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Abstract 

Background  EQ5D is a generic measure of health. It provides a single index value for health status that can be used 
in the clinical and economic evaluation of healthcare. Oxford Knee Score (OKS) is a joint-specific outcome measure 
tool designed to assess symptoms and function in osteoarthritis patients after joint replacement surgery. Though 
widely used, it has the disadvantage of lacking health index value. To fill the gap between functional and generic 
questionnaires with economic value, we linked generic EQ-5D-5L to the specific OKS to give a single index value for 
health status in KOA patients.

Questions/purposes  Developing and evaluating an algorithm to estimate EuroQoL generic health utility scores (EQ-
5D-5L) from the disease-specific OKS using data from patients with knee osteoarthritis (KO).

Patients and methods  This is a cross-sectional study of 571 patients with KO. We used four distinct mapping algo‑
rithms: Cumulative Probability for Ordinal Data, Penalized Ordinal Regression, CART (Classification and Regression 
Trees), and Ordinal random forest. We compared the resultant models’ degrees of accuracy.

Results  Mobility was best predicted by penalized regression with pre-processed predictors, usual activities by ran‑
dom forest, pain/discomfort by cumulative probability with pre-processed predictors, self-care by random forest with 
RFE (recursive feature elimination) predictors, and anxiety/depression by CART with RFE predictors. Model accuracy 
was lowest with anxiety/depression and highest with mobility and usual activities. Using available country value sets, 
the average MAE was 0.098 ± 0.022, ranging from 0.063 to 0.142; and the average MSE was 0.020 ± 0.008 ranging from 
0.008 to 0.042.

Conclusions  The current study derived accurate mapping techniques from OKS to the domains of EQ-5D-5L, allow‑
ing for the computation of QALYs in economic evaluations. A machine learning-based strategy offers a viable map‑
ping alternative that merits further exploration.

Keywords  Model mapping, EQ-5D-5L, Quality of life utility index, Oxford Knee Score (OKS) questionnaire

Introduction
Osteoarthritis (OA) is a chronic disease that affects the 
knee joint. The lifetime risk of knee osteoarthritis (KOA) 
is approximately 46%. Globally, 85% of the burden of 
osteoarthritis is attributable to KOA [2], making it the 
eleventh contributor to global disability and the 38th in 
terms of disability-adjusted life years (DALYs) [3].
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Osteoarthritis impacts every part of daily life. Associ-
ated deformity results in a rigid, unstable, and painful 
gait that reduces the independent walking distance and is 
accompanied by weight gain, sleep problems, and depres-
sion [4].

KOA induces substantial costs. With the ageing of the 
population and the increasing obesity in many countries, 
the economic burden on healthcare systems could be 
even higher in the coming years [36]. This requires deci-
sion-makers to rely on economic evaluations for optimal 
resource allocation and maximizing health benefits from 
fixed budgets.

In economic evaluations, generic questionnaires are 
preferable to disease-specific questionnaires in order to 
compare the value of interventions across various disease 
areas and programs. Most of the official national phar-
macoeconomic evaluation guidelines mention EQ-5D by 
name as a preferred instrument for the determination of 
health utilities or as an illustration of a suitable instru-
ment. Of those that did not specify a specific measure, 
the majority of guidelines favored calculating utilities 
using national preference weights, which are generally 
derived from societal preferences for health states [29].

However, the Oxford knee score (OKS) was used in the 
majority of published studies evaluating the interventions 
used to treat KOA; this score has the drawbacks of being 
disease-specific and lacking a preference-based index 
value [26].

Mapping can offer a solution when EQ-5D scores are 
unavailable for interventions of interest, where health-
related utilities can be generated from another meas-
ure of health outcomes [5]. By mapping OKS scores to 
EQ-5D, we can use results from OKS-based previous 
studies without having to re-run them using EQ-5D 
questionnaires.

Two strategies are used in mapping studies: direct util-
ity mapping and indirect response mapping. The EQ-5D 
index value (utility) is predicted using direct mapping, 
whereas the responses to EQ-five domains are predicted 
using response mapping. Although response mapping 
requires an additional step to estimate the expected index 
value using available EQ-5D tariffs, indirect mapping 
allows for the prediction of EQ-5D-5L utility values for 
any country. Direct mapping would only be applicable for 
the country that produces the tariff [19].

Aim of the work
This study aims to develop indirect mapping algorithms 
that can predict responses to the five domains of EQ-5D 
based on OKS values. Utility values can be then derived 

from the predicted responses as a separate second step 
using available EQ-5D tariffs.

Material and methods
Included patients
Adults over 18  years old with KOA based on clinical 
and radiographic characteristics, with or without total 
knee arthroplasty (TKA), were included in the samples. 
Patients whose conditions prevented them from com-
pleting the questionnaires were excluded (e.g., severe 
organic or psychiatric diseases). The Institutional Review 
Board of Medical Research Institute has granted ethi-
cal approval following U.S. Department of Health and 
Human Services (IORG 0008812) guidelines and other 
applicable regulations. The research adhered to the Dec-
laration of Helsinki’s principles.

Two cross-sectional samples were collected: estima-
tion and external validation samples. For the estimation 
sample, 456 (80% of the whole sample) were recruited 
between December 2020 and May 2021 and used to 
develop the model. From September to October 2021, 
the external validation sample (n = 115) was collected 
to assess the generalizability of the developed model. By 
recruiting patients at different times, we aimed to have 
structurally different samples [28]. Justice AC Suggested 
evaluating the generalizability of a model using data una-
vailable at the time of model development. When the 
external validation sample closely resembles the estima-
tion sample, the evaluation focuses on reproducibility 
rather than generalizability.

Using a self-administered questionnaire, the following 
data was gathered:

1.	 Patient characteristics: sex, age, weight, height, dura-
tion of OA, presence of TKA, and co-morbidities.

2.	 OKS questionnaire (12 questions). Each response 
level ranges between 0 and 4. The ratings ranged 
from 0 to 48, with 48 representing the best health 
(7,8). In Egypt, the questionnaire was translated and 
validated. (9) The score was classified as very mild 
(40 to 48), mild (30 to 39), moderate (20 to 29), and 
severe (0–19) [6] .

3.	 The EQ-5D-5L questionnaire evaluates health status 
in five domains: mobility, self-care, routine activi-
ties, pain/discomfort, and anxiety/depression. Each 
response level ranges between 1 and 5. In addition, 
the patient is required to record their overall health 
status using a visual analogue scale (EQ-VAS). Fol-
lowing assessment, the scores from the descriptive 
component can be reported as a five-digit number, 
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known as profile scores. There are a total of 3,125 
profile scores for EQ-5D-5L, ranging from 11,111 
(full health) to 55,555 (worst health). The profile 
score can be converted into a utility index using a 
country-specific value set. Two types of value sets 
are available for many countries: valuation value sets, 
which were generated using a time trade-off (cTTO) 
valuation technique supplemented by a discrete 
choice experiment (DCE), and cross-walk value sets, 
which were generated by mapping between the EQ-
5D-5L and EQ-5D-3L descriptive systems [21]. All 
countries’ value sets were obtained from the Euro-
Qol.org website [7].

Statistical analysis
Conceptual overlap
Spearman’s rank correlation was used to determine the 
conceptual overlap between the domains of EQ-5D-5L 
and the 12 questions of OKS. The similarity between the 
two measurements was examined using an exploratory 
Ordinary Least Squares (OLS) model, where the depend-
ent variable was EQ-5D-5L, and the regressor was the 
total OKS score.

Method of model selection, building, and evaluation 
(Fig. 1).

Selection of the optimum model structure
Four classes of ordinal models were evaluated: two 
regression models (cumulative model and penalized 
ordinal regression) and two tree-based models (ordinal 
classification and regression trees (O-CART) and ordi-
nal forests (OF)). The binomial and multinomial mod-
els were ruled out because they disregard information 
about the outcome’s order. Each model class can accept 
distinct structures with varying performance. The struc-
ture of a model is determined by its hyperparameters and 
their values. Box 1 describes the model classes and their 
hyperparameters in detail.

