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Abstract

Background: Asthma is a heterogeneous common respiratory disease that remains poorly understood. The established genetic
associations fail to explain the high estimated heritability, and the prevalence of asthma differs between populations and geographic
regions. Robust association analyses incorporating different genetic ancestries and whole-genome sequencing data may identify novel
genetic associations. Methods: We performed family-based genome-wide association analyses of childhood-onset asthma based on
whole-genome sequencing (WGS) data for the ‘The Genetic Epidemiology of Asthma in Costa Rica’ study (GACRS) and the Childhood
Asthma Management Program (CAMP). Based on parent–child trios with children diagnosed with asthma, we performed a single variant
analysis using an additive and a recessive genetic model and a region-based association analysis of low-frequency and rare variants.
Results: Based on 1180 asthmatic trios (894 GACRS trios and 286 CAMP trios, a total of 3540 samples with WGS data), we identified
three novel genetic loci associated with childhood-onset asthma: rs4832738 on 4p14 (P = 1.72 ∗ 10−9, recessive model), rs1581479 on
8p22 (P = 1.47 ∗ 10−8, additive model) and rs73367537 on 10q26 (P = 1.21 ∗ 10−8, additive model in GACRS only). Integrative analyses
suggested potential novel candidate genes underlying these associations: PGM2 on 4p14 and FGF20 on 8p22. Conclusion: Our family-
based whole-genome sequencing analysis identified three novel genetic loci for childhood-onset asthma. Gene expression data and
integrative analyses point to PGM2 on 4p14 and FGF20 on 8p22 as linked genes. Furthermore, region-based analyses suggest independent
potential low-frequency/rare variant associations on 8p22. Follow-up analyses are needed to understand the functional mechanisms
and generalizability of these associations.

Introduction
Asthma is a common chronic respiratory disease (1) characterized
by substantial clinical heterogeneity. Patients differ across a range
of clinical manifestations and, despite strong evidence for genetic
predisposition, asthma etiology remains poorly understood (2).
Recent large-scale genetic association analyses showed that the
genetic architectures of childhood-onset and adult-onset asthma
are partly distinct, likely due to age-of-onset-dependent disease
mechanisms (3,4). Furthermore, the prevalence of childhood-
onset asthma differs between populations and geographic regions

(2,5). Genetic association studies of asthmatic children that
include multiple genetic ancestries could potentially facilitate the
identification of the underlying biological mechanisms. Moreover,
given the underlying differences between childhood-onset and
adult-onset asthma as well as recall biases, targeted studies based
on physician-diagnosed asthmatic children are required; biobank
analyses are usually based on self-reported medical history (3,4).

In this work, we utilized whole-genome sequencing (WGS) data
and performed genome-wide association analyses of childhood
asthma based on two family-based studies: ‘The Genetic Epi-
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Table 1. Characteristics of the asthmatic children in GACRS and CAMP

GACRS CAMPa Comparison test

N 894 286
% Female 40.9 32.5 P = 0.013
Age (mean (SD) in years) 9.28 (1.86) 8.90 (2.16) P = 0.008
Height (mean (SD) in meter) 1.33 (0.12) 1.34 (0.14) P = 0.60
FEV1 (mean (SD) in liter) 1.80 (0.52) 1.65 (0.47) P = 1.03e−05
FEV1% predicted (mean (SD)) 98.87 (16.84) 92.82 (13.40) P = 1.17e−09
Maternal asthma history % yes 30.0 25.4 P = 0.16
Paternal asthma history % yes 25.4 22.6 P = 0.34
Race Hispanic 75% White/10% African

American/7% Hispanic/8% other
-

aCAMP data at randomization. Comparison tests between GACRS and CAMP based on chi-squared or t-test, depending on the type of measurement.

demiology of Asthma in Costa Rica’ study (GACRS) (6) and the
Childhood Asthma Management Program (CAMP) (7). For both
studies, WGS data were generated as part of the NHLBI Trans-
Omics for Precision Medicine (TOPMed) program (8). Given the
family-based designs consisting of asthmatic trios (two parents
and a child with asthma), we applied robust family-based asso-
ciation tests (FBATs) (9,10). We incorporated both the commonly
used additive and a recessive model for the single variant anal-
ysis of common genetic variants. The latter was motivated by
recent findings using recessive models for other complex diseases
(11,12). Furthermore, WGS data allowed us to analyze region-
based associations based on low-frequency and rare variants
using a recently proposed FBAT framework (13,14). Our analysis
incorporated a total of 3540 samples, representing 1180 asthmatic
trios (894 GACRS trios and 286 CAMP trios). To the best of our
knowledge, this is the largest WGS family-based association anal-
ysis of childhood-onset asthma to date.

Results
Baseline characteristics
After quality control, we kept WGS data for 894 GACRS and 286
CAMP trios. In Table 1, we report the baseline characteristics of
the asthmatic offspring in both studies. For CAMP, these data
reflect the randomization timepoint of the study. The two study
populations possess overall comparable characteristics regarding
the sex ratio, age distribution, parental asthma history and height.
Differences are observed regarding lung function measurements
and reported race. As the FBAT approach is robust against any
confounding due to population substructure and admixture, the
FBAT statistics can be computed for the combined sample of trios
from GACRS and CAMP.

Genome-wide single variant association analysis
We performed power calculations for the single variant analysis
based on an additive (multiplicative relative risk) and a recessive
model (for minor and major allele). In Supplementary Material,
Figure S1, we plotted the corresponding power curves based on
a sample size of n = 1180 affected trios and established power
formulas (15). These computations demonstrated that we have
adequate power for common variants with substantial effect
sizes.

