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Abstract

Genotypic and phenotypic adaptation is the consequence of ongoing natural selection in populations and is key to predicting and
preventing drug resistance. Whereas classic antibiotic persistence is all-or-nothing, here we demonstrate that an antibiotic resistance
gene displays linear dose-responsive selection for increased expression in proportion to rising antibiotic concentration in growing
Escherichia coli populations. Furthermore, we report the potentially wide-spread nature of this form of emergent gene expression (EGE)
by instantaneous phenotypic selection process under bactericidal and bacteriostatic antibiotic treatment, as well as an amino acid
synthesis pathway enzyme under a range of auxotrophic conditions. We propose an analogy to Ohm’s law in electricity (V = IR), where
selection pressure acts similarly to voltage (V), gene expression to current (I), and resistance (R) to cellular machinery constraints and
costs. Lastly, mathematical modeling using agent-based models of stochastic gene expression in growing populations and Bayesian
model selection reveal that the EGE mechanism requires variability in gene expression within an isogenic population, and a cellular
“memory” from positive feedbacks between growth and expression of any fitness-conferring gene. Finally, we discuss the connection
of the observed phenomenon to a previously described general fluctuation–response relationship in biology.

Significance Statement:

Phenotypic selection is a potential mechanism for cells to respond to selection pressures, such as antibiotic or cancer drug expo-
sure. Understanding mechanisms rooted in transient gene expression variation will help predict and prevent development of drug
resistance. We use synthetic biology approaches to demonstrate that antibiotic resistance genes display linear dose-responsive
upregulation in proportion to antibiotic concentration—which we refer to as emergent gene expression (EGE). Using mathemati-
cal modeling, we show the observed EGE is due to phenotypic selection which requires noisy gene expression, and some level of
inheritance or memory of expression of any fitness-conferring gene after cell division.

Introduction
Isogenic microbial populations within the same environment
were often assumed to be physiologically uniform. However, con-
trary to this belief, populations are known to exhibit phenotypic
variability such as expressing genes at variable levels due to
stochastic gene expression (1, 2). In the absence of any genetic
differences in the cell population, this “noisy” gene expression
can be attributed to a number of different intrinsic or extrinsic
sources including the innate stochasticity of biochemical reac-
tions dependent on a small number of molecules, transcriptional
and/or translational bursting and differences in cell cycle pro-
gression (3). The differences in gene expression among a clonal
population can provide a survival strategy in fluctuating environ-
ments and is known as bet-hedging (4). Indeed, relying on preex-
isting phenotypic variability could be a better strategy than sens-
ing and responding to environmental fluctuations (5, 6). An inter-
esting example of this strategy has been demonstrated by Bishop
et al. (7), who compared the survival of WT Saccharomyces cerevisiae

with a mutant strain with an increased sensitivity to perturba-
tions, but which displayed wide phenotypic heterogeneity. It was
found that the mutants initially exhibited sensitivity to multiple
perturbations, including exposure to nickel, copper, and alkaline
pH. However, the broad heterogeneity meant that certain individ-
uals within the mutant population displayed a higher level of re-
sistance, enabling population survival. It should be noted though,
that fitness can increase continuously (following a nonsaturat-
ing power–law function) in populations that face the same initial
stress (glucose limitation) throughout its evolutionary history, and
thus do not experience frequent changes in environmental con-
ditions (8).

Bet-hedging is commonly defined as a risk-spreading strat-
egy in which a population, through stochastic switching, is able
to form subpopulations of distinct phenotypes (9). Although
this reduces the mean fitness of the population, the likeli-
hood of species survival during environmental catastrophes is
greatly enhanced (10). Cells among the population that express
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advantageous adaptive machinery are better equipped to survive
random environmental fluctuations, however, the production of
such machinery comes at a fitness cost under favorable condi-
tions (9). Bet-hedging is often described in bistable populations,
where cells are able to stochastically switch between two phe-
notypes, independent of any endogenous signaling pathways, as
suggested for bacterial persistence (11, 12). This is termed an “all-
or-nothing response,” where a specific gene or group of genes
are either expressed or not expressed. Examples of bet hedging
in bistable populations are seen in the formation of fimbriae in
Escherichia coli (13), sporulation and biofilm production in Bacil-
lus subtilis (14), and also competence in B. subtilis (15, 16). Both
experimental evolution studies in Pseudomonas bacteria and in
silico evolution studies have shown that a bistable system can
emerge as a bet-hedging mechanism in fluctuating environments
(17, 18).

While natural selection is traditionally thought to act on geno-
types, in a bet-hedging scenario, the fit state can be selected in
the favorable environment due to its fitness advantage. This phe-
nomenon is nicely demonstrated by Kashiwagi et al. (19), who
used a synthetic genetic toggle switch in E. coli in which mutu-
ally inhibitory operons govern the expression of two genes re-
quired in two alternative environments; cells reliably switched to
the fit state following environmental changes. Stochastic math-
ematical modeling illustrated the role of gene expression noise
in the fitness-induced phenotypic selection in this system. While
this phenotypic selection is not as efficient as gene regulation
through signal transduction, it represents a simple and generic
mechanism for adaptive responses that we term as emergent gene
expression (EGE) in this study.

Going beyond bistable systems, Tsuru et al. (20) provided evi-
dence for EGE for a monostable expression of a fitness-conferring
gene, using a strain with the hisC gene under the control of a syn-
thetic promoter and under histidine starvation. This response is
similar to the “classical” bet-hedging strategy as it relies on cell-
to-cell phenotypic variation within the population, but it differs in
that it does not require underlying multistability. Moreover, this
hypothesis suggests that individual cells within a clonal popu-
lation (a population characterized by very little or no genetic di-
versity) could potentially confer a selective advantage over other
cells, under a given stress, in a graded manner. The “fitter” cells
would display higher growth rates (21), and as a result perpetuate
their gene expression pattern in successive generations through
epigenetic inheritance (9). Importantly, this leads to a population-
wide shift in phenotype. Recent lineage tracing studies have in-
deed provided evidence for selection of cells based on their phe-
notypic states (22, 23). The advantageous gene may be expressed
to a higher degree with every generation through growth-related
positive feedback which leads to a graded response to stress
over time, where expression patterns shift to favor the advanta-
geous gene (24). Indeed, global positive feedbacks between cel-
lular growth and expression of fitness inducing genes (25) can
produce a nontrivial causal relationship between single cell phe-
notypic state and cell growth (26, 27). EGE could provide an ex-
planation for microbial survival over time and prolonged stress
exposure where other modes of survival do not (28). A mathe-
matical model by Mora and Walczak (29) has paved the way for
understanding this behavior, where it was shown that a stochas-
tic gene expression model in the presence of stress could cause a
unimodal shift to the right (i.e. caused an increase) in the distri-
bution of a fitness-conferring gene. A similar unimodal shift was
achieved in a study by Lasri et al. (30), who developed a stochas-
tic gene expression model of O-6-alkylguanine DNA alkyltrans-

