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Abstract

Aquatic primary production is the foundation of many river food webs. Dams change the physical template of rivers, often driving
food webs toward greater reliance on aquatic primary production. Nonetheless, the effects of regulated flow regimes on primary
production are poorly understood. Load following is a common dam flow management strategy that involves subdaily changes in
water releases proportional to fluctuations in electrical power demand. This flow regime causes an artificial tide, wetting and drying
channel margins and altering river depth and water clarity, all processes that are likely to affect primary production. In collaboration
with dam operators, we designed an experimental flow regime whose goal was to mitigate negative effects of load following on
ecosystem processes. The experimental flow contrasted steady-low flows on weekends with load following flows on weekdays. Here,
we quantify the effect of this experimental flow on springtime gross primary production (GPP) 90-to-425 km downstream of Glen
Canyon Dam on the Colorado River, AZ, USA. GPP during steady-low flows was 41% higher than during load following flows, mostly
owing to nonlinear reductions in sediment-driven turbidity. The experimental flow increased weekly GPP even after controlling for
variation in weekly mean discharge, demonstrating a negative effect of load following on GPP. We estimate that this environmental
flow increased springtime carbon fixation by 0.27 g C m−2 d−1, which is ecologically meaningful considering median C fixation in
356 US rivers of 0.44 g C m−2 d−1 and the fact that native fish populations in this river are food-limited.
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Significance Statement:

Primary production fuels many river food webs. Extensive damming of rivers and associated changes to river flow regimes repre-
sents a pervasive change to riverine habitat, but the consequences for primary production are poorly known. Here, we compare
rates of primary production below a large dam during load following hydropower operations to those during an experimental low
and steady flow regime. We found nonlinear reductions in sediment transport and increases in water clarity during steady-low
flows, which increased primary production. This increase occurred over both daily and weekly time scales and up to 425 km down-
stream from the dam. These findings show that dam management can affect photosynthetic rates, thus affecting carbon supply
to food webs over large spatial extents.

Introduction
Dams regulate nearly half of the world’s river volume (1), with
unintended consequences for aquatic ecosystems (2, 3). Flows in
regulated rivers are often designed to meet the demand or maxi-
mize the profitability of hydropower, which currently provides ap-
proximately 16% of the energy to the global power grid (4). One
common flow modification consists of subdaily flow fluctuations
that correspond with daily hydroelectric demand (5). Ecologists
often define this management practice broadly as hydropeaking,
whereas those in the energy sector reserve that term for facilities
where generators are completely shut off during off-peak hours.

Hereafter, we use the term “load following” to refer to the more
muted subdaily changes in dam releases that result when power
generation continues even during times of low electricity demand.

Load following increases river flows during times of day when
electricity demand peaks. This subdaily flow variation creates an
artificial daily tide that modifies physical and biological processes
in the channel, and along the edges, of regulated rivers (6). Wa-
ter depth and shear stress increase during the elevated portion
of the load following tide, increasing turbidity and altering habi-
tat suitability for different plant and animal species (Fig. 1). Along
the river edges, the load following high tide entrains sediment (7),
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Fig. 1. Photographs from reach B on 14 May and 16 May 2018 (river kilometer 130) show the steady-low flow (A), and the highest point of the load
following flow (B). Specific turbidity and daily GPP for the reach at the time the photograph was taken is noted in white. Panel (C) shows a conceptual
model for GPP in the study reaches during times when tributary inputs are low. Less turbidity, less light attenuation, and more primary production are
depicted during steady-low flow conditions (left) than during load following flows (right). Finer bed grain size distribution along the river margins (19,
20) together with higher discharge result in more turbidity during load following flows. Inset panels (D) and (E) show the fraction of incident light
estimated to reach the benthos from the high-water mark during steady-low (blue) and load following (red and pink) flow where gray shows the
contrasting flow response in each panel. Depth indicates meters below (+) or above (-) the steady-low water line, with depths above the steady-low
water line (in the artificial intertidal zone) represented in pink on panel (E). The fraction of incident light reaching the benthos was calculated as e−Kaz,
where z is water depth and Ka is the light attenuation coefficient assuming a 15º solar angle of incidence and 2,000 PFFD. Ka was estimated at the
median turbidity for each flow regime (11.7 FNU, red and 8.3 FNU, blue) using the linear relationship with turbidity in the Colorado River (Figure S5a,
Supplementary Material). We hypothesize that GPP in the artificial intertidal zone is low due to high disturbance associated with wetting and drying
cycles. Panel (C) modified from Kennedy et al. (9).

while the low tide exposes sessile plants (8) and early life stages
of animals with limited mobility to desiccation (9, 10). Load fol-
lowing can increase atmospheric carbon emissions (11, 12) and
decrease insect diversity, insect and fish biomass (13, 14), juve-
nile fish growth (15, 16), and adult fish size (17) across multiple
rivers. While less is known about the effects of load following on

primary production, the periodic desiccation of shoreline plants
can reduce productivity of those communities 10-fold (8). In addi-
tion, larger daily discharge fluctuations for hydropower reduced
downstream primary production under certain conditions (18).
These findings motivated the design of a flow regime experiment,
in an adaptive management context, to test how much modest
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modifications to the flow regime of a large, regulated river could
augment ecosystem productivity while minimally affecting hy-
dropower revenue.

