/HCO3

- symporter may play an important role in reperfu-
sion injury of the heart.  

L-type Ca2+ channels also play an important role in Ca2+ 
overload (Fig. 1). Prevention of Ca2+ overload by intracoro-
nary administration of the L-type Ca2+ channel inhibitor dil-
tiazem during reperfusion resulted in the infarct-reducing 
effect in pigs [14]. The same effect is caused by the L-type 
Ca2+ channel blocker verapamil administered intravenously 5 
min before reperfusion in rats [15]. In a study performed in 
the isolated perfused rat heart, it was found that hypoxic 
perfusion causes an increase in [Ca2+]i 10 min after the onset 
of hypoxia [16]. It has also been reported that L-type Ca2+ 
channel inhibitors diltiazem and nifedipine may prevent Ca2+ 
overload [16]. The β -adrenergic receptor (AR) blocker 
esmolol had the same effect. We demonstrated that β -
adrenergic receptor antagonists propranolol and nadolol 
could induce the infarct-reducing effect when they were ad-
ministered 5 min before reperfusion in rats [15]. The sarco-
plasmic reticulum (SR) Ca2+-ATPase inhibitor thapsigargin 
did not affect Ca2+ overload [16]. These investigators con-
cluded that the β-AR-stimulated L-type channel, which me-
diates Ca²+ entry in cardiomyocyte, contributes to hypoxic 
Ca²+ overload. However, the SR is not involved in Ca²+ over-
load during hypoxia of cardiomyocytes [16]. Calcium also 
can enter cardiomyocytes via 2Na+/Ca2+ exchange [12]. 

Recently, evidence has emerged that the cause of Ca2+ 
overload can be the opening of transient receptor potential 
(TRP) channels [17]. In mice with the deletion of the gene 
encoding TRPV4, infarct size was smaller than that in wild-
type animals [18]. The TRPV4 agonist GSK1016790A, in 
contrast, increased infarct size. Other studies carried out in 
the culture of H9C2 cardiomyoblasts have demonstrated the 
existence of functionally active TRPV4 in cardiac cells [19]. 
The TRPV4 opener GSK1016790A caused [Ca2+]i elevation. 
This effect began at a GSK1016790A concentration of 100 

 
Fig. (1). The main metabolic events that occur during ischemia in cardiomyocytes. SR, sarcoplasmic reticulum; MPTP, mitochondrial per-
meability transition pore; ROS, reactive oxygen species. 
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nM. However, the TRPV4 channel blocker HC-067047 (1 
μM) eliminated this effect. Hypoxia-reoxygenation of H9C2 
cardiomyoblasts caused an increase in [Ca2+]i. Adding 
GSK1016790A to the incubation medium aggravated this 
effect, while the TRPV4 inhibitor HC-067047, reduced re-
oxygenation Ca2+ overload. The aforementioned data suggest 
that TRPV4 is involved in reoxygenation Ca2+ overload of 
cardiac cells.  

During I/R Ca2+ overload is observed not only in the cy-
toplasm but also in the mitochondrial matrix via the mito-
chondrial calcium uniporter (MCU) [20]. Pretreatment with 
ruthenium red, an inhibitor of MCU, or with Ru360, a highly 
specific MUC inhibitor, increases tolerance of the isolated 
rat heart to I/R [21]. In a study performed in the isolated rat 
heart, a Ca2+ chelator BAPTA-AM was used at a concentra-
tion that abolished Ca2+ overload of both the cytoplasm and 
mitochondria and ruthenium red at the concentration that 
abolished Ca2+ overload of mitochondria but not the cyto-
plasm [22]. Both compounds enhanced cardiac resistance to 
I/R. The cardioprotective effect of ruthenium red and RU360 
during I/R of the heart was confirmed by other investigators 
[23]. It should be noted that ruthenium red also is the transi-
ent receptor potential vanilloid (TRPV) channel antagonist 
[16]. It was documented that the mouse heart lacking MCU 
is more tolerant to I/R then the heart of wild-type mice [24]. 
Ruthenium red and RU360 were not used at reperfusion of 
the heart. Therefore, the role of Ca2+ overload of mitochon-
dria in reperfusion cardiac injury remains to be clarified. 
However, it was documented that Ca2+ overload of mito-
chondria can promote mitochondrial transition pore (MPT 
pore) opening and cell death as a result of apoptosis [25].  

Collectively, these reports indicate that reperfusion Ca2+ 
overload is likely mediated by both L-type Ca2+ channels 
and TRPV4 channel opening. The role of Ca2+ overload of 
mitochondria in reperfusion cardiac injury requires further 
investigation. 

3. NO-SYNTHASE ACTIVATION 

Ca2+ is required to activate endothelial NO-synthase 
(NOS3) and neuronal NO-synthase (NOS1), which can then 
further increase mitochondrial reactive oxygen species 
(ROS) production [25, 26]. Mitochondrial NO production is 
catalyzed by mitochondrial NOS (mtNOS), which has been 
identified as the α-isoform of nNOS [27]. Superoxide radical 
(O2

•) can interact non-enzymatically with NO• to produce 
ONOO- [25]. It is believed that mitochondria are an im-
portant source of ROS in cardiomyocytes [26]. It was docu-
mented that NO• inhibits complex IV in mitochondria which 
in turn contributes to an increase in ROS production [28-30]. 
Complex I can be inhibited when NO• and the high level of 
matrix Ca2+ are present to activate O2

• production and 
ONOO- synthesis which in turn causes S-nitrosylation of 
complex I [31]. Peroxynitrite anion by itself can also inhibit 
complex III and V which contributes to respiratory block and 
additional ROS production [32]. Increased ONOO- produc-
tion promotes MPT pore opening [33]. MPT pore opening 
causes apoptosis and cell death.  

Thus, excess NO• production could aggravate cardiac RI. 
However, moderate NO• formation contributes to increased 
cardiac tolerance to I/R since NO• stimulates guanylyl 

cyclase, which synthesizes cGMP activating protein kinase 
G. This kinase increases cardiac resistance to I/R [34]. 

