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INTRODUCTION

The cellular immune response constitutes the specific host
defense toward an established viral infection. Unlike the hu-
moral immune response, which may neutralize and prevent the
infection, the cellular immune response attempts to eliminate
virus-infected cells. Typically, this is executed by cytotoxic
CD81 T lymphocytes (CTLs) that recognize viral peptides on
the surface of the infected cells in the context of major histo-
compatibility complex (MHC) class I antigens. An unusual
virus-host relationship occurs, however, when the virus persis-
tently infects cells regulating the immune response, as exem-
plified by certain human herpesviruses and retroviruses.

Human T-cell lymphotropic virus type I (HTLV-I) is a ret-
rovirus that resides in and functionally alters immune cells of
central importance for immunoregulation (Fig. 1). First,
HTLV-I infects activated T cells and incorporates into their
genome, where it persists; second, HTLV-I regulatory proteins
alter activation and cell death pathways in the host T cell; third,
HTLV-I-infected T cells may activate resting T cells, facilitat-
ing propagation of the infection; and finally, HTLV-I infection
induces a strong antiviral immune response, which nonetheless
appears incapable of eradicating the infection.

In a small percentage of infected individuals, HTLV-I causes
disease (121), most often either adult T-cell leukemia/lym-

phoma (ATL) or a chronic inflammatory disease of the central
nervous system (HTLV-I-associated myelopathy/tropical spas-
tic paraparesis, HAM/TSP). Less frequently, the joints
(HTLV-I arthropathy), the eyes (HTLV-I uveitis), the skin
(infective dermatitis in children), the muscles (polymyositis),
or the lungs (pulmonary infiltrative pneumonitis) are affected
(90). While the pathogeneses of these diseases are unknown,
they all appear to involve activated, HTLV-I-infected CD41 T
cells.

In this review the interaction between HTLV-I and the cel-
lular immune system is analyzed, with special emphasis on the
multiple ways in which HTLV-I maintains an active immune
system that favors viral dissemination.

INFECTION OF T CELLS BY HTLV-I

HTLV-I particles form by budding through the host cell
membrane, thereby incorporating cell membrane molecules
into the viral envelope. Free HTLV-I particles have extremely
low infectivity (314), and transmission of HTLV-I usually re-
quires virus-producing T cells, which allow cell-to-cell contact.
The presence of 39-azido-39-deoxythymidine at the time of
infection appears to have a protective effect on uninfected
peripheral blood mononuclear cells (192). Although the recep-
tor for HTLV-I is unknown, a putative receptor or cofactor for
HTLV-I entry is thought to be encoded by a gene on chromo-
some 17 (273). Indirect evidence for this comes from studies
with mouse-human somatic cell hybrids infected by a vesicular
stomatitis virus (VSV)/HTLV-I pseudotype virus. This chi-
meric virus is made up of the HTLV-I envelope and the VSV
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core particle and therefore displays tropism identical to
HTLV-I but cytopathic effects like those of VSV. Whereas
mouse cells are much more resistant to HTLV-I infection than
are human T cells, mouse-human somatic hybrid cells contain-
ing a region of the long arm of human chromosome 17 dis-
played increased susceptibility to infection by the VSV/
HTLV-I pseudotype virus (273). The region on chromosome
17 has been mapped to 17q21-q23 (282), although the gene
encoding the cofactor or receptor for HTLV-I entry is still
unknown.

The core particle of HTLV-I carries two copies of genomic
RNA as well as viral enzymes (reverse transcriptase, protease,
RNase H, and integrase), which are essential for establishing
the viral infection. Upon viral entry into the T cell, RNA is
reverse transcribed into DNA and integrates in the host cell
genome as a provirus. Although insertion of HTLV-I into the
host cell DNA may have a slight preference for G1C-rich
regions (325), HTLV-I does not incorporate at specific sites in
the genome (260). The integrated HTLV-I provirus consists of
9,032 bp (261) and is organized in 59 and 39 long terminal
repeats (LTR), a gag region encoding the structural proteins, a
pol region encoding the reverse transcriptase, an env region
encoding the envelope proteins, and a region at the 39 end of
the provirus known as pX, encoding regulatory proteins (re-
viewed in reference 74), which are responsible for the altered
host cell functions (Fig. 2).

In vivo, the vast majority of HTLV-I provirus is found in
CD41 CD45RO1 T cells (240, 246) although CD81 T cells can
also be infected (105, 246, 309). Infection of dendritic cells has
been demonstrated (191), but its importance in propagating
the viral infection has been difficult to evaluate because of the
complicated technical procedures involved in obtaining uncul-
tured dendritic cells. Likewise, it has been reported that glial
cells can be productively infected in vivo (173). Although this
is a potentially important observation, its significance is not
clear (215). HTLV-I transcription is higher in primary CD41 T
cells than in CD81 T cells, which may explain why HTLV-I-
induced leukemia and lymphoma are of the CD41 phenotype
(222). It is not known, however, what restricts the viral tropism
to predominantly CD41 T cells, since a broad range of cell
types can be infected in vitro. These cell types include B cells
(61), monocytes/macrophages (58, 116, 162), NK cells (187),
glial cells (116, 303), endothelial cells (115, 126), promyelocytic
HL-60 cells (114), and a human osteosarcoma cell line (46).
Moreover, coinfection with HTLV-I and human immunodefi-
ciency virus (HIV) broadens the spectrum of HIV cellular
tropism to include CD81 T cells, B cells, epithelial cells, and
skeletal muscle cells (190).

A number of reports have described antibodies that inter-
fere with HTLV-I syncytium formation and infection. An an-
tibody known as 34-23 recognizes proteins of 31, 45, 55, and 70
kDa and shows increased binding to mouse-human hybrid cells

FIG. 1. Activation of T cells by HTLV-I. Infection of CD41 T cells influences immune system T-cell activation by at least four separate pathways. (i) The
HTLV-I-infected T cells are activated by viral interference with signaling pathways and transcriptional regulation (bottom right). (ii) The HTLV-I-infected T cell
interacts with and activates resting T cells (top right, activation of uninfected T cells) in a viral antigen-independent manner. The CD58-CD2 interaction (shown) is
critical, but other molecular interactions and cytokines (not shown) are likely to contribute. (iii) Virus-specific CD81 T cells (and, to a lesser degree, CD41 T cells [not
shown]) are activated by recognition of viral peptide epitopes (bottom left, antigen-specific activation of CD81 T cells). (iv) APC may present MHC class II-restricted
peptide antigens that activate the HTLV-I-infected T cell (top left, antigen-specific activation of HTLV-I-infected T cells). This activation process is altered by virtue
of viral interference with the signaling cascade or the transcriptional regulation of the HTLV-I-infected T cell, or both.
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containing human chromosome 17 (86). Inhibition of HTLV-I
syncytium formation and infection was also achieved by an
antibody to an 80-kDa glycoprotein (2). However, it is impor-
tant to bear in mind that antibodies to adhesion molecules may
inhibit HTLV-I infection because of interference with cell-cell
contact. Recently, an antibody to vascular cell adhesion mol-
ecule 1 (VCAM-1) has been shown to prevent HTLV-I syncy-
tium formation, although antibodies to its ligand, very late
antigen 4 (VLA-4), did not (111). Moreover, cell-to-cell fusion
is not sufficient to ensure viral entry (250). By examining the
infectivity of HTLV-I with point mutations in the envelope
glycoprotein, Rosenberg et al. (250) defined fusion-competent
mutants with severe defects in infectivity. This suggests that the
viral envelope glycoprotein may be involved in postfusion
events required for full infectivity of HTLV-I.

Incorporation of HTLV-I into the CD41-T-cell genome may
result in either a silent or a productive infection. A silent
infection is defined by the presence of HTLV-I sequences in
the host cell genome in the absence of detectable HTLV-I-
encoded mRNA. Thus, if the virus does not insert into critical
genes, a nonproductively infected T cell is functionally indis-
tinguishable from an uninfected T cell. Alternatively, CD41 T
cells may be productively infected by HTLV-I, resulting in viral
mRNA transcription and the production of viral particles. Nev-
ertheless, most infected T-cell clones contain a single inte-
grated provirus, indicating that they do not reinfect themselves
(247).

Single-cell cloning under limiting-dilution conditions of T
cells from HAM/TSP patients indicated a frequency of HTLV-
I-infected T cells between 15 and 18%, as determined by PCR
amplification of pol or LTR viral sequences from genomic
DNA (124, 247, 309). Unless the single-cell cloning is per-

formed with allogeneic, uninfected feeder cells, the frequency
is overestimated because of in vitro infection of the T cells
(247, 309). The frequency estimate by single-cell cloning is in
accordance with independent estimates by limiting-dilution
PCR analysis, as well as by Southern blot analysis of genomic
DNA from peripheral blood T cells (246). Since most infected
T-cell clones contain a single integrated provirus (247), these
analyses indicate that HAM/TSP patients have between 3 and
30% (typically 10%) HTLV-I-infected leukocytes. The major-
ity of HTLV-I-infected T cells are silently infected (124, 246,
247, 309), and very few cells (1 in 5,000) express high levels of
HTLV-I in vivo (91). It is not clear whether silently infected T
cells may later reactivate viral transcription in vivo.

ACTIVATION OF HTLV-I-INFECTED T CELLS

Activation of the host T cell by HTLV-I occurs through
several independent mechanisms, the most intensively studied
of which is mediated through activation of cellular transcrip-
tion factors by the viral trans-activator Tax. Activation of tran-
scription factors may be viewed as the “end” signal of a trans-
duction cascade from the membrane to the nucleus during
activation, although a pathway may activate multiple transcrip-
tion factors and, conversely, a transcription factor may be ac-
tivated by multiple pathways. Molecular aspects of transcrip-
tional activation by Tax have been reviewed recently (27) and
are only summarized here in the context of a signaling pathway
activated by HTLV-I.

Besides activation of transcription factors, HTLV-I alters
signaling pathways. Typically, T-cell activation requires two
signals: an antigen-specific signal mediated via the T-cell re-
ceptor (TCR) and a non-antigen-specific costimulatory signal.

FIG. 2. HTLV-I genomic organization and encoded proteins. The approximate sizes of HTLV-I proviral genes are shown for mRNAs encoding the structural Gag,
protease (pr), reverse transcriptase (RT), envelope (Env), and regulatory proteins (open boxes). The protease is encoded by the 39 end of gag mRNA in a different
reading frame from the Gag proteins extending into the 59 end of pol. The RNase H and integrase (not shown) are encoded by pol. The pX gene has four ORFs. ORF-I
may encode p12I; ORF-II may encode p13II and p30II; ORF-III encodes p21rex and p27rex; and ORF-IV encodes p40tax. The LTR R region begins at the initiation of
transcription site.
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These signals initiate transcriptional activation of a number of
genes and drive the T cell into the mid- to late G1 phase of the
cell cycle, the completion of which requires cytokine signaling.
HTLV-I regulatory proteins interfere with the control of each
of these steps during T-cell activation.

T-Cell Receptor-Mediated Activation

Although infection by HTLV-I may lead to organ-specific
inflammatory diseases, the mechanisms that target tissue de-
struction to the central nervous system, the joints, the eyes, the
muscles, etc., are unknown (118). It is conceivable, though,
that autoreactive T cells are randomly infected and cause or-
gan-specific disease by virtue of their chronic activation and
altered requirements for antigen-specific triggering (118). This
hypothesis is difficult to test because of the inherent problems
of generating antigen-specific T-cell clones from HTLV-I-in-
fected individuals. That is, since mononuclear cells from these
patients undergo spontaneous proliferation following 3 to 9
days in culture (133, 139), it is virtually impossible to determine
antigen-specific responses, because the “background” of spon-
taneous proliferation often amounts to more than that of an
antigen-specific response.

Recent advances in generating MHC-peptide complexes and
peptide-loaded soluble MHC class I-immunoglobulin com-
plexes make it feasible to directly isolate antigen-specific T
cells (11, 101). This approach may clarify the possible role of
antigen-specific T cells in HTLV-I-induced diseases. So far,
however, the only way to analyze the impact of HTLV-I infec-
tion on antigen-specific T-cell responses relies on in vitro in-
fection of established antigen-specific T-cell clones. Mitsuya et
al. (206) examined the functional properties of tetanus toxoid-
specific T cells infected by HTLV-I. The HTLV-I-infected
T-cell clones proliferated in response to soluble tetanus toxoid,
but, unlike uninfected T-cell clones, they could do so in the
absence of accessory cells. This may be explained by upregu-
lation of MHC class II on HTLV-I-infected T cells (276) fol-
lowed by T-cell presentation of antigen. Thus, Scholz et al.
(256) found that an HTLV-I-infected T-cell clone specific for
a myelin basic protein peptide responded to an approximately
100-fold-lower concentration of soluble peptide antigen than
did the parental uninfected T-cell clone. The mechanism of the
enhanced response involved upregulation of MHC class II and
lymphocyte function-associated antigen 3 (LFA-3; CD58) on
the infected T cells, which allowed them to present the peptide
antigen to other T cells. Nevertheless, compared to uninfected
T cells, the response of HTLV-I-infected T cells to antigenic
peptide presented by Epstein-Barr virus (EBV)-transformed B
cells was slightly impaired. This demonstrated that the respon-
siveness of the HTLV-I-infected T cells was not enhanced;
rather, the HTLV-I-infected T cells were better antigen-pre-
senting cells (APCs).