While many studies have described how altered flow regimes
affect aquatic ecosystems (2), large-scale experiments with mul-
tiple replicates of control and treatment flows are rare (21). Thus,
many observational studies that aim to separate the ecological
effects of load following rely on spatial comparisons. Within a
single river, observational studies have compared conditions up-
stream vs. downstream of the dam (14), and have examined how
distance downstream from the dam (22) and location relative to
the discharge wave (9) affect ecosystem conditions. Observational
studies have also compared conditions across rivers with differ-
ent load following intensities (9, 13, 17, 22). Other observational
studies have relied more on temporal comparisons within a single
system by contrasting different load following intensities across
different seasons (12, 18). These types of comparisons can make
it difficult to separate confounding spatial and temporal covari-
ates, highlighting the need for targeted experimental work that
can directly compare different flow regimes.

An experimental flow regime enacted during the spring of 2
years (2018 to 2019) consisted of low and steady releases from
Glen Canyon Dam (Arizona, USA) into the Colorado River during
weekends—when demand for power is lower—with load following
flows implemented during the 5 working days of the week (Fig. 2).
Water releases from Glen Canyon Dam flow through > 400 river
km, found mostly in Grand Canyon National Park, before enter-
ing Lake Mead. We focused inference on an ecosystem process,
gross primary production (GPP), which provides nearly half of the
carbon to animals in this river segment (23). GPP can be readily es-
timated at a daily time scale across multiple locations because of
recent advances in dissolved oxygen sensors and statistical mod-
eling (24, 25). Most GPP in the Colorado River occurs during spring
(18) when tributary sediment inputs are low, turbidity is low, and
variation in turbidity is mostly a function of subdaily changes in
discharge that resuspend fine sediments (26, Supplementary Ma-
terial). We hypothesized that steady-low flows would elevate GPP
at the daily time scale due to reductions in turbidity and light
attenuation. We also hypothesized that load following was caus-
ing more turbidity than would be predicted by simple linear scal-
ing between discharge and turbidity. Thus, we predicted elevated
weekly GPP in experimental flow weeks, with 2 days of steady-
low flow, as compared with other weeks during the same time
of year where mean discharge and bed grain size were the same.
Finally, we hypothesized that turbidity reductions due to experi-
mental flows would increase GPP the most during the springtime
when rates of GPP are high and riverine turbidity is not influenced
by tributary sediment inputs (i.e. when the bed grain-size distri-
bution is coarser). To test these hypotheses, we first contrasted
daily rates of GPP among steady and load following days across
11 reaches during the experimental flow regime (May and June
of 2018 and 2019). Second, for three reaches with GPP estimates
prior to 2018, we contrasted weekly rates of GPP before the flow
experiment to weekly rates during the flow experiment. Across
this same longer-term dataset, we asked how much the experi-
mental flow affected the bed grain-size distribution by examin-
ing weekly changes in the relationship between discharge and
suspended sediment (turbidity, sand, and silt-and-clay indepen-
dently). Under the clear water conditions examined here, we con-
sider these relationships as a proxy for bed grain-size distribution
(26), and we examine the potential for longer-term effects of the
flow regime on turbidity conditions in the river. Third, we used
year-round GPP estimates together with discharge and turbidity

Fig. 2. Discharge (top line) and turbidity (A), silt-and-clay (B), and sand
concentrations (C) plotted in purple during the week of 2018 June 3 at
the USGS Colorado River above Little Colorado River near Desert View,
AZ, “A” 09383100 gaging station, 120 km below the Glen Canyon Dam.
Boxplots show all turbidity (A), silt-and-clay (B), and sand (C) data
available for the station during the entire experimental flow study
period (May and June of 2018 and 2019). Due to transit time, steady-low
flow releases from the Glen Canyon Dam reach this station very early on
Sunday morning (∼2:00 MST) and last until Monday evening (∼20:00).
For discharge, the modeled steady-low day of discharge is in blue, the
modeled “load following” days are in red, and transition days are in gray.

data from three reaches with long-term data to estimate the ex-
pected effect of the experimental flow on GPP outside of the spring
period investigated here.

Results
When averaging across sites, rates of GPP were 41% higher during
steady-low weekend flows relative to fluctuating weekday flows.
In 8 of the 11 reaches examined, GPP increased during steady-low
flows (Fig. 3). When accounting for the population level effects
of reach on GPP, GPP across all reaches was 3.1 ± 0.1 g O2 m−2
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Fig. 3. Positive (green), neutral (yellow), or negative (orange) response of GPP rates to a shift from load following to steady-low flows in 11 reaches on
the Colorado River in May and June of the 2018 and 2019 flow experiment. The length of each modeled reach is estimated based on gas transfer (80%
turnover reach). The experiment maintained normal load following flow during the weekdays and adjusted to low and steady flows during the
weekends. A total of 8 out of 11 reaches had elevated GPP on the weekend steady-low flow, relative to the weekday load following flow. Daily GPP
estimates and modeled flow effects are plotted in separate panels for reaches A–K clockwise from the upper left to lower left. The x-axis separates GPP
estimates by flow regime, with red dots representing GPP on days with load following flow and blue dots representing GPP on days with steady-low
flow. Additional information about each reach and gaging station is available in the supplementary methods and Table S1 (Supplementary Material).
The larger black points and ranges show the estimated median effect of load following vs. steady-low turbidity conditions with 90% credible intervals.
Parameter estimates and 90% credible intervals are reported in the upper right corner and approximate the fractional change in GPP from load
following to steady-low flows. Strong and weak positive effects were defined for cases where the lower end of the 90% credible interval did not drop
below 1 or 0.9, respectively. A negative effect was defined when the upper end of the credible interval did not climb above 0.9, otherwise the effect was
considered neutral. Inset map shows the location of the Colorado River reaches modeled here within the southwestern United States.