In the combined GACRS + CAMP FBAT single variant analysis,
we evaluated the additive association P-value for 9 330 567
variants. For the recessive model, we evaluated 7 444 202
association P-values (including a substantial number of variants
with two recessive P-values, one for each allele, see section
Materials and Methods). In Figure 1, we visualized the Miami

plot for the additive and recessive analysis. In Supplementary
Material, Figures S2 and S3, we plotted quantile-quantile-plots
for the additive and recessive analyses. These plots demonstrate
the validity of the analyses and show that the exclusion of the
lead SNP in the well-established 17q21 locus (16), and a 500 kb
flanking region, removes a substantial part of the inflation of the
test statistics.

Considering both the results for the additive and recessive
models, we observed four genetic loci with variants that reached
a genome-wide significant association P-value P < 5 ∗ 10−8. The
well-established 17q21 locus was the most significant associa-
tion in our additive GACRS + CAMP analysis (16). The additive
GACRS + CAMP association P-value of the corresponding lead vari-
ant rs8076131 was P = 5.35∗10−11. The corresponding association
P-values in GACRS and CAMP were P = 3.89∗10−10 and P = 0.0239,
respectively (Supplementary Material, Table S4). Describing novel
associations, variants in the 8p22 locus reached genome-wide sig-
nificance in the additive GACRS + CAMP analysis. The lead variant
rs1581479 obtained an association P-value of P = 1.47∗10−8 (Fig. 2,
Table 2). The corresponding association P-values in GACRS and
CAMP were P = 1.83 ∗ 10−4 and P = 2.43 ∗ 10−6, respectively.

Based on the recessive model, we observed genome-wide signif-
icant associations in the 4p14 locus. The lead variants rs4832738,
rs7691795, and rs4832956 (in complete LD) reached an association
P-value of P = 1.72 ∗ 10−9 (Table 2). All three P-values were based
on the recessive model test for the major allele with an estimated
allele frequency of 50.4% in GACRS + CAMP (Table 2 and Sup-
plementary Material, Table S4). Supplementary Material, Figures
S4–S6 visualize region association plots for 4p14. Supplementary
Material, Figure S4 is based on standard LD correlation (Locus-
Zoom, EUR LD), Supplementary Material, Figure S5 is based on a
recessive genotype coding in 1000 Genomes phase 3 EUR, and Sup-
plementary Material, Figure S6 is based on a recessive genotype
coding in GACRS + CAMP (see section Materials and Methods). We
added the two region plots in Supplementary Material, Figures S5
and S6 since LD does not correspond to the correlation between
test statistics for the recessive model.

Considering GACRS separately, we observed highly significant
low-frequency variants with minor allele frequencies (MAFs) of
approximately 3% on 10q26 in the additive analysis. The lead
variant rs73367537 had an additive association P-value of P =
1.21 ∗ 10−8 in GACRS and all significant variants were in strong
LD (Supplementary Material, Fig. S7). However, the correspond-
ing additive association P-value in CAMP was nearly significant
(P = 0.059) but with an opposite direction of effect (Table 2,
Supplementary Material, Table S4). Aside the established 17q21
associations, the identified SNPs on 4p14, 8p22, and 10q26 were
not previously described in the childhood-onset asthma context
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Figure 1. Miami plot for the GACRS + CAMP single variant analyses based on the additive (top) and recessive (bottom) model.

Figure 2. Region association plots for 8p22 based on the additive GACRS + CAMP analysis (LocusZoom, EUR LD). Reference variant rs1581479 (A) and
reference variant rs17515041 (B). The LD between rs1581479 and rs17515041 is r2 = 0.1 and r2 = 0.14 in GACRS and CAMP, respectively (estimated based
on parental genotypes). The LD pair tool estimated the LD between both variants to be r2 = 0.14 and r2 = 0.11 in EUR (European) and AMR (Ad Mixed
American), respectively.

(GWAS catalog (17), June 2022) and therefore represent novel
genetic associations for childhood asthma.

Single variant results replicate previously
identified genetic associations for childhood
asthma
Among the 87 genetic variants in our additive GACRS + CAMP
analysis that were previously reported as childhood-onset
asthma associations in the Ferreira et al. analysis (3) (see section

Materials and Methods), 13 (15%) had a nominal significant
additive GACRS + CAMP association P-value (P ≤ 0.05). A binomial
test for enrichment (null hypothesis : success probability ≤
0.05) resulted in a significant P-value of P = 3.85 ∗ 10−4,
assuming independent genetic variants and thus neglecting
residual LD in this pruned set of variants. All of the 13 nominal
significant associations had a consistent direction of effect.
Considering directions of effects only, 70 out of 87 (80%) had a
consistent direction in the additive GACRS + CAMP analysis. The
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corresponding binomial test for enrichment (null hypothesis:
success probability ≤ 0.5) resulted in a p-value of P = 4.18 ∗ 10−9.
The list of the 13 nominal significant associations can be found
in Supplementary Material, Table S1.

To get a quantitative understanding of the replication results,
we performed a replication power analysis for our analysis based
on 1180 affected trios using established power formulas for
the TDT/FBAT (15). We extracted the GARCS/CAMP minor allele
frequencies (estimated based on parental genetic data) and the
reported odds ratios from the Ferreira et al. analysis for all 87
available associations/variants. We applied the empirical_bayes
function (18) in the winnerscurse R package (see section code
and data availability) to the log odds ratios to correct for the
Winner’s curse (19). Next, we converted the adjusted odds ratios
to relative risks (assuming a prevalence of 0.27) and computed the
power for each variant to reach nominal significance (P ≤ 0.05) in
our GACRS + CAMP analysis. The expected number of nominally
significant associations based on these computations was approx-
imately 19.78. The probability of observing 13 or fewer nominally
significant associations based on these power parameters was
approximately P = 0.04 (based on 100 000 simulations). Although
the number of observed associations is less than expected, we
conclude that the deviations from the theoretical expectations
are modest. In general, replication analyses for asthma risk loci
are challenging, given the heterogeneity of asthma and asthma
diagnoses.