Popovic et al. (239) examined the consequences of infecting
a keyhole limpet hemocyanin (KLH)-specific CD41 T-helper
cell (SR2) with an HTLV-I-infected isolate (TK). SR2 cells
proliferated and provided “help” to B lymphocytes in the pres-
ence of KLH presentation in the context of the appropriate
MHC class II. However, following HTLV-I infection, TK-in-
fected SR2 cells displayed spontaneous proliferation in the
absence of antigenic peptide. Importantly, the TK-infected
SR2 cells gained the ability to provide promiscuous antigen-
independent help to B cells, resulting in polyclonal immuno-
globulin production. The mechanism of the promiscuous B-cell
help was not examined, but interleukin-4 (IL-4), IL-5, and
gamma interferon (IFN-g) are known to enhance immuno-
globulin secretion, and these cytokines were spontaneously

secreted by a myelin basic protein-specific HTLV-I-infected
T-cell clone (255). Nevertheless, Yarchoan et al. (318) found
that supernatant from an infected T-cell clone, 8.8H, which
provided promiscuous antigen-independent B-cell help, did
not provide help for immunoglobulin production. Although
this may not entirely rule out cytokines, it suggests that cognate
T-cell–B-cell interaction is required for the promiscuous B-cell
help provided by HTLV-I-infected T cells.

In contrast, loss of function was demonstrated in two allo-
reactive cytotoxic CD41-T-cell clones. Following infection, the
number of HTLV-I p19-expressing T cells increased concom-
itantly with a loss of cytotoxicity (239). Although it was not
shown that the HTLV-I-infected T cells were of the same
origin as the parental cytotoxic T-cell clone, the observation
suggested that HTLV-I infection interfered with the cytotoxic
effector mechanism. Subsequent studies confirmed the loss of
cytotoxicity in antigen-specific HTLV-I-infected T cells (131,
277, 318, 322) and additionally provided evidence for identical
b-chain rearrangement of the TCR in the infected T-cell
clones with impaired cytotoxicity and their parental uninfected
T-cell clones, indicating that they were of the same origin (131,
277, 322).

During the early phase after HTLV-I infection, the expres-
sion of CD2, CD3, CD4, CD26, and CD28 remains normal
whereas the expression of the IL-2 receptor a (IL-2Ra) chain
and human leukocyte antigen (HLA)-DR is upregulated (276,
322). Following this stage, the HTLV-I-infected T cells may
become IL-2 independent (i.e., transformed). This is usually
accompanied by downregulation of CD3 expression and loss of
antigen responsiveness (131, 322). Nevertheless, the loss of
cytotoxic activity may be an effect on the lytic machinery, since
HTLV-I-infected T cells had lost serine esterase activity (322)
and since the loss of cytotoxic function occurred with normal
levels of CD3 expressed on the cell surface (131).

In summary, complex alterations may influence the antigen
response of HTLV-I-infected T cells and lead to both gain of
function and loss of function: CD41 T-helper cells may gain
APC-like functions and the ability to provide indiscriminate
B-cell help, whereas cytotoxic CD41 T cells may lose their
cytotoxic effector function (Table 1).

Recently, Mahana et al. (194) demonstrated that the phos-
phorylation state of the protein Vav can be influenced by pro-
teins from the pX region of HTLV-I. Using molecular clones,
they were able to associate the ability of an infected T-cell
clone to induce asymptomatic infection with a downregulation
of Vav phosphorylation. In contrast, a T-cell clone which in-
duced lethal leukemia differed in two nucleotides in the pX
region and displayed constitutive tyrosine phosphorylation of
Vav. Since tyrosine-phosphorylated Vav is involved in the sig-
nal transduction from the TCR, this suggests the possibility—
contrary to the general assumption—that minor differences in
the HTLV-I sequence may be important in the pathogenesis.

PKA signaling pathway. The second-messenger cyclic AMP
(cAMP) influences T-cell signaling via a cAMP-dependent
protein kinase (PKA). PKA is composed of two catalytic (C)
subunits and two regulatory (R) subunits, which exist in two
isoforms, giving rise to type I and type II PKA. Each regulatory
subunit can bind cAMP at two distinct binding sites, which
dissociates the PKA complex into R2(cAMP)4 and two cata-
lytically active C subunits. Since type I PKA is dissociated more
easily than type II PKA and since the localization of the iso-
types may differ (for example, type I PKA colocalizes with the
TCR, in contrast to type II PKA), differential activation of the
two types of PKA may shape the response of a given cell to a
variety of stimuli. Thus, it has been suggested that type I PKA
is involved in the response to proliferative signals whereas type
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II PKA is involved in cell differentiation and the response to
antiproliferative signals (44).

Activation of the catalytic subunit of PKA leads to phos-
phorylation of cAMP response element (CRE) binding pro-
teins (CREBs) on Ser-133. In addition to cellular CREs, a
CRE-like domain is found in each of three 21-bp imperfect
repeats in the HTLV-I LTR promoter, which are known as the
Tax responsive elements. Tax-mediated transactivation of the
viral LTR occurs through interaction with the CREB/activat-
ing transcription factor (ATF) family of proteins (1, 278, 319).
In vitro, Tax also interacts with and facilitates dimerization of
other basic-region leucine zipper (bZIP)-containing proteins,
thereby enhancing their DNA binding activity (16, 235, 299),
although this may not be important in vivo.

Tax may activate both cellular CREs and HTLV-I LTR
CREs, although the mechanisms of transactivation of these
CRE sites differ (319). Murine thymoma cell lines deficient in
either the catalytic subunit (lacking PKA activity) or in the
adenylate cyclase (lacking endogenous cAMP, but with normal
PKA) were used to evaluate the significance of the PKA sig-
naling pathway on Tax transactivation (146, 241). Whereas the
response of the viral LTR to cAMP depended on PKA, the
Tax-mediated transactivation of the LTR did not require PKA
activity. Nevertheless, Tax-induced transactivation decreased
in the absence of PKA activity and was restored by the catalytic
subunit of bovine PKA. Moreover, a single-amino-acid substi-
tution in CREB at Ser-133, an essential phosphorylation site
for transcriptional activation, attenuated both Tax- and PKA-
mediated activation of the HTLV-I promoter (26). In contrast,
Kwok et al. (164) found that mutation of Ser-133 in CREB did
not impair Tax-mediated transactivation of the LTR but sig-
nificantly impaired Tax-mediated transactivation of cellular
CREs.

The difference between the HTLV-I CREs and cellular
CREs may be explained by a differential requirement for
CREB phosphorylation in recruiting CREB binding protein.
Thus, association of Tax with cellular CRE occurs through
CREB binding protein, which is recruited only in the presence

of phosphorylated CREB. In contrast, Tax-mediated activation
of viral CRE may occur in the absence of CREB phosphory-
lation (164).

CRE, together with serum response elements, is also in-
volved in Tax-mediated activation of immediate-early genes,
including c-fos, fra-1, c-jun, junD, erg-1, and erg-2 (9, 77, 78).
Tax mediates activation through interaction with the serum
response factor p67SRF (79, 279). Consistently, constitutively
high-level expression of c-Fos (10, 77), Erg-1, and Erg-2 (9, 77)
has been found in HTLV-I-transformed T cells and Tax-ex-
pressing cell lines. This provides a mechanism by which Tax
may in part replace growth signals in HTLV-I-infected T cells.

PKC signaling pathway. Activation of T cells through the
TCR but not through the IL-2R (295) results in protein kinase
C (PKC) activation (reviewed in reference 281). The family of
PKC isoenzymes includes at least 12 members, some of which
are not Ca21 dependent. PKC isoenzymes are usually divided
into three groups based on their primary structure and their
activation requirements: (i) Ca21-dependent or conventional
PKCs (PKCs) include PKC-a, PKC-b1, PKC-b2, and PKC-g;
(ii) Ca21-independent or novel PKCs (PKC) include PKC-d,
PKC-ε, PKC-h, PKC-u, and PKC-m; and (iii) atypical PKCs
(PKCs), which do not respond to phorbol esters, include
PKC-z, PKC-l, and PKC-i (32, 281).

In HTLV-I-infected T cells, Tax physically associates with at
least three separate PKC isoforms: PKC-a, PKC-d, and PKC-h
(183). The association results in phosphorylation of Tax and an
increase in autophosphorylation of PKC in vitro, indicating
that Tax activates PKC activity. The significance of the phos-
phorylation of Tax is unclear (73, 227). However, Tax-medi-
ated activation of PKC may explain the activation of nuclear
factor kB (NF-kB)/Rel in HTLV-I-infected T cells. The NF-
kB/Rel family of transcription factors includes p50 (NF-kB1),
p52 (NF-kB2), p65 (RelA), c-Rel, and RelB (185), which occur
as dimers sequestered in the cytoplasm through association
with NF-kB inhibitor proteins IkBa, IkBb, IkBε, IkBg, and
Bcl-3. In addition, p100 (NF-kB2) and p105 (NF-kB1), pre-
cursors of p52 and p50, respectively, possess IkB domains

TABLE 1. Alterations of antigen-specific responses of HTLV-I-infected T cells

T-cell
clone

Antigen
specificitya

MHC
restriction Function HTLV-I-infected

subclone
Functional alterations induced

by HTLV-I infection Reference

SR2 KLH HLA-DR4 Helper-inducer SR2/TK Antigen-independent B-cell help 239
YT TT ? Helper-inducer YTH3 Response to soluble antigen 205
YT TT ? Helper-inducer YTH5 Response to soluble antigen 205
19 (Allo) HLA-DR1 Helper-inducer 19TK Antigen-independent B-cell

help, gain of NK-like activity
277

207 (Allo) HLA-DR1 Helper-inducer, cytotoxic 207TK Antigen-independent B-cell
help, loss of cytotoxicity

277

8.8 (Allo) HLA-DPw2 Helper-inducer, cytotoxic 8.8H Antigen-independent B-cell
help, loss of cytotoxicity

318

Ob1A12.8 MBP(84–102) HLA-DRB1*1501 ? G4 Response to soluble antigen,
partial reduced antigen
response, loss of IL-10
secretion, gain of IFN-g
secretion

256

DM322A (Allo) HLA-DR2 Cytotoxic DM322A Loss of cytotoxicity 239
AE15.3 (Allo) HLA-DR7 Cytotoxic AE15.3 Loss of cytotoxicity 239
KN6 HSV-1 HLA-DR Cytotoxic KN6-HT Loss of cytotoxicity 131
MY1 HSV-1, HSV-2 HLA-DR Cytotoxic MY1-HT Loss of cytotoxicity, partial

reduced antigen response
131

827 TT HLA-DR3 Cytotoxic 827-p19-I Response to soluble antigen,
loss of cytotoxicity

322

8.7 (Allo) HLA-DPw2 Cytotoxic 8.7H Loss of cytotoxicity 318

a TT, tetanus toxoid; MBP(84–102), myelin basic protein, peptide 84–102; HSV-1, herpes simplex virus type 1. (Allo), alloantigen that has not been defined.
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(266). Following T-cell activation, NF-kB separates from IkB
and translocates to the nucleus. The NF-kB/IkB dissociation is
thought to occur following phosphorylation of IkB, but de-
phosphorylation of IkB may also be involved in NF-kB/Rel
activation (184). Calphostin C, a PKC inhibitor, prevented
both phorbol ester- and Tax-induced NF-kB DNA binding
activity (183). Moreover, transfection of Jurkat T cells with a
Tax mutant (M22) that fails to activate NF-kB-dependent tran-
scription failed to induce membrane translocation of PKC
(183). Tax did not appear to increase PKC phosphorylation of
IkBa, suggesting the possibility that Tax activates the PKC
pathway and that downstream events lead to phosphorylation
of IkB and subsequent NF-kB activation. A role for Tax in
activating signal transduction pathways upstream of IkBa was
also suggested by Kanno et al. (149), who found that IkBa
mutants which were defective in extracellular signal-induced
degradation also blocked Tax-mediated NF-kB activation. Re-
cently, several IkB kinases have been identified (62, 172, 200,
245, 258, 308, 323), and Tax may also associate with and acti-
vate these kinases (45, 88).

It has also been demonstrated that Tax may activate the
NF-kB/Rel system by direct interaction with its members.
Thus, Tax was found to activate NF-kB/Rel by associating with
ankyrin motifs in IkBg (113) and by interacting directly with
different NF-kB/Rel members, including p50 (279), p65 (166),
p100 (20, 171), and c-Rel (171). Tax has also been reported to
transactivate the c-rel promoter, leading to increased c-Rel
expression (179).

Collectively, these data suggest that Tax may use several
mechanisms to activate NF-kB/Rel proteins: (i) by activation
of PKC, (ii) by interaction with NF-kB/Rel and IkB proteins,
and (iii) by activation of IkB kinases.

Activation of NF-kB has been implicated in HTLV-I-in-
duced tumorigenesis, since the growth of both the HTLV-I-
transformed T-cell line MT-2 and of fibroblastic tumors in Tax
transgenic mice were inhibited by antisense oligodeoxynucle-
otides to mRNA of either p50 or p65 (155).

The requirements for Tax-mediated transactivation of the
CREB/ATF or NF-kB/Rel pathways can be separated. Smith
and Greene (271) generated Tax mutants by site-directed mu-
tagenesis affecting two consecutive codons. Tax mutants that
selectively induced either CREB/ATF but not NF-kB/Rel ac-
tivity or NF-kB/Rel but not CREB/ATF activity could be de-
fined. Similarly, Semmes and Jeang (263) generated 47 single-
amino-acid Tax mutants and analyzed their transactivation
ability, confirming the observation by Smith and Greene that
Leu320 was important for CREB/ATF activity but not for NF-
kB/Rel activity. Both studies indicated that the N-terminal 50
amino acids and a C-terminal region between amino acids 275
and 325 are important for the transactivating function of Tax.
Using Tax mutants deficient in inducing either CREB/ATF or
NF-kB/Rel activity, Smith and Greene found that transforma-
tion of rat fibroblasts was achieved by transfection of Tax or by
transfection of a Tax mutant deficient in activation of NF-kB/
Rel but not by transfection of a Tax mutant deficient in acti-
vation of CREB/ATF (272); suggesting that CREB/ATF, but
not NF-kB/Rel, was critical for Tax-mediated transformation
of rat fibroblasts. Since this appears to be in conflict with the
data from Tax transgenic mice (155), it is likely that cell-
specific factors determine the relative importance of CREB/
ATF and NF-kB/Rel in transformation. Thus, the role of
CREB/ATF and NF-kB/Rel proteins in the induction of ATL
is unclear.