d−1 during steady-low flow vs. 2.2 ± 0.1 g O2 m−2 d−1 during hy-
dropeaking flow, translating to a 41% increase in reach-scale GPP
during the steady-low flow. Reach by reach, median steady-low
flow rates of GPP ranged from 49% of hydropeaking rates (in the
C reach) to 205% of hydropeaking GPP (in the A reach, Fig. 3). The
fractional change in steady-low (vs. load following) GPP did not
have a longitudinal pattern (Fig. 3) nor did the overall rate of GPP
(Figure S1, Supplementary Material). The strongest steady-low in-

creases in GPP occurred in reaches A, F, G, and J, with 256 river
km between reaches A and J (Table S1, Supplementary Material;
Fig. 3). The only decline in GPP during steady-low flows occurred
in reach C. The C reach had the highest gas transfer velocity (Ta-
ble S1, Supplementary Material), which complicates GPP estima-
tion and makes modeling results from this reach less reliable. A
total of two additional nearby reaches had no apparent change
in GPP from hydropeaking to low and steady flow (reaches B and
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Fig. 4. Panel (A) shows the average weekly mean GPP across sites A, G and J under differing bed grain size distribution conditions (γ ) at a fixed daily
mean discharge under experimental flows (blue) vs. load following only (red). The bed condition proxy uses the daily relationship between discharge
and turbidity to infer coarser or finer bed grain size distributions (smaller and larger values of γ respectively). Panel (B) shows how daily differences in
the y intercept of the ln–ln relationship between Q and turbidity are used to calculate γ . Individual points show 15-min data from a single day, with
three different days depicted in three different colors. Here, γ is calculated for the day before the week begins, with lower values for γ indicating a
coarser bed grain-size distribution. At γ values > 0.8 the experimental flow effect on GPP is indistinguishable relative to the load following-only
scenario.

E). Across all reaches, gas transfer (k600) was negatively corre-
lated with the fractional increase in GPP observed from weekday
to weekend (adjusted R2 = 0.56, P = < 0.001; Figure S2, Supplemen-
tary Material), however, there was no relationship between overall
rate of GPP and gas transfer velocity (Figure S3, Supplementary
Material).

Steady weekend flows lowered river depth, average discharge,
and water clarity. Steady-low flows lowered median water depth
by 10% (from 6.3 to 5.6 m), reduced discharge by 20% (from 397
to 308 m3 s−1), and lowered turbidity by 30% (from 11.7 to 8.3
FNU) across the study period (see Supplementary Results for more
detail; Fig. 2). While empirical observations of light attenuation
changes during the experimental flow are limited, point light mea-
surements made near site A during the experimental flow show
a 60% reduction in light intensities at a depth of 5 m when tran-
sitioning from steady-low flows to load following flows when nor-
malized for angle of incidence (Figure S4, Supplementary Mate-
rial). Independent of depth, we estimated that the turbidity re-
duction during steady-low flow increased the fraction of inci-
dent light reaching the bed by about 2% to 5% (Figure S5, Sup-
plementary Material). In addition, the lower flow and concomi-
tant turbidity reduction approximately doubled the light expo-
sure of the shallow (0 to 0.5 m) nonintertidal benthos; Fig. 1d
and e).

Silt-and-clay concentrations exerted the dominant control on
turbidity during the experimental flow period examined here,
but sand concentrations also contributed to turbidity during the
clearest-water periods (Fig. 2b and c). Turbidity changes during
periods of silt-and-clay concentration exceeding ∼10 mg L−1 were
driven mostly by suspended- silt-and-clay (Table S4, Supplemen-
tary Material). Median monthly sand concentrations ranged from
18 to 118 mg L−1 and median monthly silt-and-clay concentra-
tions spanned a similar range from 3 to 125 mg L−1 (Table S2,
Supplementary Material). The monthly average proportion of sus-
pended sediment composed of silt-and-clay varied from 6% to
78% depending on month and reach (Table S2, Supplementary Ma-
terial). Despite reductions in suspended-sediment during steady-
low flow, mixed-effects models showed no clear effect of the ex-

perimental flow on the bed grain-size distribution (as measured
by the ln–ln relationship between discharge and either turbidity,
sand concentration, or silt-and-clay concentration; Table S3, Sup-
plementary Material).

