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Abstract

Fluorescence microscopy, a central tool of biological research, is subject to inherent trade-offs in experiment design. For instance,
image acquisition speed can only be increased in exchange for a lowered signal quality, or for an increased rate of photo-damage
to the specimen. Computational denoising can recover some loss of signal, extending the trade-off margin for high-speed imaging.
Recently proposed denoising on the basis of neural networks shows exceptional performance but raises concerns of errors typical
of neural networks. Here, we present a work-flow that supports an empirically optimized reduction of exposure times, as well as
per-image quality control to exclude images with reconstruction errors. We implement this work-flow on the basis of the denoising
tool Noise2Void and assess the molecular state and 3D shape of RNA polymerase II (Pol II) clusters in live zebrafish embryos. Im-
age acquisition speed could be tripled, achieving 2-s time resolution and 350-nm lateral image resolution. The obtained data reveal
stereotyped events of approximately 10 s duration: initially, the molecular mark for recruited Pol II increases, then the mark for active
Pol II increases, and finally Pol II clusters take on a stretched and unfolded shape. An independent analysis based on fixed sample
images reproduces this sequence of events, and suggests that they are related to the transient association of genes with Pol II clusters.
Our work-flow consists of procedures that can be implemented on commercial fluorescence microscopes without any hardware or
software modification, and should, therefore, be transferable to many other applications.
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Significance Statement:

Light microscopy is subject to unavoidable performance trade-offs. For observation of live biological samples, image acquisition
speed can only be increased in exchange for a lowered signal quality, or an increased rate of photo-damage. These limitations can be
partially compensated for by denoising after acquisition. Denoising based on deep learning performs especially well, but denoising
errors have caused concern. We present a pragmatic work-flow that enables quality control of denoised images. We illustrate the
applicability of this work-flow by assessing RNA polymerase II clusters in live zebrafish embryos, revealing coordinated changes in
the molecular state and cluster shape. Our observations point toward the activation of genes over the course of 10 s during which
they visit a polymerase cluster.

Introduction
Light microscopy is one of the most central tools of biological re-
search, whether a biologist aims to get the first glimpse of a given
cellular process or to quantitatively test the validity of hypothe-
ses (1). A specific area of application is the visualization of flu-
orescently labeled molecules. The design of such experiments is
subject to inherent limitations (2, 3), requiring a trade-off between
acquisition speed, signal-to-noise ratio (SNR), and prevention of
photo-damage to the specimen (4). These parameters cannot be

optimized separately. For instance, to increase acquisition speed,
exposure time must be reduced, leading to lower SNR (5, 6). SNR
can be recovered by, for example, increased power of the light
used to excite fluorescence in the sample, resulting however in
increased photo-damage.

While the experimental parameters during acquisition are sub-
ject to firm trade-off relationships, computational processing of
images after acquisition can recover image quality. These ap-
proaches allow, for example, a further reduction of exposure times
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followed by computational reconstruction of low-SNR images.
Conventional approaches for reconstruction of low-SNR images
include projection methods (7), deconvolution filters (8, 9), and de-
noising methods (10, 11). In the past decade, deep-learning meth-
ods have become widely used in a variety of image processing ap-
plications, often outperforming conventional approaches (12). In
biological microscopy, deep learning has been successfully used
for image classification (13–15), segmentation (16, 17), and restora-
tion (18–21). Initial deep learning approaches used standard deep
networks to restore fluorescence microscopy images, requiring
training data sets of matched low-quality and high-quality im-
ages. For example, networks can be trained on a reference data set
with high SNR (“ground truth”), so as to restore matched images
with low SNR (“noisy data”) (22). One obstacle to the wide-spread
application of such reconstruction approaches is the requirement
for matched high-quality training data (23, 24). These data are la-
borious or sometimes even impossible to obtain in a fashion that
is sufficiently matched to noisy data. An alternative is provided by
Noise2Noise (n2n) techniques, which enable the training of deep
networks from matched pairs of noisy images (25, 26). The require-
ment for any matched images is fully removed in the Noise2Void
(n2v) technique, where learning and removal of noise are carried
out based on a single noisy image data set (26, 27). Reconstruc-
tion based on a single noisy data set also allows per-image train-
ing, thus compensating for day-to-day variability of, for example,
fluorescence labeling or fine-adjustment of optical parts.