Ca21 signaling pathway. Activation of NF-kB/Rel or
CREB/ATF is not sufficient for Tax-mediated activation of the
CD28 enhancer of the IL-2 gene. LiFeng et al. (181) found that

nuclear factor of activated T cells (NF-AT) complexes induced
by Tax bound to the CD28 response element in the IL-2 pro-
moter, implicating NF-AT in Tax-mediated transactivation. In
contrast to the cooperation between NF-AT and the transcrip-
tion factors c-Fos and c-Jun (AP1) (242), the Tax-induced
NF-AT complex does not contain c-Fos or c-Jun (181). More-
over, constitutive dephosphorylation and activation of NF-
ATp, a member of the NF-AT family, was found in Tax-
expressing and HTLV-I-infected T-cell lines (180). The con-
stitutive dephosphorylation of NF-ATp was reversed in the
presence of cyclosporin A (CsA), an inhibitor of the calcium/
calmodulin-dependent phosphatase calcineurin. This suggests
that Tax activates the Ca21 signaling pathway proximal to or at
the level of calcineurin. Interestingly, activation of the Ca21

signaling pathway downregulates IL-10 production. In partic-
ular, the combination of Ca21 ionophores and phorbol esters
results in poor IL-10 induction but significant IFN-g produc-
tion (321). Indeed, HTLV-I infection of an IL-10-producing
T-cell clone resulted in a loss of its ability to secrete IL-10 but
in acquisition of the ability to constitutively secrete IFN-g
(256). In contrast, transfection of Jurkat T cells with a Tax
expression plasmid induced IL-10 mRNA expression and
IL-10 secretion (213), and this was partially inhibited by anti-
sense oligonucleotides to the p65 subunit of NF-kB. The rea-
son for this discrepancy in IL-10 secretion between Tax-trans-
fected Jurkat T cells and HTLV-I-infected T-cell clones is
unclear, but a similar discrepancy in IL-2 secretion can be
found between these cells (124, 199), suggesting that the level
of expression of Tax or of other viral or cellular proteins may
explain the difference.

MAP kinase pathways. At least three pathways have been
delineated via the small GTPases Ras, Rac, CDC42, and Rho.
Ras activates extracellular signal-regulated kinases 1 and 2
(ERK-1 and ERK-2) via Raf and mitogen-activated protein
(MAP) kinase/ERK kinase 1 and 2 (MEK-1 and MEK-2); Rac
and CDC42 activate c-Jun N-terminal kinase (JNK) via p21-
activated kinase (PAK), MEK kinase (MEKK), and JNK ki-
nase; and Rho activates p38 via a less well characterized path-
way. However, cross talk between the pathways exists; Ras may
activate JNK, and CDC42 and Rac may activate p38 (reviewed
in reference 182).

The transition from IL-2-dependent to IL-2-independent
growth in HTLV-I-infected T cells is associated with constitu-
tive activation of JNK (142, 311). A downstream target of JNK
is the transcription factor ATF2, which, together with CREB,
is important for activation of the HTLV-I promoter (75). Thus,
activation of the JNK pathway by Tax helps to increase the
transcription of HTLV-I. The mechanism of JNK activation
was examined by Jin et al. (142), who identified a novel protein,
named G-protein pathway suppressor 2 (GPS2), which inter-
acted physically with Tax and inhibited its activation of JNK.
GPS2 also inhibited tumor necrosis factor alpha (TNF-a) ac-
tivation of JNK. In contrast, GPS2 did not prevent TNF-a-
induced activation of p38, nor did it prevent MEKK- or JNK
kinase-mediated JNK activity (142).

This indicates that GPS2 acts between the TNF-a receptor
and MEKK and hence suggests that Tax-induced activation of
the MAP kinase pathway occurs proximal to MEKK, perhaps
via Ras, phosphatidylinositol-3-kinase, Rac, or PAK (Fig. 3).

Costimulatory Signaling Pathways

Several signaling pathways and transcription factors involved
in TCR-CD3 signal transduction are activated in HTLV-I-
infected T cells. However, while separate surface receptors
may activate a distinct set of kinases, signaling pathways often
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converge on a common pathway. Hence, the presence of acti-
vated proteins in a common pathway is compatible with acti-
vation of several upstream pathways. This becomes an issue
when analyzing the evidence for activation of costimulatory
pathways in HTLV-I-infected T cells, since the membrane-
proximal signaling molecules in these pathways have not been
well defined.

CD28 costimulation. A number of molecules expressed on T
cells may enhance or costimulate T-cell activation; however,
special emphasis has been placed on the CD28 molecule, since
mice deficient in the CD28 gene have significantly impaired
T-cell activation (98). This indicates that other costimulatory
pathways cannot completely compensate for the loss of CD28
signaling (98). The salient functions of the CD28 costimulatory
pathway are to enhance IL-2 transcription, stabilize IL-2
mRNA, and promote T-cell survival by upregulating the anti-
apoptotic protein Bcl-xL (274).

The CD28 signaling pathway is resistant to inhibition by CsA
but sensitive to rapamycin (22, 145), a phenotype also observed
for the IL-2R pathway (66). Nontransformed and nonimmor-
talized HTLV-I-infected T-cell clones were resistant to CsA
and sensitive to rapamycin (124), consistent with virus-medi-
ated activation of either the CD28 or IL-2R signaling pathway.
The CD28 ligands, CD80 and CD86, are upregulated on
HTLV-I-infected T cells (169, 255, 296), suggesting the possi-
bility that the CD28 signaling pathway is constitutively active.
The CD28 costimulatory requirements of HTLV-I-infected T
cells were analyzed by comparing an HTLV-I-infected, anti-
gen-specific T-cell clone with the uninfected parental T-cell
clone (255). As APCs, Chinese hamster ovary (CHO) cells
transfected with the restricting MHC class II element alone or
in combination with CD80 or CD86 were used. These experi-
ments demonstrated that the HTLV-I-infected T-cell clone
was independent of CD80 or CD86 costimulation for prolifer-

ation and for IL-5 and IFN-g secretion, in contrast to the
uninfected T-cell clone (255). Moreover, the presence of an-
tibodies to CD80 and CD86 prevented proliferation induced
by CD80- or CD86-transfected CHO cells in uninfected but
not HTLV-I-infected T cells (255). Similarly, Tax-transduced
or Tax-transfected T cells cooperate with CD3-mediated acti-
vation, suggesting that Tax modulates the same costimulatory
pathway as does CD28 signaling.

Taken together, these observations suggest that HTLV-I-
induced T-cell activation substitutes for CD28 costimulation.
However, CD80- or CD86-induced costimulation is a potent
inducer of IL-2 mRNA, but HTLV-I-infected T-cell clones
(124) and Tax-transduced primary T cells (8) did not express
IL-2 mRNA by Northern blotting analysis. Thus, the FK506-
and CsA-resistant and rapamycin-sensitive pathway is more
likely to involve the IL-2R pathway (late CD28 pathway) than
the early CD28 pathway.

CD2 costimulation. The CD58-CD2 interaction is important
for activation of resting and uninfected T cells by HTLV-I-
infected T cells (152, 153, 309), as discussed later in this review.
However, the CD2 pathway is not critical for HTLV-I-induced
activation of infected T-cell clones, since FK506 and CsA in-
hibit the CD2 signaling pathway (22) but not the HTLV-I-
induced activation of the host T cell (124).

OX40 costimulation. A contribution from other costimula-
tory pathways to HTLV-I-induced T-cell activation cannot be
excluded. The interaction between OX40, a TNF/nerve growth
factor receptor family member, and its ligand, gp34 (OX40L),
is costimulatory for T cells in the presence of mitogens (18, 94).
OX40L was initially detected on HTLV-I-infected T cells as a
34-kDa glycoprotein transactivated by Tax (207, 286, 291).
OX40 is induced on activated T cells and constitutively ex-
pressed on HTLV-I-transformed T cells (130); nevertheless,
the significance of the OX40-OX40L interaction for HTLV-I-

FIG. 3. Role of different signal transduction pathways in HTLV-I infection. HTLV-I-encoded proteins (predominantly, if not exclusively, Tax) may interfere with
multiple intracellular signal transduction pathways. HTLV-I-encoded proteins are boxed. The bold arrow indicates the target of the viral protein, and a suggested target
is indicated with a question mark. Inhibitory agents are indicated in italic. The candidate viral gene product, p12I, is shown as a possible viral mechanism of IL-2R
pathway activation. A protein encoded by pX but separate from Tax may interfere with Vav. See the text for details and abbreviations.
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induced T-cell activation remains to be determined. Since
OX40 mediates adhesion to OX40L expressed on vascular
endothelial cells (129, 130), it is possible that this interaction is
important for HTLV-I-mediated inflammatory diseases.

IL-2R Signaling Pathway

In normal T cells, the cytokine IL-2 induces the G1-to-S
phase transition (36). Since this is essential for T-cell cycling,
there has been interest in the possibility that HTLV-I-infected
T cells use an IL-2 autocrine mechanism to traverse the G1
restriction point. The high-affinity IL-2R complex is composed
of three subunits: the a, bc, and gc chains; the subscript c
indicates that these chains are shared (common) among sev-
eral cytokine receptors: bc is used by IL-2R and IL-15R; gc is
used by IL-2R, IL-4R, IL-7R, IL-9R, and IL-15R (reviewed in
reference 287). The signaling module of the IL-2R comprises
bcgc, which itself is an intermediate-affinity IL-2R. The IL-2Ra
chain does not participate in signal transduction, but its asso-
ciation with bcgc increases the receptor affinity for IL-2 by
approximately 100-fold (287).

The possibility that HTLV-I particles or surface proteins can
activate the IL-2R pathway was initially suggested based on an
association between HTLV-I virions and the IL-2Ra chain
(170); furthermore, it was shown that the HTLV-I envelope
glycoprotein contains a region homologous to a segment of
IL-2 that binds bc (160). Whether these features of the
HTLV-I virion are important for activation of the IL-2R sig-
naling pathway remains to be demonstrated.

The IL-2R chains are absent or expressed at very low levels
in resting T cells, but their expression is inducible upon T-cell
activation (53). IL-2Ra chains are expressed in large numbers
on HTLV-I-transformed T cells from patients with ATL (107).
The mechanism involves Tax transactivation of the promoter
for the IL-2Ra chain (50, 132, 197, 268) and is mediated by
activation of NF-kB (15, 176, 252). In addition, transient-trans-
fection studies linking the promoter of IL-2 to a chloramphen-
icol acetyltransferase (CAT) reporter gene demonstrated that
Tax may also transactivate the IL-2 promoter (132, 197, 199,
268). Although the Tax-mediated transactivation of the IL-2
promoter is not very strong, it may synergize with a TCR- or
phorbol ester-mediated signal or with the HTLV-I regulatory
protein Rex (197, 199).

Nonetheless, analysis of IL-2 secretion and IL-2 mRNA in
HTLV-I-infected T-cell lines or clones has not implicated IL-2
autocrine growth in HTLV-I-induced T-cell activation. Arya et
al. (14) did not detect IL-2 mRNA expression in HTLV-I-
transformed T cells (HuT-102) by Northern blot hybridization
of cloned IL-2 DNA to poly(A) isolated RNA. Likewise,
Northern blot analysis of HTLV-I-infected T-cell clones at a
time when they displayed spontaneous clonal proliferation did
not detect IL-2 mRNA (124). Moreover, the presence of a
blocking antibody to the IL-2Ra chain (anti-Tac) did not pre-
vent the HTLV-I-induced proliferation (124). The transcrip-
tion factor NF-AT is important for the initiation of IL-2 gene
transcription, and CsA and FK506 inhibit IL-2 production by
preventing the dephosphorylation and nuclear translocation of
NF-AT. CsA or FK506 did not inhibit the spontaneous clonal
proliferation of HTLV-I-infected T-cell clones, although they
did inhibit TCR-CD3-mediated superimposed proliferation of
these clones (124). CD28-induced signals may, however, acti-
vate NF-AT and lead to IL-2 secretion in a CsA-resistant
manner (92), and CsA may not inhibit Tax-induced transacti-
vation of the IL-2 gene (268).

Taken together, however, the data on HTLV-I-infected T-
cell clones suggest that autocrine IL-2 secretion is not involved

in HTLV-I-induced spontaneous clonal proliferation. In addi-
tion, Akagi and Shimotohno (8) found IL-2-independent pro-
liferation of Tax-transduced T cells after CD3 cross-linking.

To investigate IL-2 mRNA expression in single cells,
Goebels et al. (95) examined three HTLV-I-transformed T-cell
lines by in situ hybridization with an IL-2 cRNA probe.
Whereas 2% of HuT-102, 0.8% of MT-2, and 0.5% of MT-4
HTLV-I-transformed T-cell lines expressed IL-2 mRNA, 28 to
35% of uninfected but phorbol myristate acetate- and phy-
tohemagglutinin-stimulated Jurkat T cells expressed IL-2
mRNA. Moreover, using a system with inducible expression of
an endoplasmic reticulum-targeted single-chain antibody to
knock out surface expression of IL-2Ra, Richardson et al.
(248) found that IL-2Ra expression is dispensable for in vitro
growth of HTLV-I-transformed T-cell lines. Thus, prolifera-
tion of HTLV-I-transformed T cells is not mediated by auto-
crine IL-2 secretion.

A more complex question is the role of the IL-2R pathway
during the transformation process. The lack of detectable IL-2
mRNA in HTLV-I-infected T-cell clones, which are neither
completely immortalized nor transformed, suggests that the
transformation is not the direct result of aberrant autocrine
IL-2 secretion. Nevertheless, this does not exclude an impor-
tant role of the IL-2–IL-2R pathway in the early phase follow-
ing HTLV-I infection. Kimata and Ratner (153) examined the
presence of IL-2 mRNA and IL-2 activity following HTLV-I
infection of human primary lymphocytes. While IL-2 was tran-
siently expressed during the early phase of the infection (days
7 to 49, when viral integration is polyclonal), it was undetect-
able at later stages (days 100 to 150, when viral integration is
oligoclonal). In contrast, expression of the viral tax-rex mRNA
was low in the polyclonal phase and high in the oligoclonal
phase, indicating that Tax expression did not induce autocrine
IL-2 secretion. Indeed, the source of IL-2 during the polyclonal
phase of the infection is uncertain, since HTLV-I-infected T
cells can induce IL-2 production from uninfected T cells via
T-cell–T-cell interaction (152, 310). In summary, evidence sup-
porting a critical role for an autocrine IL-2 growth loop in
HTLV-I-induced T-cell transformation is lacking.