ferase (MGMT) coupled with cell death in response to temozolo-
mide treatment in glioblastoma cells. Another recent modeling
study has taken a phenomenological approach to understanding
how tolerance of antibiotics emerges (31), allowing for analytical
progress. In a recent synthetic biology study, Camellato et al. (32)
engineered a set of gene regulatory networks in the eukaryotic
model organism S. cerevisiae to control a homologue of the hu-
man multidrug resistance gene MDR1. They observed that coher-
ent feedforward and positive feedback motifs enable rapid and
self-sustained activation of gene expression and enhance cell sur-
vival in the presence of cytotoxic drugs.

Due to its nonpermanent nature, EGE behavior is difficult to
isolate and characterize. Here, we apply synthetic biology ap-
proaches and generate quantitative data to guide mathemati-
cal modeling in search of conditions underpinning this EGE be-
havior. We report a novel dose-dependent relationship of fitness-
conferring gene expression in response to increasing selection
pressure, which is transient and is based exclusively on pheno-
typic selection. We, thus propose a new concept in understand-
ing cell population-level antibiotic resistance, which is distinct
from—and complements—well-documented survival strategies
such as persistence and heteroresistance (33, 34).

Materials and Methods
Cell growth
All MK01 E. coli strains were cultured in lysogeny broth (LB) and,
when indicated, 0.005% (w/v) L-(+)-arabinose (Sigma; stock con-
centration 5% (w/v) in water) and chloramphenicol (Cm) (Sigma;
stock concentration 50 mg/ml in ethanol) of ampicillin (Amp;
Sigma; stock concentration 100 mg/ml in water), which were
stored at −20◦C and added to the medium at the beginning of
each experiment. Histidine was purchased as a 100-mM solu-
tion from Sigma. OSU11 and OSU12 E. coli strains were a gift from
Saburo Tsuru, and were cultured in M63 minimal media and sup-
plemented with histidine as described previously (20). Cm, ampi-
cillin, and histidine were diluted so that 2 μl of an intermediate
concentration was added to 148 μl of cells in growth media per
well in 96-well plates.

All experiments were inoculated from 5 ml overnight cultures
grown in LB without antibiotics at a starting Absorbance600 (A600)
of 0.01 as measured on the Tecan F200 PRO microplate reader.
For experiments in OSU11 and OSU12 E. coli strains, the overnight
culture in LB was inoculated into M63 media supplemented with
histidine. The microplate reader format was used for all exper-
iments; cells were grown at 37◦C with orbital shaking at 335.8
RPM with an amplitude of 1.5 mm. For the Rounds experiment,
2 μl of each culture, grown for 12 h, was transferred to 148 μl
of fresh LB media (± arabinose and Cm as indicated) to gener-
ate an exact replica of the parent plate with the diluted cultures,
which were then growth again under the same conditions for
12 h.

Cassette and strain construction
The catI gene was cloned from pTKIP-cat which was a gift from
Edward Cox and Thomas Kuhlman (Addgene plasmid # 41065;
http://n2t.net/addgene:41065; RRID:Addgene 41065). Gibson as-
sembly (NEB) was used for all cloning steps, and all constructs
were transformed into Top10 E. coli (Invitrogen). The Biobrick part
B0034 RBS-gfp-Gly4Ser-cat construct was inserted downstream of
the AraC-pBad cassette in the pCola vector; pCola and GFP were
obtained from Schaerli et al. (35). The bla gene was cloned from

https://scicrunch.org/resolver/RRID:Addgene
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pUC18 which was a gift from Joachim Messing (Addgene plasmid
# 50004; http://n2t.net/addgene:50004; RRID:addgene 50004), and
inserted to replace the cat gene downstream of gfp in the pBad-
inducible expression cassette described above. Lox sites were in-
serted to flank a kanamycin resistance gene which was then
cloned downstream of the GFP-CAT cassette to aid in selection
of genomic integrations. For constitutive expression, the AraC
gene and pBad promoter were replaced by the Biobrick promoter
J23100 upstream of the GFP-CAT-lox-kan-lox cassette in the pCola
vector. Site directed mutagenesis was performed to generate the
cat-T172A and H193A and bla-L74N mutants within the expression
cassettes. All expression cassette sequences used in this study
are reported in Supplementary Material Appendix, Figure S24. A
set of plasmids for the main constructs, along with maps and
sequences, were deposited in Addgene (IDs are listed in https:
//www.addgene.org/Mark_Isalan/).

The expression cassettes containing the cat gene were
integrated into the intC locus of the E. coli strain MK01
(genotype: F-, �(araD-araB)567, �lacZ4787(::rrnB-3), λ-, �(araH-
araF)570(::FRT), �araEp- 532::FRT, ϕPcp8-araE535, rph-1, �(rhaD-
rhaB)568, hsdR514, �lacI) (36). The strain was modified to
decrease biofilm formation by knocking out the flu and fim
genes. Briefly, MK01 cells were transformed with the pRed/ET ex-
pression plasmid (Gene Bridges kit K006). Transformants were
grown up and recombinase expression was induced as described
previously (37). A kanamycin resistance cassette flanked by lox
sites was amplified using primers containing sequences homol-
ogous to the 5’ and 3’ regions of the flu gene and electropo-
rated into the recombinase expressing MK01 cells. Recombi-
nants were selected on LB-agar containing 15 μg/ml kanamycin
(Sigma). Successful integration was confirmed via amplification
and sequencing of the flu locus. The kanamycin resistance cas-
sette was removed by transforming the cells with Cre recom-
binase (Gene Bridges, 706-Cre) according to the manufacturer’s
instructions. This sequence was repeated in order to remove
the fim locus, and subsequently, to introduce the various CAT-
GFP expression cassettes into the intC locus. Genomic inte-
gration and sequencing verification primers used in this study
are reported in Table S1 (Supplementary Material). All intC lo-
cus integrations were sequenced to ensure correct integration.
Plasmids containing the expression cassettes containing the WT
and mutant bla gene were transformed into Top10 cells (Invitro-
gen) and treated with various Amp concentrations as described
above.