4. OXIDATIVE STRESS 

The sudden activation of aerobic metabolism upon reper-
fusion elicits a surge in ROS production. ROS are important 
mediators of cardiac reperfusion injury. When restoring per-
fusion, ROS have at least three main sources: the mitochon-
drial respiratory chain [35-37]; xanthine oxidase, which acts 
on hypoxanthine and xanthine [36, 37], and NADPH oxidase 
(Nox) from activated neutrophils and macrophages [38], 
which enter the myocardial tissue when blood flow is re-
stored. In addition, the source of ROS may be Nox of cardi-
omyocytes that express Nox1, Nox2, Nox4 [35-37, 39].  It 
should be noted that xanthine oxidase is absent in the human 
myocardium [36]. In animals, xanthine oxidase generates O2

• 
formation (Fig. 2). 

Hypoxanthine + H2O + O2 → xanthine + H+ + O2
• 

xanthine + H2O + O2 → uric acid + H+ + O2
• 

NADPH oxidase also catalyzes O2
• formation 

NADPH + 2O2 → NADP+ + H+ + 2O2
• 

Mitochondria are an important source of O2
·. This free 

radical is formed by complex I and complex III of the respir-
atory chain [35, 36]. Superoxide radical enters the matrix 
and intermembrane space of mitochondria [35, 39]. Under 
normal conditions, NOS catalyzes nitric oxide (NO•) for-
mation from L-arginine using tetrahydrobiopterin (BH4) as a 
cofactor. Under ischemia-reperfusion, BH4 synthesis is im-
paired. The lack of BH4 leads to uncoupling of NOS, which 
begins to synthesize O2

• instead of NO (Fig. 2) [35, 40]. 
Under normal conditions, NOS catalyzes the reaction: 
NADPH + O2 + arginine → citrulline + NO• + NADP+ 

Under ischemia-reperfusion, NOS catalyzes the reaction: 
NADPH + O2 → O2

• + NADP+ + H+ 

Dismutation of O2
• occurs either spontaneously or by su-

peroxide dismutase (SOD), causing hydrogen peroxide 
(H2O2) formation. H2O2 is relatively stable in vivo compared 
to other ROS molecules. This compound is lipid-soluble and 
can freely diffuse across membranes, acting as a physiologi-
cal signaling molecule by selectively oxidizing target pro-
teins [35, 36]. 

ROS cause lipid peroxidation, which leads to membrane 
damage, including sarcoplasmic reticulum membranes that 
in turn aggravate Ca2+ overload [41]. ROS activate and inac-
tivate various enzymes [36]. They damage cellular struc-
tures, including DNA [35]. The recovery of neutral pH dur-
ing reperfusion attenuates the inhibitory effects of H+ on 
MPT pore [4]. ROS and Ca2+, present in excess in the cyto-
plasm, cause MPT pore opening (Fig. 2) [4, 42]. Release into 
the cytoplasm of pro-apoptotic proteins cytochrome C and 
apoptosis inducing factor (AIF) activates apoptotic cascades 
[43, 44]. In addition, MPT pore inhibition during reperfusion 
protects the heart from RI [45, 46]. Cytochrome C and AIF 
are triggers of apoptosis. Therefore, their entry into the cyto-
plasm induces apoptosis [43, 44]. In addition, MPT pore 
opening causes a decrease in potential of the inner mito-
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chondrial membrane (Δψ), which leads to a decrease in ATP 
synthesis by mitochondria. If this process affects all mito-
chondria, this can result in cell death due to necrosis [4, 43]. 
It should be noted that low ROS concentrations serve as in-
tracellular signaling molecules which are involved in the 
formation of the cardioprotective effect of pre- and postcon-
ditioning [36]. It can be hypothesized that some ROS have 
myocardial damage, while other ROS provide the protective 
effect of pre- and postconditioning. 

5. CALPAINS AND METALLOPROTEASES  

Calpains are other targets of Ca2+ overload. Calpains are 
the family of Ca2+-dependent cysteine proteases [47]. Typi-
cally, calpains require Ca2+ in μM concentration range which 
is rarely observed in vivo [47]. A possible explanation may 
relate to the existence of microdomains which have a high 
Ca2+ concentration which is sufficient for calpain stimulation 
[47]. Pretreatment with a calpain inhibitor A-705253 before 
CAO and reperfusion reduced infarct size in pigs by 35% 
[48]. In a study performed in the isolated perfused rabbit 
heart it was demonstrated that the use of a calpain inhibitor 
A-705253 at the onset of reperfusion resulted in a decrease 
in the infarct size/area at risk (IS/AAR) ratio by 32% [49].  

Matrix metalloproteinases (MMPs) are not Ca2+-
dependent enzymes, but they can be implicated in cardiac 
I/R injury. However, data on their involvement in cardiac I/R 
damage is contradictory. It was reported that I/R of the iso-
lated perfused heart caused a decrease in metalloproteinase-2 
(MMP-2) activity in the myocardium [50]. According to 

other investigators [51], the activation of MMP-2 occurred 
after 15 min of ischemia, but following prolonged ischemia 
and reperfusion MMP-2 activity declined. Atrial biopsy 
samples were obtained before cardioplegia and within 10 
min after removal of the aortic cross-clamp in patients with 
coronary artery bypass graft surgery [52]. There was a 
marked increase in MMP-2 and MMP-9 activity, and a de-
crease in TIMP-1, an endogenous inhibitor of MMPs, upon 
reperfusion in cardiac biopsies. It was documented that re-
mote ischemic preconditioning decreases the IS/ARR ratio, 
reduces MMP-2 and MMP-9 expression, and increases the 
TIMP-1 level in the myocardium [53]. The broad-spectrum 
MMP inhibitor ilomastat prevented I/R cardiac injury [50, 
54] and reperfusion damage of the heart [54, 55].  

It should be noted that not all investigators could 
demonstrate the infarct-reducing effect of MMP inhibitors 
[56, 57]. It was found that MMP-8 is involved in the car-
dioprotective effect of bradykinin [56]. These investiga-
tors proposed that bradykinin triggers the protective sig-
nalling pathway through MMP-8-dependent transactiva-
tion of epidermal growth factor receptor (EGFR) at reper-
fusion [56]. 

The aforementioned studies indicated that calpains are 
involved in ischemic and reperfusion cardiac injury. Thus, 
it was demonstrated that the activation of MMP-2 and 
MMP-9 aggravates I/R cardiac injury. Stimulation of 
MMP-8 promotes an increase in cardiac tolerance to the 
impact of I/R.   