Statistical fine mapping of single variant
associations
We performed statistical fine mapping for all identified novel
loci using DAP-G (see section Materials and Methods) to pinpoint
genetic variants that most likely explain the observed associa-
tions. Supplementary Material, Table S4 contains all variants in
each identified cluster, where variants within a cluster are in
strong LD with each other. This table also contains the poste-
rior inclusion probabilities for each genetic variant as computed
by DAP-G. In line with the regional association plots for the
8p22 association (Fig. 2), DAP-G found evidence for an indepen-
dent signal with lead variant rs17515041 in the 8p22 locus. The
corresponding association P-value was P = 5.5 ∗ 10−8 in the
GACRS + CAMP analysis, whereas the cohort-specific association
P-values for GACRS and CAMP were P = 3.7 ∗ 10−5 and P =
2.11 ∗ 10−4, respectively (Table 2 and Supplementary Material,
Table S4). The LD between rs1581479 and rs17515041 is r2 = 0.1
and r2 = 0.14 in GACRS and CAMP, respectively, estimated based
on parental genotypes. These two clusters on 8p22 will be denoted
by 8p22–1 and 8p22–2 in the following. For the other loci, only
one signal cluster was identified. Supplementary Material, Table
S4 contains additional information including annotations for all
genetic variants located in the identified clusters (Material and
Methods).

Expression quantitative trait loci colocalization
analysis
We tested the single variant associations on 4p14, 8p22–1, 8p22–
2 and 10q26 for colocalization with expression quantitative trait
loci (eQTLs). Since there are two independent associations in the
8p22 locus, approximately 50 kb apart, we used a radius of 25 kb
between the two associations when extracting the FBAT statistics
for the colocalization analysis. For the other loci, we used a radius
of 50 kb (see section Materials and Methods).

The lead variant rs4832738 on 4p14 colocalized with an eQTL
signal for PGM2 (Phosphoglucomutase 2) in fetal lung (false
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discovery rate (FDR) 5 ∗ 10−5), GTEx lung tissue (FDR < 10−5)
and several immune cell types in the eQTL Catalogue data.
According to the GTEx eQTL results, the asthma risk increasing
allele increases PGM2 expression in the lung.

For rs1989754 on 8p22–2, in strong LD with the lead variant
rs17515041 on 8p22–2 (r2 > 0.98 in AMR (Ad Mixed American)
and EUR (European) populations in LDpair tool, see section code
and data availability), we observed colocalization with an eQTL
signal for FGF20 (Fibroblast Growth Factor 20) in spleen tissue
in GTEx (FDR 0.0064). Here, the asthma risk decreasing allele
increases expression in the spleen tissue. We tested rs1989754
since rs17515041 is an Indel and was removed in the eQTL studies.
For the GWAS lead variants rs1581479 on 8p22–1 and rs73367537
on 10q26, no significant colocalizations with gene expression data
were observed.

Overlap with meQTL results
Investigating the overlap between the identified signal clusters
and recent methylation quantitative trait loci (meQTLs) results
in blood (20) showed that rs3862103 and rs1721100 on 8p22–2 are
clumped meQTLs for cg04451175 and cg06872257, respectively. On
4p14, we observed that rs34738612 and rs11721535 are clumped
meQTLs for cg20524452 and cg04038500, respectively. A clumped
meQTL represents an approximately fine mapped meQTL signal
using LD clumping (see section Materials and Methods).

Replication of novel associations in UK Biobank
and additional support for 10q26 by GACRS
findings
Based on the publicly available summary statistics (see section
code and data availability) for the analysis of childhood asthma
in the UK Biobank (3), we investigated the association P-values
of our identified variants on 4p14, 8p22 and 10q26. The iden-
tified variants failed to replicate (rs4832738 P = 0.003829 with
opposing direction of effect, rs1581479 P = 0.6833 and rs73367537
P = 0.1962). Also, rs1989754, in strong LD with the second asso-
ciation rs17515041 on 8p22–2, was not significant (P = 0.3078).
Association data for rs17515041 was not available. We additionally
sought evidence for replication of our signal on 10q26. Since we
observed heterogeneous effects for 10q26 in GACRS and CAMP, we
performed a similar analysis as described by Ferreira et al. in the
UK Biobank (see section Materials and Methods) but partitioned
the samples according to the UK Biobank derived variable ‘White
British’ ancestry (combination of self-report and genetic principal
component analysis). Overall, after quality control, we obtained
369 010 samples, including 11 738 asthmatics with childhood-
onset and 357 272 controls. To avoid extreme imbalances, we
restricted the set of controls to randomly chosen 50 000 controls.
Then, we performed the association analysis of rs73367537 in
two distinct groups defined by the British European ancestry
variable. In this stratified analysis, we observed a significant
risk effect of rs73367537-T, consistent with the effect in GACRS,
in samples with British European ancestry (9702 cases, 41 437
controls, P = 0.0014) and a suggestive significant protective effect
of rs73367537-T in the remaining participants (2036 cases, 8563
controls, P = 0.064). Accordingly, a standard test for equality of
effects in both subsamples had a significant two-sided P-value of
P = 0.0012.