Importantly, the development of IL-2 independence (i.e.,
transformation) may be associated with a constitutive IL-2-
independent activation of the IL-2R signaling pathway. The
ability of IL-2 to induce a signal in T cells is due to dimeriza-
tion of the bc and gc chains and subsequent phosphorylation of
signal transduction proteins. IL-2R signaling involves tyrosine
phosphorylation and activation of the Janus family of kinase 1
and 3 (JAK1 and JAK3), which are associated with the bc and
gc chains, respectively. Upon activation, JAKs phosphorylate
tyrosine residues in the cytoplasmic tail of the IL-2R, which
serve as docking sites for latent cytoplasmic transcription fac-
tors termed signal transducers and activators of transcription
(STATs). STATs are then tyrosine phosphorylated and acti-
vated by JAKs, resulting in dimerization and nuclear translo-
cation of STATs (52). IL-2R signaling activates STAT5 in
resting T cells and activates STAT1, STAT3, and STAT5 in
preactivated T cells. In contrast to nontransformed HTLV-I-
infected T cells and Tax-transfected T cells, HTLV-I-trans-
formed T-cell lines displayed constitutive tyrosine phosphory-
lation of JAK3 (202, 312), JAK1, STAT3, and STAT5 (202). In
addition, STAT3 and STAT5 displayed constitutive DNA
binding activity, and both gc and JAK3 associated with the
IL-2R bc, indicating an activated IL-2R signaling pathway in
the absence of IL-2 (202).

HTLV-I-infected but nonimmortalized and nontransformed
T-cell clones expressed slightly elevated levels of JAK3 and
STAT3 tyrosine phosphorylation but showed diminished in-
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duction of further tyrosine phosphorylation following IL-2
stimulation (255). Importantly, uncultured leukemic cells from
patients with ATL expressed constitutive tyrosine phosphory-
lation, constitutive DNA binding activity, or both, of one or
more of JAK3, STAT1, STAT3, STAT5, and STAT6, and
there was a correlation between proliferation of ATL cells and
activation of JAK3, STAT1, STAT3, and STAT5 (284). Since
JAK1/JAK3 and STAT3/STAT5 activation is not observed in
Tax-transfected T cells or newly HTLV-I-infected cord blood
T cells (202), the constitutive activation of JAK and STAT may
be associated with the process of transformation. In support of
this notion, the transition to IL-2-independence of HTLV-I-
infected cord blood T cells occurred concomitantly with an
increase in constitutive STAT activity (202). Despite this asso-
ciation, the mechanism of JAK and STAT activation has not
been linked to a viral protein yet.

A candidate viral protein that may induce IL-2R activation
is p12I, which may be encoded by the first open reading frame
(ORF) of the pX region of HTLV-I (161) (Fig. 2). When
overexpressed, p12I physically associates with both the bc and
gc chains (216) and may dimerize them, thereby initiating con-
stitutive JAK and STAT activation and IL-2-independent pro-
liferation (i.e., transformation). Nonetheless, alternatively
spliced mRNAs of ORF-I (encoding p12I) can be found in
both IL-2-independent and IL-2-dependent HTLV-I-infected
T-cell lines with significant variability between cell lines (38).
Although the variability in the level of p12I mRNA may indi-
cate that splice site regulation is an important viral regulatory
pathway, it also suggests that transformation cannot be ex-
plained simply by a shift in splice site utilization to ORF-I.
However, it is clear that p12I is not necessary for immortaliza-
tion of HTLV-I-infected T cells, since deletion of ORF-I and
ORF-II in an infectious molecular clone does not affect its
ability to immortalize T cells (59), and, furthermore, Tax is
both necessary and sufficient for in vitro immortalization of
primary human CD41 peripheral and cord blood lymphocytes
(8, 96, 97). However, these Tax-immortalized T cells remain
IL-2 dependent (8, 96), suggesting a possible role for addi-
tional proteins in the transformation process.

In summary, autocrine IL-2 production may play a role early
after infection, causing clonal expansion, but its production
diminishes and little if any IL-2 is produced at later stages in
the nontransformed, HTLV-I-infected T cell. Concomitantly
with transformation, however, activation of the JAK-STAT
pathway of the IL-2R is activated by an unknown mechanism.

Besides JAK1 and JAK3, the protein tyrosine kinases Syk,
Lck, and Fyn associate with the IL-2R and contribute to its
signal transduction (106, 156, 204). Lck and Fyn are dispens-
able for IL-2R-mediated signaling in HTLV-I-infected T cells
(203). The transition from an IL-2-dependent state to an IL-
2-independent state (i.e., transformation) in HTLV-I-infected
T-cell lines correlated with downregulation of lck mRNA (159)
(Table 2), and although IL-2-dependent HTLV-I-infected T-
cell lines expressed lck mRNA, they scarcely expressed Lck
protein (228). Consistently, Tax-transfected Jurkat T cells ex-
pressed diminished levels of Lck protein and repressed lck
mRNA levels (174). Genes that are known to be repressed by
Tax contain binding sites (E-boxes) for basic helix-loop-helix
proteins in their promoter regions (292, 293). Whereas unin-
fected T cells may use two separate promoters for lck tran-
scription, HTLV-I-infected and IL-2-dependent T cells use the
upstream promoter exclusively (221). Transfection of a CAT
construct under control of the distal lck promoter demon-
strated that Tax downregulated this promoter, but not if a
putative E-box was deleted (174). The Tax-mediated down-
regulation of lck mRNA was proportional to the level of pX

mRNA (174). Conversely, Lck suppresses the HTLV-I pro-
moter (229), suggesting that downregulation of Lck may fur-
ther enhance viral transcription. In contrast to Lck and Fyn,
altered expression of IL-2R-associated Syk in HTLV-I-in-
fected T cells has not been reported. Syk may be a mediator of
IL-2-induced activation of c-Myc (204, 208).

HTLV-I-Induced Cell Cycling

Incorporation of [3H]thymidine in the absence of exogenous
IL-2 in HTLV-I-infected but not uninfected T-cell clones in-
dicates that the virus is capable of inducing the G1/S-phase
transition. In its hypophosphorylated form, the retinoblastoma
protein (pRb) is a negative regulator of the G1/S-phase tran-
sition, in part through its sequestering of members of the E2F
family of transcription factors (267). Following T-cell activa-
tion, pRb is inactivated by phosphorylation and releases E2F,
which promotes S-phase entry. During the early G1 phase,
cyclins D2 and D3 and cyclin-dependent kinases 4 and 6
(CDK4 and CDK6) are synthesized by an IL-2-independent
pathway (189, 209), whereas IL-2 stimulation late in G1 in-
duces de novo synthesis of CDK2 (209), the kinase partner of
cyclin E. Initially, D-type cyclin complexes are responsible for
pRb phosphorylation, whereas cyclin E-CDK2 becomes the
major pRb kinase close to the G1/S-phase transition (267). The
activity of cyclin-CDK complexes is regulated by a group of
CDK inhibitors, of which two families have been described.
One family, including p21WAF1/CIP1, p27KIP1, and p57KIP2, in-
hibits all CDK-cyclin complexes, whereas the other family,
including p16INK4a, p15INK4b, p18INK4c, and p19INK4d, specifi-
cally inhibits the kinase activity of cyclin D-CDK4 and cyclin
D-CDK6 (244, 267).

HTLV-I-mediated interference with cell cycle-regulating
proteins was initially demonstrated in T-cell clones from pa-
tients with HAM/TSP; in contrast to uninfected T-cell clones,
pRb was constitutively hyperphosphorylated in HTLV-I-in-
fected T-cell clones (119). The hyperphosphorylation of pRb
correlates with Tax expression in a tetracycline repressor-based
Tax expression system (254). Importantly, although transform-
ing growth factor b (TGF-b) completely abolished hyperphos-
phorylation of pRb in CD3-TCR-stimulated, uninfected T-cell
clones, it did not prevent pRb phosphorylation in HTLV-I-
infected T-cell clones (119). These observations suggest that
HTLV-I activates T cells via a TGF-b-insensitive pathway.
TGF-b interferes with pRb phosphorylation by its ability to (i)
induce an inhibitor, p15INK4b, of CDK4 and CDK6 (104); (ii)
inhibit CDK4 synthesis (70); (iii) inhibit CDK2 synthesis (89);
(iv) inhibit cyclin A synthesis (89); (v) inhibit cyclin E synthesis
(89); and (vi) prevent the assembly of active cyclin E-CDK2
complexes (158) by releasing sequestered p27KIP1 (238, 269).
Tax does not significantly alter the expression of CDK2,
CDK4, CDK6, p27KIP1, or cyclin A (7).

Suzuki et al. (280) and Low et al. (188) found that Tax

TABLE 2. Alterations in signal transduction-related proteins
associated with transformation of HTLV-I-infected T cells

Function Reference(s)

Increased JNK activity .........................................................311
Increased JAK1 activity .......................................................202
Increased JAK3 activity .......................................................202, 312
Increased STAT3 activity ....................................................202
Increased STAT5 activity ....................................................202
Decreased Lck activity .........................................................159, 228
Decreased CD3 surface expression....................................131, 318, 322
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associates with p16INK4a. Whereas p16INK4a inhibits CDK4
kinase activity, the Tax-p16INK4a complex has lost this function.
This provides direct evidence for Tax-mediated interference
with cell cycle progression (Fig. 4). p16INK4a contains four
ankyrin motifs, and it is possible that Tax binds to p16INK4a via
these motifs, since Tax binding to IkB can be mediated by
ankyrin motifs (113). It remains to be determined whether Tax
also inhibits p15INK4b, a mediator of TGF-b inhibition, which
is 97% homologous to p16INK4a in the last three of its four
ankyrin motifs (264). Inhibition of p16INK4a may explain the
Tax-induced activity of CDK4 and CDK6 and thus the ability
of Tax to induce G1- to S-phase progression in lymphocytes
(254), although Tax can also activate E2F-mediated transcrip-
tion independently of p16INK4a (175). Tax may also enhance
cyclin D-CDK4 activity by decreasing the expression of
p18INK4c (7). Interestingly, HTLV-I-infected T-cell lines ex-
pressed high levels of cyclin D2 mRNA, in contrast to unin-
fected T-cell lines, which predominantly expressed cyclin D3
mRNA (7). The significance of this is unknown. Tax does not
appear to switch the cyclin D isotype from D2 to D3 (7, 254).

The CDK inhibitor p27KIP1 is a critical regulator of the G1
restriction point, since (i) IL-2R signaling eliminates p27KIP1

(72, 165, 226) through a rapamycin-sensitive pathway (226);
(ii) rapamycin-sensitive cells become rapamycin resistant if
p27KIP1 synthesis is inhibited by antisense oligonucleotides
(150); (iii) antisense inhibition of p27KIP1 synthesis prevents
the cells from becoming quiescent (47, 249); and (iv) p27KIP1

links TGF-b to cell cycle arrest in mink epithelial cells (238).
Despite the central role of p27KIP1 in cell cycle regulation, it is

not known whether the function of p27KIP1 is altered in
HTLV-I-infected T cells. Low et al. (188) did not detect an
association of Tax with p27KIP1 under conditions where Tax
associated with p16INK4a. Nevertheless, HTLV-I-mediated
spontaneous proliferation is inhibited by rapamycin (124) but
not by TGF-b (119). This indicates that p27KIP1 regulation is
normal in HTLV-I-infected T-cell clones and hence not in-
volved in their lack of inhibition by TGF-b.

In contrast, the level of the CDK inhibitor p21WAF1/CIP1 is
elevated in HTLV-I-transformed T cells by a mechanism in-
volving Tax-mediated transactivation of the promoter for
p21WAF1/CIP1 (7, 39), but Tax does not physically associate with
p21WAF1/CIP1 (188). The expression of p21WAF1/CIP1 is nor-
mally regulated by p53 and is responsible for p53-induced G1
arrest following DNA damage (31, 57), but Tax-induced
p21WAF1/CIP1 expression is p53 independent, since it occurs in
p53-null cells (39). Despite the presence of the wild-type p53
gene in most HTLV-I-transformed T cells (39), Tax inactivates
p53 by inhibiting its transcription (293) and by interfering with
its transactivation domain (237). The lack of fully functional
p53 in HTLV-I-infected T cells may contribute to HTLV-I-
induced tumorigenesis.

Thus, Tax may induce G1- to S-phase progression in lym-
phocytes by directly interacting with the cell cycle machinery
and by influencing the transcription of cell cycle proteins and
transcription factors. Most recently, Tax has also been shown
to bind to a mitotic checkpoint protein, MAD1 (141). This
suggest that Tax may also interfere with the G2-M phase of the

FIG. 4. Cell cycle in HTLV-I-infected T cells. Immortalization and transformation of HTLV-I-infected T cells correlate with specific events in the cell cycle. T cells
immortalized by HTLV-I infection require exogenous IL-2 to approach the restriction point (R). Transformation occurs when the infected cells no longer need
exogenous IL-2 for cell cycling. Inhibitors of cell cycling and their sites of action are shown at the top. HTLV-I-infected T-cell clones are resistant to CsA, FK506, and
TGF-b but sensitive to rapamycin (119, 124). A simplistic representation of selected proteins and drugs with relevance to HTLV-I-infected T-cell activation is shown
at the bottom. Arrows indicate a stimulatory signal. See the text for further details.
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cell cycle, and the specific interaction with MAD1 may explain
the ability of Tax to induce multinucleated cells (141).