A second obstacle to the wide application of deep learning
methods is the possibility of errors in the reconstructed fluores-
cence images (23, 24). These errors manifest as deviations be-
tween the high-quality ground truth images and the images re-
constructed from low SNR data. A dilemma arises, where the ef-
fective application of deep learning networks can only proceed
without acquisition of ground truth data, but ground truth data
are required to assure the experimenter that reconstruction is
error-free. In this work, we develop a pragmatic work-flow for the
quality-controlled adjustment and application of n2v for denois-
ing in high-speed fluorescence microscopy. In this work-flow, for
every acquired view of a given sample, a small data set with high-
quality data is recorded to control reconstruction quality, followed
by full time-lapse acquisition of only compromised data. We
demonstrate the applicability of this work-flow in the analysis of
fluctuations in molecular clusters in live zebrafish embryos. Our
analysis reveals a close coordination between post-translational
modifications of RNA polymerase II (Pol II) and changes in the 3D
shape of these clusters on the scale of a few seconds. These obser-
vations are confirmed by an alternative experimental approach,
where still images from chemically fixed cells are sorted based on
an additional fluorescence marker for genes that transiently en-
gage with the molecular clusters. Our approach provides a guide-
line for other microscopists interested in the quality-controlled
application of ground-truth-free image reconstruction methods.
The approach can be implemented on fluorescence microscopes
with typical specifications used for time-lapse recordings without
the need of software development or hardware control beyond the
standard functionality.

Results
Quantification of image reliability and effective
resolution in reconstructed microscopy images
The structural reliability and effective spatial resolution of recon-
structed images can be assessed by a combination of widely used

metrics. The structural reliability can be assessed via the struc-
tural similarity index metric (SSIM). SSIM quantifies the similar-
ity between two images and returns a value between 0 and 1 (28,
29). SSIM values close to 1 indicate that two images are very sim-
ilar, lower SSIM values indicate images that are less similar. One
application is the comparison of two images obtained with the
same acquisition and postprocessing steps, providing a quantifi-
cation of the reliability of the obtained images. Using SSIM, we
can, for example, demonstrate how changes in image acquisition
settings, such as the reduction of exposure time, can compro-
mise image reliability (Fig. S1, Supplementary Material). Apply-
ing n2v to pairs of super-resolution microscopy images, we can
illustrate how denoising can increase image reliability (Fig. 1A
and B). SSIM can also be used to assess whether reconstructions
of low-quality images obtained with, for example, low exposure
times can approximate high-quality images (Fig. 1A and B). The
assessment of image reliability via SSIM is, however, not sensi-
tive to localized differences between images, as are typically in-
troduced at edges during denoising procedures. Such local occur-
rences of unreliable reconstruction are readily detected by the
local SSIM (Fig. S2, Supplementary Material) (30). The combina-
tion of SSIM and local SSIM, thus, allows an assessment of im-
age reliability based on paired images, as well as the similar-
ity between a reconstructed and a corresponding high-quality
image.

A key aspect of performance in microscopy is the effective im-
age resolution. The effective image resolution is determined by
both the optical resolution of a given imaging instrument, and by
the ratio of photons emitted by the structure of interest over pol-
luting photons, often referred to as SNR. This effective resolution
can be quantified via Fourier ring correlation (FRC) (31, 32). FRC
evaluates the similarity of a pair of images in frequency space, so
as to determine the spatial frequency up to which the images are
consistent with each other (Fig. 1C). The inverse of this spatial fre-
quency is then taken as the effective spatial resolution (Fig. 1C).
Applying the FRC metric to our super-resolution microscopy data
reveals that, indeed, n2v-denoising can recover effective resolu-
tion in low-quality images (Fig. 1D; Fig. S3, Supplementary Ma-
terial). Taken together, SSIM and FRC can objectively assess im-
age reliability and effective resolution in matched pairs of recon-
structed images.