Furthermore, we also found additional support for the 10q26
association in independent Costa Rica data. In 2007, Celedón
et al. performed a linkage analysis of asthma and airway respon-
siveness in eight large pedigrees from Costa Rica (21). These
pedigrees partly overlap with GACRS, but the 894 GACRS trios in

our analysis were not included in the linkage analysis. Celedón
et al. found evidence for linkage signals for asthma and airway
responsiveness. One shared signal was located on Chromosome
10 with genetic coordinates between 145 and 151 cm (21). The lead
variant on 10q26 in GACRS, rs73367537, is located in this genetic
region. We ran an FBAT analysis of rs73367537 in all members of
the corresponding extended pedigrees with physician’s diagnosed
asthma and WGS data available. The resulting P-value was P =
0.045 (13 informative FBAT families) with consistent risk effect
direction as in the GACRS main analysis.

In summary, the UK Biobank analysis replicated both the asso-
ciation and observed heterogeneity of the 10q26 signal. Further-
more, the association was replicated in an independent part of
GACRS.

Region-based association analysis
The sliding window approach constructed a total of 1 331 478
unique regions. As described in the Material and Methods section,
we evaluated the regions using a two-stage procedure.

In the first stage, we considered all regions that are located
within a radius of 20 kb around one of the associations identified
in the single variant analysis. This included the lead variants in
the signal clusters on 4p14, 8p22–1, 8p22–2 and 10q26, as well
as the lead variant on 17q21. We obtained a total number of
98 regions, with an average number of 27 variants (minimum
number 2 and maximum number 50). Among these regions, 16
showed a significant FBAT ACAT association P-value after Bonfer-
roni correction for n = 98 tests and a significance level of α = 0.05,
i.e. P < 0.05

98 = 0.00051. The 16 regions were located in the 8p22
and 10q26 loci. Since the single variant associations on 10q26
are low-frequency variants with MAF of around 3% themselves,
we focused on the six regions on 8p22 (Supplementary Material,
Table S2). We further analyzed the conditional significance of
these regions (Table 3), conditioning on the lead variants in the
signal clusters 8p22–1 and 8p22–2 identified in the single variant
analysis. Most of the regions remained nominally significant,
even though, in general, the conditional approach reduces power
substantially due to robustness of the model-free FBAT approach.
Table 3 also reports the FBAT ACAT P-values for the 6 regions,
based on GACRS and CAMP separately. In Supplementary Mate-
rial, Table S6, we report the results of FBAT haplotype analysis
based on the two common genetic variants and all rare vari-
ants that had a nominal significant single variant FBAT additive
association P-value in GACRS + CAMP, GACRS or CAMP. Overall,
these results suggest that both common and low-frequency/rare
variants play a role in the architecture of the 8p22 association with
childhood-onset asthma and that the observed signals appear to
be highly consistent between GACRS and CAMP. Therefore, our
first stage analysis identified potential additional, independent
rare/low-frequency variant associations on 8p22.

In the second stage, we considered the ACAT P-values for all
1 331 478 regions. The quantile-quantile plots for the ACAT and
the four sub-statistics is displayed in Supplementary Material,
Figure S8. None of these regions were significant after correction
for multiple testing. We considered all suggestively significant
regions with an FBAT ACAT P-value P < 10−5. The correspond-
ing regions were located on Chromosomes 1, 3, 16 and 17 and
are described in Supplementary Material, Table S3. Supplemen-
tary Material, Table S5 contains additional information including
annotations for all low-frequency/rare genetic variants with a P-
value below 0.05 in either GACRS + CAMP or GACRS and CAMP
individually, that are located within one of the described regions.

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac258#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac258#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac258#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac258#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac258#supplementary-data
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Table 3. Genetic regions in the 8p22 locus with significant FBAT ACAT association P-value in the first stage of testing, P-values shown
are uncorrected for multiple testing (see Supplementary Material, Table S2)

CHR Start BP
(hg38)

End BP
(hg38)

Number of
variants

ACAT ACAT
conditional on
rs1581479

ACAT
conditional on
rs17515041

GACRS ACAT CAMP ACAT

8 16 948 949 16 951 656 30 2.77e−04 9.31e−03 4.68e−03 2.43e−03 1.08e−01
8 16 949 866 16 953 451 39 2.03e−05 7.15e−03 1.21e−03 3.86e−04 2.12e−02
8 16 995 849 16 999 748 35 2.89e−04 9.53e−02 3.46e−02 1.42e−04 2.85e−02
8 17 003 908 17 007 616 29 5.27e−05 4.14e−02 3.00e−02 2.76e−03 1.17e−02
8 17 005 897 17 009 766 28 7.33e−05 1.01e−01 1.98e−02 1.18e−02 1.48e−02
8 17 012 081 17 015 804 36 3.13e−04 3.91e−02 4.33e−04 8.53e−04 4.76e−01

The table also reports the (uncorrected) conditional FBAT ACAT association P-values when conditioning on one of the common variants identified in the
single variant analysis (Table 2) (P-values based on 1 000 000 simulations). The last two columns contain the FBAT ACAT (uncorrected) P-values for the regions
using only GACRS and CAMP data, respectively (P-values based on 10 000 000 simulations). FBAT: Family-Based Association Test; ACAT: Aggregated Cauchy
Association Test.

Overall, the second stage analysis did not reveal genome-wide
significant associations.

Discussion
We performed a WGS-based association analysis based on two
family-based studies and identified three novel genetic associa-
tions for childhood asthma.