Which predictors are incorporated into the model, and 
in what form have a substantial impact on its predictive 
performance. Consequently, each model structure was 
constructed using four distinct sets of predictors (all 
derived from OKS questions) (1) all predictors; (2) REF-
based significant predictors; (3) model-based significant 
predictors; and (4) principal components. Box 2 provides 
a summary of how sets were identified.

We employed 5 × threefold cross-validations to deter-
mine the optimal model structure based on model trials. 
The estimation sample was divided into five non-overlap-
ping folds, with each fold serving as an internal valida-
tion set to assess the accuracy of the model developed 

Fig. 1  Summarizes the methods used for model selection, building, and evaluation
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using the other four folds. This was repeated three times 
for every model structure and predictor set. Each mod-
el’s cross-validated accuracy rate was the mean of the 
5 × threefold accuracy rates. The optimal model struc-
ture was the one with the highest accuracy rate when 
cross-validated.

Model building
After identifying the optimum model structure and best 
set of predictors in the previous step, the whole estima-
tion sample was used to estimate the model parameters. 
Model parameters specify how to calculate the outcome 
from the predictors. They are estimated by optimizing 
the model’s fitness for the estimation sample (Table 1).

Model evaluation
Evaluation of the predictive performance of the top mod-
els was conducted as follows:

1.	 Comparing the accuracy of no model (baseline accu-
racy) to the accuracy of the best model.

	 The base level of precision for each domain is the 
proportion of the most prevalent level. [8]. The crude 

accuracy attained by the final model for each domain 
is the proportion of accurate predictions made on 
estimation and external validation samples[9].

2.	 Estimating the performance of models in terms of 
errors in measuring predicted utility values

	 The levels in the five domains were combined to 
determine both the actual and predicted profile 
scores. Actual and predicted utilities were estimated 
using available tariffs (n=39) and eq5d R package 
[14], For each value set, the mean absolute error 
(MAE) and mean squared error (MSE) for differences 
between observed and predicted EQ-5D-5L index 
scores were calculated. Using the boot package, the 
95% confidence interval for these measurements was 
calculated [15].

Comparing the MAE between utilities above and below 
the median estimated utility to assess the model’s ability 
to fit patients with better and worse estimated utilities. 
We followed the Mapping onto Preference-based Meas-
ures Reporting Standards (MAPS) statement to improve 
the clarity, transparency, and thoroughness of mapping 
study reporting [33].

Model building and evaluation were conducted using 
caret R package [10].

Table 1  Summary for the structure and number of models tried to build a mapping algorithm from OKS to each of the five domains 
of EQ-5D-5L

a Refers to the number of model structures per every model class. It is the product of multiplication of the number of the values taken by each hyperparameter, e.g., in 
the cumulative model, Parallelism and Link can take two and 5 different values respectively, resulting in 10 different CM structures
b Refers to the number of model trials per every model class. It is the product of multiplication of the number of structures and the number of tried sets of predictors 
(4 sets). Link, link function used to transform cumulative probability into an unbounded scale; α, the term of penalty; criteria, criteria used for selecting the optimum 
magnitude of penalty; CP, Complexity Parameter, Split, criteria for splitting; Prune: criteria for pruning; nsets, number of score sets tried before the approximation of 
the optimal score set; ntreeperdiv, number of trees in the smaller forests; ntreefinal, number of trees in the final OF constructed using the optimized score set

Model class Hyperparameters Model 
structures (n)a

Model 
trials 
(n)b

Hyperparameter Values Number

Cumulative model (CM) Parallelism TRUE or FALSE 2 10 40

Link Logit, Probit, Cauchit, Cloglog, or Logc 5

Penalized regression Alpha Ridge or Lasso 2 16 64

Criteria AIC or BIC 2

Link Logit, Probit, Cauchit, or Cloglog, 4

Ordinal CART​ CP 20 randomly selected values 20 80 320

Split Misclassification cost in absolute or quad‑
ratic terms

2

Prune Misclassification rate or cost 2

Ordinal forest Nsets 50, 100, or 150 3 27 108

Ntreeperdiv 50, 100, or 150 3

Ntreefinal 200, 400, or 600 3

133 532
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Results
General characteristics
The estimation sample
The estimation sample had a mean age of 
47.6 ± 13.3 years, and 321 (70.4%) were female. OA lasted 
an average of 6.7 ± 6.5 years. About 26% of patients com-
plained of back pain, with hypertension being the most 
common comorbidity (Additional file 1). Approximately 

13.4% had undergone TKR, 24.1% were indicated for 
TKR, and 62.5% were not. Level 1 was the most fre-
quently reported level for mobility (27%) and self-care 
(60%), level 2 for typical activities (25%), levels 2 and 3 for 
pain/discomfort (30%), and level 3 for anxiety/depression 
(30%). The average EQ-VAS was 61.2 ± 24.7

The estimation sample expressed 206 of the 3125 
EQ-5D-5L health conditions, with utilities ranging 

Box 1  Structures of model classes used to derive the mapping algorithm for the EQ-5D-5L

1. Cumulative model (CM)
It predicts the cumulative probability of an observation being at or below a given level on the outcome. It assumes that ratings originate from the 
categorization of a latent continuous variable. We varied the structure of CM by modifying the following hyperparameters:
   a. Parallel curves or not. With parallel curves, predictors have the same coefficients across different levels of the outcome. With non-parallel curves, 
predictors were allowed to have different coefficients
  b. Link functions. Five-link functions were tried to transform the cumulative probability (p) to a continuous unbounded scale and can be modeled 
using ordinal least square regression. They were logit(p) = log(

p
1−p

);probit(p) = ϕ−1(p);cauchit(p) = tan(π ∗ (p− 0.5)) ; cloglog = ln(−ln(1− p)) and 
logc = −ln(1− p)
2. Penalized regression model [27, 38, 39]
It fits CM that is penalized for having too many variables in the model. Imposing a penalty reduces the coefficient values; thus, the less contributive 
predictors have a coefficient close to or equal zero. We varied the structure of penalized regression model by modifying the following hyperparameters:
   a. Penalty term (α). We set α = 0 if penalty was applied to the sum of squared coefficients (Ridge penalized regression), and α = 1 if penalty was 
applied to the sum of absolute coefficients (LASSO penalized regression)
   b. Criteria used to select the magnitude of penalty. AIC or BIC
   c. Link functions. Four link functions were used: logit(p) = log(

p
1−p

);probit(p) = ϕ−1(p);cauchit(p) = tan(π ∗ (p− 0.5)) ; and cloglog = ln(−ln(1− p))
3. Ordinal CART​
 CART [18] produces a tree to predict both linear and nominal outcomes. It is built-in splitting and pruning. With splitting, the data is partitioned into 
smaller subsets to minimize impurity in the new subsets as measured by Gini’s index. Splitting continues till final homogeneous subsets; however, they 
might consist of a few similar data points. At this stage, the model predicts the estimation data perfectly, but might not predict a new data point well 
(overfitting). To avoid this, the tree is pruned back to the point of the least cross-validated overall misclassification
We used a modified approach of CART, where a score is assigned to the ordered categories of the outcome [22]. This allows to assign a cost of misclas‑
sification; The larger the distance between the actual and predicted levels, the higher the weight given to the misclassification. We varied the structure 
of produced tree by modifying the following hyperparameters:
   a. Cost of misclassification in the generalized Gini index was calculated in absolute or quadratic terms
   b. Complexity Parameter (CP) is the minimum improvement needed to split at each node. If the split doesn’t yield at least that much benefit (the value 
of cp), the split does not take place. We tried 20 randomly selected values for CP
   c. The cross-validated overall misclassification (used to determine pruning) was measured using:
      Misclassification error rate, all misclassifications were given same weight
      Misclassification cost rate, different weights were given to different misclassifications
4. Ordinal forests (OF)
 Random forest (RF) [17] is a flexible machine-learning algorithm to predict linear and nominal outcomes. It builds multiple decision trees and merges 
them to produce an accurate and stable prediction. For every tree, it selects a random number of participants and predictors
We used a modified version of RF [22, 32]. It translates ordinal levels into scores, but instead of using a fixed score set, it optimizes them. It tries different 
score sets and builds a small forest to estimate the expected predictive performance of each set. The optimum score set (that achieved the highest 
predictions using small forests) is used to build the final OF
We varied the structure of the OF by modifying the following hyperparameters:
   a. Number of score sets tried before the approximation of the optimal score set maybe 50, 100, or 150 sets
   b. Number of trees in the smaller forests maybe 50, 100, or 150 trees

 c. Number of trees in the final OF using the optimized score set maybe 200, 400, or 600 final trees