PROGRAMMED CELL DEATH IN
HTLV-I-INFECTED T CELLS

One mechanism used to control cell growth is programmed
cell death (apoptosis). T cells may undergo apoptosis by at
least two separate mechanisms: (i) withdrawal of growth fac-
tors and (ii) activation-induced cell death (AICD). Withdrawal
of growth factors, for example IL-2, is antigen independent and
can be inhibited by the antiapoptotic proteins Bcl-xL and Bcl-2.
In contrast, AICD is antigen dependent, is mediated by CD95
(Fas) or TNF-a, and is only partially inhibited by Bcl-xL or
Bcl-2 (298). The CD95-CD95L interaction plays a crucial role
in peripheral AICD, as demonstrated by experiments with gld
mice (deficient in CD95L) and lpr mice (deficient in CD95),
both of which develop a lymphoproliferative disease (219).
Since HTLV-I can induce a T-cell leukemia/lymphoma and
HTLV-I-infected T-cell clones proliferate spontaneously in the
absence of exogenous growth factors (124), an HTLV-I-medi-
ated interference with normal T-cell apoptosis might explain
the tumorigenic ability of the virus. Indeed, proteins encoded
by EBV (108), adenovirus (243), and Sindbis virus (177) have
been shown to inhibit apoptosis.

Nevertheless, the effect of HTLV-I infection on T-cell sur-
vival is controversial. Copeland et al. (48) examined the sen-
sitivity of HTLV-I-infected T-cell lines to anti-CD95 antibody-
mediated apoptosis. Despite expression of high levels of CD95,
the HTLV-I-infected cell lines showed reduced susceptibility
to anti-CD95-induced apoptosis (at antibody concentrations
between 1 and 100 ng/ml). The resistance could be transferred
to susceptible Jurkat T cells by transfection of a Tax-expressing
vector or by treatment with soluble Tax, suggesting that Tax
conferred resistance to CD95-CD95L-mediated apoptosis.
Brauweiler et al. (28) also found that HTLV-I-infected T-cell
lines (SLB, MT-2, MT-4, and HuT-102) were more resistant to
apoptosis-inducing stimuli, such as anti-CD95 antibodies (250
ng/ml), taxol, or UV irradiation. Importantly, Tax repressed
bax gene expression, and this was mediated by a 27-bp se-
quence in the bax promoter containing a putative basic helix-
loop-helix binding site. Bax is known to promote apoptosis by
inhibiting Bcl-xL and Bcl-2, suggesting that Tax-mediated re-
pression of bax may provide a molecular mechanism for the
antiapoptotic effect of Tax. In addition, HTLV-I-infected T
cells secrete thioredoxin, a small protein regulating the reduc-
tion-oxidation status in the cell. Thioredoxin has been reported
to protect against oxidative stress-induced apoptosis (reviewed
in reference 220).

Several reports have demonstrated that HTLV-I-infected T
cells can be induced to undergo apoptosis. Fresh mononuclear
cells from ATL patients are activated (CD251) and sensitive to
CD95-mediated apoptosis (55), and IL-2-dependent HTLV-I-
infected T-cell lines are susceptible to anti-CD95-induced (54)
and activation (CD2)-induced apoptosis (103). These appar-
ently conflicting results may be due in part to differences in
anti-CD95 antibodies and the concentrations used. Thus, De-
batin et al. (54) used 10- to 100-fold-higher concentrations of
anti-CD95 antibodies than did Copeland et al. (48) and Brau-
weiler et al. (28). Moreover, Debatin et al. (55) examined the
feasibility of inducing apoptosis in freshly obtained peripheral
blood lymphocytes from ATL patients but did not evaluate
whether HTLV-I-infected T cells were more or less susceptible
than uninfected T cells. In addition to anti-CD95, adriamycin
appears to induce apoptosis in HTLV-I-infected T cells by a
p53-independent pathway (85).

While these reports demonstrated the feasibility of inducing
apoptosis in HTLV-I-infected T cells by exogenous stimuli,
other observations have suggested that Tax itself may induce
apoptosis. Chlichlia et al. (42, 43) expressed a fusion protein of
Tax either N-terminal or C-terminal to the hormone binding
domain of the estrogen receptor. Addition of estrogen or hy-
droxytamoxifen induced Tax transactivation and upregulation
of CD28, CD69, and CD5 but not CD25, which required ad-
ditional stimulation through the TCR-CD3 complex (43). This
is surprising, since Tax has been shown to upregulate CD25 (8,
15, 50, 132, 252, 268) and increased expression of CD25 is even
detected on HTLV-I-infected T-cell clones with a modest ex-
pression of Tax (124, 247). A potential concern, therefore, is
whether the hormone-mediated induction of Tax had addi-
tional side effects. Importantly, Chlichlia et al. (42, 43) found
that induction of Tax promoted apoptosis in T cells through a
pathway that critically required the protease function of the
IL-1b-converting enzyme (42). A similar conclusion was
reached by Chen et al. (41) using a Cd21-inducible Tax-system
(JPX-9). Although Tax induced CD95 ligand expression (41,
42) and the CD95-CD95 ligand interaction is known to activate
IL-1b-converting enzyme–proteases, blocking experiments
failed to implicate this pathway in Tax-mediated induction of
apoptosis (42). In contrast to these observations, a tetracycline
repressor-based Tax expression system failed to detect apopto-
sis in lymphocytes expressing Tax (254).

Tax can induce oncogenic transformation in Rat-1 cells, a
cell line derived from rat fibroblasts (285). Nevertheless, in
contrast to wild-type Rat-1 cells, Tax-transformed Rat-1 cells
underwent apoptosis within 7 days of incubation in serum-free
medium, and this was inhibited by overexpression of Bcl-2
(313). This suggests that the expression of Tax makes Rat-1
cells growth factor dependent and susceptible to withdrawal
apoptosis. Although the level of Tax expression may be critical
for its biologic activities, comparative analysis of the apoptosis-
inducing properties of Tax, c-Myc, and c-Fos suggested that
Tax possesses relatively low apoptosis-inducing activity (80).

In conclusion, the outcome of HTLV-I infection on T-cell
survival is controversial. The ability of Tax to prevent apoptosis
of infected T cells is appealing, since Tax may also transform
cells and since data from transgenic mice demonstrate that
splenic T cells are more resistant to apoptosis induced by
anti-CD95 antibodies (154). It is interesting, though, that the
adenovirus E1A protein may transform cells and induce apo-
ptosis, which is inhibited by the adenovirus E1B 19-kDa pro-
tein (243). If a similar mechanism operates in HTLV-I-in-
fected T cells, it appears to require interaction with a cellular
protein in order to explain the conflicting results obtained with
Tax-transfected cells (28, 42, 43, 48). Moreover, as mentioned
above, it is possible that the concentration of Tax determines
the T-cell phenotype.

IMMORTALIZATION AND TRANSFORMATION
OF T CELLS BY HTLV-I

Peripheral or cord blood T cells can be immortalized and
eventually transformed following coculture with HTLV-I-pro-
ducing T cells. Here, immortalization means the ability of the
T cells to grow continuously. This may require the presence of
exogenous growth factors (usually IL-2) as in the case of
CTLL-2 cells. If, however, exogenous growth factors are not
required, the T cells are transformed, as in the case of Jurkat
cells. The distinction between immortalization and transforma-
tion is important when analyzing the impact of viral infection
on T-cell activation (Table 3).

The initial stages of HTLV-I-induced T-cell activation can
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be studied by analyzing in vivo HTLV-I-infected T-cell clones
derived by limiting-dilution single-cell cloning of peripheral
blood T cells from patients with HAM/TSP (124). T-cell clones
are maintained in culture by periodic restimulation with irra-
diated feeder cells and antigen or mitogen. Whereas unin-
fected T-cell clones do not incorporate significant amounts of
[3H]thymidine 1 week after restimulation, productively in-
fected T-cell clones strikingly incorporate [3H]thymidine in the
absence of exogenous growth factors, a phenomenon termed
spontaneous clonal proliferation (Fig. 5). This reflects an
HTLV-I-induced prolonged state of T-cell activation (124, 206,
239, 309, 322). Nevertheless, HTLV-I-infected T-cell clones
are not immortalized, since they do not grow continuously
without restimulation with irradiated feeder cells and phyto-
hemagglutinin. Despite their ability to enter S phase 7 to 12

days after restimulation in the absence of exogenous IL-2
(124), the HTLV-I-infected T-cell clones need exogenous IL-2
for growth beyond 12 days and thus are not transformed. It is
interesting that HTLV-I-infected T-cell clones are not immor-
talized, since they are capable of immortalizing peripheral
blood lymphocytes in vitro, although with variable efficiency
(247).

The in vitro immortalization process occurs in defined
stages. Initially, T-cell growth may decrease and reach a crisis
stage which, at about 4 weeks following infection (96), will
result in either cell death or increased cell growth. HTLV-I-
infected T cells surviving the crisis display upregulated expres-
sion of CD25 and MHC class II but remain IL-2 dependent.
The initial proliferative phase is characterized by polyclonal
proviral integration and transient expression of IL-2 mRNA

TABLE 3. Comparison of HTLV-I-infected T-cell clones, HTLV-I-transformed T-cell lines, and peripheral blood
mononuclear cells from HTLV-I-infected individualsa

Characteristic Uninfected T cells,
T-cell clones, or PBMCsb

HTLV-I-infected
T-cell clones

HTLV-I-transformed
T-cell lines

PBMCs from HTLV-I-
infected individuals

IL-2-independent growth 2 6c 1 2
Spontaneous proliferationd 2 1 1 1
Inhibition of spontaneous proliferation by:

Rapamycin NAe 1 2 1
FK506 NA 2 2 1
CsA NA 2 2 1
TGF-b NA 2 2 1
IFN-b NA 2 6f 1
Anti-IL-2Ra MAbg NA 2 2 1

Inhibition of CD3/TCR-mediated proliferation by:
Rapamycin 1 1 NA 1
FK506 1 1 NA 1
CsA 1 1 NA 1
TGF-b 1 1 NA 1
IFN-b 1 1 NA 1
Anti-IL-2Ra MAb 1 1 2 1

a Based on references 119, 124, 127, 270, and 288.
b PBMC, peripheral blood mononuclear cells.
c HTLV-I-infected T-cell clones require IL-2 for growth but may proliferate for a limited time in the absence of IL-2.
d Spontaneous proliferation of T-cell clones is measured by IL-2 independent [3H]thymidine incorporation 7 to 14 days after stimulation. Spontaneous proliferation

of peripheral blood mononuclear cells from HTLV-I-infected individuals is measured by [3H]thymidine incorporation after 5 to 7 days in culture in the absence of
exogenous growth factors.

e NA, not applicable.
f The degree of inhibition of HTLV-I-infected T-cell lines by IFN-b depends on the T-cell line but is less than that of uninfected T-cell lines.
g MAb, monoclonal antibody.

FIG. 5. Spontaneous clonal proliferation of HTLV-I-infected T-cell clones. A schematic representation of proliferation (measured by [3H]thymidine incorporation)
following restimulation (arrows) of uninfected and HTLV-I-infected T-cell clones is shown. Dashed lines indicate proliferation of the T-cell clones if they are not
restimulated. Spontaneous clonal proliferation is defined as the ability of HTLV-I-infected T cells to incorporate [3H]thymidine in the absence of exogenous growth
factors 7 days or more after stimulation (124, 309).
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and IL-2 activity, which is undetectable at later time points
(153). At approximately 100 days after infection, proviral in-
tegration is oligoclonal, with upregulation of CD25 surface
expression but not of IL-2 mRNA. In contrast to IL-2 mRNA,
viral tax-rex mRNA is scarcely expressed in the initial phase but
is expressed abundantly at later time points (153).

The immortalization is caused by Tax. By inserting the pX
region of HTLV-I into transformation-defective but replica-
tion competent herpesvirus saimiri, Grassmann et al. (97)
demonstrated that the pX region was sufficient for immortal-
izing human thymocytes and cord blood lymphocytes. Al-
though it cannot be excluded that proteins encoded by herpes-
virus saimiri influence the function of HTLV-I proteins,
subsequent analyses deleting or inserting nucleotides to gen-
erate constructs deficient in the expression of Tax or Rex, or
both, have shown that Tax is both necessary and sufficient for
immortalizing CD41 cord blood lymphocytes in this system
(96).

An interpretation of the requirements for immortalization
and transformation from a cell cycle perspective is shown in
Fig. 4. In normal T cells, TCR-mediated activation brings T
cells into the G1 phase of the cell cycle, which is associated with
activation of tyrosine and serine/threonine protein kinases,
Ca21 flux, and subsequent activation of transcription factors.
In addition cyclin D2, D3, CDK4, and CDK6 are synthesized
prior to IL-2R signaling (189, 209), which, however, is required
to bring T cells beyond the G1 restriction point (36). Phosphor-
ylation of pRb has been proposed to correspond to the restric-
tion point (324), and IL-2R signaling allows pRb phosphory-
lation by eliminating a critical regulator of the restriction point,
the CDK inhibitor p27KIP1 (47, 72, 150, 165, 226, 249).

Tax-immortalized but nontransformed T cells are dependent
upon IL-2; hence, they cannot pass the G1 restriction point in
the absence of exogenous growth factors. This indicates that
overexpression of Tax alone does not induce S-phase progres-
sion but that additional events are required. Tax-immortalized
T cells are able to enter G1 and, more importantly, do not exit
the cell cycle by apoptosis in the presence of appropriate
growth factors. The ability of Tax to activate pathways and
transcription factors known to be activated in G1 during nor-
mal T-cell activation may thus be responsible for the G1 pro-
gression (immortalized phenotype).