Our family-based analysis has several advantages compared to
recent large-scale case–control studies. First, the trio design pro-
vides robustness against population stratification, allowing a joint
analysis of the combined data from GACRS and CAMP. Second,
asthma status in our analysis is based on comparable definitions
of asthma in both study populations, including a physician’s
diagnosis. This more rigorous definition was used instead of self-
report or a simple questionnaire-based diagnosis of asthma used
in other asthma GWAS. Third, the incorporation of different eth-
nicities and genetic ancestries provides potential insights into the
generalizability of the results. Fourth, our association analysis
is based on whole-genome sequencing data that allowed us to
robustly identify low-frequency variant associations in the GACRS
cohort, as well as potential low-frequency/rare variant signals
on 8p22. The main limitation of our analysis is the relatively
small sample size compared to large-scale association analyses
based on unrelated samples, which limits the power, especially
for the genome-wide region-based analysis of low-frequency and
rare variants. Another limitation of the analysis is that our eQTL
colocalization testing using the JLIM approach does not take into
account functional annotations or experimental validation. The
resolution level of the colocalization approach depends on the
underlying LD structure, and the relatively small overall sample
size makes it difficult to distinguish causal variants from tagged
variants. Furthermore, eQTL studies and GWAS tend to be biased
towards different types of variants, emphasizing careful interpre-
tation of colocalization results (22). Therefore, future studies are
needed to confirm the role of the proposed genes.

Besides the three novel genetic loci associated with childhood
asthma, we confirmed 13 (15%) of previously identified asthma
GWAS associations. Moreover, 70 out of 87 previously identified
loci (80%) had a consistent direction of effect.

The study design and analysis strategy played a crucial role in
the identification of the three novel loci. For the signal on 8p22,
both studies had similar association signals for two independent
common variants and together these signals reached genome-
wide significance in the combined analysis. Furthermore, our
region-based analysis suggested that there may be additional,
independent low-frequency/rare variant associations in this
region. The 4p14 association reached genome-wide significance

in the recessive model. Finally, the association signal on 10q26
consists of low-frequency variants, enabled by the WGS data,
and was observed in GACRS only and may have ancestry- or
environment-specific effects.

The 4p14 locus was the most significant locus using the reces-
sive association model. SNP rs13122762, part of the signal cluster,
is located at the 5′ upstream of PGM2. The signal cluster also
contained clumped meQTL for cg20524452 and cg04038500, but
no previous epigenome-wide association was reported for these
CpG sites in the EWAS atlas (23). Furthermore, we found evidence
for colocalization with eQTL for PGM2 in several relevant tissues
and datasets, including both lung tissues and immune cell types.
PGM2 encodes an enzyme implicated in glucose metabolism and
catalyzes the conversion of the nucleoside breakdown products
ribose-1-phosphate and deoxyribose-1-phosphate to the corre-
sponding 5-phosphopentoses and the interconversion of glucose-
1-phosphate to glucose-6-phosphate.

Recently, early embryonic lethality was reported in Pgm2
knockout mice before E9.5 when lung development starts,
suggesting important roles of Pgm2 in embryonic development
(24). Future studies in inducible and conditional knockout mice of
Pgm2 in specific lung cell types, especially in Ovalbumin (OVA)- or
house dust mite-induced asthmatic models may pinpoint impor-
tant cell types and possible molecular mechanisms of how PGM2
may contribute to asthma susceptibility. Glucose metabolism
was shown to be dysregulated in asthma development (25–27).
It is conceivable that the expression levels of PGM2, influenced
by genetic variants on 4p14, may impact asthma susceptibility
possibly through fine-tuning the glucose metabolic status in
immune cells, thereby priming epigenetic features of the genes
and impacting the inflammatory response in airways in response
to allergen or viral infection.

On 8p22, we found two common variant associations (i.e. two
signal clusters), that were in weak LD. In addition, we observed
potentially associated low-frequency/rare variants in close prox-
imity to both common variants. However, the exact relationship
of these rare variants to the two separate common variants is
hard to explore because of the LD structure of the region and
the limited sample size. The association was also supported by
clumped meQTL associations for cg04451175 and cg06872257,
which were reported to be associated with aging and gestational
age (23). For the first signal cluster 8p22–1, we found no colocal-
ization with eQTLs. For the second signal cluster, 8p22–2, gene
expression colocalization analysis suggested FGF20 as the gene of
interest. FGF20 belongs to the important fibroblast growth factor
family of genes that have essential roles during embryonic lung
development. We previously reported that the genetic variants
nearby FGF20 are linked with allergic asthma (28). FGF20 binds to

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac258#supplementary-data
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its membrane receptor FGFR1, which activates the MAPK pathway
(29) and the beta-catenin/Wnt pathway (30) to modulate cell
proliferation and differentiation. Furthermore, previous findings
(31) in Fgf20 knockout mice demonstrated that the potential
genetic interaction between FGF20 and SOX2 may determine the
differentiation of progenitor cells in cortical hair cells during
embryonic development. Given that SOX2 is an important tran-
scription factor that determines the differentiation of proximal
airway epithelial progenitor cells during embryonic lung develop-
ment, FGF20 may also modulate the function of airway epithelial
cells during fetal lung development or post-natally. Our study
suggests that future characterization of the function of FGF20 in
both murine and cellular models relevant to asthma is clearly
warranted.

The results for 10q26 are more difficult to interpret. This locus
was statistically significant in GACRS, and was independently
implicated in a linkage study based on independent samples from
extended pedigrees of Costa Rican children with asthma. FBAT
testing in this independent set also resulted in a significant associ-
ation (P = 0.045). It was also replicated in the UK Biobank in British
Europeans. The signal did not replicate in CAMP or the remaining
UK Biobank participants but demonstrated heterogeneity of the
effect. While there were no eQTL analyzed in this region, fine-
mapped variants overlap with a distal, non-promoter DNase I
hypersensitive site (DHS) that is correlated with a promoter DHS
for WDR11 (32,33). The low-frequency variants on 10q26 asso-
ciated with childhood asthma in GACRS are also present with
similar allele frequencies in CAMP and the UK Biobank, but the
analyses indicate that the genetic effects on asthma differ. We
hypothesize that the effects of the identified variants on 10q26
are modified by either a genetic or environmental factor.