Fluorescence and absorbance measurements
All experiments where GFP and RFP fluorescence and
Absorbance600 (A600) were measured were performed in 96-
well PS, flat bottom, μClear, black plates (Greiner Bio-One), with
n = 3 technical replicates per treatment, and n = 3 biological repli-
cates unless stated otherwise. GFP fluorescence was measured
at ex485nm/em535nm and a gain value of 25. Measurements
were taken at 15 min intervals.

Flow cytometry
MK01 cells carrying the gfp-cat-T172A genomic integration cas-
sette were induced with 0.005% arabinose and treated with 0 and
5 μg/ml Cm, and grown using the microplate reader with GFP
and A600 measurements performed as above. At 12 h, 4%
paraformaldehyde (Sigma) in PBS was added to each well to a fi-
nal concentration of 2%, and pipetted up and down to mix. Cells
were stored at 4◦C in the dark for 1 to 3 days. Flow cytometry was

performed on a BD Fortessa Analyzer (BD Biosciences) and sample
data was analyzed using FlowJo (v10) Software.

RT-qPCR
MK01 cells carrying the gfp-cat-T172A genomic integration cas-
sette were induced with 0.005% arabinose and treated with 0 and
5 μg/ml Cm and grown using the microplate reader with GFP and
A600 measurements performed as above with n = 4 technical repli-
cates. Cells were harvested at 1 h time intervals for 11 h. Briefly,
600 μl of culture of both 0 and 5 μg/ml Cm treatments was re-
moved from the plate, added to 1,200 μl of RNAprotect (Qiagen) in
2 ml Eppendorf tubes, and processed according to the manufac-
turer’s protocol. All samples were stored at −80◦C until the end
of the time course. RNA was extracted using the RNeasy mini kit
(Qiagen). The extracted RNA was treated with TURBO DNA-free
Kit (Invitrogen) and cDNA was generated using the SuperScript
IV First-Strand Synthesis System (Invitrogen). The LightCycler 480
SYBR Green I Master kit (Roche) was used as the qPCR master mix,
and the experiments were performed on the Roche 480 LightCy-
cler Instrument II. Housekeeping genes used in this study include
idnT, hcaT, and cysG (38), and were used to quantify gfp mRNA ex-
pression at each time point. The delta–delta Ct method was used
to determine differences in gene expression, with significance de-
termined using the unpaired Student’s t test. The mean Ct value
of the housekeeping genes was also used to normalize Ct values
of the control genes rpoD, rpoH, rpoE, rpoN, acrB, pntB, oppA, and
cyoC. Primer sequences used for pPCR amplification are reported
in Table S2 (Supplementary Material).

Mass spectrometry
A volume of 100 μl of culture medium was mixed with 100 μl of
a solution containing a mixture of acetonitrile, methanol and wa-
ter (40:40:20, v/v/v). After centrifugation at 17,000 × g, at 4◦C, for
10 mins, 100 μl of the supernatant was mixed 100 μl of a solu-
tion of acetonitrile containing 0.2% acetic acid. After vortexing
and centrifugation at 17,000 × g, at 4◦C, for 10 mins, 100 μl of the
supernatant was loaded into LC-MS vials prior to analysis.

Aqueous normal phase liquid chromatography was performed
using an Agilent 1290 Infinity II LC system equipped with bi-
nary pump, temperature-controlled autosampler (set at 4◦C)
and temperature-controlled column compartment (set at 25◦C),
containing a Cogent Diamond Hydride Type C silica column
(150 mm × 2.1 mm; dead volume 315 μl). A flowrate of 0.4 ml/min
was used. Elution of polar metabolites was carried out using sol-
vent A (0.2% acetic acid in deionized water (Resistivity ∼18 MW
cm), and solvent B (acetonitrile and 0.2% acetic acid). Mass spec-
trometry was carried out using an Agilent Accurate Mass 6545
QTOF apparatus. Nozzle Voltage and fragmentor voltages were set
at 2,000 V and 100 V, respectively. The nebulizer pressure was set
at 50 psig and the nitrogen drying gas flow rate was set at 5 l/min.
The drying gas temperature was maintained at 300◦C. Data were
collected in the centroid mode in the 4 GHz (extended dynamic
range) mode (39), and the values were normalized to the starting
concentration measurement at 0 h.

Mathematical modeling
We generated agent-based models of the genetic networks that
includes stochastic simulation of gene expression inside grow-
ing and dividing cells to capture EGE. In our simulations, agents
are single cells that are growing and dividing and inside each
cell there are biochemical reactions that take place. A single
cell’s growth rate was then coupled to stochastic expression of a

https://www.addgene.org/Mark_Isalan/
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Fig. 1. EGE increases linearly with rising antibiotic concentration in analogy to Ohm’s law. (a) Schematic of GFP-CAT expression cassettes used in this
study with inducible (PBAD) promoter driving expression of WT or mutant catT172A (relative acetylation efficiencies of kcat100% and kcat 46%,
respectively). (b) Schematic of EGE for antibiotic resistance. GFP-CAT concentration per cell is indicated by a range of light to dark green; three
separate populations are shown where higher gfp-cat expression is spontaneously selected in the presence of increasing Cm concentration, to increase
cell fitness. (c) and (d) Emergent gfp-cat expression with a weakly induced PBAD promoter (0.005% arabinose). Graphs show GFP/A600 per well of
populations expressing genome-integrated wt gfp-cat (c) and mutant gfp-catT172A (d). These were treated with 0, 1, 2, 3, 4, 5, or 6 μg/ml Cm to induce
EGE, monitored for 12 h and compared at corresponding Abs600; n = 3 biological replicates. (e) Ohm’s law analogy for EGE, where GFP-CAT expression is
analogous to current (I), Cm concentration to voltage (V), and the slope of the linear relationship between these, representing cellular propensity to
increase EGE, is analogous to conductance (1/R). The data points are the maximal EGE values in (d).