The transformation of T cells may require the concerted
action of several viral and cellular proteins. Tax may transcrip-
tionally repress and inactivate the tumor suppressor p53 (39,
237, 293) and may repress the DNA repair enzyme b-polymer-
ase (140), thus enhancing the accumulation of gene mutations.
The transformation process, however, is expected to compen-
sate for an IL-2R signal and hence to phosphorylate pRb and
promote S-phase entry in the absence of exogenous growth
factors. Constitutive activation of IL-2R-associated STAT3
and STAT5 has been demonstrated in HTLV-I-transformed T
cells (202), but STAT5 does not regulate E2F (29) and thus
does not induce pRb phosphorylation and S-phase entry. Re-
cent evidence, however, suggests that Tax expression may pro-
mote pRb phosphorylation and the G1/S-phase transition
(254). However, it is unclear whether this is the function of Tax
alone, since control cells immortalized by Tax remained IL-2
dependent. IL-2 induces CREB/ATF1 activity late in G1 in a
cAMP-independent but rapamycin-dependent manner (71).
This activity may be compensated for by Tax expression, since
Tax interacts with CREB/ATF1 and thereby increases its tran-
scription activity. This interaction is essential for the ability of
Tax to transform rat fibroblasts (272) and to clonally expand
CD41 T cells (6). Tax-mediated activation of cellular CREs
may be important in T-cell transformation. The mechanism of

CREB phosphorylation in HTLV-I-transformed T cells then
becomes important, since Tax transactivation of cellular CREs
is dependent on phosphorylated CREB (164).

T cells approaching the G1 restriction point may either com-
mit to the cell cycle (if p27KIP1 is downregulated, pRb is hy-
perphosphorylated, and cyclin E-CDK2 is activated) or un-
dergo apoptosis (if these conditions are not met) (186). Thus,
it may be hypothesized that HTLV-I-immortalized T cells may
undergo apoptosis in the absence of exogenous IL-2 because
they do not approach the G1 restriction point in an appropriate
way; i.e., they have not downregulated p27KIP1, which would
allow activation of the pRb kinases (cyclin D-CDK4, cyclin
D-CDK6, and cyclin E-CDK2). Hence, transformation is an
ability to escape apoptosis in late G1, in the absence of an
exogenous growth factor. Transduction in early G1 of either
p16INK4a or the human papillomavirus E7 protein prevents
pRb phosphorylation, further G1 progression, and subsequent
activation-induced cell death (186). Interpreted in this way, the
ability of Tax to inhibit p16INK4a may activate the cyclin D-
CDK complexes and promote cell cycle progression to the
restriction point. This may be a critical element in immortal-
ization and perhaps in transformation. In contrast, if the T cell
is not ready to enter S phase, forced cell cycle progression may
provoke apoptosis. It is conceivable that the apparently con-
tradictory results obtained by analyzing apoptosis in Tax-ex-
pressing cells, as discussed above, can be explained by different
outcomes of Tax-p16INK4a interaction.

In addition to the G1-S-phase deregulation, the ability of
Tax to disturb the mitotic checkpoint protein MAD1 may con-
tribute to the transformation process. Indeed, p53 induces
MAD1, and thus Tax may target both G1-S and M checkpoints
via p53 (141).

ACTIVATION OF THE CELLULAR IMMUNE SYSTEM
BY HTLV-I-INFECTED T CELLS

An important consequence of HTLV-I-mediated activation
of the host T cell is its ability to further amplify the immune
system activation to uninfected, resting T cells in an antigen-
nonspecific manner and to antiviral T cells in an antigen-
specific manner. Consequently, HTLV-I-infected individuals
express several markers of immune system activation (re-
viewed in reference 49). This amplification of immune system
activation may be important for both the spread of the virus
and progression to disease.

Activation of Non-Virus-Specific T Cells

Wainberg et al. (300) were the first to detect the T-cell-
activating properties of purified HTLV-I. HTLV-I particles
were purified from the culture supernatant of an HTLV-I-
producing cell line, C10/MJ2, by initial low-speed centrifuga-
tion followed by 143,000 3 g for 2 h. Subsequently, virus
particles were banded by overnight centrifugation through 22
to 53% sucrose gradients and detected by the presence of
reverse transcriptase activity. This virus preparation had mito-
genic activity when added to mononuclear cells, as assessed by
[3H]thymidine incorporation and direct cell counting, but the
mechanism was not further explored (300).

Extending this observation, Gazzolo and Duc Dodon (65,
87) demonstrated that an HTLV-I preparation made by ultra-
centrifugation (32,000 3 g) of culture medium from any of
three different HTLV-I-infected and virus-producing cell lines,
C91/PL, HuT-102, and MT-2, induced T-cell activation medi-
ated by autocrine IL-2 production. In contrast, the pelleted
fraction from a Tax-producing but non-virus-producing cell
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line, C8166/45, failed to induce T-cell activation. Preincubation
with 10 to 20 mg of anti-Env antibody (0.5a) per ml inhibited
the mitogenic activity of a purified virion preparation made
from cell-free C91/PL supernatant run through a Sepharose
CL-4B chromatography column (37). Pooled fractions, with
A260/A280 absorbance greater than 2, were defined as purified
HTLV-I. This purification method preserves envelope glyco-
sylation (198), which may be important, since pretreatment of
C91/PL cells with an N-linked glycosylation inhibitor, tunica-
mycin, reduces the mitogenic activity of the preparation (37).
This does not, however, specifically implicate Env, since tuni-
camycin also prevents appropriate glycosylation of other cell
surface proteins. Despite the partial inhibition by 0.5a of the
mitogenic activity of the purified virion fractions, C8166/45 T
cells infected by a vaccinia virus construct expressing recom-
binant HTLV-I envelope proteins were unable to induce rest-
ing T cells to proliferate (37). Thus, Env proteins expressed on
the virions were found to be mitogenic, in contrast to Env
proteins expressed on the cell surface.

The pathway activated by the viral preparation was inhibited
by antibodies to CD2 (64). The CD2 pathway was initially
described as an alternative T-cell activation pathway (201).
The ligand for CD2 is CD58 (LFA-3) (262, 301). Its interaction
with CD2 is of very low affinity and has an extremely high
dissociation rate (297), which may prevent CD2-CD58 inter-
action among resting T cells. Nevertheless, upregulated CD58
expression may facilitate clustering. In addition, an isoform of
CD58 is glycosylphosphatidylinositol anchored (67), which al-
lows extra lateral mobility in the membrane. When present on
the APC, CD58 can efficiently enhance TCR signaling via CD2
interaction (23–25, 125, 210, 211). The CD2-mediated activa-
tion of T cells is dependent on the intracytoplasmic tail of CD2
(24) and on CD3z, which mediates CD2-induced T-cell acti-
vation (125, 211). Thus, the ability of anti-CD2 antibodies to
prevent T-cell activation induced by an HTLV-I preparation
(64) implicates CD2 signal transduction in HTLV-I-induced
activation of resting T cells.

The hypothesis that HTLV-I particles are intrinsically mito-
genic has been contested by others (152, 309). Using sucrose
density gradient purification, Kimata et al. did not detect mi-
togenic activity in purified fractions of MT-2 cell supernatant,
although these fractions were positive for both p19 Gag by
enzyme-linked immunosorbant assay (ELISA) and gp46 Env
by Western blot analysis. In addition, none of nine different
antibodies to Env, including the 0.5a antibody, inhibited the
activation of resting T cells mediated by HTLV-I-infected T
cells (152). Similarly, Wucherpfennig et al. (309) were unable
to inhibit the THTLV-I–T-cell activation by antibodies to Env.
Hence, HTLV-I Env proteins expressed on the surface of T
cells are not required for activation of resting T cells.

It is not settled how the CD2 pathway is activated by the
HTLV-I preparation (33). It has been demonstrated that cel-
lular proteins are associated with HIV particles (13); thus,
CD58 associated with HTLV-I particles following budding
through the cell membrane might permit cross-linking of CD2
by free virus. Alternatively, CD58 associated with membranes
contaminating the viral preparation may lead to activation of
the resting T cells. Indeed, cell membrane fragments from
activated T cells and activated T cells fixed by paraformalde-
hyde can induce [3H]thymidine incorporation in resting T cells.
This T-cell–T-cell activation is blocked by antibodies to CD58
and intercellular cell adhesion molecule 1 (ICAM-1) (CD54)
(30). Importantly, Kimata and Ratner (153) found that para-
formaldehyde fixation still allowed HTLV-I-producing T cells
to activate resting peripheral blood T cells. Moreover,
Wucherpfennig et al. (309) found that not only anti-CD2 an-

tibodies but also anti-CD58 antibodies inhibited THTLV-I–T-
cell activation and the mitogenic activity of HTLV-I virions.
This strongly suggests that HTLV-I-induced activation of rest-
ing T cells is mediated by CD58-CD2 interaction.

Further characterization of the THTLV-I–T-cell activation
demonstrated its partial dependence on the interaction be-
tween CD11a/CD18 (LFA-1) and CD54. Although anti-CD54
antibodies had only a marginal blocking effect alone, they
enhanced the inhibition achieved by anti-CD58 antibodies.
Similarly, a cooperative inhibitory effect was observed between
antibodies to CD11a and CD58 (309). Kimata et al. (152) also
found that antibodies to CD58 and CD2 blocked the THTLV-
I–T-cell activation by using paraformaldehyde-fixed MT-2 cells
as stimulator cells and peripheral blood lymphocytes as re-
sponder cells. However, they were unable to inhibit the THTLV-
I–T cell activation by anti-CD11a or anti-CD54 alone. Combi-
nations of these antibodies and anti-CD58 or anti-CD2 were
not examined. However, antibodies to a number of other T-cell
surface molecules, including CD80, CD28, CD4, CD8, MHC
class I, and MHC class II (anti-HLA-DR, L243, and anti-HLA-
DQ, S3/4), and serum with high-titer antibodies to Env and
Gag had no significant blocking effect compared to control
ascites (309).

Imai et al. (128) examined the expression of 19 different cell
adhesion molecules in 14 HTLV-I-infected and 6 uninfected
T-cell lines. Except for one HTLV-I-infected T-cell line (MT-
1), the mRNA and surface protein expression of CD58 was
consistently enhanced in HTLV-I-infected T cells. In addition,
the surface expression of CD54 was found to be increased in
HTLV-I-transformed T cells (81) and in HTLV-I-infected T-
cell clones (256), probably because of Tax-mediated transacti-
vation of the CD54 promoter (232). These observations pro-
vide a possible explanation for the ability of HTLV-I-infected
T cells to adhere to and activate resting T cells via the CD2
signaling pathway.

Consistent with an IL-2 autocrine mechanism of activation
(87), anti-Tac antibodies to the IL-2Ra (309) or anti-IL-2
antibodies (152) inhibited THTLV-I–T-cell activation. More-
over, Kimata et al. (152) were able to detect IL-2 mRNA
induction in responding Jurkat T cells, and this was blocked by
antibodies to CD58. These findings suggest that CD58 ex-
pressed on HTLV-I-infected T cells interacts with CD2 on the
responding T cells, thereby inducing IL-2 production and
IL-2R expression and subsequent IL-2 autocrine T-cell prolif-
eration. Mononuclear cells from patients with HAM/TSP ex-
press activation markers in vivo and incorporate [3H]thymidine
in the absence of exogenous growth factors when cultured in
vitro (133, 139), a phenomenon termed spontaneous prolifer-
ation. The term “spontaneous” does not imply that the mono-
nuclear cells are transformed, since they do not incorporate
[3H]thymidine immediately after being placed in culture, nor
does it imply that these cells will grow in the absence of exog-
enous growth factors for a prolonged period. Instead “sponta-
neous” refers to the incorporation of [3H]thymidine on days 3
to 9 in the absence of exogenous growth factors, which is not
seen in mononuclear cells from normal individuals. Wucher-
pfennig et al. (309) demonstrated that antibodies to the adhe-
sion molecules CD11a, CD54, and CD58 and to the IL-2Ra
chain (CD25) inhibited the spontaneous proliferation, corrob-
orating the significance of the CD58-CD2 interaction. Since
the THTLV-I–T-cell interaction is antigen nonspecific, it may
potentially occur between any preactivated and resting T cells
where T-cell–T-cell interaction is established. This may explain
why the number of activated T cells expressing MHC class II
and IL-2Ra far exceeds the number of HTLV-I-infected T
cells in many patients with HAM/TSP (139).
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Interestingly, anti-MHC class I (W6/32) and anti-b2-micro-
globulin antibodies were shown to inhibit the spontaneous
proliferation and HTLV-I expression in peripheral blood
mononuclear cells (196). The mechanism of this inhibition is
unknown but may involve negative signaling mediated by
MHC class I cross-linking. Spontaneous proliferation was not
affected by CD8 depletion (196), indicating that it does not
reflect a CD81-T-cell response to viral epitopes expressed by
HTLV-I-infected CD41 T cells.

Guyot et al. (102) examined the consequence of CD2-medi-
ated activation of HTLV-I-infected T cells for viral transcrip-
tion. Antibodies to CD2 but not to CD3 induced a 1.5- to
5.7-fold increase in the level of p24 capsid protein in cell
culture supernatant concomitant with a 2- to 4-fold increase in
the levels of all species of viral mRNA. Moreover, Jurkat T
cells cotransfected with a Tax-expressing plasmid and a CAT
reporter gene construct under the control of the HTLV-I pro-
moter demonstrated an 11-fold increase in CAT activity fol-
lowing CD2 stimulation. Thus, by inference, the THTLV-I–T-
cell interaction, leading to activation of resting T cells and
autocrine IL-2 production, may result in upregulation of CD58
on resting T cells and a reverse interaction involving CD2
activation of the HTLV-I-infected T cells. This would then
lead to enhanced viral production and possibly to infection of
more T cells. Whereas antibody-mediated activation of the
CD2 pathway may result in apoptosis in HTLV-I-infected T
cells (103, 305), it is unclear whether this occurs after CD2-
CD58 interaction.