Optimization of exposure time for high-speed
time-lapse imaging
While denoising with n2v can, in principle, reconstruct images ac-
quired with reduced exposure time (texp), for a given experiment it
is not known a priori just how far texp can be reduced while ensur-
ing a sufficient image reconstruction. To demonstrate how SSIM
and FRC can guide the choice of texp, we carried out live sample
microscopy of cells obtained from buccal smears (“human cheek
cells”) for a range of exposure times, texp = 20, 40, 70, 100, 150 ms
(Fig. 2A). For each texp, a n2v-network was separately trained on a
pair of images and the effective resolution for these reconstructed
images was assessed (Fig. 2B). For texp = 70 ms or higher, an effec-
tive resolution of ∼ 200 nm was attained for the reconstructed im-
ages (Fig. 2C). This resolution was not further improved by longer
exposure times, but could not be attained for shorter exposure
times (Fig. 2C). This FRC-based assessment suggests texp = 70 ms
as an optimal exposure time. We controlled the structural re-
liability of the reconstructed images by local SSIM, finding re-
construction errors for texp = 20 ms (Fig. S2A–G, Supplementary
Material). Considering both the FRC and local SSIM results, all
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Fig. 1. Metrics for the reliability and effective resolution in n2v-reconstructed images. (A) Representative micrographs of the DNA distribution in a
nucleus in a fixed zebrafish embryo, recorded with a stimulated emission depletion (STED) super-resolution microscope. The same image plane was
recorded twice at low quality, once at high quality, and two n2v-reconstructed images were prepared from the low-quality images. (B) SSIM values for
pair-wise comparison (image 1 vs. image 2) and comparison against the high-quality image (image 1 vs. high-quality and image 2 vs. high-quality) for
the low-quality images and the reconstructed images. (C) FRC curves calculated based on a low-quality image pair and the corresponding
reconstructed image pair. (D) FRC-based effective resolution for four pairs of low-quality images and the corresponding pairs of reconstructed images.

texp ≥ 40 ms seem structurally reliable, while only texp ≥ 70 ms al-
low maximal effective image resolution after image reconstruc-
tion. In this setting, the experimenter can, therefore, choose be-
tween faster acquisition (texp = 40 ms) or higher effective resolu-
tion (texp = 70 ms), all while ensuring a high certainty of structural
reliability.

A two-phase acquisition protocol for
quality-controlled denoising of time-lapse
recordings
To integrate the metric-based assessment of n2v-processed im-
ages with the recording of high-speed time-lapse data, we propose
an acquisition protocol that contains two distinct phases and is
carried out at every position in a given sample (Fig. 3A). In the
first phase (A, assessment), all image data required for the appli-
cation of SSIM and FRC metrics are recorded (Fig. 3B). In particular,
for each of the image planes that make up the acquired 3D vol-
ume, the following images are obtained: one low-quality image
(texp), two high-quality images recorded with the longer reference
exposure time (tref), followed by two more low-quality test images
(texp). In the second phase (B, time-lapse), a sequence of 3D vol-
umes is acquired with only a single low-quality image for each of
the image planes, reducing the time spent for the acquisition of a
3D volume (Fig. 3B).

The data acquired by this two-phase acquisition protocol allow
a comprehensive quality control assessment for every recorded
position. Specifically, we first train a n2v-network for each posi-
tion, with which we reconstruct the low-quality test images 1 and
2. We can then assess the effective resolution using the FRC metric
and additionally control the reconstructed image for reconstruc-
tion errors using SSIM and local SSIM. For positions where a suffi-
cient effective resolution is achieved by the reconstruction, and a
sufficiently low level of reconstruction error is found, the trained
n2v-network is then applied to the time-lapse data from phase

B, thus providing n2v-reconstructed time-lapses with per-position
quality control.