fitness inducing gene inside that cell. In order to simulate our
models we used a mixture of the stochastic simulation algorithm
to capture gene expression dynamics and analytical solutions of
exponential or logistic growth models to capture the cell growth
dynamics. Upon division, we assumed that the the cell’s mRNA
and protein contents were binomially distributed between two
daughter cells. To manage the computational complexity, we sim-
ulated a fixed number of cells where upon any cell division,
the new offspring replaces one of the old cells in the popula-
tion at random. Specifically, we simulated the evolution of the
state-matrix Mi, j(t), a matrix containing the quantities of the
molecular species j in cell i at time t in the model. Another
matrix, Pi, j(t) was used to store the propensities of the reac-
tions in the system. A third matrix Ki, j(t) was used to represent
the state-change matrix, which stores the changes in the num-
ber of the different molecular species at each time step and
was used to update the state-matrix Mi, j(t). This matrix Ki, j(t)
was computed using the propensities from Pi, j(t) and updated as
per the stochastic simulation algorithm. This was repeated un-
til the volume of the cell reaches its final volume and division
occurs. We used Approximate Bayesian Computation (ABC) to fit
the models to data (40, 41). The full details of the mathemati-
cal modeling are found in Supplementary Material Appendix 2.
All the modeling was implemented in the Julia programming
language.

Results
To isolate EGE, we applied a selection pressure, using an antibiotic
challenge with the protein synthesis inhibitor Cm, and analyzed
phenotypic selection output based on changing expression levels
of chloramphenicol acetyl transferase (CAT). We integrated wild
type (WT) and mutant versions of gfp–cat fusion constructs, driven
by an arabinose-inducible pBAD promoter, into the E. coli genome
(Fig. 1a). The pBAD–AraC induction system is well-characterized
and frequently used in designing synthetic gene expression cas-
settes (4). The E. coli strain used in this study has been modified
to carry a deletion in arabinose metabolizing genes and has been
engineered to allow for a graded, rather than all-or-nothing, re-
sponse to arabinose induction (4). Such a tightly controlled sys-
tem was essential for providing a stable and predictable level of
gfp-cat expression in the absence of Cm. This, in turn, allowed
for clear distinction in expression levels upon a graded Cm chal-
lenge. In addition to the arabinose-inducible pBAD promoter, we
also studied a constitutive promoter system. Constitutive promot-
ers employed in synthetic biology studies are well-characterized
in E. coli and are not known to be controlled by other elements
of the native cellular machinery. In this study, we attempted to
uncouple transcription of the engineered cassettes from any na-
tive cellular machinery or from promoters associated with ex-
pression of the genes under investigation so that we could bet-
ter predict the expression of this gene product. We employed a
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Table 1. The upper part of the table lists the different model assumptions made. A tick indicates that the model (for a given column)
contains an assumption (given by the row) while a cross indicates that it does not. The lower part (highlighted in gray) summarizes
the model output. The first row indicates whether each model is capable of producing a linear relationship between the fitness protein
and the selection pressure. The second row shows whether we can observe a unimodal shift to the right (increase in the production) of
the fitness protein in response to stress. The next row shows whether an increase in the mean mRNA level is observed in response to
selection pressure. Finally, the maximum mean ratio of the fitness protein to the reference protein for each model is displayed in the last
row. The only model that captures the observed data (unimodal shift, mRNA increase, and Ohm’s Law) is model 8, which also worked
when tested for the regulated case and which we adopt in the main paper.

Model 1 2 3 4 5 6 7 8 9 10

mRNA � � � � � � � � � �

Protein � � � � � � � � � �

Biased partitioning � � � � � � � � � �

Global transcription feedback � � � � � � � � � �

Global translation feedback � � � � � � � � � �

Constitutive � � � � � � � � � �

Regulated � � � � � � � � � �

No. of parameters 2 3 3 4 3 4 4 5 4 5
Ohm’s Law � � � � � � � � � �

Unimodal shift � � � � � � � � � �

mRNA increase � � � � � � � � � �

Max ratio 1.0 1.0 1.0 1.0 1.0 1.0 1.75 1.8 1.0 2.1

synthetic constitutive promoter of a known relative strength to
generate a stable level of the gfp-cat cassette expression in the ab-
sence of any native inducer or Cm. Thus, similarly to the inducible
case of pBAD-mediated gene expression, an increase in gfp-cat
expression in the presence of Cm could be associated directly to
the pressure applied by addition of the antibiotic. We expected
that as Cm concentration increased, cells expressing higher lev-
els of GFP-CAT would be more fit; consequently, cat expression
and GFP fluorescence within the entire population would rise in a
dose-dependent manner (Fig. 1b). Additionally, we reasoned that
strains expressing less-active mutant versions of CAT would re-
quire higher expression levels than WT, in order to acetylate and
neutralize equal amounts of antibiotic.

We challenged populations of cells weakly induced to express
either the WT gfp-cat cassette or the mutant (T172A, ∼46% of kcat

WT activity (42)), with increasing concentrations of Cm, and col-
lected growth and GFP fluorescence time-series measurements.
As expected, this resulted in slight upregulation of WT gfp-cat
expression (Fig. 1c), and in strong, nontransient, Cm-dependent
increases in mutant GFP-CATT172A production, well-above the
amount induced by arabinose alone (Fig. 1d). Strikingly, in all cases
the increase in fitness-conferring gene (cat) expression was lin-
early correlated to rising selection pressure (Cm concentration)
(Fig. 1e).

We find it helpful to understand this observation using an anal-
ogy taken from electrical conductivity. In Ohm’s law, current (I)
is proportional to voltage (V, electrical pressure), with resistance
(R) being the opposition to electron flow. Here, by analogy, the
selection pressure (Cm concentration, “voltage”) drives a propor-
tional increase in gfp-cat expression (“current”—for simplicity we
use the peak expression but found similar results using the mean
or median expression) with the metabolic and resource cost of
gene expression accounting for the “resistance”, while the slope
of the graph (1/R, Fig. 1e) gives the “conductance” of the system,
or the propensity of the cell to increase EGE per unit selection
pressure.