The CD58-CD2 interaction has been established as an im-
portant costimulatory pathway in THTLV-I–T-cell interaction.
In contrast, CD80/CD86-CD28 interaction was found to be
important in T-cell–T-cell activation by some investigators
(169, 283) but not by others (122), who demonstrated that the
combined addition of antibodies to CD80 and CD86 was able
to inhibit the costimulatory activity of CD80- and CD86-trans-
fected CHO cells but not the THTLV-I–T-cell interaction.
Moreover, in contrast to EBV-transformed B cells, CD86 ex-
pressed on T cells was hypoglycosylated and had significantly
reduced binding affinity for CTLA4 and no detectable binding
to CD28 (122), indicating the presence of cell-type-specific
posttranslational modifications of CD86. Although CTLA4
may mediate a negative signal (289, 304), CD86-CTLA4 inter-
action did not prevent the T-cell–T-cell activation, probably
because of the reduced binding affinity and the CD2-CD58
stimulatory signals. However, this finding raises the interesting
possibility that CD86 on tumorigenic T cells mediates a nega-
tive signal via CTLA4 to effector cells, preventing the elimina-
tion of the tumor cells (100).

In addition to membrane-associated molecules, HTLV-I-
infected T cells may induce a number of cytokines, including
granulocyte-macrophage colony-stimulating factor, IL-1a, IL-
1b, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-15, TGF-b, TNF-a,
lymphotoxin, and IFN-g (reviewed in reference 33), although a
single HTLV-I-infected cell may not produce all of them. By
using various cell types and conditions, different cytokine pro-
files may be produced. However, IL-6 appears to be frequently
upregulated, even in nontransformed T cells, by a mechanism
involving Tax-mediated transactivation of the IL-6 promoter
(167, 168, 214, 224, 247, 251, 316). The significance of HTLV-
I-induced cytokines is unclear, although they are likely to in-
fluence immunoregulation.

In summary, the CD2-CD58 interaction is critical for the
activation of uninfected T cells by HTLV-I-infected T cells.
This interaction may potentially also be initiated by virus par-
ticles which have incorporated CD58 into the envelope during
the budding process through the T-cell membrane. In addition,

other adhesion molecules (e.g., CD54-CD11a/CD18) and cy-
tokines (e.g., IL-2 and IL-6) are likely to influence the activa-
tion of the uninfected T cells.

Activation of Virus-Specific CD81 T Cells

Infection by a virus usually elicits an antiviral CD81 CTL
response, which recognizes viral peptide fragments on the sur-
face of the infected cell. Intracellular viral proteins are de-
graded by proteases in the cytosol, generating peptides of vari-
able length. Peptides of 8 to 10 residues are preferentially
transported into the endoplasmic reticulum (ER) by an ATP-
dependent transporter enzyme, TAP. In the ER, the peptides
bind in the groove between the two a-helices of MHC class I,
stabilizing the interaction between MHC class I heavy chain
and b2-microglobulin. The complex between MHC class I and
the viral peptide is transported to the Golgi apparatus, where
further posttranslational modifications occur, and the MHC
class I-viral peptide complex is subsequently expressed on the
cell surface. Here it may indicate to the immune system that
the cell is infected and thereby may induce the education of
antigen-specific precursor CTLs.

Importantly, the binding of viral peptide to the MHC class I
molecule is restricted in several ways. First, the digestion of the
protein in the cytosol must generate 8 to 10 residue peptides
that are preferentially transported to the ER and form stable
MHC class I-peptide complexes. Second, the MHC class I
molecules contain “pockets” with preferences for certain
amino acid anchor residues in the peptide (69). Algorithms to
predict potential MHC binding peptides from a protein exist,
although this does not ensure that the peptide is naturally
processed and presented.

Many viruses, especially herpesviruses, have evolved pro-
teins that interfere with the presentation of viral proteins on
the cell surface, thereby preventing a strong antiviral CTL
response. For example, EBV-infected B cells may restrict viral
gene expression to the nuclear antigen, EBNA1, which is
poorly processed and therefore not presented on the cell sur-
face (40, 151, 178, 218). Herpes simplex virus type 1 encodes a
9-kDa protein, known as infected-cell polypeptide 47, which
inhibits peptide translocation to the ER and thus inhibits MHC
class I assembly (5, 76, 112, 290, 320). Infection by cytomega-
lovirus downregulates MHC class I expression on the cell sur-
face (17, 19, 56, 302, 317) by expression of various viral pro-
teins: the pp65 matrix protein inhibits the presentation of the
otherwise abundantly expressed immediate-early gene product
p72 (93); the US6 protein inhibits peptide transport into the
ER lumen (4, 109, 110); the US11 and U2 proteins dislocate
MHC class I molecules from the ER back into the cytosol (144,
306, 307); and the U3 protein results in retention of the MHC
class I complex in the ER (3). The adenovirus E3 protein binds
to MHC class I and results in its retention in the ER (12, 34,
60, 135, 275, 313), and the HIV protein Nef is implicated in
downregulation of MHC class I on HIV-infected T cells (259).
Similar mechanisms have not been detected in HTLV-I-in-
fected T cells; rather, infection of glial cells by HTLV-I in-
duced the expression of MHC class I by Tax-mediated trans-
activation of the MHC class I gene (253).

MHC class I-restricted virus-specific CD81 T cells can be
generated from HTLV-I-infected individuals and may kill cul-
tured tumor cells infected by HTLV-I (148, 206). Indeed, anal-
ysis of the CTL response to HTLV-I may be a very sensitive
measure of previous viral exposure. In tests of coded periph-
eral blood lymphocyte samples from HTLV-I-seronegative and
PCR-negative individuals previously exposed to HTLV-I,
Nishimura et al. (225) found that 7 of 19 had detectable CD81-
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T-cell response to Env and Tax proteins, as opposed to 0 of 16
matched controls from individuals without risk factors.

The CD81-T-cell response to HTLV-I is oligoclonal in pa-
tients with HAM/TSP, although the TCR-Vb usage differs
between individual patients (82, 99, 117). Jacobson et al. ana-
lyzed the HTLV-I-specific CD81-T-cell immune response by
using EBV-transformed B cells infected with vaccinia virus
expressing HTLV-I recombinants as target cells (138). The
response was directed primarily against Tax, with a minor
response against Env and Gag. The immunodominant epitope
of Tax presented by HLA-A2 was mapped to amino acids 11 to
19 (147, 157, 294). Surprisingly, the response to Tax could be
demonstrated by using freshly isolated CD81 T cells, indicat-
ing a high precursor frequency of virus-specific CD81 T cells
(138). In patients with HAM/TSP, the precursor frequencies of
antiviral cytotoxic CD81 T cells were higher than 1/400 in
peripheral blood lymphocytes and were between 1/125 and
1/488 in cerebrospinal fluid cells (136). Indeed, the real num-
ber of virus-specific CD81 T cells is likely to be much greater
(35, 217). The vaccinia virus approach has the advantage that
it may detect T-cell responses to all the processed and pre-
sented peptides as long as sufficient expression of the recom-
binant protein allows for adequate loading of the MHC class I
molecules. A comparison of the CD81-T-cell response to tar-
get cells, either infected with the vaccinia virus-Tax construct
or pulsed with synthetic peptides, demonstrated that the major
response was directed against Tax 11–19 in HLA-A2 express-
ing patients and against Tax 186–195 in HLA-B14 expressing
patients (68). Importantly, the frequencies of Tax-reactive
CD81 T cells in HTLV-I-infected asymptomatic carriers were
at least 10-fold lower, 1/2,900 to 1/3,620, and were as low as
1/20,000 or undetectable in some individuals (68). Taken to-
gether, these data demonstrate a high frequency of Tax-spe-
cific CD81 T cells in some healthy HTLV-I-infected carriers
but a significantly higher frequency in patients with HAM/TSP.

Studies by Daenke et al., however (51), did not detect a clear
difference in the frequency between peripheral blood Tax-
specific CD81 T cells in HAM/TSP patients and healthy
HTLV-I-infected carriers. These investigators used target cells
pulsed with 15-residue peptides (overlapping by 5 amino acids)
spanning Tax and Rex. Since the size of these peptides would
be expected to preclude binding in the groove of MHC class I,
they may be degraded in the culture medium or may be taken
up by the target cell for further processing and presentation.
The frequencies of Tax-specific CD81 T cells in peripheral
blood from asymptomatic HTLV-I-infected carriers were on
the order of 1/1,400 to 1/3,200 (mean, 1/2,438) (51), compara-
ble to those previously reported (68). However, the frequen-
cies of Tax-specific CD81 T cells from HAM/TSP patients
were more variable (between 1/223 and 1/4,176; mean, 1/906),
overlapping with the CD81-T-cell frequencies of some asymp-
tomatic HTLV-I carriers (51). Thus, while the frequency of
virus-specific CD81 T cells in some HAM/TSP patients is
higher than in asymptomatic HTLV-I-infected carriers, it re-
mains to be determined whether this is important for the de-
velopment of disease.

Using a novel technology, Greten et al. (101) directly exam-
ined the frequency of Tax 11–19-specific CD81 T cells in
peripheral blood and cerebrospinal fluid of HAM/TSP patients
by Tax 11–19-loaded soluble HLA-A2–immunoglobulin com-
plexes. This confirmed the presence of a high frequency (14%)
of these cells in both peripheral blood and cerebrospinal fluid.
In one patient, the frequency of Tax 11–19-reactive CD81 T
cells in the cerebrospinal fluid approached 1/4 (101). A high
frequency of Tax 11–19-reactive CD81 T cells in HLA-A21

HAM/TSP patients has been confirmed by others by direct

visualization with HLA-A2/Tax 11–19 tetramer complexes
(21).

Additional epitopes of HTLV-I proteins and their MHC
restriction have been characterized, as shown in Table 4. Using
the TAP-defective cell line 174CEM.T2, Pique et al. (236)
characterized potential HLA-A2 binding peptides from
HTLV-I. They found that the strongest binding peptides orig-
inate from the Tax, Env, and Pol proteins, although they did
not address whether the HLA-A2 binding peptides were nat-
urally processed and presented in an infected cell. Similarly,
Schönbach et al. (257) examined 64 HTLV-I peptides, which
matched the predicted binding motif for HLA-B*3501. The
majority of peptides with high-affinity binding for HLA-
B*3501 originated from the Env protein (Table 4). When the
peptides were tested in HLA-B*3501 transgenic mice for their
ability to induce a CTL response, all except one were classified
as medium- to high-affinity HLA-B*3501 binders, suggesting a
rough correlation between HLA affinity and immunogenicity
of the peptides, as previously reported for HLA-A*0201 (265).
However, more important but unresolved questions are
whether these peptides are naturally processed and presented,
inducing an immune response in humans expressing HLA-
B*3501.

Structural Analysis of CD81-T-Cell Recognition
of a Viral Peptide

Immunohistochemistry on autopsy material from the spinal
cords of HAM/TSP patients indicates that CD81 T cells are
the predominant cell type found in the inflammatory lesions
(212), although CD41 T cells are found in very early lesions
(134). There are two opposing explanations for the observed
high frequency of virus-specific CD81 T cells in HAM/TSP
patients (118): (i) CD81 T cells may kill HTLV-I-infected glial
cells directly or may cause demyelination indirectly by initiat-
ing an antigen-specific inflammatory response in the central
nervous system, causing nonspecific bystander killing of oligo-
dendrocytes; or, conversely, (ii) virus-specific CD81 T cells
may play only a marginal pathogenic role and their high fre-
quency merely represents an ineffective attempt to control the
infection. In the first case, it would be desirable to eliminate or
anergize the CD81 T cells, whereas in the latter case, it would
be desirable to strengthen the effector functions of the CD81

T cells. Despite this dilemma in determining the precise func-
tion of the CD81-T-cell response in HAM/TSP, a detailed
knowledge about the viral recognition by the CD81 T cells is
necessary to attempt to rationally interfere with the antigen-
specific response.

In HLA-A2-expressing individuals, the majority of the
CD81-T-cell response is directed toward the Tax 11–19/HLA-
A2 complex (68, 136, 138). Crystallization of the Tax 11–19
peptide (LLFGYPVYV) in the groove of HLA-A2 led to the
prediction of four potential TCR contact residues: P1 (Leu11),
P5 (Tyr15), P6 (Pro16), and P8 (Tyr18) (193). The structure of
the ternary complex TCR/Tax 11–19/HLA-A2 confirmed the
importance of P5 (Tyr15), which protrudes into the TCR be-
tween the third variable loop of TCR Va and Vb (Fig. 6) and
forms contacts with TCR Va1, Va2, Va3, and Vb3 (83). The
TCR CDRb3 loop extends across the peptide binding site and
contacts the HLA-A2 a1 domain, P5 to P8 of the Tax 11–19
peptide, and the HLA-A2 a2 domain. The contact between P7
(Val17) and the TCR was unexpected based on the initial
crystal structure of the Tax 11–19/HLA-A2 binary complex
(193). However, binding of TCR to Tax 11–19/HLA-A2 alters
the conformation of this MHC class I-peptide complex, press-
ing P6 2.7 Å down and moving P7 4.6 Å up, which is sufficient
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to contact the TCR (83). In contrast, P1 was not critical for
TCR contact, as predicted by functional data (123, 157). The
TCR binds in a diagonal manner to the HLA-A2/Tax 11–19
complex and this may be a general feature, since a separate
Tax 11–19-reactive TCR, which differed in 16 of 17 residues
that contacted the MHC-peptide complex, binds in a similar
diagonal mode (63).

Detailed knowledge of the TCR-peptide-MHC class I inter-
action allows modulation of the immune response. Single-ami-
no-acid substitutions in the peptide antigen may generate
altered peptide ligands (APLs) with altered functional prop-
erties. Altering the viral peptide antigen may, however, gener-
ate APLs with poor or no ability to bind either MHC class I or
the TCR. Garboczi et al. (84) evaluated the ability of the

ternary complex to assemble with APLs of Tax 11–19 by using
a native gel band shift assay (84). Whereas Tax 11–19, Tax
11–19 (11L3C), and Tax 11–19 (15Y3A) allowed assembly of
the ternary complex, Tax 11–19 (14G3V), Tax 11–19
(16P3Q), and Tax 11–19 (18Y3A) did not, although they did
bind to HLA-A2.