The flow regime together with turbidity and reach best pre-
dicted variation in daily GPP during May and June of 2018 and 2019
(Table S4, Supplementary Material). The presence of steady-low
flow had a stronger but less certain positive effect on GPP, whereas
turbidity values had a weaker but more certain negative effect on
GPP (Table S4 and Figure S6, Supplementary Material). Inclusion of
depth, month, and estimates of canyon shading (27) did not help
improve model fit. Thus, the changes in water clarity due to the
experimental flow were a larger control on riverine GPP than vari-
ation in canyon shading effects and monthly changes in discharge
from the dam.

For three reaches with long-term dissolved-oxygen data (2012
to 2019; Table S1, Supplementary Material), mixed-effects mod-
eling showed that the experimental flow elevated weekly GPP
by 28% over springtime weeks with no experimental weekend
steady-low flow. In addition to the experimental flow term, the
best model of weekly GPP also included reach, loge transformed
mean daily discharge, and an intercept term for the previous
week’s log–log relationship between discharge and turbidity (here-
after γ ; Table S5, Supplementary Material). This γ term, a proxy
for the bed grain size, improved model fit and helped predict both
the magnitude of GPP and the degree of the experimental flow
effect. Coarser bed grain-size distributions (smaller values of γ )
resulted in both higher GPP and a larger positive effect of the ex-
perimental flow on GPP (Fig. 4). Daily mean discharge improved
model fit (Table S5, Supplementary Material), but the model pre-
dicted a large range of GPP rates even when holding daily mean
discharge constant (Fig. 4). At the annual scale, the experimen-
tal flow regime tested here would have the greatest effect during
spring and early summer; by elevating weekly GPP by 0.5 (0.1 to
1; May), 0.6 (0.1 to 1; June), and 0.5 (0.1 to 1; July) g O2 m−2 d−1

(Fig. 5a). These months have highest absolute rates of GPP and
the coarsest average bed grain-size distributions (Fig. 5b; Figure
S7, Supplementary Material).
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Fig. 5. The additional weekly rate of GPP expected under the
experimental flow regime during each month of the year (A) and the
actual observed rates of weekly GPP (B) across 8 years in the three
reaches with long-term data (reaches A, G, and J; Table S1,
Supplementary Material). Actual observed rates of weekly GPP in panel
(B) include 2 years of experimental flows and 6 years with no
experimental flows. The experimental flow months examined in this
paper are in black, extrapolated effects are in gray. In panel (A), dots
indicate the model-averaged differences in the means of the posterior
predictive distributions of weekly GPP under experimental vs. load
following only flows; error bars indicate the 2.5% and 97.5% quantiles of
the difference. In panel (B), the boxes demarcate the 25th and 75th
percentiles; the horizontal lines indicate median concentrations; the
whiskers extend to the largest value less than 1.5 times the interquartile
range, and data extending beyond this range are plotted as individual
points.

Discussion
Using experimental flows released from Glen Canyon Dam, we
show that transitioning from load following to steady-low flows
resulted in nonlinear reductions in turbidity and concomitant in-
creases in primary production of the Colorado River by 41%. By
examining GPP at the weekly scale and comparing years with
an experimental flow to years without, we also showed that in-
creased GPP on the weekend steady-low days did not come at the
expense of GPP during the week. In other words, the clear water
conditions that came with steady-low flows did not cause higher-
than-normal turbidity during the following week’s load follow-
ing flows (Table S5, Supplementary Material). We also found no
evidence that the experimental flow regime influenced the bed

grain-size distribution or the overall transport of sediment (Table
S3, Supplementary Material). Instead, the redistribution of turbid-
ity from the steady-low days to the load following days affected
light availability nonlinearly (Fig. 1) such that GPP was elevated
on steady-low days with little effect on GPP during the load fol-
lowing days. Although the contrast between load following and
steady-low flow tested in this study is confounded by the relation-
ship between discharge and load following, our weekly analysis
(contrasting weeks with vs. without experimental flow) separates
these effects by considering weekly mean discharge as a poten-
tial control on GPP. Our results show a large springtime experi-
mental flow effect across a variety of bed grain-size distributions
even when daily mean discharge is held constant (Fig. 4). The ef-
fect of load following on GPP that is independent of daily mean
discharge is likely due to Jensen’s inequality, wherein the nonlin-
ear relationship between discharge and turbidity causes higher
daily mean turbidity from the diel peaks in discharge than would
occur if discharge was held at the mean. The nonlinear relation-
ship between discharge and turbidity arises from the nonlinear
relations between discharge and suspended-sediment concentra-
tion and grain size in combination with the general occurrence
of finer sediment at higher elevation on the channel perimeter
that gets progressively inundated as discharge increases—a phe-
nomenon that has been documented in both classic alluvial rivers
and bedrock canyons (19, 20).

The increase in GPP with steady-low flow was energetically sub-
stantial. River-wide, the increase translated into the additional
fixation of 0.27 g carbon (C) m−2 d−1 (from 0.87 to 1.14 g C m−2

d−1) based on the 1:1 molar ratio of oxygen produced to carbon
fixed. For context, a national study of 365 rivers across the United
States found that median GPP was only 0.44 g C m−2 d−1 (24). The
clear water conditions below many dams (28) may further sup-
port food webs reliant on in situ primary production. For exam-
ple, GPP on the river Saar increased by as much 3.5-fold across
a 75-km reach with six low-head navigation dams (29). Although
the Colorado River receives large amounts of terrestrial carbon in-
puts from flooding tributaries, macroinvertebrates derive most of
their production from algae (due to higher assimilation efficien-
cies; (23) with diatoms, in particular, dominating the trophic basis
of invertebrate production (30)). We expect that the higher GPP
during steady-low flows increased secondary production of inver-
tebrates and fishes given that production at these levels is food
limited (23, 30–33).