Next, we applied a series of controls to test the EGE hypothe-
sis. These included addition of a constitutively expressed cat gene
to the gfp-catT172A-expressing strain, thus relieving the selection
pressure and obviating the need for EGE. (Figure S1, Supplemen-

tary Material). Furthermore, gfp expression did not increase upon
Cm treatment in a strain encoding a functionally inactive gfp-
catH193A mutant, suggesting that EGE selects only those cells which
contain increased amounts of a functional fitness-conferring pro-
tein, and that Cm does not directly activate the promoter (Fig-
ure S1, Supplementary Material). We also found this phenotypic
selection effect to be reversible and reproducible over several
short rounds of antibiotic challenge and washout, reflecting the
inherent flexibility of the mechanism (Figure S2, Supplementary
Material). In addition, RT-qPCR analysis showed that gfp-cat tran-
scripts were specifically upregulated upon Cm treatment, while
expression of housekeeping genes, sigma factors, and other an-
tibiotic treatment response genes remained constant (Figure S3,
Supplementary Material). This suggests that phenotypic selection
based on Cm-induced EGE is specific to the gfp-cat gene, that the
level of upregulation is reversible and that it is related to the per-
molecule activity of the fitness-conferring enzyme.

To understand the mechanisms underlying EGE, we established
minimal requirements necessary to recapitulate this behavior in
silico. We constructed agent-based models that included growth
and division of cells exhibiting stochastic gene expression of a
fitness-conferring gene (40, 43, 44). Previously several studies have
indicated possible global links from cell growth rate to both tran-
scription and translation (25, 45–47). Therefore, we performed a
comparison of 10 toy models exploring a range of assumptions
for gene expression and growth regulation (Table 1). Our toy mod-
els contained two genes, a fitness-conferring gene and a reference
gene, which we assumed were modeled with the same parameters
with the only difference being that the growth rate of the cell was
coupled to fitness-conferring gene expression. We assumed cell
growth rate was constant in the absence of stress and became
more dependent on the fitness-conferring gene as the stress level
increased. We simulated cell populations in a chemostat-like set-
ting (where a constant number of cells was tracked) and we per-
formed ABC (41) model selection to find models that can show an
increase in the fitness-conferring gene relative to the reference
gene. Each of the models possessed different levels of biological
detail with some only possessing mRNA and others having mRNA,
protein, and known global links between gene expression and cell
growth. More details about the reactions of each of the 10 models,
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parameter inference, and the error form chosen to maximize EGE
can be found in Appendix Sections 1.3 and 1.4.

Models 7, 8, and 10 exhibited EGE (Table 1). Model 7 won
in the ABC model selection as it is the model with the least
number of parameters that can produce EGE. We found that
growth-dependent dilution and a global positive feedback cou-
pling translation rate to cell growth were essential (Table 1). There
is evidence for this coupling in the literature (47, 48). Such posi-
tive feedbacks can extend the lifetime of protein fluctuations be-
yond the dilution time set by the cell cycle (49, 50). The candi-
date models also explicitly required both transcription and trans-
lation components to be modeled to produce EGE, as removing
the mRNA variable did not produce sufficient levels of noise for
phenotypic selection to act upon (Supplementary Material Ap-
pendix, Figures S6–S9). We note that a saturating rather than lin-
ear dependence between the translation rate and growth rate (as
in (47)) was sufficient to produce EGE (see Supplementary Material
Appendix, Figure S10).

Establishing the minimal requirements for the EGE using our
toy models in a chemostat setting, we attempted to quantitatively
explain our microplate data using a specific model of the pBAD in-
ducible GFP-CAT system (Fig. 1a). Given Model 8 was the only toy
model that showed robust EGE coupled with a uni-modal shift in
gene expression at the protein level as well as mRNA upregula-
tion (which we observed experimentally, see Fig. 2e), we decided
to use toy Model 8 as the basis of our model of the pBAD inducible
GFP-cat system (Fig. 2a). We also modeled arabinose and Cm ex-
plicitly in our model with Cm passively diffusing into cells where
it hinders cell growth and arabinose import being dependent on
AraE expression. We also assumed that the level of intracellular
arabinose determined the activity level of the pBAD promoter and
that the pBAD promoter becomes inactive at a constant rate. We
also assumed that GFP-CAT was able to acetylate intracellular Cm
and that acetylated chlorampenicol does not impact cell growth.
To infer parameters for this system, we again used ABC (41) but
this time in conjunction with gene expression time series data and
growth kinetics data from our microplate experiments (Fig. 2a and
b; Supplementary Material Video 1). We note that there is a slight
discrepancy between the presented growth kinetics data and that
which was used for fitting the model using ABC. To avoid the sim-
ulations beginning from zero or close to zero cells, we did not re-
move the constant background OD from the data used for the fit-
ting. We also did not model cell death in this particular model, so
we ignored the observed decrease in OD levels during the station-
ary phase part of growth.

Importantly (as was the case for Model 8) without further fit-
ting, the model was able to predict a Cm-dependent unimodal in-
crease in CAT expression across the entire distribution of the pop-
ulation (Fig. 2c), which we validated using flow cytometry (Fig. 2d).
The model similarly produced experimentally observed increas-
ing gfp-cat mRNA levels in the presence of increasing Cm concen-
tration (Fig. 2e; Supplementary Material Figure S3). We also used
mass spectrometry to measure the time–course of external an-
tibiotic depletion and this was also captured qualitatively by our
model without further fitting (Fig. 2f; see Appendix Section 1.6.3
for a revised model that captures mass spectrometry data more
accurately). We also observed the reversibility of EGE upon re-
moval of Cm after multiple washouts (Figure S2, Supplementary
Material), but we noticed a plasticity for the observed EGE, sug-
gesting metastability of the pBAD promoter. In line with these
observations, our model predicts the timescale of this increased
promoter activity is dependent on the promoter deactivation rate
as shown in simulated washout experiments (where we remove