 

Fig. (2). The main metabolic events that occur during reperfusion in cardiomyocytes. SR, sarcoplasmic reticulum; MPTP , mitochondrial perme-
ability transition pore; ROS - reactive oxygen species; 1. L-type Ca2+ channel; 2, TRPV4, transient receptor potential vanilloid channel 4. 
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6. DIFFERENT TYPES OF CELL DEATH AND 
THEIR MECHANISMS 

There are three main forms of cell death, which morpho-
logically differ significantly from each other: apoptosis, au-
tophagy and necrosis [58].  

6.1. Necrosis 

It is possible that necrosis is the most common process of 
cell death during myocardial reperfusion. Morphologically, 
necrosis is characterized by an increase in cell volume (on-
cosis), swelling of mitochondria, activation of lysosomes, 
rupture of the plasma membrane and release of intracellular 
contents [58]. The released plasma proteins (troponin I, tro-
ponin T, creatine kinase-MB) are used to diagnose acute 
myocardial infarction. Released intracellular proteins stimu-
late a strong inflammatory (and immunogenic) reaction, 
which further enhances cellular damage [59, 60]. Usually, 
necrosis is understood as an unregulated form of cell death. 
Occurring at the same time is regulated necrosis which is 
caused by the MPT pore opening (MPT-driven necrosis) and 
necroptosis [58], both of which are different and will be de-
tailed below. 

A number of mechanisms are known to lead to cell ne-
crosis during reperfusion. These include: (a) oxidative stress, 
which causes injury to the sarcolemma; (b) increased activity 
of destructive enzymes, for example, calpains, which are 
activated during Ca2+ overload of cardiomyocytes, cause 
proteolysis, increase fragility of cellular structures, injury of 
the cytoskeleton and the sarcolemma [61, 62]; (c) osmotic 
stress, which is caused by Na+-loading and Ca2+-loading, 
leads to an increase in the amount of water in the cell and, as 
a consequence, to their swelling. The aforementioned disrup-
tions of normal cellular processes damage the cytoskeleton 
leading to osmotic fragility and rupture of the sarcolemma 
[63].  

6.2. Necroptosis 

By the 1990s, the consensus of investigators was that 
cardiomyocytes could die by an uncontrolled process (necro-
sis) or by programmed cell death (apoptosis). However, in 
2000, it was discovered that tumor necrosis factor-α (TNF-α) 
can induce necrotic-like cell death of fibroblasts in the pres-
ence of caspase inhibitors [64]. The aforementioned data 
suggest the existence of programmed necrosis. This hypoth-
esis was confirmed in 2005 when a group of investigators 
discovered controlled necrosis, which they called necroptosis 
[65]. This study was performed in U937 cell culture treated 
with TNF-α. Simultaneously, evidence was reported that the 
necroptosis blocker necrostatin-1 was the inhibitor of recep-
tor interaction protein kinase 1 (RIPK1) [65]. Today it has 
been documented that necroptosis can be caused by the death 
receptor agonists, such as TNF-α, Fas-ligand and TNF-
related apoptosis-inducing ligand (TRAIL) [65-67]. In addi-
tion, necroptosis may be induced by activation of Toll-like 
receptors 3 and 4 (TLR3/4) with bacterial lipopolysaccharide 
[66-68] or as a result of stimulation of interferon-γ receptors 
[66]. The activation of these death receptors is followed by 
autophosphorylation and activation of kinases: RIPK1 and 
RIPK3 [68]. A complex (necrosome) is formed, containing 
several phosphorylated molecules of RIPK1 and RIPK3. 

Necrosome catalyzes phosphorylation of pseudokinase 
MLKL (mixed lineage kinase domain-like) [68]. Phosphory-
lated MLKL molecules oligomerize, translocate into the 
plasma membrane, where they form a pore, which leads to 
damage to the cell membrane and eventually induces cell 
death as a result of necroptosis [68]. In 2007, it was demon-
strated that intravenous administration of necrostatin-1 at the 
onset of reperfusion could decrease infarct size in mice [69]. 
Utilizing a pig model to investigate I/R cardiac damage, it 
was documented that intravenous administration of 
necrostatin-1 before reperfusion can reduce infarct size and 
preserve the function of the left ventricle [70]. The afore-
mentioned studies emphasize the important role of necropto-
sis in cardiac RI. 

6.3. Apoptosis 

In 1972, Kerr et al. [71] discovered apoptosis, a regulated 
process of cell death mediated by internal or external stimuli. 
Apoptosis is regulated caspase-dependent cell death, which 
is accompanied by a decrease in cell volume, karyopyknosis 
and karyorrhexis [44, 71]. Cell fragmentation and chromatin 
condensation are completed by formation of apoptotic bodies 
surrounded by the cell membrane [71]. Apoptotic bodies are 
absorbed by phagocytes, thereby avoiding inflammation and 
indiscriminate cell injury. The aforementioned process pre-
vents indiscriminate release of intracellular components and 
the subsequent inflammatory response, a hallmark of necro-
sis and necroptosis [44]. Apoptosis, in contrast to necrosis, is 
an ATP-dependent process that does not proceed if cellular 
ATP is severely depleted, as is the case under ischemic con-
ditions. Therefore, apoptosis, which began during ischemia, 
is enhanced by reperfusion [40, 43]. Apoptosis proceeds by 
intrinsic and extrinsic pathways. The intrinsic pathway caus-
ing apoptosis is MPT pore opening with release to the cyto-
plasm of apoptotic inducers: apoptosis-inducing factor (AIF) 
and cytochrome C. The latter participates in apoptosome 
formation, which requires ATP [44]. The apoptosome in-
cludes in its structure cytochrome C, apoptosis protease-
activating factor 1 (APAF-1) and procaspase 9, which is 
proteolytically activated to caspase 9, which, in turn, cata-
lyzes the proteolytic activation of procaspases into caspases-
3, -6, -7 [44]. It should be noted that collateral blood flow in 
the ischemic zone never drops to zero values and can reach 
17% of the initial value in dogs [72]. However, some cells in 
the ischemic zone retain the ability to resynthesize ATP by 
glycolysis and, therefore, can undergo apoptosis. The extrin-
sic pathway of apoptosis may be triggered by the activation 
of death receptors or by the cessation of stimulation of 
growth factor receptors. Death receptors, which include 
TNF-α, Fas-ligand (CD95L) and TRAIL [44] play the key 
role in cell death during ischemia and reperfusion. The same 
ligands can cause necroptosis under pharmacological block-
ade of apoptosis [65]. It has now been documented that the 
apoptosis inhibitor Z-VAD-FMK increases tolerance of the 
isolated perfused guinea pig heart to I/R [73]. Consequently, 
apoptosis plays an important role in ischemic and especially 
in reperfusion injury of the heart.  