Flow management affected GPP up to 425 km downstream from
the dam (i.e. for the entire extent of our study area). This is a
much greater distance than is typically considered within a dam’s
footprint. Nonetheless, the large spatial footprint of dam manage-
ment on riverine GPP reported here fits with other broad scale ge-
omorphic (34), biogeochemical (35), hydrological (36), and ecolog-
ical effects (3, 9) that extend far downstream from the dam.

A preponderance of continuous dissolved oxygen data is sup-
porting large-scale examinations of the patterns and controls on
riverine GPP (24, 37), but it is difficult to estimate GPP from diel
oxygen data in rivers below dams given the co-occurrence of both
load following (e.g. variable transport times) and oxygen disequi-
libria. The combination of these two conditions violates both the
one station modeling approach applied here and the two-station
modeling approach often used to address oxygen disequilibria
when water transit times remain steady (38, 39). Here, we take
advantage of subdaily flow fluctuations that propagate many kilo-
meters downstream and a rare experimental flow to examine the
effects of load following on GPP. GPP methods that can accom-
modate both variable transit time and oxygen disequilibria have
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recently been developed (38), but improvements are needed to
make the method more broadly applicable and to examine the
geographic prevalence of the patterns we report here.

Implications for flow management
Increased GPP was an unanticipated benefit from this adap-
tive management flow experiment. The macroinvertebrate-
production flow examined here was originally designed with the
goal of increasing the diversity and production of macroinver-
tebrate assemblages by improving the survival of aquatic insect
eggs laid on the river margins (9). While the effectiveness of the
flow regime in meeting these macroinvertebrate goals is still be-
ing evaluated, we document an ecologically meaningful cobenefit
of the experimental flow—a 41% increase in primary productivity
to sustain aquatic and riparian food webs.

While most flow experiments quantify only a single biological
variable (often freshwater fish), data collected during this exper-
iment support study of the interaction between abiotic and bi-
otic processes (suspended sediment dynamics and GPP), as well
as work to examine effects at higher trophic levels (macroinver-
tebrates; ongoing work)—making it relatively unusual in the flow
experiment literature (21), but see Watts et al. (40). In addition, the
alteration of an overall flow regime (rather than a single punc-
tuated flow event or a change in minimum flow magnitude) is
relatively rare, constituting only 8% of 113 flow experiments in
a global meta-analysis (21). The rarity of such flow experiments
may arise from the relatively rigid operating constraints that
some dam managers face, but such adaptive management experi-
mentation and learning greatly improves resource outcomes over
long-time scales (21, 41). The Glen Canyon Dam Adaptive Man-
agement Program designed the experimental flow regime tested
here in a manner that was consistent with a complex set of oper-
ating constraints and at a 4-month net financial cost on the order
of $300,000 in forgone hydropower revenue (42). This collabora-
tive context for experimentation may make an ultimate change
to dam operating policy more likely (21).

Managing Colorado River flow for lower suspended-sediment
concentrations and coarser bed grain-size distributions (e.g.
smaller γ ) may increase primary productivity by reducing light
attenuation and allowing more light to reach benthic primary pro-
ducers. Sediment management and associated dam-released ex-
perimental floods have been a central theme of river manage-
ment in the Grand Canyon segment of the Colorado River, with
the focus largely on rebuilding and maintaining sandbars (43).
Our study adds to our growing understanding of how relatively
small changes in suspended sediment and associated turbidity
can have large effects on ecosystem dynamics. The discharge-
driven turbidity changes between flow regimes are 10 to 15 FNU,
which is much lower than turbidity during storm-driven tribu-
tary floods (100 to > 1,000 FNU) when turbidity changes more as a
function of changing sediment supply than discharge. Still, these
small changes to turbidity at the lower end of the turbidity range
can cause large differences in light attenuation. These turbidity-
related differences in light availability strongly control seasonal
GPP in the J reach (18) and likely canyon-wide. Small changes in
turbidity affect feeding efficiency and growth of rainbow trout in
the same river (44) as well as growth and survival of native fish
(33, 45, 46), showing that flow-management-related changes in
turbidity are emerging as a potentially useful tool for ecosystem
management. Because dam-released experimental floods gener-
ally erode silt and clay from the Colorado River (26), such floods
designed to build sandbars may also reduce riverine turbidity

(during times not influenced by storms), thus increasing riverine
GPP, although this hypothesis remains to be tested.