Box 2  Structure of the different sets of OKS questions used to feed the models to derive the mapping algorithm for the EQ-5D-5L

1. All the 12 OKS questions as predictors
2. RFE-based important predictors are a subset of OKS questions determined by recursive feature elimination (RFE). RFE fits a random forest model with 
5× 5-fold cross-validation to recursively eliminate predictors that were not required to build an accurate model [11]
3. Model-based important predictors are a subset of OKS questions which is most relevant to prediction as determined by a built-in algorithm within 
every model class
4. Pre-processed predictors:

  The 12 OKS questions were scaled and centered. Then, principal components (Explaining 90% of the variance in OKS questions) were extracted 
using principal component analysis (PCA)
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Table 2  Description of EQ-5D-5L domains and VAS as well as OKS in the Estimation sample

Question/Score Whole estimation sample TKR

No Yes

Not indicated Indicated

(n = 456) (n = 285) (n = 110) (n = 61)

Mobility

 L1 121 26.5% 102 35.8% 2 1.8% 17 27.9%

 L2 111 24.3% 93 32.6% 3 2.7% 15 24.6%

 L3 103 22.6% 80 28.1% 15 13.6% 8 13.1%

 L4 94 20.6% 10 3.5% 66 60% 18 29.5%

 L5 27 5.9% – 0% 24 21.8% 3 4.9%

Self-care

 L1 271 59.4% 219 76.8% 16 14.5% 36 59%

 L2 61 13.4% 44 15.4% 10 9.1% 7 11.5%

 L3 62 13.6% 21 7.4% 34 30.9% 7 11.5%

 L4 38 8.3% – 0% 31 28.2% 7 11.5%

 L5 24 5.3% 1 0.4% 19 17.3% 4 6.6%

Usual activities

 L1 112 24.6% 97 34% 1 0.9% 14 23%

 L2 116 25.4% 97 34% 4 3.6% 15 24.6%

 L3 113 24.8% 80 28.1% 20 18.2% 13 21.3%

 L4 68 14.9% 10 3.5% 47 42.7% 11 18%

 L5 47 10.3% 1 0.4% 38 34.5% 8 13.1%

Pain/discomfort

 L1 38 8.3% 30 10.5% 1 0.9% 7 11.5%

 L2 140 30.7% 120 42.1% 2 1.8% 18 29.5%

 L3 140 30.7% 111 38.9% 15 13.6% 14 23%

 L4 77 16.9% 20 7.0% 45 40.9% 12 19.7%

 L5 61 13.4% 4 1.4% 47 42.7% 10 16.4%

Anxiety/depression

 L1 118 25.9% 86 30.2% 10 9.1% 22 36.1%

 L2 114 25% 89 31.2% 11 10% 14 23%

 L3 138 30.3% 87 30.5% 40 36.4% 11 18%

 L4 48 10.5% 16 5.6% 23 20.9% 9 14.8%

 L5 38 8.3% 7 2.5% 26 23.6% 5 8.2%

EQ-5D VAS€ 61.2 ± 24.7 69.8 ± 17.3 38.5 ± 25.8 59.6 ± 27.5

Egypt utility 0.38 ± 0.53 0.65 ± 0.26  − 0.30 ± 0.40 0.35 ± 0.56

Total OKS 27.3 ± 13.2 34.3 ± 7.46 10.1 ± 5.75 25.3 ± 14.5

Usual level of pain 1.11 ± 1.11 1.44 ± 1.04 0.20 ± 0.57 1.18 ± 1.26

Trouble with washing and drying 3.06 ± 1.28 3.66 ± 0.72 1.56 ± 1.10 2.95 ± 1.40

Trouble with transport 2.39 ± 1.33 3.01 ± 0.96 0.91 ± 0.80 2.20 ± 1.47

Walking time before severe pain 2.70 ± 1.23 3.29 ± 0.79 1.36 ± 1.00 2.34 ± 1.29

Pain on standing up from sitting 2.16 ± 1.19 2.61 ± 0.98 1.00 ± 0.77 2.13 ± 1.26

Limping 2.38 ± 1.47 3.06 ± 0.98 0.76 ± 0.98 2.10 ± 1.71

Difficulty kneeling 2.11 ± 1.42 2.59 ± 1.23 0.94 ± 1.1 1.95 ± 1.53

Pain at night 2.16 ± 1.45 2.80 ± 1.15 0.60 ± 0.74 2.03 ± 1.51

Pain interferes with work 2.12 ± 1.36 2.75 ± 0.98 0.53 ± 0.63 2.03 ± 1.47

Sense of knee instability 2.44 ± 1.43 3.14 ± 0.89 0.77 ± 0.93 2.20 ± 1.63
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from − 0.964 to 1 (Additional file 1). Maximum and mini-
mum utility indices were reported by equal numbers 
(3.1% and 2.2%, respectively) (Table 2).

The external validation sample
The external validation sample had a mean age of 
49 ± 14.1  years, and 78 (80.9%) were female. On aver-
age, osteoarthritis lasted 6.7 ± 6.5  years. About 28% of 
patients complained of back pain, with hypertension 
being the most common comorbidity (Additional file 1). 
Approximately 24.3% had undergone TKR, 18.3% were 
indicated for TKR, and 57.4% were not.

Level 1 was the most frequently reported level for 
mobility (39%), self-care (57%), usual activities (30%) and 
anxiety/depression (38.3%), and level 3 for pain/discom-
fort (33%). The average EQ-VAS was 69.3 ± 21.3.

They expressed 67 different EQ-5D-5L health conditions, 
with utilities ranging from − 0.732 to 1 (Additional file 1). 
Maximum and minimum utility indices were reported by 
10.4% and 0.9%, respectively (Table 3).

Exploratory data analysis
Conceptual overlap
The significant correlations between EQ-5D-5L domains 
and OKS questions ranged from − 0.79 to − 0.28 (Addi-
tional file 1). The prevalence of blue hues throughout the 
plot indicates a robust first principal component, which 
accounts for 66.35 per cent of the total variance.

Important questions as determined by recursive feature 
elimination (RFE)
RFE ranks predictors based on their contribution to 
every domain (Additional file  1). All questions (n = 12) 
contributed to mobility. Eleven, eight, and seven ques-
tions pertained to usual activities, pain/discomfort, and 

self-care, respectively. Only three questions contributed 
to anxiety/depression.

"Walking time before severe pain" was the first con-
tributing question in predicting mobility. “Troubles with 
washing and drying" topped the self-care list, and "Pain 
interferes with work" topped the lists for usual activities, 
pain/discomfort, and anxiety/depression.

Model building on the estimation sample
After constructing models, we compared and selected the 
most accurate model for each domain (Table  4) (Addi-
tional file  1). Cross-validation accuracy was highest for 
self-care and lowest for anxiety/depression. Cross-valida-
tion yielded coefficients of variation of 5% for self-care, 
6% for mobility and pain/discomfort, 7% for usual activ-
ity, and 9% for anxiety/depression.

Model evaluation on the external validation sample
In the external validation sample, the performance of 
the models predicting all domains yielded greater crude 
accuracy than the baseline accuracy (Table 4). The mobil-
ity domain’s predictive accuracy increased from 26.5% 
(baseline accuracy) to 65.6% in the estimation sample and 
to 68.2% in the external validation sample. The models’ 
accuracy was lowest for anxiety/depression and highest 
for mobility and usual activity.

The five EQ-5D domains were predicted using the 
models with the highest accuracies. Mobility was pre-
dicted by penalized regression with pre-processed 
predictors, usual activities by random forest, pain/dis-
comfort by cumulative probability with pre-processed 
predictors, self-care by random forest with RFE pre-
dictors, and anxiety/depression by CART with RFE 
predictors.