Fig. 2. Experimental verification of the inducible promoter
computational emergence model. (a) Schematic for mathematical
modeling of the inducible promoter system for a single cell. The
reactions capture gfp-cat expression and degradation, araE expression
and degradation, arabinose import, degradation and activation of the
PBAD promoter, as well as Cm import and acetylation by GFP-CAT.
Intracellular dynamics were coupled to a second model scale, which
captured cell division, partitioning and logistic growth of the cell
population (more details in Appendix 2 and Supplementary Material
Appendix, Figures S11–S14). (b) Comparing model outputs with
experimental data for growth (normalized A600 data) and GFP-CAT
molecules per cell (GFP/A600), for increasing Cm concentrations, over 12
h. Best fit parameters were taken from ABC parameter inference and
initial conditions (initial number of cells and GFP expression levels) were
taken from the experimental data displayed in right hand panels. mRNA
levels were assumed to be zero initially. (c) and (d) Comparing model
outputs with experimental data for population distributions of EGE.
GFP-CAT molecule distributions are shown for increasing Cm
concentrations. The x-axis in (c) is displayed on a log10 scale and the
y-axis is scaled such that the total area of the histograms sum to 1. The
flow cytometry analysis (d) of the genome-integrated gfp-catT172A mutant
matches the model prediction (c). Cells in (d) were weakly induced with
0.005% arabinose, treated with 0, 4, or 6 μg/ml Cm for 12 h, and fixed in
2% paraformaldehyde; n = 3 biological replicates. (e) RT-qPCR assay of
gfp-catT172A mRNA expression in populations induced with 0.005%
arabinose, treated with 0 (blue) or 5 (red) μg/ml Cm, and harvested at
A600 of 0.2, 0.4, 0.6, and 0.8 (Mean ± SEM; n = 3 biological replicates).
Asterisks represent P-values: ∗∗ = P < 0.01. (f) Cm concentration in
cultures of the genome-integrated gfp-catT172A mutant strain, measured
by LC-MS at 1-h intervals (orange). This is compared with the predicted
Cm concentration from simulation of the refined inducible promoter
model (Supplementary Material Appendix, Figure S23). Both time series
are normalized to their maximal values.
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Cm from the system and re-run numerical simulations iteratively
using final states as initial states) shown in Supplementary Ma-
terial Appendix, Figures S19 and S20. In short, the mechanism of
the model of the inducible pBAD system can be understood as fol-
lows. The global feedbacks between gene expression and growth
can lead to more arabinose import during log phase of growth
and the subsequent activation of the pBAD promoter acts to push
the system to a metastable state of higher fitness-conferring gene
expression.

Next, we observed and modeled EGE behavior in the context
of constitutive expression of the gfp-catT172A cassette, where we
again saw a dose-dependent unimodal increase in gfp-catT172A ex-
pression (Fig. 3; Figure S4, Supplementary Material; Supplemen-
tary Material Video 2). Mathematical modeling of this constitutive
expression model was able to reproduce our data (Fig. 3—again
we rescaled the growth kinetics data as in the pBAD inducible sys-
tem). In this case, the EGE observed was more transient than in the
inducible pBAD system case. We understood this difference arose
from the fact that EGE required growth and growth feedbacks on
gene expression. Hence, by the time the cells entered the station-
ary phase it was no longer possible to observe, as the growth rate
slows it becomes weaker (see Figure S4, Supplementary Material).
This is why we see the largest effect at the log-phase of growth. In
contrast, the pBAD inducible promoter system yielded less tran-
sient levels of EGE in the form of increased promoter activity.

To determine whether our observation apply to other biological
systems, we were able to isolate and characterize dose-dependent
EGE within an entirely unrelated fitness model system previously
reported by Tsuru et al. (20). Here, antibiotic exposure was re-
placed by histidine auxotrophy, which was relieved by expression
and upregulation of a histidine biosynthesis pathway gene. Dele-
tion of the native histidinol-phosphate aminotransferase hisC,
and subsequent rewiring of the strain to encode a monostable
hisC-gfp circuit, allowed for the uncoupling of hisC expression from
its native operon. This resulted in a fully synthetic and tunable
expression system. We applied a range of selection pressures by
gradually reducing the availability of histidine in the medium; we
found a corresponding concentration-dependent stochastic up-
regulation of the hisC gene, again demonstrating “gene expression
according to need” (Fig. 4b). In order to model this system we again
used the toy Model 8 as the basis and for this system we included
an added control of a reference gene expressed at the same rate
as hisC-gfp (Fig. 4a). We note that in this case, in order to use the
same parameters for the reference gene and hisC-gfp gene, we
had to rescale the gene expression data so that the ratio of the two
genes was 1 at time 0 for 0 histidine (and we also normalized the
growth data as in the other systems). We also modeled an external
pool of histidine, which we assumed diffused into the cells and
could vary at the beginning of our numerical experiments. Fur-
thermore, we assumed that cell growth depended on the level of
internal histidine in a saturating manner. By coupling these exper-
imental results to our theoretical framework, again using ABC, we
were able to model this behavior. This system also displayed dose-
dependent EGE, with less histidine supplied leading to a larger bias
in the fitness protein (hisC-gfp) compared to the reference protein
(RFP).

Lastly, using our approach of varying fitness-conferring gene
product activity, we identified dose dependent EGE in a bacterici-
dal antibiotic resistance context. Here, cells expressing the wild-
type or mutant (L74N) (51) beta-lactamase (bla) gene from a plas-
mid template were treated with increasing amounts of ampicillin.
In line with our findings for the Cm resistance framework, ex-
pression of WT bla increased slightly with corresponding increase

in Amp concentration (Figure S5, Supplementary Material), while
expression of the mutant blaL74N was more pronounced at much
lower concentrations of the antibiotic (Fig. 5b). The model we de-
veloped for this system was similar to the one we developed for
the pBAD inducible GFP-CAT system. Through application of ABC,
we were able to parameterize our model and find good agreement
between the model and data. The main difference between the
chlorampenicol and ampicillin models was that we assumed in-
tracellular ampicillin induced cell death with some probability
and that cleaved ampicillin no longer could induce cell death.
Therefore, cells rich in GFP-BLA were less likely to die and there-
fore became more represented in the cell populations as ampi-
cillin was administered.