6.4. Autophagy  

Autophagy is another regulated process of cell death, 
which is characterized by lysosomal degradation of proteins 
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[74]. Three types of autophagy are recognized. Macroau-
tophagy involves the formation of vesicles which are called 
autophagosomes that bind cellular proteins, glycosides, li-
pids and organelles and then deliver them to lysosomes for 
degradation. Microautophagy refers to a process by which 
cellular elements are subjected to degradation and are direct-
ly absorbed by lysosomes [75]. Chaperone-mediated autoph-
agy is characterized by the binding of proteins containing the 
KFERQ sequence to the Hsc70 chaperone which transports 
target proteins into lysosomes with the involvement of lyso-
somal membrane 2A protein (Lamp2A) [74]. Macroautoph-
agy, which is usually referred to as autophagy, is crucial for 
the degradation of organelles and adaptation to cell stress, 
while the other two forms of autophagy are involved in spe-
cialized cellular functions [74, 75]. 

In its initial stage, autophagy is accompanied by phago-
phore formation, which represents a fragment of the endo-
plasmic reticular membrane with the involvement of the pro-
tein complex Beclin-Vps34 and the protein LC3 (microtu-
bule-associated protein 1 light chain 3), a vesicle called an 
autophagosome is formed [74, 76]. Autophagy-related genes 
(Atg) encode more than 30 Atg proteins that participate in 
formation of autophagosomes [73, 75]. The proteins parkin 
and p62 play a key role in selective mitophagy [74, 77]. At 
the final stage of autophagy, autophagosome merges with the 
lysosome and the autolysosome is formed, in which diges-
tion of intracellular structures takes place. Paradoxically, cell 
death as a result of autophagy can protect the heart from I/R 
injury [77]. For example, in pigs exposed to a 45-minute 
CAO and reperfusion, the putative autophagy inducer chlo-
ramphenicol reduced infarct size [78]. Data on the role of 
autophagy in myocardial RI in humans are contradictory. 
Autophagy reportedly is activated in the human myocardium 
after exposure to I/R [79]. However, there is also recent evi-
dence that the cardioprotective phenomenon of remote pre-
conditioning develops without the involvement of autophagy 
in humans [80].  

6.5. Pyroptosis  

Pyroptosis is a programmable form of cell death, which 
is characterized by DNA fragmentation, nuclear condensa-
tion and caspase dependence. This process resembles apop-
tosis but differs from the latter by breaking the cell mem-
brane with subsequent activation of the inflammatory reac-
tion [81]. The term "pyroptosis" was first proposed in 2001 
[82]. Pyroptosis is accompanied by caspase-1-dependent 
pore formation in the cell membrane followed by the disap-
pearance of the cellular ionic gradient, cell swelling and rup-
ture of the cell membrane [83]. Caspase-1 is activated by 
multiprotein signaling complexes - inflammasomes, which in 
turn are activated by caspase activation and recruitment do-
mains (CARD) [81].  

Inflammasomes are oligomeric protein complexes that 
cleave to procaspase-1 and to caspase-1 [84, 85]. 

In addition, inflammasomes are involved in synthesis and 
secretion of proinflammatory cytokines: interleukin-1β (IL-
1β) and interleukin 18 (IL-18) [84], which are involved in 
pyroptosis. A number of investigators have presented evi-
dence that NOD-like receptor protein (NLRP3) and other 
components of the inflammasome are not constitutively ex-

pressed in cardiomyocytes [84]. A small amount of Nlrp3 
mRNA was identified in the myocardium of wild-type mice 
[86]. NLRP3 inflammasome formation is regulated by nu-
clear factor-κB (NF-κB) [84]. Pro-inflammatory stimuli such 
as cytokines, cellular debris or microbial products that bind 
to TLRs can induce the expression of NLRP3 and other in-
flammasome proteins in cardiomyocytes, leukocytes, and 
other cells such as fibroblasts and endothelial cells [84]. Cy-
tokines, cellular debris, and microbial products, collectively 
termed damage-associated molecular patterns (DAMPs) or 
pathogen-associated molecular patterns (PAMPS) bind to 
TLRs. The increased expression and activity of the inflam-
masome peaked after 1 day of reperfusion in the myocardi-
um of mice [84]. Administration of the NLRP3 inflam-
masome inhibitor (NLRP3inh) at reperfusion did not reduce 
infarct size at 3 h after reperfusion, while it significantly 
reduced infarct size at 24 h after reperfusion [10]. It has been 
reported that OLT1177, a NLRP3 inflammasome inhibitor, 
administered 1 h after reperfusion dose-dependently reduced 
the IS/AAR ratio in mice [84]. The aforementioned studies 
indicate that the NLRP3 inflammasome is involved in reper-
fusion injury of the heart. This evidence indicates pyroptosis 
occurs primarily after the first 3 hours of reperfusion. How-
ever, there is evidence that stimulation of NLRP3 inflam-
masome formation may contribute to increased tolerance of 
the heart to I/R. Accordingly, NLRP3-deficient mice had 
larger infarctions than wild-type mice [87]. Pretreatment 
with the TLR2 agonist Pam3CSK4 reduced infarct size in 
wild-type but not NLRP3 deficient mice [87]. Sandager et al. 
[87] administered the TLR2 agonist before ischemia, while 
Tondo et al. [10, 84] administered the NLRP3 inflam-
masome inhibitors during reperfusion. It is possible that ac-
tivation of the NLRP3 inflammasome before CAO enhances 
cardiac tolerance to I/R. The aforementioned data demon-
strate that the NLRP3 inflammasome is involved in cardiac 
RI. Administration of the caspase-1/4 inhibitor VX-765 (16 
mg/kg) 30 min prior to CAO and at reperfusion reduced the 
IS/AAR ratio by 47% [88]. The same investigators demon-
strated that administration of VX-765 (32 mg/kg) prior to 
reperfusion reduced the IS/AAR ratio by 52% [89]. In addi-
tion, VX-765 decreased the serum interleukin-1β level and 
reduced caspase-1 activity. Consequently, pyroptosis is also 
involved in reperfusion death of cardiomyocytes. 