Global applicability of findings
The load following-related reductions in GPP we report here are
likely extendable to many other regulated rivers, especially those
in arid regions. GPP is often limited or colimited by light in rivers
(37). Light attenuation due to water clarity and depth was recently
estimated to limit primary productivity for 80% of river surface
area across > 2.2 million rivers in the contiguous United States
(47). While light attenuation in some rivers is driven more by
colored dissolved organic matter (48), we expect that sediment-
driven changes in light attenuation like those documented here
are common in arid rivers draining less productive watersheds.
Strong relationships between discharge and turbidity like the ones
reported here are likely in many other rivers below dams given
that sediment trapping behind reservoirs often, but not always,
causes sediment-depleted conditions downstream. While we do
not have a good sense for the global distribution of these sediment
starved regulated river reaches, we know that the impoundment
of rivers has caused a ∼50% reduction in sediment transport to
the coast (49), suggesting the prevalence of these conditions.

A boom in small and large hydropower projects will nearly
double global hydroelectric capacity in the coming decades (50,
51). Assuming completion of current and planned projects, free-
flowing large rivers will decline by an additional ∼20% (50) and
∼94% of global river volume will be flow regulated, fragmented,
or both (1). At the same time, a trend toward reduced load follow-
ing intensity is occurring across North America (52). The regulated
river ecosystems downstream of dams can have high primary pro-
ductivity (28, 53–55), but the ubiquity of this phenomenon is un-
known. Here, we show that flattening subdaily flow variation can
measurably increase ecosystem productivity at the primary pro-
ducer level. Where flexibility exists to redistribute flows within
single days, dam managers may have a means to manage the over-
all productivity at the base of the food web.

Materials and Methods
Dissolved-oxygen data
We collected dissolved-oxygen data at 11 sites ranging from 120
to 400 km below Glen Canyon dam (Table S1, Supplementary Ma-
terial; Fig. 3). Sites were far enough downstream of Glen Canyon
Dam and any major tributaries to meet the assumptions of the
one-station ecosystem metabolism modeling method ((56); Sup-
plementary Methods). We selected sites to provide the best cover-
age of the river with respect to estimating GPP.

A total of 4 of the 11 sites were colocated with US Geological
Survey (USGS) gaging stations (gages) measuring instantaneous
discharge (Table S1, Supplementary Material). At these sites, tem-
perature and dissolved oxygen have been monitored at 15-min
intervals using optical Yellow Springs Instrument (YSI) Reliable
Oxygen Sensor (ROX) probes continuously since at least 2012.
The other 7 of the 11 sites were equipped with Precision Mea-
surement Engineering (PME) MiniDOT loggers and recorded dis-
solved oxygen and temperature at 15-min intervals during the
spring–fall of 2018 and 2019. Both the YSIs and the MiniDOTs were
equipped with wiper units to mitigate biofouling. The MiniDOTs
also had a copper plate installed around the oxygen sensor and
were checked several times throughout their deployment to in-
sure proper functionality of the wiper. PME wiper units recorded
data about each wipe and these measurements were used to
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screen oxygen data so that data more than 2 weeks after the
last effective wipe were discarded. This time period was based
on a biofouling test conducted by deploying a MiniDOT with a
copper plate but no wiper alongside the site A YSI in mid-April,
which is typically the time of highest productivity (16). YSI oxy-
gen sensors were field calibrated in an air saturated water bath
several times yearly whereas MiniDOTs were factory calibrated
and lab-checked pre and post field season. Additional calibration
and quality control practices are described in the accompanying
data release (57).

Turbidity and suspended-sediment data
At the four USGS gaging stations described above, turbidity (in
formazin nephelometric units [FNU]) was measured using a YSI
6136 probe and false low turbidity readings were removed from
the record (58). A total of 15-min concentrations of both sus-
pended sand and silt-and-clay were measured using arrays of
two to three single-frequency side-looking acoustic-Doppler pro-
filers (59) at each station. All data collected at the USGS gaging
stations (discharge, temperature, dissolved oxygen, turbidity, and
suspended sediment) are available at: https://www.gcmrc.gov/di
scharge_qw_sediment/stations/GCDAMP. Specific gage numbers
are available in the Supplementary Methods.

Light attenuation
Underwater light attenuation was opportunistically measured
across a range of turbidity levels throughout Grand Canyon. Scalar
and cosine-corrected quantum sensors (LiCor, Inc., LI-193SA and
LI-190SZ, respectively) were used to measure photosynthetic pho-
ton flux density (PPFD; μmol quantum m−2s−1). Because light at-
tenuates exponentially as a function of water depth, four verti-
cal profiles per site were used to characterize the apparent optics.
For each profile, five measurements were logged at each depth at
0.5-m intervals to a depth of 5 m. Turbidity (FNU) measurements
were logged every 5 min and averaged over the sampling period
using a YSI as above. To reconcile for solar flux at water-surface a
ratio was calculated between reciprocal measurements of under-
water and surface incidence. These light-depth ratios were loge

transformed and then regressed against depth to estimate an ap-
parent light attenuation coefficient (K̂a) with units 1 m−1. Because
solar angles influence apparent optical conditions, these coeffi-
cients were normalized (KN) using the expression

KN = cos(
sinθi

1.33
) · K̂a,

where θi is the angle-of-incidence and 1.33 is the refractive index
of water. Angle-of-incidence was calculated based on spatial co-
ordinates and solar time adjustment (27). Normalized coefficients
were selected based on criteria (R2 > 0.96), averaged, and then re-
gressed against the average FNU measurement.