The replication analysis provided mixed results. The associ-
ations on 4p14 and 8p22 did not replicate in the UK Biobank
childhood asthma analysis by Ferreira et al. (3). We also inves-
tigated reported associations between the lead variants in both
loci and other phenotypes, including asthma-related outcomes,
in the GWAS catalog, FinnGen database, and publicly available UK
Biobank summary statistics via open target genetics (34,35). No
significant result was observed. Further analyses are needed to
analyze the exact reasons for the lack of replication. Potential
explanations include differences in phenotype definitions or
modification of genetic risk by population-specific factors.
Asthma status in GACRS and CAMP was directly assessed by a
physician’s diagnosis and not self-reported. We also note that the
association on 10q26 did not replicate in the overall UK Biobank
analysis but demonstrated significance and effect heterogeneity
in the stratified analysis according to the ‘White British’
variable.

Our genome-wide region-based rare variant analysis did not
identify any significant signals. Suggestive signals include a region
on 3p26 that consists of intronic variants for the gene SUMF1,
which has been hypothesized to be associated with COPD (36). A
second region on 16q12 contains an intronic splice site variant
for ABCC11 with a Combined Annotation Dependent Depletion
(CADD) score (37) above 24.

Our study design has many strengths, but the major weakness
is that we lack a large enough sample size to identify rare variant
associations for asthma in genome-wide analyses. Also, as men-
tioned above, the eQTL colocalization results are not functionally
validated. This will be subject of future studies. However, our
disease definition and trio design set a high standard for asthma
genetic association studies, and we have adequate power to detect
common variants.

Materials and Methods
Study populations
Our analysis is based on data from two studies with asthmatic
children: ‘The Genetic Epidemiology of Asthma in Costa Rica’
study (GACRS) and the Childhood Asthma Management Pro-
gram (CAMP). GACRS is a cohort of children between 6 and
14 years of age with physician-diagnosed asthma and at least
two episodes of respiratory symptoms (wheezing, cough or
dyspnea) or a history of asthma attacks in the previous year
(6). Additional criteria were that the children have at least six
great-grandparents born in the Central Valley of Costa Rica.
The population of the Central Valley of Costa Rica is a genetic
isolate with one of the highest prevalences of asthma worldwide
(approximately 27% in children) (38). For further details about
enrollment and phenotyping protocols, we refer to previous
publications (6).

CAMP was a multicenter clinical trial designed to determine
the long-term effects of three inhaled treatments for childhood
asthma (7). This cohort consists mainly of trios and a similar age
distribution as GACRS. CAMP only included children with mild
to moderate persistent asthma, as defined by the presence of
symptoms or by the use of an inhaled bronchodilator at least
twice weekly or the use of daily medication for asthma (39).
Children with too many symptoms during the run-in period, such
that they could not be taken off medication, were excluded. Addi-
tional exclusion criteria included severe chronic sinusitis or nasal
polyposis, use of more than four sprays of nasal steroids daily
(only beclomethasone allowed), current use of metoclopramide,
ranitidine or cimetidine treatment for gastroesophageal reflux
or evidence of severe asthma. GACRS and CAMP used similar
protocols for phenotyping subjects.

Ethics
Written parental consent and participating child’s assent were
obtained. For GACRS data, the study was approved by the Mass
General Brigham Human Research Committee at Brigham and
Women’s Hospital (Boston, MA; protocol No. 2000P001130) and the
Hospital Nacional de Niños (San José, Costa Rica).

For CAMP data, all study procedures were approved by the Mass
General Brigham Human Research Committee at Brigham and
Women’s Hospital (Boston, MA; protocol No. 2011P000710).

Whole-genome sequencing and quality control
Whole-genome sequencing data for GACRS and CAMP were
generated as part of the National Heart, Lung and Blood Institute
(NHLBI) Trans-Omics for Precision Medicine (TOPMed) program
(8). Details on DNA sample handling, quality control, library
construction, clustering and sequencing, read processing and
sequence data quality control are described on the TOPMed
website (https://topmed.nhlbi.nih.gov/topmed-whole-genome-
sequencing-methods-freeze-8). Variant calls were obtained from
TOPMed data freeze 8 with variant call format files aligned to
the GRCh38 genome reference. We extracted biallelic SNPs and
insertions/deletions that passed quality control, only considering
individual variant information with at least 10x sequencing
depth for the analyses. Based on genome-wide identity-by-
descent estimates generated by kinship-based inference for
GWAS (KING) (40) and additional information from the TOPMed
Data Coordinating Center, we identified and removed genetic
duplicates, pedigree discrepancies and sex mismatches. After
this step, we kept complete trios for the family-based association
analysis.