Fitness-induced gene expression effects in antibiotic resistance
have been reported previously, however, due to the transiency of
this phenomenon, collection of corresponding fine-grained exper-
imental data for model fitting is difficult (23, 52, 53). In this study,
the critical difference is that we used decreased-activity fitness-
conferring gene mutants that enhance EGE to observe and quan-
tify dose-responses. Similarly, using mathematical modeling, we
revealed that to observe maximal EGE magnitude, one needs to
use intermediate fitness-conferring gene strength (catT172A) and
intermediate selection pressure (Cm; Fig. 6a). This interplay be-
tween fitness and strength of selection resulted in theoretically
detectable bands or islands of maximal EGE within the fitness pa-
rameter landscape (Fig. 6a). Similar to this case we observed is-
lands of maximal emergence by modulating enzymatic activity
in silico in the other cases of constitutive promoter (Fig. 6b), HisC
system (Fig. 6c) and ampicillin resistance (Fig. 6d). For all these
systems, varying selection pressure within an appropriate range
yielded a linear Ohm’s-law-like EGE (Fig. 6e–h).

Discussion
In summary, we report fitness-induced EGE, and correspond-
ing mathematical model banding patterns based on expression
strength and fitness-conferring gene activity, for both plasmid
and genome integrated expression systems. This is in the case
of both bacteriostatic and bactericidal antibiotics, as well as aux-
otrophy supplementation, indicating the potentially wide-spread
nature of this population-level behavior. We were, thus able to
build an accurate predictive model of EGE, explaining the associ-
ated fitness-conferring gene expression increases in the presence
of a selection pressure. Based on these findings, we propose that
population-level noise in gene expression ensures the existence
of cells with a range of fitness and that higher expression of a
fitness-conferring gene results in faster division times in the pres-
ence of a corresponding selection pressure. Furthermore, positive
feedbacks between gene expression and cell growth produces a
memory effect where daughter cells inherit the level of fitness-
conferring gene, thus making phenotypic selection and EGE
possible.

Our mathematical and experimental results show that EGE is
a phenomenon that can be observed with some degree of tun-
ing of the relevant parameters and may play a role in the ex-
pression of many fitness-conferring genes. While each of the sys-
tems we explored and modeled had their own specific elements
(and we refer the reader to the supplemental material for de-
tails), each of the systems contained the crucial elements of a
growing cell population with stochastic expression of a fitness-
conferring gene in single cells leading to faster cell growth and
positive feedbacks between gene expression and cell growth. One
of the most critical parameters we found was the level of stress
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Fig. 3. Experimental verification of the constitutive expression computational emergence model. (a) Schematic for mathematical modeling of the
constitutive promoter system for a single cell. The reactions capture gfp-cat expression and degradation, as well as Cm import and acetylation by
GFP-CAT. Intracellular dynamics were coupled to a second model scale, which captured cell division, partitioning, and logistic growth of the cell
population (more details in Appendix 2 and Supplementary Material Appendix, Figures S11–S14). (b) Comparing model outputs with experimental
data (promoter BBaJ23100 with mutant T172A GFP-CAT). Graphs show mean (± SDM) GFP expression (GFP/A600 per well) in populations constitutively
expressing genome-integrated mutant gfp-catT172A. These were treated with 0 to 6 μg/ml Cm, to induce EGE, and monitored for 22 h; n = 3 biological
replicates. Time series showing total number of cells from simulation of a constitutive promoter model normalized by carrying capacity (upper left
panel), corresponding experimental mean (± SDM) GFP expression (GFP/A600 per well) in populations constitutively expressing genome-integrated
mutant gfp-catT172A. (upper right panel), mean number of GFP-CAT molecules per cell from simulation of the constitutive promoter model (lower left
panel) and corresponding experimental mean gfp expression data (lower right panel), for cells treated with 0 to 6 μg/ml Cm, for a time period of 22 h.
Best fit parameters were used from ABC parameter inference and initial conditions (initial number of cells and gfp expression levels) are takenwere
taken from data displayed in right hand side panels. mRNA levels were assumed to be zero initially.

or selection pressure. In particular we found (both experimentally
and computationally) that if the selection pressure was too great
that EGE was not possible. Hence, EGE is a phenomenon that only
occurs under specific conditions (for example in the case of the in-
ducible gfp-cat system, for the external chlorampenicol pool fixed

to 104 molecules we find EGE for the acetylaton rate in the ap-
proximate range 0.2 to 1.0 per hour). It should be noted that even
small changes in the expression of highly active fitness-conferring
genes, such as those encoding antibiotic resistance enzymes, may
be crucially important for cells’ biology even where transient EGE
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a

b

Fig. 4. Experimental verification of inducible expression model of EGE of gfp-hisC in E. coli OSU12-hisC grown in decreasing concentrations of histidine
in the growth medium. (a) Schematic for mathematical modeling of the histidine depletion system for a single cell. The reactions capture gfp-hisC and
rfp expression and degradation, as well as histidine (His) import. Intracellular dynamics were coupled to a second model scale, which captured cell
division, partitioning, and logistic growth of the cell population (more details in Appendix 2 and Supplementary Material Appendix, Figure S22). (b)
Comparing model outputs with experimental data for growth (normalized A600 data) and GFP-HISC molecules per cell (GFP/A600), for decreasing His
concentrations, over 20 h. Time series showing total number of cells from simulations of an inducible promoter model normalized by carrying
capacity (upper left panel) and corresponding experimental mean A600 data (upper right panel) for 11 histidine conditions ranging from 0 to 1,000 μM
for a time period of 20 h. Lower plots show the corresponding time series of gfp expression normalized to rfp expression for the same conditions with
the left plot showing the model output and the right plot showing the experimental mean. Best fit parameter were used from ABC parameter inference
and initial conditions (initial number of cells, gfp expression, and rfp expression levels) were taken from data displayed in right hand side panels.
mRNA levels were assumed to be zero initially.

may be difficult to detect with current experimental methods (54).
Mathematical modeling reveals these relationships and indeed
confirms that an intermediate-activity mutant maximizes EGE
and gives a model output that fits remarkably well with the ex-
perimental Ohm’s-law-like linear framework of dose dependent
gene expression (Fig. 6a–d). This can be observed within inducible
and constitutive expression systems and across different fitness-
conferring genes (Fig. 6e–h). The generality of our results could be
further tested by performing similar experiments using other fit-

ness inducing genes in other bacteria or eukaryotic cells under a
range of different selection pressures. In principle, we suspect the
same effect could be observed when cancer cells are exposed to a
chemotherapeutic stress (30).