Modeling gas exchange
Oxygen models to estimate GPP require knowing air–water gas ex-
change. In the Colorado River, previous work has used the oxy-
gen discontinuity described above (e.g. dam-induced oxygen un-
dersaturation) to generate direct estimates of gas exchange (56).
This work reported extremely high values for k600 in rapids (up to
3,700 cm h−1) and showed that reach gas exchange (measured as
an exchange velocity corrected to Schmidt number of 600, k600)
values scaled best with the amount of river drop in a given reach,
independent of discharge (56). Based on seven oxygen transects
across different seasons, 80% oxygen turnover reaches were best

estimated as the length over which the river elevation drops by
37.8 m (56). We used this relationship between river drop and oxy-
gen turnover together with a high-resolution river-surface eleva-
tion Light Detection and Ranging (LiDAR) dataset collected in 2000
(60) to estimate the length of 80%-oxygen-turnover reaches (Kd

in m) for all but the most downstream reach. In place of LiDAR
data, we used a DEM layer to estimate river elevation downstream
from site J (for the K reach). These reaches were used to space
our dissolved-oxygen loggers for best coverage of GPP reaches. Per
kilometer oxygen exchange was estimated following equation 9
in (56) as

kO2 = −ln(0.2)
Kd

.

We then scaled kO2 to k600 (m d−1) based on

k600

kO2

=
(

600
ScO2

)n

,

where the exponent n was set to −0.5 for the turbulent river
environment and the Schmidt number (ScO2) was calculated as-
suming the river temperature was 10◦C and based on Wanninkhof
(61).

Estimating GPP
We modeled oxygen concentrations as a means to esti-
mate GPP using a process error model that is available
in the R package streamMetabolizer (25) as model name
“b_np_oipp_tr_plrckm.stan,” where “b” indicates a Bayesian
model, “np” indicates nonpooling, “tr” indicates trapezoidal light,
and “oipp” indicates the light process error model. This model is
similar to the state–space model described by Appling and others
(25), but differs in that process error is only allowed during the
day and assumes lognormal error. We chose this modeling ap-
proach after preliminary comparisons showed large differences
in both the modeled magnitude and subdaily timing of GPP with
more traditional modeling approaches. For a subset of the data,
we compared results from both b_np_oipp_tr_plrckm.stan and
b_np_oipi_tr_plrckm.stan. We report the same directional effect
of low and steady flows on GPP regardless of the model used (how-
ever, the absolute magnitude of the GPP estimates does change). K
was fixed for all models by setting the k600_daily_sdlog to a value
of 0.004 (to severely limit day to day variation in estimates of k600,
thus we effectively completely pooled k600). As this modeling ap-
proach is Bayesian, we checked for convergence of model param-
eters using the Gelman–Rubin diagnostic and discarded GPP esti-
mates from days with poor model convergence (e.g. R̂ > 1.1; 62).
Models were run in RStan (63) through RStudio (R version 4.0.2
and 4.0.3; 64) using the streamMetabolizer package (version 11.4).
Finally, we forced GPP estimates < 0.1 to equal 0.1 to best repre-
sent model sensitivity and so as to not overweight the days with
the lowest GPP in our modeling efforts.

We estimated % oxygen saturation using measured river tem-
peratures, barometric pressure readings from a weather sta-
tion located in Page, Arizona (accessed from wunderground
12/16/2019; https://www.wunderground.com/history/daily/us/az
/page/KPGA) corrected for the wetted surface elevation of the
reach (60), and published relationships between water tempera-
ture, barometric pressure, and oxygen saturation (65).

To get depth-integrated estimates of oxygen in the water col-
umn, we assumed hydraulic continuity:

z = Q
wv

,

https://www.gcmrc.gov/discharge_qw_sediment/stations/GCDAMP
https://www.wunderground.com/history/daily/us/az/page/KPGA
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where z is mean depth in m, w is wetted width in m Q is dis-
charge in m3 s−1, and v is velocity m s−1). Discharge was measured
at the four long-term YSI sites (Table S1, Supplementary Material)
and was modeled for the other reaches using the nearest gage and
assuming that the discharge wave is traveling at a speed of 8.6 km
h−1 (59). Using the LiDAR dataset described above, wetted width
values were estimated based on wetted surface elevations for the
entire 80% oxygen turnover reach and remained a constant value
regardless of velocity (66). Wetted width values were corrected us-
ing a 1.04 to account for the fact that width was measured at low
Q (60). River velocities (v) were estimated as

v = 0.021 × Q0.63,

where Q is river discharge in m3 s−1 and v is predicted in units
of m s−1 following (67).

We estimated PPFD of PAR for each time point where dissolved-
oxygen, temperature, and discharge measurements were avail-
able at 0.1-km intervals using a linked solar and topographic
model developed for the Grand Canyon reach of the Colorado
River (27). The river is canyon-bound and has little shading from
riparian vegetation. While clouds and turbidity can constrain GPP
(16), the light process error model we employ should accurately
estimate GPP regardless of short-term fluctuations in light avail-
ability.