https://topmed.nhlbi.nih.gov/topmed-whole-genome-sequencing-methods-freeze-8
https://topmed.nhlbi.nih.gov/topmed-whole-genome-sequencing-methods-freeze-8
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Single variant association analysis
Based on the trio data, we performed single variant family-based
association tests (FBAT v204) using additive and recessive genetic
models (9,10). Our primary analysis was based on the combined
GACRS and CAMP dataset (GACRS + CAMP), but we also consid-
ered GACRS and CAMP separately. The advantage of the FBAT
approach is that the association test is robust to population
stratification and admixture (41), allowing the combination of
both studies. For the single variant analysis, we excluded genetic
variants with a minor allele frequency (MAF) below 1%, more than
four Mendelian errors, genotype missing rate > 2%, TOPMed freeze
8 reported batch effects or deviations from Hardy–Weinberg pro-
portions (P < 10−8). Furthermore, we only considered associa-
tion tests with at least 10 informative families to ensure valid
asymptotic inference. Testing based on an additive genetic model
provides one association P-value per variant, whereas testing
based on the recessive genetic model can be performed based
on the minor allele as well as based on the major allele. We
performed recessive tests on the minor allele for all variants
where this test had at least 10 informative families. For the
recessive tests on the major alleles, however, we restricted test-
ing to variants with a major allele frequency of at most 60%.
The corresponding quality control computations were performed
using PLINK (version v1.90b6.12 and v2.00a2.3LM). The MAFs
and Hardy–Weinberg deviations were assessed based on parental
genotype data. We considered only autosomal genetic data in
our analyses. We declared association tests with P-values P <

5∗10−8 as genome-wide significant. Since the FBAT statistic equals
the TDT for asthmatic trios, we used existing power formulas
for the TDT to investigate the expected power of our combined
GACRS + CAMP analysis based on 1180 trios (15).

Replication of previously reported associations
for childhood asthma
We downloaded all genetic associations from the Ferreira et al.
analysis of childhood-onset asthma from the NHGRI-EBI GWAS
catalog (3,17) (Study accession GCST007800, June 18, 2021). Among
the 105 reported genetic variants, 103 were autosomal and there-
fore potentially overlapping with our analysis. Further, 87 out of
the 103 variants (84%) were available in the GACRS + CAMP after
the described quality control procedure. We considered the corre-
sponding additive association P-values and direction of effect for
comparison.

Statistical fine mapping
Due to the high variant density in the WGS data, signal clusters
contain a large number of variants in strong linkage disequi-
librium (LD). To identify potentially causal genetic variants, we
performed statistical fine-mapping for all regions with significant
single variant associations with an association P-value P < 5∗10−8.
For the fine mapping, we included all variants within a window
of ±100 kb around the lead association. Since the FBAT tests are
score test statistics, we obtain association z-scores but no effect
estimates with corresponding standard errors. This motivated
using the DAP-G tool (42) for fine mapping since only z-scores
and the corresponding LD/correlation matrices are required as
input. The LD matrices were estimated based on parental WGS
data. For associations discovered using the recessive model, we
replaced the standard LD matrix with an empirical correlation
matrix based on the parental genotype data and a recessive
coding. The ld_control parameter was set to 0.25. We considered
all signal clusters, groups of genetic variants in strong LD, with a

DAP-G posterior inclusion probability of at least 50% for further
analyses.

eQTL colocalization analysis
We tested for colocalization between the identified genetic associ-
ations with asthma (‘primary trait’) and eQTLs (‘secondary trait’)
using the joint likelihood mapping (JLIM) approach (43). We used
the FBAT association P-values within a region of ±50 kb around
the lead variant for the primary trait (in the presence of two
associations within the same loci, we used a smaller radius). For
the secondary trait, we used the eQTL association P-values of
the corresponding intervals from the following eQTL datasets:
all immune cell types in the eQTL Catalogue (44), all tissues
in the Genotype Tissue Expression project (GTEx; version 8) (45)
and a study of cis-eQTL in developing human fetal lung (sample
superset of dataset previously described (46)). For GTEx tissues,
we used the eQTL association statistics calculated only with
subjects of European ancestry, available for download from the
GTEx consortium. In the case of fetal lung eQTLs, we used the
full multi-ethnic eQTL data since the underlying individual-level
genotype data were available. In addition to the association statis-
tics, JLIM requires the LD matrices of primary and secondary traits
to account for the correlation of association statistics between
SNPs. For the additive model with the primary trait (asthma), LD
matrices were derived directly from parental WGS genotype. Con-
sidering the secondary trait (eQTL), LD matrices were calculated
from the genotypes of non-Finnish European ancestry (n = 404;
1000 Genomes Project phase 3 (47)) for the eQTL Catalogue and
GTEx; and from the genotypes of all post-QC multi-ethnic subjects
(n = 386) for fetal lung eQTLs. For the recessive model, we treated
the alleles of each SNP as if they were distinct SNPs. Specifically,
for the primary trait, the empirical correlation of parental geno-
type data based on a recessive coding was used. For the secondary
trait, the LD between alleles of the same variants was set to 1,
and the LD between alleles of different variants was set to the
underlying LD between the SNPs.

For all colocalization analyses, we examined all genes of which
transcription start sites are within 1 Mbps from the FBAT lead
variant. Due to low imputation accuracies, especially in datasets
with non-European genetic ancestry, Indels, genetic variants with
MAF < 5%, and tri-allelic SNPs were filtered out from the analyses.
JLIM was applied in the default setting with a maximum adaptive
permutation of 100 000 iterations and outputs a colocalization P-
value for each gene. The FDR was calculated separately for each
tissue/cell type and locus using the Benjamini–Hochberg proce-
dure (48). All colocalizations with FDR below 5% were considered
to be significant.

Overlap with methylation quantitative trait loci
results in recent large-scale analysis
We used results from a recent large-scale DNA methylation quan-
titative trait loci (meQTLs) analysis to investigate the overlap
between the identified signal clusters in the DAP-G fine mapping
analysis and meQTL associations in blood (20). We extracted the
clumped meQTL results from this analysis, using the reference
SNP ID (rsID) as the identifier. Clumping corresponds to linkage
disequilibrium (LD) clumping, aiming to extract the most signifi-
cant meQTL while excluding other meQTL associations in LD.