High-speed imaging reveals coordinated changes
of phosphorylation and shape of Pol II clusters
To demonstrate the applicability of our proposed protocol for
quality-controlled n2v-supported live imaging protocol, we at-
tempted to visualize changes in the molecular state as well as
the 3D shape of macromolecular clusters enriched in Pol II. To
this end, we recorded microscopy images from live zebrafish em-
bryos with an instant-SIM microscope (33). We visualized Pol II
that is recruited to macromolecular clusters (Pol II Ser5P) or has
transitioned toward production of RNA transcripts (Pol II Ser2P) by
fluorescently labeled antibody fragments (Fabs). These Fabs have
been validated to specifically and reliably detect changes in the
Pol II Ser5P and Pol II Ser2P levels in zebrafish embryos, and do
not perturb embryonic development in any obvious fashion (34–
36). To establish exposure times, we first adjusted imaging param-
eters so as to obtain images that reveal cluster shape in the Pol II
Ser5P channel on the microscope’s live display without any pro-
cessing. We chose this reference exposure time as tre f = 200 ms,
resulting in an overall time of 6 s that is required to obtain a full
3D image stack. Using tre f = 200 ms, we recorded image data in
line with the two-phase acquisition protocol, with the phase B
spanning a total time of 2 min. Specifically, we recorded data for
four different exposure times (texp = 10, 20, 50, 100 ms; Fig. S4A–
C and Table S1, Supplementary Material). For all texp, we achieve
an effective resolution of 400 nm (lateral) or better after n2v-
based reconstruction, which compares favorably to an effective
resolution of approximately 700 nm in the high-quality images
(Fig. S4D, Supplementary Material). A comparison against conven-
tional, state-of-the-art 3D deconvolution also indicates a stronger
improvement of effective image resolution by n2v (Fig. S5, Sup-
plementary Material). Analysis by local SSIM suggests that re-
constructions for texp ≥ 20 ms offer a reliability similar to a com-
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Fig. 2. Metric-based estimation of how far image quality can be compromised while still allowing recovery of effective resolution by denoising. (A)
Representative micrographs of nuclei of human cheek cells for different camera exposure times (texp, as indicated), all high-quality images were
acquired at the same position but with an exposure time of 200 ms. Images are maximum-intensity projections, DNA was labeled by Hoechst 33342.
(B) FRC curves calculated from a pair of matched low-quality images, from a pair of reconstructed images, and a pair of high-quality images for the
different texp. (C) Effective resolution for the indicated texp, n = 5 nuclei per texp, values are shown with mean.

parison between two high-quality images, reconstructions of im-
ages obtained with texp = 10 ms are prone to reconstruction er-
rors (Fig. S4E, Supplementary Material). Accordingly, we selected
images acquired with texp = 20 ms (effective lateral resolution ∼
400 nm) and texp = 50 ms (effective lateral resolution ∼ 350 nm)
for further analysis, which provided full 3D image stacks at a time
resolution of 1 s and 2 s, respectively.

As previously observed, clusters seen in the Pol II Ser5P channel
were persistent during the entire phase B acquisition period (36).
The n2v-processed Pol II Ser5P time-lapse images were segmented
to detect Pol II-enriched clusters, each cluster was then tracked
over the whole time-lapse based on spatial proximity in consecu-
tive time points (Fig. 4A). Based on the Pol II Ser5P-derived segmen-
tation masks, Pol II Ser5P and Ser2P intensities as well as shape
quantifiers could be determined for each time point (Fig. 4B). We
used the two shape quantifiers elongation, which indicates how
much an object is stretched along its main axis, and solidity, which
indicates how convex (“rounded out”) the outline of a given shape
is. The resulting time courses exhibit fluctuations, and the ques-
tion arises whether a systematic relationship exists between the
different quantities (Fig. 4C). Indeed, a cross-correlation analysis
that was anchored on cluster elongation suggests a systematic