Table 2  (continued)

Values are number and % or mean ± SD

€ missing cases in vas are 18 (3.9%)

OKS is Oxford knee score, each question ranges (0–4), (0) means severe, (4) means very mild

L level of the domain of EQ-5D-5L, each domain ranges (1–5), (1) means no problems, (5) means unable to / extreme problems

VAS is a visual analogue scale, it ranges (0–100), (0) means the worst health you can imagine, (100) means the best health you can imagine

Egypt utility ranges from − 0.964 for the worst health state (55555) to 1 for full health (11111)

% are estimated from columns

Question/Score Whole estimation sample TKR

No Yes

Not indicated Indicated

(n = 456) (n = 285) (n = 110) (n = 61)

Can do household shopping alone 2.66 ± 1.53 3.48 ± 0.88 0.76 ± 0.95 2.26 ± 1.60

Trouble walking downstairs 1.98 ± 1.25 2.49 ± 1.00 0.66 ± 0.63 1.95 ± 1.41
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Table 3  Description of EQ-5D-5L domains and VAS as well as OKS in the external validation sample

Whole external validation 
sample

TKR

No Yes

Not indicated Indicated

(n = 115) (n = 66) (n = 21) (n = 28)

Mobility

 L1 45 39.1% 31 47% – 0% 14 50%

 L2 18 15.7% 14 21.2% – 0% 4 14.3%

 L3 30 26.1% 18 27.3% 4 19.0% 8 28.6%

 L4 17 14.8% 3 4.5% 12 57.1% 2 7.1%

 L5 5 4.3% – 0% 5 23.8% – 0%

Self-care

 L1 66 57.4% 49 74.2% – 0% 17 60.7%

 L2 23 20% 12 18.2% 5 23.8% 6 21.4%

 L3 12 10.4% 4 6.1% 5 23.8% 3 10.7%

 L4 11 9.6% 1 1.5% 8 38.1% 2 7.1%

 L5 3 2.6% – 0% 3 14.3% – 0%

Usual activities

 L1 35 30.4% 24 36.4% – 0% 11 39.3%

 L2 31 27% 23 34.8% – 0% 8 28.6%

 L3 28 24.3% 17 25.8% 5 23.8% 6 21.4%

 L4 14 12.2% 2 3.0% 10 47.6% 2 7.1%

 L5 7 6.1% – 0% 6 28.6% 1 3.6%

Pain/discomfort

 L1 19 16.5% 9 13.6% – 0% 10 35.7%

 L2 37 32.2% 29 43.9% – 0% 8 28.6%

 L3 38 33% 24 36.4% 5 23.8% 9 32.1%

 L4 11 9.6% 2 3% 9 42.9% – 0%

 L5 10 8.7% 2 3% 7 33.3% 1 3.6%

Anxiety/depression

 L1 44 38.3% 24 36.4% 3 14.3% 17 60.7%

 L2 35 30.4% 22 33.3% 5 23.8% 8 28.6%

 L3 28 24.3% 18 27.3% 9 42.9% 1 3.6%

 L4 6 5.2% 1 1.5% 3 14.3% 2 7.1%

 L5 2 1.7% 1 1.5% 1 4.8% – 0%

EQ-5D VAS 69.3 ± 21.3 74.3 ± 17.8 47.4 ± 19.9 73.9 ± 19.9

Egypt utility 0.52 ± 0.47 0.68 ± 0.24  − 0.22 ± 0.37 0.69 ± 0.41

Total OKS 30.6 ± 12.4 34.8 ± 7.83 10.8 ± 5.63 35.5 ± 10.3

Usual level of pain 1.50 ± 1.40 1.45 ± 1.17 0.095 ± 0.3 2.68 ± 1.39

Trouble with washing and drying 3.19 ± 1.19 3.67 ± 0.69 1.33 ± 0.97 3.46 ± 0.92

Trouble with transport 2.56 ± 1.18 2.92 ± 0.90 1.10 ± 0.94 2.79 ± 1.10

Walking time before severe pain 2.93 ± 1.13 3.52 ± 0.75 1.43 ± 0.75 2.68 ± 0.98

Pain on standing up from sitting 2.48 ± 1.19 2.64 ± 1.00 1.00 ± 0.71 3.21 ± 0.96

Limping 2.83 ± 1.25 3.18 ± 0.89 1.19 ± 0.99 3.21 ± 1.20

Difficulty kneeling 2.08 ± 1.49 2.38 ± 1.37 0.57 ± 0.87 2.50 ± 1.45

Pain at night 2.73 ± 1.33 3.06 ± 1.16 1.00 ± 0.89 3.25 ± 0.84

Pain interferes with work 2.39 ± 1.30 2.68 ± 1.13 0.72 ± 0.46 2.96 ± 1.07

Sense of knee instability 2.80 ± 1.26 3.30 ± 0.82 0.95 ± 0.86 3.00 ± 1.12

Can do household shopping alone 2.94 ± 1.37 3.55 ± 0.89 0.95 ± 1.20 3.00 ± 0.99

Trouble walking downstairs 2.16 ± 1.28 2.45 ± 1.04 0.48 ± 0.75 2.71 ± 1.08
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Actual and predicted EQ-5D-5L utility values were esti-
mated for all countries with available tariffs (either valu-
ation technique VT or crosswalk CW tariffs), and errors 
in predicted utility values were calculated. The average 
MAE was 0.098 ± 0.022, ranging from 0.063 to 0.142, and 
the average MSE was 0.020 ± 0.008 ranging from 0.008 to 
0.042 (Table 5).

The developed algorithms’ accuracies vary between 
countries and tariff types. Sweden and South Korea had 
the smallest MSEs in utility estimated using the valuation 
technique tariff, while Ireland, Denmark, and Taiwan had 
the highest. In utilities estimated using crosswalk tariffs, 
Zimbabwe, Japan, and the United States exhibited the 

smallest MSEs. The largest MSEs were in Spain and the 
United Kingdom.

We compared the MAE between utilities above and 
below the median estimated utility to assess the fit 
of models in patients with better and worse utilities 
(Table 5). The MAE was less than 0.20 in both groups.

Discussion
The majority of literature evaluating osteoarthritis treat-
ment technologies utilized OKS. The mapping of OKS 
to EQ-5D-5L allows this literature to be utilized in eco-
nomic evaluations. The application of response mapping, 

Table 3  (continued)
Values are number and % or mean ± SD

OKS is Oxford knee score, each question ranges (0–4), (0) means severe, (4) means very mild

L level of the domain of EQ-5D-5L, each domain ranges (1–5), (1) means no problems, (5) means unable to / extreme problems

VAS is a visual analogue scale, it ranges (0–100), (0) means the worst health you can imagine, (100) means the best health you can imagine

Egypt utility ranges from − 0.964 for the worst health state (55555) to 1 for full health (11111)

% are estimated from columns

Table 4  Measures of performance (accuracy) of the best models in the five domains on the estimation and external validation sample

1 Baseline accuracy in each domain is the proportion of the most common level
2 The crude accuracy is the proportion of all correct predictions
3 The cross-validated accuracy rate was the average of the 5 × 3-folds accuracy rates conducted on the estimation sample. MO is mobility, SC self-care, UA usual 
activities, PD pain/discomfort, and AD anxiety/depression. Pre-processed predictors extracted using PCA; alpha (α), the term of penalty; criteria, criteria used for 
selecting the optimum magnitude of penalty; Link, link function used to transform cumulative probability into an unbounded scale; RFE, recursive feature elimination; 
nsets, number of score sets tried before the approximation of the optimal score set; ntreeperdiv, number of trees in the smaller forests; ntreefinal, number of trees in 
the final OF constructed using the optimized score set; parallel, parallel curves or not; CP, complexity parameter; Split, criteria for splitting; Prune, criteria for pruning

Domain Model type Preparation of predictors Tuned hyperparameters Accuracy

Estimation sample External 
validation 
sample

Baseline1 Crude2 CV3 Crude2

(95% CI) (95% CI) (SD) (95% CI)