Region-based association analysis
To test for an association between low-frequency/rare genetic
variants and childhood asthma, we applied the recently published
framework for region-based association analysis in family-based
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designs (14). This framework evaluates different association test
statistics (Burden, SKAT (49,50), Higher Criticism (51) and maxi-
mum single variant (51)) and computes an overall association P-
value using the Aggregated Cauchy Association Test (ACAT) statis-
tic (52). The evaluation of the individual sub-statistics is based
on simulations and does not require asymptotic theory. For the
region-based analysis, we considered genetic variants with MAF
below 5% and at least five informative families (single variant
FBAT, additive model). Also, we excluded variants with more than
two Mendelian errors, variant missing rate > 2%, TOPMed freeze
8 reported batch effects or deviations from Hardy–Weinberg pro-
portions (P < 10−8). All region-based test statistics were computed
based on an additive genetic model in GACRS+CAMP. The number
of simulations for the P-value computation is chosen adaptively
and the maximum number of simulations was set to 10 000 000.

We partitioned all genetic variants into regions by using a
sliding window approach with a size of 4 kb (but at most 50
genetic variants) and with a shift of 2 kb. For the evaluation
of significance, we considered a two-stage approach. First, we
evaluated all regions in a ±20 kb radius around a significant
association identified in the single variant analysis. Here, we used
a Bonferroni correction corresponding to the number of regions in
this first stage. In the second stage, we considered all remaining
regions. Additionally, for significant regions in the first stage, we
also performed a conditional test, where we conditioned on the
corresponding single variant association to confirm the indepen-
dence of the potential observed low-frequency/rare variant signal.
All region-based computations were performed using FBAT v204
and v208 (see section code and data availability).

Annotation of genetic variants, region
association plots and Miami plot
We used two different resources to annotate potential causal vari-
ants to genes and functional categories: SNPnexus (53–57) and the
combined SNP-to-gene (cS2G) strategy (58). SNPnexus combines
different external resources to assist in selecting functionally rel-
evant genetic variants and is accessible using a web interface (see
section code and data availability). The cS2G strategy includes
seven constituent SNP-to-gene strategies (Exon, Promoter, two
fine-mapped cis-eQTL strategies, EpiMap enhancer-gene linking,
Activity-By-Contact (ABC) and Cicero), and scores can be down-
loaded (see section code and data availability). Region association
plots were created using the web application of LocusZoom (59) (see
section code and data availability). The EUR LD information for
the LocusZoom plots was used. Region association plots for the
recessive association data were created using internal R code (see
section code and data availability). The Miami plot for the single
variant additive and recessive analysis was generated using the R
package miamiplot (see section code and data availability).

Replication analysis: UK Biobank
We used the summary statistics from the UK Biobank analysis
of childhood asthma (3) as a replication dataset (see section code
and data availability). In addition, we used the individual genotype
data in the UK Biobank (60) to perform more specific stratified
analyses using a similar approach as conducted by Ferreira et al.

In particular, we kept only individuals with no deviations
between self-reported and genetically inferred sex, no putative
sex chromosome aneuploidies, no excess relatives, that are
no outliers for heterozygosity or missing rate, and that have
available genetic principal component data. Based on this subset
of individuals, we identified individuals as asthmatics with
childhood-onset using self-reported asthma onset before 16 years

of age (field 3786, ‘What was your age when the asthma was first
diagnosed?’) and no difference of more than 10 years between the
self-reported onset and the age where asthma was diagnosed by a
physician (field 22 147, ‘age at which doctor diagnosed asthma’), if
information was available. We defined individuals as controls that
had no self-reported asthma, no physician-diagnosed asthma,
and no asthma indicated by field 6152 or 20 002. Asthma status
was regressed on the imputed genotype data using logistic
regressions adjusting for the first 10 principal components,
genotyping array and sex. For the stratified analysis, we extracted
the UK Biobank variable ‘in.white.British.ancestry.subset’ (data
field 22 006), which represents a combination of self-reported
information and genetic principal component analysis.

Code and data availability
Summary statistics for the single variant analyses: https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=
phs001974. The FBAT software (v204 and v208) is available
at https://sites.google.com/view/fbatwebpage. PLINK (version
v1.90b6.12 and v2.00a2.3LM) was downloaded from https://www.
cog-genomics.org/plink/. DAP-G (v1.0.0) was downloaded from
https://github.com/xqwen/dap. JLIM (version 2.5) is available at
https://github.com/cotsapaslab/jlim. C2G scores are available at
https://alkesgroup.broadinstitute.org/cS2G. SNPnexus is available
at https://www.snp-nexus.org/v4/. Region association plots
were created using https://my.locuszoom.org/ (v0.14.0). Region
association plots for recessive association data was performed
using an adaption of the R code available at https://github.
com/Geeketics/LocusZooms. UK Biobank website (https://www.
ukbiobank.ac.uk/). Data processing and plots were created using
R (version 4.1.0) (https://www.r-project.org/). Summary statistics
for the childhood-onset analysis by Ferreira et al. (3) are available
at https://genepi.qimr.edu.au/staff/manuelF/gwas_results/main.
html. The LDpair tool is available at https://ldlink.nci.nih.gov/?
tab=ldpair. The meQTL analysis results were assessed using
http://api.godmc.org.uk/v0.1 (20). Miami plot was generated
using the R package miamiplot (https://github.com/juliedwhite/
miamiplot). The winnerscurse R package is available at https://
rdrr.io/github/amandaforde/winnerscurse/.

Supplementary Material
Supplementary Material is available at HMG online.
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