6.6. Ferroptosis  

Ferroptosis is a form of cell death, trigger of which is fer-
rous ion, which catalyzes the Fenton reaction: 

Fe2+ + H2O2 → Fe3+ + OH• + OH− 

The resulting hydroxyl radical induces lipid peroxidation 
which induces destruction of the cell membrane and cell 
death [90]. Thus, ferroptosis is essentially iron-mediated 
necrosis. Iron chelators, for example, deferoxamine, prevent 
the occurrence of ferroptosis [90]. It has been reported that 
deferoxamine increases cardiac resistance to ischemia during 
cold cardioplegia in rats [91]. Infusion of deferoxamine dur-
ing coronary artery bypass grafting, which is accompanied 
by cardioplegic cardiac arrest and myocardial ischemia, re-
duced the level of lipid peroxidation products which are in-
volved in RI of the heart in human [92]. In contrast, in a 
study performed on pigs with CAO and reperfusion, 
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deferoxamine did not limit infarct size [93]. We found that 
deferoxamine did not affect the IS/AAR ratio in rats [un-
published data]. The reason for these ambiguous findings 
remains unclear.  

Thus, reperfusion promotes cell death as a result of ne-
crosis, necroptosis, apoptosis and, possibly, autophagy and 
pyroptosis. The role of ferroptosis in reperfusion injury of 
the heart requires further study.  

7. ADRENERGIC SYSTEM 

Catecholamines have positive inotropic and chronotropic 
effects mediated by cyclic AMP, which increases myocardial 
oxygen demand. Under conditions of limited oxygen deliv-
ery during CAO, excessive activation of ARs by catechola-
mines intensifies hypoxia of the ischemic myocardium, con-
tributing to the expansion of the necrotic zone. The experi-
mental data indicate an increase in the level of norepineph-
rine circulating in blood in response to CAO in rats and in 
dogs [94, 95] and an increase in the concentration of intersti-
tial norepinephrine in the area of myocardial ischemia in rats 
and in rabbits [96, 97]. Fukui et al. found that after CAO in 
rats, the interstitial norepinephrine level increased 200-fold 
[96]. Circulating catecholamine concentrations were also in-
creased in patients with AMI [98, 99]. The experimental data 
also indicate an increase in the level of catecholamines circu-
lating in blood. High circulating epinephrine concentration is a 
predictor of mortality in AMI patients [100]. The ability of the 
β-AR antagonist propranolol to reduce infarct size in CAO in 
dogs was first demonstrated by Reimer et al. 1973 [101]. Lat-
er it was documented that the β-AR antagonists can reduce 
infarct size when administered just before reperfusion in rats 
[15]. Based on the aforementioned studies, we hypothesize 
that β-ARs are involved in RI cardiac injury. 

8. HUMORAL FACTORS 

The myocardium is impacted by dozens, if not hundreds, 
of circulating humoral factors. Let us consider only endo-
thelin-1 and angiotensin II. Both of these peptides increase 
total peripheral resistance and blood pressure [102-104], 
thereby increasing myocardial afterload. The concentration 
of angiotensin II in blood and in myocardial tissue increases 
in response to CAO in rats and in dogs [95, 105]. Angioten-
sin II receptor blockade has proven to be cardioprotective in 
rats with CAO [106]. There is also evidence that AMI leads 
to an increase in the endothelin-1 level in blood plasma of 
patients with AMI [98, 107]. Endothelin-1 has been found to 
cause coronary artery vasospasm in rats [108], and its recep-
tor antagonists are cardioprotective when administered at 
CAO and reperfusion in rats [109]. 

9. TOLL-LIKE RECEPTORS (TLRS) 

TLRs are expressed by leukocytes and play an important 
role in innate immune responses [110]. These receptors rec-
ognize pathogen-associated molecular patterns, for example, 
TRL4 interacts with bacterial lipopolysaccharide, and TRL2 
binds with bacterial lipoproteins [110]. In addition, these 
receptors interact with endogenous molecules that signal cell 
damage, for example, heat shock proteins (HSP70 and 
HSP60), as well as nuclear DNA-binding protein high mo-

bility group box (HMGB-1) [110, 111]. Endogenous TLR’s 
activators belong to the DAMPs. TLRs have also been found 
in endotheliocytes [112] and cardiomyocytes [111, 113]. 
When activated, TLRs are involved in the inflammatory re-
sponse acting through NF-κB translocation into the cell nu-
cleus [111, 114]. Therefore, a number of investigators con-
sider TLR inhibition as a viable approach for the treatment 
of AMI [111, 115, 116]. 

Studies in the isolated hearts of wild-type mice and the 
hearts of TLR2-deficient mice demonstrated that the latter 
fully restore their contractility after ischemia compared with 
the hearts of wild-type mice [117]. However, reperfusion 
creatine kinase (CK) release was the same in both groups. 
TLR2 deficiency protects coronary arteries from reperfusion 
endothelial dysfunction in mice [118]. Stimulation of TLR2 
causes impaired contractility of murine cardiomyocytes 
[119]. A comparative study performed on wild-type and 
TLR4-defective C3H-Tlr4 (LPS-d) mice demonstrated that 
animals did not differ in the IS/AAR ratio, but in TLR4-
defective mice, post-infarction remodeling was less pro-
nounced [120]. Intravenous injection of anti-TLR2 antibod-
ies reduced infarct size in mice by almost 50%, promoted a 
reduction of post-infarction scar, and improved cardiac con-
tractility 28 days after infarction [117]. Administration of 
anti-TLR2 antibodies significantly reduced infiltration of 
neutrophils, macrophages and T-lymphocytes into the in-
farcted myocardium [117]. Knockout of the gene encoding 
TLR2 contributes to a decrease in the IS/AAR. Transplanta-
tion of bone marrow from wild-type mice to TLR2-null mice 
increased infarct size to control values [116]. This evidence 
indirectly indicates that TLR2 of leukocytes rather than 
TLR2 of cardiomyocytes play a crucial role in reperfusion 
injury of the heart. It has also been demonstrated that TLR4 
is involved in post-infarction cardiac remodeling in pigs 
[121]. 