MO Penalized regression Pre-processed alpha = 1 26.5%
(22.6,.30.9)

0.658
(0.612, 0.701)

0.656 0.687

criteria = aic (0.037) (0.593, 0.770)

link = cauchit

SC Random forest RFE nsets = 150 59.4%
 (54.7, 63.9)

0.840
 (0.803, 0.872)

0.724 0.669

ntreeperdiv = 150 (0.039) (0.575, 0.754)

ntreefinal = 600

UA Random forest All predictors nsets = 50 25.4%
 (21.5, 29.7)

0.882
(0.848, 0.91)

0.604 0.687

ntreeperdiv = 100 (0.044) (0.593, 0.770)

ntreefinal = 200

PD Cumulative probability model Pre-processed parallel = TRUE 30.7%
 (26.5, 35.2)

0.686
 (0.642, 0.729)

0.671 0.678

link = cauchit (0.039) (0.584, 0.762)

AD CART​ RFE cp = 0.00645 30.3%
 (26.1, 34.7)

0.452
 (0.405, 0.499)

0.435 0.357

split = abs (0.038) (0.269, 0.451)

prune = mc
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Table 5  Error measurement for predicted utility values based on OKS in the external validation sample using different countries value 
sets

MAE mean absolute error; MSE mean squared error; VT valuation technique; CW crosswalk method

95% confidence intervals based on bootstrap percentiles were provided in parentheses

Country Type of value 
set

MAE MSE whole external 
validation sample(n = 115, 
100%)Whole external 

validation sample
Utility ≥ median Utility < median

(n = 115, 100%) (n = 58, 50.43%) (n = 57, 49.57%)

Canada VT 0.076 (0.072–0.085) 0.043 (0.029–0.049) 0.109 (0.101–0.128) 0.011 (0.010–0.013)

China VT 0.097 (0.086–0.098) 0.072 (0.058–0.091) 0.123 (0.109–0.134) 0.017 (0.014–0.017)

Denmark VT 0.127 (0.127–0.148) 0.076 (0.077–0.078) 0.178 (0.165–0.179) 0.035 (0.036–0.045)

Egypt VT 0.134 (0.118–0.157) 0.089 (0.072–0.098) 0.180 (0.166–0.173) 0.033 (0.027–0.044)

England VT 0.092 (0.091–0.096) 0.064 (0.066–0.075) 0.121 (0.097–0.122) 0.016 (0.015–0.018)

Ethiopia VT 0.096 (0.093–0.099) 0.042 (0.037–0.049) 0.152 (0.156–0.182) 0.024 (0.022–0.026)

France VT 0.087 (0.084–0.091) 0.031 (0.032–0.035) 0.143 (0.151–0.162) 0.020 (0.018–0.024)

Germany VT 0.101 (0.095–0.111) 0.043 (0.036–0.043) 0.160 (0.155–0.178) 0.026 (0.023–0.033)

HongKong VT 0.128 (0.126–0.128) 0.094 (0.079–0.098) 0.163 (0.164–0.172) 0.027 (0.028–0.028)

Hungary VT 0.107 (0.109–0.119) 0.049 (0.046–0.051) 0.166 (0.165–0.170) 0.025 (0.025–0.027)

Indonesia VT 0.125 (0.110–0.125) 0.097 (0.097–0.100) 0.153 (0.136–0.172) 0.025 (0.022–0.025)

Ireland VT 0.142 (0.139–0.186) 0.088 (0.081–0.106) 0.197 (0.161–0.216) 0.042 (0.041–0.068)

Japan VT 0.077 (0.066–0.092) 0.078 (0.071–0.083) 0.076 (0.069–0.077) 0.010 (0.008–0.013)

Malaysia VT 0.095 (0.078–0.099) 0.069 (0.059–0.073) 0.122 (0.103–0.117) 0.016 (0.012–0.017)

Netherlands VT 0.110 (0.108–0.123) 0.073 (0.065–0.078) 0.148 (0.142–0.160) 0.024 (0.022–0.030)

Peru_cTTO VT 0.137 (0.137–0.146) 0.110 (0.092–0.117) 0.165 (0.140–0.182) 0.031 (0.035–0.036)

Peru_DCE VT 0.072 (0.073–0.075) 0.047 (0.040–0.049) 0.098 (0.087–0.113) 0.010 (0.010–0.011)

Poland VT 0.081 (0.064–0.113) 0.024 (0.016–0.025) 0.140 (0.118–0.156) 0.023 (0.015–0.042)

Portugal VT 0.092 (0.093–0.104) 0.051 (0.043–0.054) 0.134 (0.123–0.147) 0.018 (0.018–0.023)

SouthKorea VT 0.070 (0.061–0.071) 0.050 (0.044–0.050) 0.090 (0.083–0.101) 0.009 (0.007–0.009)

Spain VT 0.099 (0.091–0.102) 0.076 (0.072–0.094) 0.122 (0.104–0.127) 0.018 (0.016–0.018)

Sweden VT 0.063 (0.062–0.082) 0.045 (0.033–0.048) 0.082 (0.075–0.084) 0.008 (0.007–0.012)

Taiwan VT 0.140 (0.118–0.158) 0.105 (0.093–0.105) 0.176 (0.159–0.205) 0.035 (0.025–0.039)

Thailand VT 0.089 (0.074–0.087) 0.060 (0.056–0.076) 0.119 (0.112–0.144) 0.015 (0.011–0.015)

Uruguay VT 0.066 (0.060–0.072) 0.029 (0.024–0.030) 0.104 (0.101–0.122) 0.011 (0.008–0.012)

USA VT 0.114 (0.110–0.125) 0.077 (0.067–0.083) 0.152 (0.135–0.148) 0.024 (0.022–0.026)

Vietnam VT 0.095 (0.090–0.110) 0.071 (0.058–0.069) 0.121 (0.122–0.133) 0.017 (0.016–0.021)

Denmark CW 0.094 (0.090–0.102) 0.061 (0.062–0.069) 0.127 (0.112–0.144) 0.021 (0.018–0.025)

France CW 0.121 (0.102–0.130) 0.092 (0.093–0.097) 0.150 (0.130–0.156) 0.023 (0.020–0.025)

Germany CW 0.082 (0.080–0.091) 0.033 (0.038–0.045) 0.131 (0.130–0.154) 0.018 (0.015–0.021)

Japan CW 0.072 (0.061–0.072) 0.072 (0.067–0.078) 0.073 (0.060–0.075) 0.012 (0.008–0.012)

Netherlands CW 0.098 (0.085–0.114) 0.068 (0.060–0.085) 0.129 (0.113–0.135) 0.020 (0.016–0.028)

Russia CW 0.080 (0.072–0.096) 0.038 (0.037–0.048) 0.123 (0.103–0.130) 0.019 (0.014–0.031)

Spain CW 0.110 (0.093–0.112) 0.062 (0.051–0.066) 0.159 (0.156–0.159) 0.025 (0.020–0.027)

Thailand CW 0.099 (0.088–0.109) 0.081 (0.081–0.086) 0.118 (0.097–0.132) 0.019 (0.016–0.022)

UK CW 0.106 (0.096–0.117) 0.064 (0.047–0.079) 0.148 (0.120–0.157) 0.024 (0.020–0.025)

USA CW 0.076 (0.074–0.079) 0.048 (0.040–0.064) 0.104 (0.098–0.128) 0.012 (0.012–0.013)

Zimbabwe CW 0.064 (0.059–0.067) 0.037 (0.033–0.040) 0.092 (0.073–0.090) 0.009 (0.007–0.010)

Mean 0.098 0.063 0.133 0.02

SD 0.022 0.022 0.03 0.008

Min 0.063 0.024 0.073 0.008

Max 0.142 0.11 0.197 0.042
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in which we map onto EQ-5D-5L domains as opposed to 
the utility index, affords an international advantage. Only 
one Spanish study [31] mapped OKS to EQ-5D-5L; how-
ever, response mapping between both instruments was 
disregarded; consequently, the mapping algorithm will 
only aid economic evaluation in Spanish contexts.