relationship (Fig. 4D). The cross-correlation analysis reveals an
initial increase in Pol II Ser5P intensity, followed by a transient
increase in Pol II Ser2P intensity ∼5 s later, and a transient de-
crease in Pol II Ser5P intensity another ∼5 s later. These changes
are accompanied by an initial rounding up of clusters (solidity in-
crease), followed by transient unfolding (solidity decrease) ∼10
s later. These cross-correlation analysis results are obtained at
both texp = 50 ms (Fig. 4) and texp = 20 ms (Fig. S6, Supplementary
Material), indicating that our findings are not mere coincidence.
Our observations are representative of a stereotypical sequence
of events, which occurs repeatedly and is, therefore, detected by
the cross-correlation analysis: Pol II Ser5P intensity increases and
the cluster rounds up via the rapid recruitment of Pol II to a given
cluster, Pol II Ser5P intensity decreases and Pol II Ser2P inten-
sity increases as some of the recruited Pol II proceeds into tran-
script production, while the cluster gets elongated and unfolded
(Fig. 4E). Previous work indicates that transcribing Pol II and the
resulting nascent RNA transcripts induce distinct rearrangements
in molecular clusters, providing a potential cause for the elon-
gation and unfolding (35–38). Notably, these works suggest that
changes in Pol II state and cluster organization come about due
to transient engagement of genes with Pol II-enriched clusters,
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Fig. 3. A two-phase acquisition protocol to combine acquisition of quality control images with high-speed time-lapse imaging. (A) Image data were
acquired at multiple positions in a sample, thus obtaining multiple viewpoints containing several objects of interest (nuclei, indicated as circles). (B)
For each position, a sequence of two acquisition phases is carried out. In phase A, for each z position, a low-quality image, two high-quality reference
images, and two low-quality test images are recorded. Low-quality images are recorded at a shortened exposure time (texp), high-quality images at a
reference exposure time resulting in images of the desired quality (tref). Acquisition phase A obtains the images required for n2v model training as well
as the assessment of effective image resolution and reconstruction errors. In phase B, only single low-quality images are recorded with the shortened
exposure time (texp), resulting in an increased rate of acquisition compared to acquisition with full exposure time (tref). Acquisition phase B obtains
only low-quality images, which are reconstructed after the experiment is completed.

leading to the induction of genes and to their release from these
clusters.

Pseudo-time analysis from fixed sample images
also detects coordinated changes in
phosphorylation and cluster shape
To verify the conclusions obtained by the fluctuation analysis, we
assessed changes in cluster state by an independent approach
based on the interaction with a gene. Specifically, we fixed ze-
brafish embryos in the sphere stage, and fluorescently labeled
a panel of eight genes as well as Pol II Ser5P and Pol II Ser2P
(Fig. 5A; Tables S2–S4, Supplementary Material). In most nuclei,
zero to four labeled foci representing the labeled genes could be
detected, in line with the expected counts for two alleles that un-
dergo replication before cell division (Fig. S7, Supplementary Ma-
terial). Fixation of samples prevents live imaging, thus removing
the temporal information from the images. In exchange, images
with distinctly higher signal can be obtained without the need
of n2v-processing, and the location of the labeled gene can be
used as additional information that is not available in our live
imaging data. The analysis of the obtained image data was, there-
fore, based on gene-Pol II cluster interaction pairs. An interac-
tion pair is constructed by the detection of the location of a la-
beled gene, and by logical association of this gene with the Pol
II Ser5P cluster that is closest in space (Fig. S8A and B, Supple-
mentary Material). For each interaction pair, fluorescence inten-
sities of the gene, fluorescence intensities of the Pol II cluster,
distance between both objects, and shape properties of the Pol
II cluster were combined into a vector representing the interac-
tion pair. Principal component analysis of these pairs revealed a
cyclical pattern, based on which a pseudo-time coordinate was
constructed (Fig. 5B; Fig. S8C, Supplementary Material). In partic-
ular, the two first principal component coordinates of each pair
were transformed into an angle coordinate using the 2-argument