Currently, TLR2 and TLR4 are considered potential tar-
gets for the creation of new cardioprotective drugs [111, 
116]. 

10. NEUTROPHILS AND MONOCYTES 

Inflammation plays an important role in RI of the myo-
cardium. The number of leukocytes in blood of patients with 
AMI was significantly correlated with infarct size, which 
was estimated by the CK, creatine kinase-MB (CK-MB), and 
troponin-I levels [122].   

Neutrophil accumulation in reperfusion zone peaks 24 h 
after cardiac reperfusion in dogs [5]. Neutrophil adherence to 
left anterior descending coronary artery segments reaches a 
peak at 48 h of reperfusion [5]. Myeloperoxidase activity in 
the area at risk correlated with the extension of infarction 
during the first 24 h of reperfusion [5]. In 1983, Romson et 
al. [123] found that administration of anti-neutrophil anti-
bodies to dogs before CAO reduced the IS/AAR ratio by 
43%. Neutrophils and monocytes express integrin receptor 
(CD11b/CD18) [124], which enables these cells to adhere to 
vascular endothelium and invade the tissue parenchyma. 
Administration of antibodies to CD11b to dogs 45 min after 
CAO contributes to a 46% decrease in the IS/AAR ratio 
[125]. Similar findings were obtained by other investigators 
using monoclonal antibodies to CD11b/CD18 [126]. It was 
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found that pretreatment with the selective adenosine A2 ago-
nist CGS-21680 5 min before reperfusion of the heart de-
creases the IS/AAR by approximately 50% and reduces neu-
trophil accumulation in the AAR in dogs [127]. In addition, 
CGS-21680 reduced O2

• production by activated neutrophils 
[127]. Neutrophils express adenosine receptors [128]. There-
fore, it can be hypothesized that CGS-21680 limits accumu-
lation of neutrophils in the myocardium due to the activation 
of adenosine receptors of these cells.  

However, data on the role of neutrophils in RI of the 
heart is contradictory. It has been documented that neutro-
phils contain myeloperoxidase (MPO), which synthesizes 
cytotoxic aldehydes (formaldehyde, acrolein and others) that 
damage cardiomyocytes [129]. MPO activity in the reperfu-
sion area was increased 5-fold in dogs [130]. Therefore, 
there is reason to believe that this enzyme is involved in 
reperfusion cardiac injury. However, a study performed on 
MPO-null mice demonstrated that infarct size in these mice 
does not differ from infarct size in wild-type mice [129]. 
However, postinfarction remodeling of the heart was less 
pronounced in MPO-null mice [130]. The use of the selec-
tive MPO inhibitor PF-1355 did not affect infarct size after 
transient CAO but prevented postinfarction remodeling in 
mice [131]. Consequently, MPO is not involved in RI of the 
heart but in postinfarction remodeling of the heart. The 
number of circulating neutrophils in AMI patients is signifi-
cantly higher than in patients with stable angina [132]. In 
addition, the number of neutrophils correlated with an in-
crease in the plasma CK level [132]. In a multicenter, place-
bo-controlled study in patients with STEMI, antibodies to 
CD11b/CD18 were administered before recanalization of the 
infarct-related coronary artery [133]. Infarct size was evalu-
ated by the CK-MB level and by using SPECT with 99mTc-
sestamibi. The study failed to detect the infarct-reducing 
effect of the antibodies to CD11b/CD18. The aforemen-
tioned data suggest that neutrophils do not play a significant 
role in RI of the human heart. It is still unclear why the data 
from animal experiments and the results of clinical studies 
differ.  

Not only neutrophils, but also monocytes/macrophages 
migrate to the ischemia-reperfusion zone. Their migration is 
stimulated by chemokine monocyte chemoattractant protein-
1 (MCP-1). Studies were performed on wild-type mice and 
mice deficient in chemokine receptor-2 [38]. Infarct size in 
mice with genetic deficiency of chemokine receptor-2 was 
smaller than in wild-type mice. By contrast, macrophage 
migration inhibitory factor (MIF) inhibits this process. It has 
now been documented that MIF contributes to a decrease in 
the IS/AAR ratio in mice with CAO and reperfusion [134]. 
In mice in which the gene encoding MIF was deleted, the 
IS/AAR ratio was higher than in wild-type mice [135]. The-
se data clearly indicate that the restriction of migration of 
monocytes to the ischemic/reperfusion zone contributes to a 
reduction of RI. However, studies on the isolated hearts of 
MIF-/- mice have demonstrated that hearts of these mice are 
also less resistant to I/R than the hearts of wild-type mice 
[136]. Therefore, the cardioprotective effect of MCP-1 could 
not be directly associated with restriction of macrophage 
migration. It should be noted that M2 macrophages can pro-
tect isolated neonatal rat cardiomyocytes from the impact of 
H/R [137]. 

The aforementioned studies indicate that the migration of 
neutrophils and monocytes to the ischemic-reperfusion zone 
may be directly related to cardiac RI. However, strong evi-
dence of involvement of these cells in reperfusion heart 
damage in humans has not yet been provided. 

11. T-LYMPHOCYTES 

In 2006, reperfusion was found to promote an increase in 
neutrophils and CD3+ T-lymphocytes in the murine myocar-
dium [138]. The number of circulating lymphocytes, on the 
contrary, decreased, apparently due to their sequestration by 
the myocardium. It was found that the selective adenosine 
A2A receptor agonist ATL146e administered 5 min before 
reperfusion reduced T-lymphocyte accumulation and de-
creased infarct size. In Rag1 knockout mice lacking mature 
lymphocytes, infarct size was significantly smaller than in 
wild-type mice but increased to the level of wild-type mice 
following a transfer of 50 million CD4+ T-lymphocytes de-
livered from wild-type mice [138]. When mice were deplet-
ed of CD4+ T-lymphocytes by monoclonal antibodies, in-
farct size was significantly smaller than in control mice 
[138]. T-lymphocytes rapidly decline in the peripheral circu-
lation over the first 90 min following reperfusion in patients 
with AMI [139] due to sequestration of T-lymphocytes by 
the myocardium. This fact suggests the possibility of T-
lymphocytes’ involvement in RI of the human heart.  