Analyses of Tax-specific CD81-T-cell clones with a TCR
identical to that crystallized in the ternary complex with Tax
11–19/HLA-A2 demonstrated that a Tax 11–19 (15Y3A) sub-
stitution altered the response of the virus-specific CD81 T
cells, since this peptide did not induce clonal expansion or IL-2
production although it did induce a cytolytic response (123).
Similarly, Tax 11–19 (15Y3A) induced a split in chemokine
secretion, with virtually normal MIP-1a secretion but impaired

TABLE 4. CD81-T-cell recognition of HTLV-I peptide epitopes

Epitope sequence Protein Amino acid positions MHC binding CTL response Reference(s)

LLFGYPVYV Tax 11–19 HLA-A2 1 68, 123, 147, 157, 294
ALFGYPVYV Tax 11–19 (11L3A) HLA-A2 1 123
CLFGYPVYV Tax 11–19 (11C3A) HLA-A2 1 84
LLFVYPVYV Tax 11–19 (14G3V) HLA-A2 2 84
LLFGAPVYV Tax 11–19 (15Y3A) HLA-A2 6 84, 123
LLFGYAVYV Tax 11–19 (16P3A) HLA-A2 2 123
LLFGYQVYV Tax 11–19 (16P3Q) HLA-A2 2 84
LLFGYPVAV Tax 11–19 (18Y3A) HLA-A2 2 84, 123
PFGYPVYV Tax 12–19 (12L3P) HLA-A2 2 223
LFRYPVYV Tax 12–19 (14G3R) NTa 2 223
LFGCPVYV Tax 12–19 (15Y3C) NT 2 223
GDCVQGDWCPISGGLb Tax 21–35 HLA-A2 1 223
GDYVQGDWCPISGGL Tax 21–35 (23C3Y) NT 2 223
GDCVQGDWCSISGGL Tax 21–35 (30P3S) NT 2 223
GDCVQGDWCPVSGGL Tax 21–35 (31I3V) NT 2 223
ISGGLCSSARLHRHALb,c Tax 31–46 HLA-A2 1 223
VSGGLCSSARLHRHAL Tax 31–46 (31I3V) NT 2 223
GRVIGSALQFLIPRL Tax 61–75 HLA-B15 1 234
IPPSFLQAMRKYSPFb,c Tax 101–115 HLA-A2 1 223
IPLSFLQAMRKYSPF Tax 101–115 (103P3L) NT 2 223
KYSPFRNGYMEPTLGb,c Tax 111–125 HLA-A2 1 223
KYSPFRSGYMEPTLG Tax 111–125 (117N3S) NT 2 223
KYSPFRNGCMEPTLG Tax 111–125 (119Y3C) NT 2 223
LSFPDPGLRPQNLYTd Tax 131–145 HLA-B35 1 51
QNLYTLWGGSVVCMYLY Tax 141–157 HLA-B35 1 51
VVCMYLYQLSPPITWe Tax 151–165 HLA-A2 1 233
PPITWPLLPHVIFCHb Tax 161–176 HLA-A2 1 51
VIFCHPGQLGAFLTN Tax 172–186 NT 1 51
GAFLTNVPY Tax 181–189 HLA-B35 1f 257
VPYKRIELL Tax 187–195 HLA-B14 1 68, 157
DCLPTTLFQPVRAPV Tax 211–225 HLA-B35 1 51
LTTPGLIWTFTDGTP Tax 241–255 NT 1 51
SFHNLHLLFEEYTNI Tax 301–315 HLA-B35 1 51
EYTNIPISLLFNEKE Tax 311–325 HLA-B35 1 51
DALSAQLY Rex 80–87 HLA-B35 1f 257
YPGRVNEIL Gag 76–84 HLA-B35 1f 257
VPSSSSTPLg Env 247–255 HLA-B35 1f 257
VPSPSSTPLLh Env 247–255 HLA-B35 1f 257
SPPSTPLLYi Env 249–257 HLA-B35 1f 257
YPSLALAPAg Env 257–265 HLA-B35 1f 257
YPSLALAPHg Env 257–265 (265A3H) HLA-B35 1f 257
QAFPQCTIL Pol 177–185 HLA-B35 1f 257
SAQWIPWRLLKRAAC Pol 863–877 HLA-A30 1 233

a NT, not tested.
b Not found to be an HLA-A2 (HLA-A*0201?) binding peptide by Pique et al. (236).
c Not found to be an HLA-A*0201 binding peptide by Koenig et al. (157).
d Tax 130–138 is an HLA-A2 binding peptide (236).
e Tax 155–163 is likely to be the presented epitope (236).
f CTL response tested in HLA-B*3501 transgenic mice.
g HTLV-I ATK and MT-2.
h HTLV-I HS35.
i HTLV-I 1010/3.
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MIP-1b secretion (84) (Table 5). Moreover, when Tax 11–19
(15Y3A) was presented by B cells or T cells, it induced un-
responsiveness (anergy) in the CD81 T cells (123). Anergic
CD81 T cells maintained the ability to lyse target cells (120,
231), to proliferate in response to IL-2, and to respond to TCR
ligation by protein tyrosine phosphorylation and upregulation
of CD40L. The induction of anergy can be prevented by by-
stander mononuclear cells (120). It is possible that novel co-
stimulatory molecules (143), cytokines secreted by professional
APCs, or both, are required during the primary stimulation in
order to prevent CD81-T-cell anergy induction. Thus, anergy
induction by B-cell presentation of antigen indicates that the
types of APC that can induce a productive immune response
are limited and further suggests that the tissue localization of
an immune response to HTLV-I may perhaps be restricted by
the availability of monocytes or dendritic cells. Since Tax pre-
sentation by CD41 T cells also induced CD81-T cell anergy
(120), an important question is whether HTLV-I-infected
CD41 T cells can serve as APCs for educating CD81 T cells in
vivo. Dendritic cells can be infected by HTLV-I (191) and
would be expected to be much more efficient APCs. Thus, the

APC responsible for educating the large number of antiviral
CD81 T cells in HAM/TSP remains to be determined.

Activation of Virus-Specific CD41 T Cells

Although antiviral cellular immune responses usually reside
in the CD81 subset of T cells, virus-specific CD41-T-cell re-
sponses have also been described. However, a predominantly
CD41 virus-specific T-cell response may indicate a defect in
the antigen presentation pathway, since cytosolic viral proteins
are presented by MHC class I (230). By using synthetic pep-
tides from Env gp46, CD41 CTL lines from two HAM/TSP
patients from different geographical areas demonstrated re-
sponses to the same immunogenic region spanning amino acids
196 to 209 (137). This sequence was also shown to elicit a
proliferative response in immunized mice (163). The CD41-
T-cell response in naive (uninfected) individuals to HTLV-I
Env was directed toward Env gp46 peptides spanning amino
acids 76 to 90, 136 to 160, 171 to 185, and 196 to 210 and
toward Env gp21 peptides spanning amino acids 366 to 400 and
436 to 485. The gp21 epitopes were restricted by HLA-
DRB1*0101 and HLA-DRB1*1502, alleles that are frequently
found in HAM/TSP patients from Japan (315). The CD41-T-
cell response to Env peptides in HTLV-I seronegative individ-
uals is characterized by heterogeneous TCR Vb usage (195),
whereas the TCR Vb usage in Env-specific CD41 T cells from
HAM/TSP patients has not been analyzed.

CONCLUSIONS

HTLV-I infects CD41 T cells and incorporates into the
genome as a provirus. Whereas more than 10% of CD41 T
cells may be infected in vivo, only a small fraction of produc-
tively infected T cells cause activation of the immune system.
While an activated immune system is needed to eradicate the
infection, the spread of the virus is also accelerated under
these conditions. The interactions between HTLV-I and the
cellular immune system can be divided into viral interference
with functions of the infected host T cell and the subsequent
interactions between the infected T cell and the cellular im-
mune system.

HTLV-I-mediated activation of the infected host T cell is
induced primarily by the viral protein Tax, which influences
transcriptional activation, signal transduction pathways, cell
cycle control, and apoptosis. These properties of Tax recapit-
ulate T-cell activation events during the G1 phase of the cell
cycle and may well explain the ability of Tax to immortalize T
cells. However, it is not yet clear how HTLV-I induces T-cell
transformation. An important function of IL-2 may be to ac-
tivate CREB/ATF, which are also activated by Tax. Further-

TABLE 5. Altered functional response of virus-specific
CD81-T-cell clones by a single-amino-acid mutation

in an immunodominant Tax peptidea

Function
Response with:

Tax 11–19 Tax 11–19 (15Y3A)

[3H]thymidine incorporation 1 2
Cytotoxicity 1 1
p56lck activity 1 1
IL-2 secretion 1 2
IFN-g secretion 1 (1)
MIP-1a secretion 1 1
MIP-1b secretion 1 (1)

a Data compiled from references 84 and 123.

FIG. 6. Schematic representation of CD81-T-cell recognition of an immu-
nodominant HTLV-I peptide. A diagram of presentation of Tax 11–19 (LLF-
GYPVYV) by HLA-A*0201 to a virus-specific CD81 T cell is shown. Tax 11–19
is anchored in HLA-A*0201 by Leu12 and Val19, whereas the middle of the
peptide bulges toward the TCR (193). Virtually the entire peptide is buried in
the interface between HLA-A*0201 and the TCR, which contacts the binding
site in a diagonal orientation (83). The TCR third variable loops of both Va and
Vb contact the protruding Tyr15 in the middle of the viral peptide. The CDR1
loops of the TCR are also positioned over the peptide, with CDR1a extending
from the N-terminal peptide to Tyr15 and CDR1b extending from the C-terminal
peptide to Tyr15, whereas the TCR CDR2a loop is placed over the a2 domain of
the HLA-A*0201 a-helix and the CDR2b loop is placed over the a1 domain of
the a-helix (83). The central position of Tyr15 explains why altering this amino
acid influences the TCR interaction with the viral peptide/HLA-A*0201 complex
(84, 123).
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more, recent evidence suggests that Tax may promote the
G1/S-phase transition, although this may involve additional
proteins. A role for other viral proteins that may constitutively
activate the IL-2R pathway in HTLV-I-immortalized T cells
has also been suggested. In addition, Tax may abrogate a
mitotic checkpoint.

By virtue of their activated state, HTLV-I-infected T cells
can nonspecifically activate resting, uninfected T cells via virus-
mediated upregulation of adhesion molecules. This may also
favor viral dissemination, since transmission of HTLV-I usu-
ally requires T-cell–T-cell interaction. Moreover, the induction
of a remarkably high frequency of antiviral CD81 T cells does
not appear to eliminate or control the HTLV-I infection. In-
deed, individuals with a high frequency of virus-specific CD81

T cells have a high viral load, indicating a state of chronic
immune system stimulation. It is not understood why such a
high frequency of antiviral CD81 T cells (1 in 4 CD81 T cells
may be specific for a single viral epitope) can coexist with such
a high frequency of virus-infected CD41 T cells. Perhaps the
circulation of infected CD41 T cells allows them to escape
CD81-T-cell-mediated killing.

Thus, the complex interaction of HTLV-I with T cells allows
the virus to persist in the host by expanding the population of
infected T cells and by enhancing the spread of the virus to
uninfected resting T cells. The host responds to the infection
by a vigorous education of virus-specific CD81 T cells but fails
to eliminate the virus. Our detailed knowledge of the molec-
ular interactions between virus-specific CD81 T cells and im-
munodominant viral epitopes holds promise for the develop-
ment of specific antiviral therapy.
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21. Bieganowska, K., P. Höllsberg, G. J. Buckle, D.-G. Lim, T. J. Greten, J.
Schneck, J. Altman, S. Jacobson, S. L. Ledis, B. Hanchard, J. Chin, O.
Morgan, P. A. Roth, and D. A. Hafler. 1999. Direct analysis of viral-specific
CD81 T cells with soluble HLA-A2/Tax11-19 tetramer complexes in pa-
tients with human T cell lymphotropic virus type I-associated myelopathy.
J. Immunol. 162:1765–1771.

22. Bierer, B., S. Schreiber, and S. Burakoff. 1991. The effect of the immuno-
suppressant FK506 on alternate pathways of T cell activation. Eur. J. Im-
munol. 21:439–445.

23. Bierer, B. E., J. Barbosa, S. Herrmann, and S. J. Burakoff. 1988. Interac-
tion of CD2 with its ligand, LFA-3, in human T cell proliferation. J. Im-
munol. 140:3358–3363.

24. Bierer, B. E., A. Peterson, J. C. Gorga, S. H. Herrmann, and S. J. Burakoff.
1988. Synergistic T cell activation via the physiological ligands for CD2 and
the T cell receptor. J. Exp. Med. 168:1145–1156.

25. Bockenstedt, L. K., M. A. Goldsmith, M. Dustin, D. Olive, T. A. Springer,
and A. Weiss. 1988. The CD2 ligand LFA-3 activates T cells but depends on
the expression and function of the antigen receptor. J. Immunol. 141:1904–
1911.

26. Bodor, J., W. Walker, E. Flemington, A. L. Spetz, and J. F. Habener. 1995.
Modulation of Tax and PKA-mediated expression of HTLV-I promoter via
cAMP response element binding and modulator proteins CREB and
CREM. FEBS Lett. 377:413–418.

27. Brady, J. N. 1996. Biology of HTLV-I: host cell interactions, p. 79–112. In
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123. Höllsberg, P., W. E. J. Weber, F. Dangond, V. Batra, A. Sette, and D. A.
Hafler. 1995. Differential activation of proliferation and cytotoxicity in
human T-cell lymphotropic virus type I Tax-specific CD8 T cells by an
altered peptide ligand. Proc. Natl. Acad. Sci. USA 92:4036–4040.
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256. Scholz, C., D. A. Hafler, and P. Höllsberg. 1996. Downregulation of IL-10
secretion and enhanced antigen-presenting abilities following HTLV-I in-
fection of T cells. J. Neurosci. Res. 45:786–794.
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