Another study [20] developed a response mapping 
algorithm from OKS with satisfactory prediction accu-
racy; however, it mapped it to the three level EQ-5D-3L 
rather than the five level one.

Similar to others [20, 31], we found sufficient concep-
tual overlap between EQ-5D-5L domains and OKS ques-
tions. As Dakin et al. (2013) we found that all OKS and 
EQ-5D-5L questions loaded into a single principal com-
ponent; while, variance explained by our component 
(66%) was higher than theirs (40% for pre-operative sam-
ple and 54% for post-operative).

We developed a mapping algorithm that predicts 
EQ-5D- 5L utility based on OKS responses; model per-
formance was better than the model developed using 
Spanish tariff [31], where the lowest MAEs obtained 
using GLM and Breg models, were 0.1127 (0.1014–
0.1239) and 0.1141 (0.1031–0.1251). Our MAE was 0.099 
(0.091–0.102) using Spain VT value set and 0.110 (0.093–
0.112) using Spain CW value set. Although prediction 
accuracy varied with tariff, our algorithm gave accurate 
predictions of utilities in the external validation sample 
using the EQ-5D tariffs (maximum MSE = 0.042).

Models predicting mobility, self-care, usual activity as 
well as pain/discomfort outperform that predicting anxi-
ety/depression. Because OKS includes questions related 
to mobility, self-care, usual activities, and pain. Mean-
while, no questions ask about psychological symptoms. 
Nonetheless, OKS improved the accuracy of predicting 
anxiety/depression from 30% to 43.5% in the estimation 
sample and 35.7% in the external validation sample, prob-
ably as pain and poor knee function contribute to some 
of the observed anxiety/depression.

As our sample included patients with comorbidities, 
KO whether indicated or not for TKR, the developed 
algorithm is likely to increase the range to which it can be 
applied. However, its performance in dissimilar popula-
tions is unknown.

The response mapping model had the best accu-
racy in prediction of EQ-5D response levels from 
OKS responses in UK [20]. Therefore, it was our target 
method. In addition to producing more accurate pre-
dictions in this study, response mapping models do not 
need to deal with not normal utility distributions. Fur-
thermore, while direct mapping models must be devel-
oped for specific tariffs, response mapping algorithms 
can be applied to any five-level EQ-5D available tariff 
now or in the future [24]. Response mapping gives rich 

insights into the relationship between the two instru-
ments. For instance, predicting the proportion of 
patients with different levels in each domain.

Despite all benefits of response mapping, the belief of 
the need for a large sample size prevented it from being 
conducted on many occasions [1, 20, 25, 37]. A recent 
article [35] provided practical guidance for calculating the 
sample size required for the development of prediction 
models with continuous, binary, and time-to-event out-
comes. In case of ordinal outcomes, one might think that 
they could follow the suggested method for a binary out-
come model. They would calculate the required minimum 
sample size for each 2 outcome levels and use the highest 
minimal sample size. If any of the levels is rare, the esti-
mated sample size will be very high. As patients with L5 in 
any domain are usually rare, it was thought that very large 
sample size is needed for response mapping. However, 
we believe this is applicable when the levels of the ordinal 
outcomes are separate. In this case, the model predicts the 
probability of falling into one of two adjacent categories, 
e.g., the probability of L1 vs L2, L2 vs L3, etc. While, if the 
ordinal outcome is based on a categorization of a con-
tinuous latent variable, the model predicts the cumulative 
probability (probability of falling at or below a particular 
point), e.g., probability of being in L3 or more vs being in 
lower levels (L1 & L2). The availability of two versions of 
the EQ-5D, where each domain might be categorized into 
3 (3L) or five (5L) levels is sufficient theoretical evidence 
for assuming that the ordinal domains are based on latent 
continuous variables. Another empirical evidence from 
the current study is that the optimum model for pain/dis-
comfort contained a single set of coefficients to predict all 
levels of the outcome (parallel curves).

Another argument against the need for large sample 
size is the effect size. The larger the effect size the smaller 
the required sample size [12]. In the current study, the 
correlation between total OKS and EQ-5D domains was 
high indicating a large effect size.

While the impact of rare events on estimating the sam-
ple size is large, their impact on the overall accuracy of 
the developed model is small due to the following:

First, the events are rare, thus, their contribution to 
the overall accuracy will be small. Second, with the use 
of cumulative ordinal regression, usually, these events are 
predicted at a closer level. Therefore their accurate pre-
diction which requires a large sample size is of little value.

Due to the aforementioned reasons, some data scien-
tists tend to believe that there are no shortcuts to say 
if we have enough data. The only way would be to try 
a sample size and build models [13]. One indication 
of achieving a sufficient sample size is the consensus 
on the model accuracy. In the current study, the coef-
ficients of variation (CV) of cross-validated model 
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accuracy to judge the consensus of the model accura-
cies were all below 10%.

Another problem that might emerge with small sam-
ple size is overfitting. Overfitting is a condition where a 
statistical model captures the random error in the data 
as well as the relationships between variables. As con-
sequence, the predictive performance and the generali-
zation ability of the model will be degraded [16, 34]. To 
avoid overfitting the following approaches were taken:

1.	 Selection of important predictors
2.	 Cross-validation
3.	 Penalization in penalized ordinal regression
4.	 Pruning in O-CART​
5.	 Limiting the number of trees in the final OF

Strengths
The use of caret package and cross-validation technique 
allowed for trying four classes of machine learning models 
for ordinal outcomes (Cumulative Probability Model for 
Ordinal Data, Penalized Ordinal Regression, CART, and 
Ordinal random forest). Tuning models’ hyperparameters 
permitted to proceed with 133 different model struc-
tures. The use of four different sets of predictors per every 
model structure increased the number of models tried to 
532. Machine learning in mapping was introduced by one 
study which used a deep neural network (DNN) in map-
ping from MacNew Heart Disease Health-related Qual-
ity of Life questionnaire (MacNew) onto country-specific 
EQ-5D-5L utility scores[23]. While this study mapped to 
the utility index (direct mapping), our study introduced 
the use of machine learning in response mapping.

Another strength is that we assessed the uncertainty 
around the estimated MAE using bootstrapping which 
does not depend on assumptions.

Limitations
Although machine learning algorithms result in accu-
rate predictions using small sample size, they act as black 
boxes where the process of prediction is not as clear as 
regression analysis with known coefficients.

Furthermore, mapping is not a substitute for including 
the EQ-5D in future studies and does not overcome the 
limitations of either instrument [30].

Conclusions
The current study derived the mapping algorithm from 
OKS onto the five domains of EQ-5D-5L. With avail-
able EQ-5D-5L utility values, utility scores can be calcu-
lated, and the latter enables the estimation of QALYs in 

an economic evaluation. A machine learning approach 
presents a promising alternative in the mapping literature 
that warrants further exploration.

Abbreviations
AD	� Anxiety/depression domain
CART​	� Classification and regression trees
CM	� Cumulative model
CP	� Complexity parameter
CW	� Crosswalk method
DALYs	� Disability-adjusted life years
EQ-5D-5L	� EuroQoL five domains five levels
KOA	� Knee osteoarthritis
L	� Level of the domain of EQ-5D-5L
MAE	� Mean absolute error
MO	� Mobility domain
MSE	� Mean squared error
OA	� Osteoarthritis
O-CART​	� Ordinal classification and regression trees
OF	� Ordinal forests
OKS	� Oxford Knee Score
OLS	� Ordinary least squares
PCA	� Principal component analysis
PD	� Pain/discomfort domain
PROMs	� Patient-reported outcome measures
QALYs	� Quality-adjusted life-year
QoL	� Quality of life
RF	� Random forest
RFE	� Recursive feature elimination
SC	� Self-care domain
TKA	� Total knee arthroplasty
UA	� Usual activities domain
VAS	� A visual analogue scale
VT	� Valuation technique

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13018-​023-​03522-0.