We cannot estimate ecosystem respiration in the Colorado
River from high frequency dissolved oxygen measurements be-
cause turbulent mixing and associated bubble entrainment cause
increase steady state oxygen concentrations in the river by an un-
known amount above that calculated from gas saturation equa-
tion (18).

Statistical analysis
Comparison of daily GPP between steady and load following
conditions during experiment flows
Flow transitions (between steady-low and load following) some-
times occurred in the middle of the day, so we selected a sin-
gle day each week where water was steady and low from 4:00 to
3:45 Mountain Standard Time the following day (the time frame
over which daily GPP was modeled). The day on either side of
the steady-low flow day was considered a transition day and was
omitted from the analysis. The remaining days represented the
load following weekday flow. Transition days were generally in-
termediary in GPP (Figure S8, Supplementary Material). To sum-
marize data and test hypotheses about potential drivers, we loge-
transformed the GPP estimates (technically the median of the pos-
terior distribution of daily GPP) and analyzed the transformed GPP
using linear mixed models (LMM) with a normal (Gaussian) error
structure using the lme4 package v. 1.1–26 (68) in R (v. 4.0.2; 68). To
summarize GPP under both flow conditions in each reach, we fit
a model in which the intercept represented hydropeaking flows,
and an indicator variable was used to indicate the steady-low flow.
We chose a random effect structure that allowed both the inter-
cept and coefficient associated with the indicator variable to vary
among reaches. We then quantified the % change in GPP from load
following to steady-low flow for each reach as

%�GPP = 100 × GPPs

GPPh
,

where GPPs and GPPh are the model estimated rate of GPP dur-
ing steady-low flow and load following flows, respectively. To test
hypotheses regarding the role of turbidity, flow, water depth, light,
and other factors as controls on daily GPP during the spring ex-

perimental flows (May and June of 2018 and 2019), we formulated
a series of candidate models that were compared to each other
and to the summary model (i.e. the model with flow regime as an
indicator variable). The candidate models included either median
daily turbidity, ln-transformed mean daily light, or median daily
depth, as drivers of variation in ln-transformed GPP. All models in-
cluded a reach random effect with varying intercept and allowed
for the slope to vary with the random effect. We used AIC values
to compare models. Turbidity was only measured at the four YSI
sites. Turbidity was modeled for MiniDOT reaches following the
approach used for discharge (described above), but instead of us-
ing the nearest gage we used the nearest downstream gage. This
use of downstream gages for turbidity modeling was done given
the strategic placement of YSIs directly above major tributaries.
The exception was for modeling turbidity at the downstream-
most MiniDOT (for which we used turbidity measured at site K,
Table S1, Supplementary Material).

Comparison of weekly GPP between experimental flows and
regular dam operations during sprint
To analyze the longer-term effect of the experimental flow on GPP,
we modeled the ln-transformed weekly mean GPP at three long-
term sites (A, G, and K) in the months of May and June across 8
years, two of which experienced the experimental flow (Table S1,
Supplementary Material). Model estimates of GPP during weeks
with regular flow (load following 7 days a week) were compared
to model estimates of GPP from weeks with experimental flows
(steady-low flow 2 days a week) with reach as a random effect with
varying intercept. Ln-transformed weekly GPP was also modeled
as a function of ln-transformed Q, and the daily random effect
intercept of the relationship between ln(Q) and ln(T) (referred to
here as γ ) with a separate model for each reach.

Comparison of suspended-sediment regime between experi-
mental flows and regular dam operations
Finally, to compare the potential for scouring or accumulation of
sand and/or silts-and-clays on the riverbed, we modeled the in-
tercept of the ln–ln relationship between Q and (1) silt-and-clay
concentration, (2) sand concentration, and (3) turbidity at the end
of each week with reach as a random effect. This intercept can
be thought of as a proxy for the grain-size distribution on the
riverbed, where increasing γ reflects a greater abundance of silt
and clay and/or finer sand on the riverbed. In this usage, our em-
pirically derived γ behaves similarly to the inverse of the theoret-
ically derived β of Rubin and Topping (69, 70). Model estimates of
turbidity, silt-and-clay and sand intercepts during weeks with reg-
ular flow (load following 7 days a week) were compared to model
estimates of GPP from weeks with experimental flows (steady-low
flow 2 days a week) with reach as a random effect with varying
intercept. Model estimates of turbidity, silt, and clay and sand in-
tercepts at the end of the week were also modeled as a function
of the respective intercepts at the beginning of the week.

Comparison of weekly GPP between experimental flows and
regular dam operations across all months
To analyze the seasonality of the experimental flow effect on
GPP, we modeled the ln-transformed weekly mean GPP at three
long-term sites (A, G, and K) in all months across 8 years, two
of which experienced the experimental flow from May to August
(Table S1, Supplementary Material). This was done using two lin-
ear mixed effects models structured based on the top two models
from our weekly May and June analysis but with month and year
as additional random effects (Table S5, Supplementary Material).
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Models were fit using the rstanarm package (71). We then used the
posteriors associated with both models of weekly GPP to predict
weekly GPP across the entire data set under both experimental
flow and nonexperimental flow conditions. These two sets of pre-
dictions were then averaged based on model weights derived from
their respective AIC values. The absolute differences between the
model-averaged load following and the experimental flow weekly
GPP rates were then compared across months.
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