Consequently, CD4+T-cell accumulation may play an 
important role in cardiac RI. 

12. PLATELETS 

Platelets are activated in AMI [131, 132] in parallel with 
increased P-selectin expression by platelets [140, 141]. 

In 2002, Mirabet et al. tested the hypothesis that the ef-
fects of platelets on the myocardium depends on their activa-
tion [142]. Pig platelets were obtained 48 min before CAO, 
10 min after reperfusion, and after a 60-minute sham opera-
tion. The expression of P-selectin platelets was higher in 
platelets isolated during reperfusion than in platelets isolated 
before ischemia or after a sham operation. The isolated per-
fused rat hearts were subjected to global ischemia and reper-
fusion. Five min before global ischemia, platelets were add-
ed to the perfusion medium. Lactate dehydrogenase (LDH) 
release during reperfusion was similar in hearts perfused 
with a solution containing platelets isolated before CAO or 
after a sham operation. LDH release was increased when 
platelets were isolated from the blood of pigs during reperfu-
sion. Platelet activation by thrombin increased P-selectin 
expression and LDH release from the isolated rat heart. A 
close correlation was documented between P-selectin ex-
pression and LDH release and platelet accumulation in the 
myocardium. These investigators concluded [142] that the 
pathogenic effect of platelets in the reperfused myocardium 
depends on their activation, which is characterized by P-
selectin expression. This expression is enhanced in response 
to ischemia/reperfusion. These results indicate that platelets 
play an important role in cardiac RI. 

Platelets express GPIIb/IIIa receptor (integrin αIIbβ3) 
which is the receptor for fibrinogen, von Willebrand factor, 
fibronectin, and vitronectin [143]. The GPIIb/IIIa receptor 
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seems to be also involved in reperfusion injury to the heart 
since blockade of this receptor with MK-0852 reduced the 
IS/AAR ratio after CAO and reperfusion. However, MK-
0852 did not affect the AAR and blood flow in the ischemic 
zone in dogs [143]. Therefore, there is a reason to believe 
that MK-0852 not only inhibited platelet aggregation but 
also prevented the release of substances from platelets that 
aggravated I/R injury of the heart. With prolonged CAO and 
reperfusion, inhibition of GPIIb/IIIa receptor by tirofiban 
contributed to an improvement of microcirculation in the 
reperfusion zone, thereby preventing the formation of the 
microvascular obstruction area in dogs [144].  

Purinergic P2Y12 (adenosine diphosphate agonist) recep-
tor is another receptor which is also expressed in platelets. 
P2Y12 receptor antagonists inhibit platelet aggregation and 
are used to restore coronary perfusion and prevent recurrent 
ischemic events in AMI [145, 146]. In recent years, evidence 
has emerged that the P2Y12 receptor antagonist cangrelor 
cannot only inhibit platelet aggregation, but it can also re-
duce infarct size in rabbits [8]. Yang et al. detected that 
cangrelor limits infarct size when it is administered intrave-
nously before reperfusion [8], in a situation very similar to 
the clinical setting. It has been reported that the infarct-
reducing effect of cangrelor does not occur in isolated per-
fused rabbit hearts [8]. This provides indirect evidence of the 
involvement of platelets in cangrelor's cardioprotective ef-
fect. However, the protective effect of cangrelor does not 
appear to be associated with a change in platelet aggregation, 
since aspirin, which also inhibits platelet aggregation, did 
not affect infarct size [8]. The same infarct-limiting effect 
was exerted by the P2Y12 receptor antagonist ticagrelor, 
when administered to rats 5 min before reperfusion in rats 
[147]. These studies suggest that the most likely role of 
platelet P2Y12 receptor is regulation of cardiac resistance to 
reperfusion. In rats receiving the sphingosine kinase inhibi-
tor dimethylsphingosine, cangrelor did not protect the rabbit 
heart from RI [148]. Thus, the protective mechanism of 
cangrelor seems to be associated with enhancement of 
sphingosine-1-phosphate synthesis, which is released from 
platelets [149] and results in the cardioprotective effect in 
experiments on the isolated perfused rat heart [150]. Moreo-
ver, sphingosine-1-phosphate is able to prevent cardiac RI in 
vivo in rats [151]. 

The aforementioned studies indicate that platelets play an 
important role in cardiac RI. 

13. THE MAIN MANIFESTATIONS OF REPERFU-
SION INJURY OF THE HEART 

In experimental studies and in the course of clinical ob-
servations, it is difficult to separate RI from ischemic injury. 
Therefore, in this section we discuss the manifestations of 
I/R heart’s damage. The most characteristic manifestation of 
I/R of the heart is necrosis and the appearance of markers of 
cardiomyocyte necrosis in blood: CK-MB, troponin I, and 
troponin T [152, 153]. It is also the appearance of coronary 
vascular dysfunction [5, 154-158], ventricular arrhythmias 
[16, 159-166], myocardial stunning [167], and the no-reflow 
phenomenon (Table 1) [168-173].  

14. DIAGNOSIS AND TREATMENT OF ISCHEMIC 
AND REPERFUSION INJURY OF THE HEART 

In clinical practice, I/R damage is observed in patients 
with AMI and also in cardiac surgery patients after cardio-
pulmonary bypass. ST-segment elevation myocardial infarc-
tion (STEMI) can be easily diagnosed by the ST elevation on 
an ECG. However, it is more difficult to diagnose non-ST-
segment elevation myocardial infarction (NSTEMI), which 
necessitates determination of the levels of myocardial necro-
sis markers: troponin I, troponin T, and creatine kinase-MB 
[167, 174, 175].  I/R injury in cardiac surgery patients is 
documented by increased serum troponin or CK-MB levels 
[176].  

Determination of peak troponin or CK-MB levels allows 
one to indirectly assess infarct size [167, 174]. Magnetic 
resonance imaging (MRI) allows one to more accurately 
detect infract size [177, 178]. MRI and definition of the peak 
troponin or CK-MB levels are commonly used to assess the 
effectiveness of drugs in the treatment of AMI. In clinical 
practice, it is important to diagnose AMI and determine the 
localization of coronary artery thrombosis. Invasive coronary 
angiography permits not only correct localization of the site 
of coronary artery thrombosis but also to lead in stenting of 
the infarct-related coronary artery. Percutaneous coronary 
intervention (PCI) still remains the most effective treatment 
for AMI, since it restores coronary blood flow in 95% of 
cases [179]. PCI is effective in stopping ischemic damage to 
the heart, but it frequently results in reoxygenation injury to 
cardiomyocytes.  