Additional file 1. Appendix 1: EQ-5D-5L in estimation sample. Appen-
dix 2: EQ-5D-5L in external validation sample. Appendix 3: Correlation 
among between domains of the EQ-5D-5L and questions of OKS. Appen-
dix 4: Distribution of EQ-5D-5 L utility. Appendix 5: Characteristics of the 
Estimation sample. Appendix 6: Characteristics of the External validation 
sample. Appendix 7: Description of EQ-5D-5L Utility and Total OKS Score. 
Appendix 8: Mobility RFE important predictors. Appendix 9: Choosing of 
best model of Mobility. Appendix 10: Self-Care RFE important predic‑
tors. Appendix 11: Choosing of best model of Self-Care. Appendix 12: 
Usual Activities RFE important predictors. Appendix 13: Choosing of best 
model of Usual Activities. Appendix 14: Pain/Discomfort RFE important 
predictors. Appendix 15: Choosing of best model of Pain/Discomfort. 
Appendix 16: Anxiety/Depression RFE important predictors. Appen-
dix 17: Choosing of best model of Anxiety/Depression. Appendix 18: 
Rankings of OKS questions across the five domains of EQ-5D-5L by recur‑
sive feature eliminations in the Estimation sample. Appendix 19: Model 
evaluation in whole external validation sample.

Acknowledgements
Our gratitude is to the patients who obligingly and patiently gave their time 
and effort to complete the study questionnaires.

Author contributions
HEF contributed to data collection, analysis of results and, drafting manuscript. 
RNB contributed to general supervision of scientific content, the method of 
research, and basic steps necessary to complete the research. OGY contrib‑
uted to supervising the writing of the introduction, literature review, revision 

https://doi.org/10.1186/s13018-023-03522-0
https://doi.org/10.1186/s13018-023-03522-0


Page 13 of 14Fawaz et al. Journal of Orthopaedic Surgery and Research           (2023) 18:84 	

of the results, and help in the interpretation and supervising the writing of 
conclusions and recommendations. ASH contributed to supervising scientific 
content, facilitating data collection. GAA contributed to supervising elabora‑
tion of methods, analysis of the results, helps in writing and in interpretation. 
All authors read and approved the final manuscript.

Funding
Open access funding provided by The Science, Technology & Innovation 
Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank 
(EKB). This research received no specific grant from any funding agency in the 
public, commercial, or not-for-profit sectors.

Availability of data and materials
The data that support the findings of this study are available from the cor‑
responding author, Fawaz H, upon reasonable request.

Declarations

Ethics approval and consent to participate
The informed consent form was signed by each patient after being informed 
about the aim of the study and assured confidentiality of data according to 
the guidelines of the ethical committee of the Medical Research Institute.

Consent for publication
All authors are affiliated with Alexandria University, Egypt. So we hope to be 
eligible to publish open access in Springer Nature journals with fees covered 
under a Transformative Agreement plus a fully OA agreement.

Competing interests
The authors declare no conflict of interest, financial or other.

Received: 17 July 2022   Accepted: 9 January 2023

References
	1.	 Ali FM, Kay R, Finlay AY, Piguet V, Kupfer J, Dalgard F, Salek MS. Mapping of 

the DLQI scores to EQ-5D utility values using ordinal logistic regression. 
Qual Life Res. 2017;26:3025–34.

	2.	 Anon. Global, regional, and national incidence, prevalence, and years 
lived with disability for 310 diseases and injuries, 1990–2015: a systematic 
analysis for the Global Burden of Disease Study 2015—PubMed. Available 
at: https://​pubmed.​ncbi.​nlm.​nih.​gov/​27733​282/ [Accessed January 6, 
2023].

	3.	 Anon. The global burden of hip and knee osteoarthritis: estimates from 
the Global Burden of Disease 2010 study. Annals of the Rheumatic 
Diseases. Available at: https://​ard.​bmj.​com/​conte​nt/​73/7/​1323 [Accessed 
May 31, 2020].

	4.	 Anon. Osteoarthritis Complications: Weight Gain, Anxiety, and More. 
Available at: https://​www.​healt​hline.​com/​health/​osteo​arthr​itis/​compl​
icati​ons-​and-​dange​rs#​compl​icati​ons [Accessed May 31, 2020].

	5.	 Anon. NICE DSU Technical Support Document 10: The Use of Mapping 
Methods to Estimate Health State Utility Values [Internet]. PubMed. Avail‑
able at: https://​pubmed.​ncbi.​nlm.​nih.​gov/​28481​491/ [Accessed January 
5, 2023].

	6.	 Anon. Oxford Knee Score—Orthopaedic Scores. Available at: http://​
www.​ortho​paedi​cscore.​com/​score​pages/​oxford_​knee_​score_​org.​php 
[Accessed August 28, 2021].

	7.	 Anon. Valuation—EQ-5D. Available at: https://​euroq​ol.​org/​eq-​5d-​instr​
uments/​eq-​5d-​5l-​about/​valua​tion-​stand​ard-​value-​sets/ [Accessed Janu‑
ary 5, 2023].

	8.	 Anon. How To Get Baseline Results And Why They Matter. Available at: 
https://​machi​nelea​rning​maste​ry.​com/​how-​to-​get-​basel​ine-​resul​ts-​and-​
why-​they-​matter/ [Accessed February 20, 2022].

	9.	 Anon. Accuracy Statistics in R. Available at: https://​blogs.​fu-​berlin.​de/​
reseda/​accur​acy-​stati​stics-​in-r/ [Accessed February 20, 2022].

	10.	 Anon. The caret Package. Available at: https://​topepo.​github.​io/​caret/​
index.​html [Accessed August 22, 2021].

	11.	 Anon. Feature Selection with the Caret R Package. Available at: https://​
machi​nelea​rning​maste​ry.​com/​featu​re-​selec​tion-​with-​the-​caret-r-​packa​
ge/ [Accessed September 2, 2021].

	12.	 Anon. Discovering Statistics Using IBM SPSS Statistics—Discovering Sta‑
tistics. Available at: https://​www.​disco​verin​gstat​istics.​com/​books/​dsus/ 
[Accessed March 5, 2022].

	13.	 Anon. Is More Data Always Better For Building Analytics Models? Avail‑
able at: https://​analy​ticsi​ndiam​ag.​com/​is-​more-​data-​always-​better-​for-​
build​ing-​analy​tics-​models/ [Accessed March 4, 2022].

	14.	 Anon. Package “eq5d” Type Package Title Methods for Analysing “EQ-5D” 
Data and Calculating “EQ-5D” Index Scores. 2021. Available at: https://​
euroq​ol.​org/​eq-​5d-​instr​uments/​eq-​5d-​3l-​about/ [Accessed March 4, 
2022].

	15.	 Anon. Package “boot.” 2021.
	16.	 Babyak MA. What you see may not be what you get: a brief, nontechnical 

introduction to overfitting in regression-type models. Psychosom Med. 
2004;66:411–21.

	17.	 Breiman L. Random forests. Mach Learn. 2001;45:5–32. https://​doi.​org/​10.​
1023/A:​10109​33404​324.

	18.	 Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regres‑
sion trees. Classif Regres Trees. 2017:1–358. Available at: https://www.
taylorfrancis.com/books/mono/https://​doi.​org/​10.​1201/​97813​15139​470/​
class​ifica​tion-​regre​ssion-​trees-​leo-​breim​an-​jerome-​fried​man-​richa​rd-​
olshen-​charl​es-​stone. Accessed March 5, 2022.

	19.	 Dakin H, Abel L, Burns R, Yang Y. Review and critical appraisal of studies 
mapping from quality of life or clinical measures to EQ-5D: an online 
database and application of the MAPS statement. Health Qual Life Out‑
comes. 2018;16.

	20.	 Dakin H, Gray A, Murray D. Mapping analyses to estimate EQ-5D 
utilities and responses based on Oxford Knee Score. Qual Life Res. 
2013;22:683–94.

	21.	 EuroQol Research Foundation 2019. EQ-5D-5LUser Guide. 2019:36. Avail‑
able at: https://​euroq​ol.​org/​wp-​conte​nt/​uploa​ds/​2019/​09/​EQ-​5D-​5L-​
Engli​sh-​User-​Guide_​versi​on-3.​0-​Sept-​2019-​secur​ed.​pdf.