The observed Ohm’s-law-like dose-dependent EGE could be
viewed as an example of a more general fluctuation–response
relationship that has been proposed before (55, 56). The
quantity of interest here is expression of fitness inducing gene,
and the response is stress dose-dependent EGE. According to this
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a

b

Fig. 5. Experimental verification of the ampicillin computational emergence model. (a) Schematic for mathematical modeling of the ampicillin system
for a single cell. The reactions capture gfp-bla expression and degradation, as well as ampicillin (Amp) import and cleavage by GFP-BLA. Intracellular
dynamics were coupled to a second model scale, which captured cell division, partitioning and logistic growth of the cell population (more details in
Appendix 2 and Supplementary Material Appendix, Figure S23). (b) Comparing model outputs with experimental data for growth kinetics Abs600

(upper panels) and GFP fluorescence per well of populations (lower panels) expressing plasmid-encoded mutant gfp-bla74N and treated with 0, 2, 4, 6,
8, 10, 12, 14, and 16 μg/ml Amp; n = 3 biological replicates. Best fit parameters were used from ABC parameter inference and initial conditions (initial
number of cells and gfp expression levels) were taken from data displayed in top panels of (b). mRNA levels were assumed to be zero initially.

fluctuation–response relationship the response (EGE) to a fixed
amount of force (stress) should be proportional to the fluctua-
tion in the quantity of interest in the absence of force, which
in our case is noise in the uninduced gene expression. Indeed,
as shown in the appendix, in our exploration of our toy models
this can be observed for models with unimodal EGE (Models 7
and 8; see Figures S7 and S8, Supplementary Material), but not
models with bimodal expression (Model 10; see Figure S9, Supple-
mentary Material). So, the origin of the observed EGE Ohm’s-law
can be traced back to the general fluctuation–response relation-
ship for Gaussian-like distributions (see (55) for a derivation of this
result).

We emphasize that our results are based on isogenic cell
lines and further work is required to investigate the interplay
between EGE, genetic mutations, and evolution. While, our
results are of relevance to ecological time-scales and we ob-
served no mutations during our experiments contributing to
EGE, future studies could investigate evolutionary consequences
by repetitively propagating cultures over many days under the
conditions where EGE is expected. We note that, over evolution-
ary time, higher adaptedness might require genetic mutations
and natural selection, and thus EGE behavior might be pre-
vented from general success on evolutionary timescales. Indeed,
the effects are magnified by “inferior” genes such as the CAT
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Fig. 6. Bands and islands of maximal EGE, in antibiotic resistance and histidine auxotrophy, in parameter space. Heatmaps showing the effect of
varying acetylation rate and Cm dosage on a normalized EGE gradient of gfp-cat, for (a) inducible (see Supplementary Material
Appendix, Figures S15–S17) and (b) constitutive promoter models (see Supplementary Material Appendix, Figures S11–S14). A total of six different
simulations were computed per model, corresponding to cells being treated with Cm ((a): 0C, 1C, 2C, 3C, 4C, 5C, or 6C; (b): 0C, 5C, 10C, 15C, 20C, or 30C;
where C is the number of external Cm molecules). (c) Heatmap showing effect of varying histidinol-phosphate aminotransferase activity on a
normalized EGE gradient of gfp-hisC. Linear regression is applied to the HisC-GFP/RFP levels yielded from simulations of model of HisC dynamics (see
Fig. 4) generated using decreasing concentrations of histidine from 1,000 to 0 μM for each time point, to obtain the maximum gradient. (d) Heatmap
showing the effect of varying the cleavage rate and concentration of ampicillin (Amp). Linear regression is applied to the gfp-blaL74N expression levels
yielded from simulations of model of blaL74N dynamics (see Fig. 5) generated using concentrations of Amp from 0, 2, 4, 6, 8, 10, 12, 14, and 16 μg/ml for
each time point, to obtain the maximum gradient. White asterisks highlight the parameter combinations found to provide the best model fits to the
microplate reader data. (e, f, g, and h), Linear regression fits of microplate reader data showing linearity of GFP expression relationship (Ohm’s law)
with Cm treatment dosage, for both (e) inducible and (f) constitutive cases of cat-gfpT172A expression. (e) shows mean (± SDm) GFP expression (GFP/A600

per well) in populations treated with 0, 1, 2, 3, 4, 5, or 6 μg/ml Cm at t = 12 h (blue points) with linear regression fit overlaid (black solid line). These
experimental data were compared with the predicted mean GFP-CAT molecules per cell for inducible promoter model simulations at same time point
(red points), (f) is similar, for populations treated with 0, 5, 10, 15, 20, or 30 μg/ml Cm at t = 3 h (blue points), compared with model predictions (red
points) of the constitutively expressed gfp-catT172A. (g) Linear regression fit of gfp expression normalized to rfp expression in cells grown in minimal
media with decreasing concentrations of histidine from 1,000 to 0 μM (red dots) compared with the predicted mean GFP-HisC/RFP molecule
production at the respective concentrations. (h) Linear regression fit of inducible gfp-blaL74N expression (± SDm) in populations treated with 0, 2, 4, 6, 8,
10, 12, 14, and 16 μg/mL Amp at t = 12 h (blue points) with linear regression fit overlaid (black solid line). These experimental data were compared
with the predicted mean GFP-CAT molecules per cell for inducible promoter model simulations at same time point (red points).

mutants exemplified here. EGE may, therefore, be more of
a general bridge to temporary survival under new condi-
tions, until mutation and natural selection have time to
catch up. This is consistent with what is proposed by Dun-
lop et al. (57) with respect to efflux pumps. Moreover, a
recent study showed that phenotypic heterogeneity in bac-
teria populations could be increased following application
of intermediate antiobiotic doses (58). Phenotypic hetero-
geneity can be further amplified due to genetic mutations
(see (59) for a review of this subject). So, the evolution
of noisy gene expression, its interplay with EGE and evo-
lutionary adaptation could be promising areas of future
research.

Overall, our results indicate that the linear relationship
between selection pressure and gene expression relies on
phenotypic selection requiring cellular growth and division,
growth positive feedbacks, stochasticity, and fitness-conferring
gene activity. We hypothesize this kind of need-based gene
expression increases population survival in the presence of
stresses such as antibiotics or cancer-targeting drugs, which
could preclude or precede the necessity for hardwired genetic
changes.
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