One of the most important aims of modern pharmacology 
is the development of drugs that can slow down the for-
mation of ischemic injury of the heart before PCI and drugs 
that can prevent reperfusion injury of the heart. 

The main cause of death in patients with AMI is cardio-
genic shock [180]. The mortality rate is 30 - 70% in patients 
with AMI and cardiogenic shock [181, 182]. The occurrence 
of cardiogenic shock is directly dependent on infarct size 
[183]. Consequently, efforts of cardiologists should be di-
rected towards infarct size reduction and improving cardiac 
contractility. 

Another major problem is the no-reflow phenomenon 
which is observed in approximately 5% of patients with AMI 
and PCI [179]. However, even if we could restore coronary 
blood flow in the main coronary arteries, a problem of mi-
crovascular coronary obstruction occurs for which there cur-
rently is no effective treatment intervention [184, 185]. 

Glycoprotein IIb/IIIa inhibitors, P2Y12 receptor antago-
nist, aspirin (in 98% patients), statins (96%), beta-blockers 
(58%), angiotensin-converting enzyme inhibitors (9%), an-
giotensin receptor blocker (38%), aldosterone receptor an-
tagonists (17%) are all used for the treatment of AMI in 
Handan First Hospital (Chine) [186]. The same drugs are 
used in other clinics for treatment of AMI. However, the 
ratio of use of these drugs can vary considerably. For exam-
ple, in the San Francisco Veterans Affairs Health Care Sys-
tem (USA): the following ratio of drugs is used: aspirin 
(99%), beta-blocker (94%), renin-angiotensin-aldosterone 
system antagonist (75%), statins (96%), and thienopyridine 
(94%) [187]. 
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CONCLUSION 

Cardiomyocyte Ca2+ overload and increased production 
of ROS play pivotal roles in myocardial I/R injury. Necrosis, 
necroptosis, apoptosis and, possibly, autophagy and pyropto-
sis are involved in RI of the heart. The role of ferroptosis in 
I/R injury of the heart requires further investigation. An in-
crease in activity of the adrenergic system during ischemia 
and the restoration of coronary perfusion negatively affect 
resistance of the heart to I/R. It has also been reported that 
neutrophils, monocytes, CD4+ T-cells and platelets play an 
important role in I/R cardiac damage. TLRs, angiotesin II 
and endothelin-1 are also involved in I/R injury of the heart. 
The main clinical manifestations of I/R cardiac injury are 
necrosis, ventricular arrhythmias, contractile dysfunction, 
and no-reflow phenomenon. 

We hypothesize that there are early cardiac RIs that de-
velop within a few minutes (5 - 10 min) after reperfusion, 
remote injuries that develop within a few hours and 24 to 48 
hours after the restoration of coronary blood flow, and late 
reperfusion injuries that form within a few weeks after the 
restoration of coronary perfusion. The most studied of these 
RIs is early reperfusion damage of the heart. Less well docu-

mented is the mechanism(s) by which inflammation may play 
a major role in the remote development of myocardial injury. 
We know almost nothing about late RI and the extent that it 
contributes to pathological myocardial remodeling. Our hy-
pothesis is that changes in gene transcription play an im-
portant role in the occurrence of post-infarction myocardial 
remodeling. Future studies should focus on the role of the 
receptor(s), signaling mechanisms, and inflammation in the 
pathogenesis of early and remote cardiac RI. The role of gene 
transcription alterations in the mechanism(s) of postinfarction 
remodeling also merits further investigation. 
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Table 1. The main consequences of myocardial ischemia-reperfusion. 

The Main Manifestations 

of I/R Injury of the Heart 
The Mechanisms of Development of the Main 

Manifestations of I/R Injury Refs. 

Myocardial stunning 
The Ca2+ overload of cardiomyocytes, activation 
of the Na+/H+ exchanger, 2Na+/Ca2+ exchanger 

and Na+/HCO3
- symporter 

Cohen M.V. et al., 2007 [3] 

Piper H.M. et al., 1999 [12] 

Rodriguez-Sinovas A. et al., 2009 [13] 

Herzog W.R. et al., 1997 [14] 

Lishmanov Y.B. et al., 2016 [15] 

Zhang H. et al., 2013 [16] 

Neri M. et al., 2017 [153] 

Coronary vascular 
dysfunction 

Pyroptosis of endothelial cells, inflammation of 
endothelial cells, apoptosis and especially au-

tophagy of endothelial cells, damage of the 
endothelial glycocalyx 

Sun W. et al., 2019 [155] 
Gollmann-Tepeköylü C. et al., 2020 [156] 

Zhen W. et al., 2020 [157] 

Araibi H. et al., 2020 [158] 

Ventricular arrhythmias 

A decrease in repolarizing K+ currents, an in-
crease in inward Ca2+ current, sympathetic nerv-
ous system activation, an increase in the cAMP 

level in cardiac cells, Ca2+ overload of cells, 
excess ROS production, neutrophil invasion in 

AAR, activation of 2Na+/Ca2+ exchange 

Zhang H. et al., 2013 [16] 

Schwartz P.J., Stone H.L., 1980 [160] 

Bernier M. et al., 1986 [161] 

Lubbe W.F. et al., 1992 [162] 

Rosen M.R., 1995 [163] 

Dhein S. et al., 1995 [164] 

Antoons G. et al., 2012 [165] 

van der Weg K. et al., 2019 [166] 

The no-reflow phenomenon 

 

 

 

Swelling of endothelial cells, aggregation of 
blood cells in the microvessels, an increase in 

blood viscosity, impaired endothelium-
dependent and endothelium-independent vasodi-

lation 

Boag S.E. et al., 2017 [139] 

Kloner R.A., 1974 [169] 

Loke K.E. et al, 1998 [170] 

Haiyun L. et al., 2004 [171] 

Cecchi E. et al., 2009 [172] 

Ming X. et al., 2012 [173] 
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