	22.	 Galimberti G, Soffritti G, Di Maso M. Classification trees for ordinal 
responses in R: The rpartScore package. J Stat Softw. 2012;47.

	23.	 Gao L, Luo W, Tonmukayakul U, Moodie M, Chen G. Mapping MacNew 
Heart Disease Quality of Life Questionnaire onto country-specific EQ-
5D-5L utility scores: a comparison of traditional regression models with a 
machine learning technique. Eur J Heal Econ. 2021;22:341–50.

	24.	 Gray AM, Rivero-Arias O, Clarke PM. Estimating the association between 
SF-12 responses and EQ-5D utility values by response mapping. Med 
Decis Mak. 2006;26:18–29.

	25.	 Gray LA, Wailoo AJ, Hernandez AM. Mapping the FACT-B instrument to 
EQ-5D-3L in patients with breast cancer using adjusted limited depend‑
ent variable mixture models versus response mapping. Value Heal. 
2018;21:1399.

	26.	 Harris KK, Dawson J, Jones LD, Beard DJ, Price AJ. Extending the use of 
PROMs in the NHS—using the Oxford Knee Score in patients undergoing 
non-operative management for knee osteoarthritis: a validation study. 
BMJ Open. 2013;3:e003365.

	27.	 Hoerl AE, Kennard RW. Ridge regression: biased estimation for non‑
orthogonal problems. Technometrics. 1970;12:55–67.

	28.	 Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prog‑
nostic information. Ann Intern Med. 1999;130:515–24.

	29.	 Kennedy-Martin M, Slaap B, Herdman M, van Reenen M, Kennedy-Martin 
T, Greiner W, Busschbach J, Boye KS. Which multi-attribute utility instru‑
ments are recommended for use in cost-utility analysis? A review of 
national health technology assessment (HTA) guidelines. Eur J Heal Econ. 
2020;21:1245–57. https://​doi.​org/​10.​1007/​s10198-​020-​01195-8.

	30.	 Longworth L, Rowen D. Mapping to obtain EQ-5D utility values for use in 
nice health technology assessments. Value Heal. 2013;16:202–10.

	31.	 Martín-Fernández J, Martín-Fernández J, Martín-Fernández J, Morey-
Montalvo M, Morey-Montalvo M, Morey-Montalvo M, Morey-Montalvo 
M, Tomás-García N, Martín-Ramos E, Muñoz-García JC, Polentinos-Castro 
E, Polentinos-Castro E, Rodríguez-Martínez G, Arenaza JC, Arenaza JC, 
García-Pérez L, García-Pérez L, Magdalena-Armas L, Bilbao A, Bilbao A, 
Bilbao A. Mapping analysis to predict EQ-5D-5 L utility values based on 
the Oxford Hip Score (OHS) and Oxford Knee Score (OKS) questionnaires 
in the Spanish population suffering from lower limb osteoarthritis. Health 
Qual Life Outcomes. 2020;18:1–15.

https://pubmed.ncbi.nlm.nih.gov/27733282/
https://ard.bmj.com/content/73/7/1323
https://www.healthline.com/health/osteoarthritis/complications-and-dangers#complications
https://www.healthline.com/health/osteoarthritis/complications-and-dangers#complications
https://pubmed.ncbi.nlm.nih.gov/28481491/
http://www.orthopaedicscore.com/scorepages/oxford_knee_score_org.php
http://www.orthopaedicscore.com/scorepages/oxford_knee_score_org.php
https://euroqol.org/eq-5d-instruments/eq-5d-5l-about/valuation-standard-value-sets/
https://euroqol.org/eq-5d-instruments/eq-5d-5l-about/valuation-standard-value-sets/
https://machinelearningmastery.com/how-to-get-baseline-results-and-why-they-matter/
https://machinelearningmastery.com/how-to-get-baseline-results-and-why-they-matter/
https://blogs.fu-berlin.de/reseda/accuracy-statistics-in-r/
https://blogs.fu-berlin.de/reseda/accuracy-statistics-in-r/
https://topepo.github.io/caret/index.html
https://topepo.github.io/caret/index.html
https://machinelearningmastery.com/feature-selection-with-the-caret-r-package/
https://machinelearningmastery.com/feature-selection-with-the-caret-r-package/
https://machinelearningmastery.com/feature-selection-with-the-caret-r-package/
https://www.discoveringstatistics.com/books/dsus/
https://analyticsindiamag.com/is-more-data-always-better-for-building-analytics-models/
https://analyticsindiamag.com/is-more-data-always-better-for-building-analytics-models/
https://euroqol.org/eq-5d-instruments/eq-5d-3l-about/
https://euroqol.org/eq-5d-instruments/eq-5d-3l-about/
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1201/9781315139470/classification-regression-trees-leo-breiman-jerome-friedman-richard-olshen-charles-stone
https://doi.org/10.1201/9781315139470/classification-regression-trees-leo-breiman-jerome-friedman-richard-olshen-charles-stone
https://doi.org/10.1201/9781315139470/classification-regression-trees-leo-breiman-jerome-friedman-richard-olshen-charles-stone
https://euroqol.org/wp-content/uploads/2019/09/EQ-5D-5L-English-User-Guide_version-3.0-Sept-2019-secured.pdf
https://euroqol.org/wp-content/uploads/2019/09/EQ-5D-5L-English-User-Guide_version-3.0-Sept-2019-secured.pdf
https://doi.org/10.1007/s10198-020-01195-8


Page 14 of 14Fawaz et al. Journal of Orthopaedic Surgery and Research           (2023) 18:84 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	32.	 Package T, Variables T, Hornung AR, Rcpp L. Package ‘ ordinalForest .’ 
2020:1–15.

	33.	 Petrou S, Rivero-Arias O, Dakin H, Longworth L, Oppe M, Froud R, Gray 
A. Preferred reporting items for studies mapping onto preference-based 
outcome measures: the MAPS statement. Qual Life Res. 2016;25:275–81.

	34.	 Raudys SJ, Jain AK. Small sample size effects in statistical pattern recogni‑
tion: recommendations for practitioners. IEEE Trans Pattern Anal Mach 
Intell. 1991;13:252–64.

	35.	 Riley RD, Ensor J, Snell KIE, Harrell FE, Martin GP, Reitsma JB, Moons KGM, 
Collins G, Van Smeden M. Calculating the sample size required for devel‑
oping a clinical prediction model. BMJ. 2020;368.

	36.	 Salmon JH, Rat AC, Sellam J, Michel M, Eschard JP, Guillemin F, Jolly D, 
Fautrel B. Economic impact of lower-limb osteoarthritis worldwide: a sys‑
tematic review of cost-of-illness studies. Osteoarthr Cartil. 2016;24:1500–
8. https://​doi.​org/​10.​1016/j.​joca.​2016.​03.​012.

	37.	 Siani C, de Peretti C, Millier A, Boyer L, Toumi M. Predictive models to 
estimate utility from clinical questionnaires in schizophrenia: findings 
from EuroSC. Qual Life Res. 2016;25:925.

	38.	 Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc 
Ser B. 1996;58:267–88. https://​doi.​org/​10.​1111/j.​2517-​6161.​1996.​tb020​
80.x.

	39.	 Wurm MJ, Rathouz PJ, Hanlon BM. Regularized ordinal regression and the 
ordinalNet R package. J Stat Softw. 2021;99:1–42.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1016/j.joca.2016.03.012
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

	Mapping of disease-specific Oxford Knee Score onto EQ-5D-5L utility index in knee osteoarthritis
	Abstract 
	Background 
	Questionspurposes 
	Patients and methods 
	Results 
	Conclusions 

	Introduction
	Aim of the work

	Material and methods
	Included patients
	Statistical analysis
	Conceptual overlap
	Selection of the optimum model structure
	Model building
	Model evaluation


	Results
	General characteristics
	The estimation sample
	The external validation sample

	Exploratory data analysis
	Conceptual overlap
	Important questions as determined by recursive feature elimination (RFE)
	Model building on the estimation sample
	Model evaluation on the external validation sample


	Discussion
	Strengths
	Limitations

	Conclusions
	Acknowledgements
	References