arctangent (atan2) function. This angle coordinate was divided by
2π to obtain a pseudo-time coordinate s in the range from 0 to
1. The assignment of a pseudo-temporal order to image data ob-
tained from fixed samples has been used previously, for exam-
ple for the nanoscale assessment of endocytosis (39, 40). Ordering
the interaction pairs along the pseudo-time coordinate allowed
the extraction of time-shifted correlations (Fig. 5C), which directly
mirrored those we obtained from our live imaging data (Fig. 4D).
We suspected that the location of a gene that interacts with Pol
II Ser5P clusters provides the crucial information for successful
pseudo-time reconstruction (genes foxd5, klf2b, and zgc:64022; Fig.
S9, Supplementary Material). Indeed, when we attempted pseudo-
time reconstruction on the full panel consisting of eight genes, we
found that for genes that only rarely come close to Pol II Ser5P
clusters, the pseudo-time approach failed to reproduce the corre-
lation analysis results (genes vamp2, ripply1, drll.2, gadd45ga, and
iscub; Fig. S9, Supplementary Material). In the case of successful
pseudo-time reconstruction, our results suggests that a gene visits
a Pol II Ser5P cluster in close coordination with changes that oc-
cur in the Pol II cluster. Specifically, genes engage in close contact
when cluster Pol II Ser5P intensity increases, and detach at a time
when clusters undergo transient elongation (genes foxd5, klf2b,
and zgc:64022; Fig. 5A and B; Fig. S9, Supplementary Material). The
time-scales of this interaction can be estimated by a comparison
of the distance between the cross-correlation maximum and min-
imum in the cluster Pol II Ser5P signal (∼50 steps in pseudo-time,
corresponding to ∼ 10 s in the cross-correlation analysis based on
live-imaging results) and the total number of observed interac-
tion pairs (169, 186, and 191 for foxd5, klf2b, and zgc:64022, re-
spectively), implying an average duration of ∼ 36 s between two
consecutive interaction events. To conclude, the correlation anal-
ysis based on pseudo-time reconstruction provides an indepen-
dent confirmation of the coordination between Pol II phospho-
rylation levels and cluster shape obtained by n2v-supported live
imaging. This agreement suggests that these two approaches pro-
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Fig. 4. n2v-accelerated imaging reveals coordinated changes in shape and phosphorylation levels of Pol II clusters on the scale of seconds. (A)
Representative series of time-lapse images showing a single Pol II cluster in the Pol II Ser5P channel (single image plane from the middle z position of
the cluster, exposure time texp = 50 ms, effective time resolution for full 3D volume acquisition of 2 s). The Pol II Ser2P channel is not shown because
only average intensity, not shape was quantified from this channel. (B) Example shapes to illustrate how elongation and solidity represent object
shape. (C) Time courses of Pol II Ser5P intensity, Pol II Ser2P intensity, elongation, and solidity for the example time-lapse shown in panel A. (D)
Cross-correlation analysis of the temporal coordination of Pol II Ser5P intensity, Pol II Ser2P intensity, and solidity with elongation. Gray lines indicate
the time-shifted correlation for single cluster time courses, thick lines indicate the mean, and the gray region the 95% bootstrap CI. Analysis based on
n = 30 tracked clusters, recorded from one sphere stage embryo. (E) Summary of the coordinated changes in phosphorylation and cluster shape
suggested by the cross-correlation analysis. A stereotypical sequence of events can be seen: cluster Pol II Ser5P intensity transiently increases (red)
and the cluster becomes rounder, then cluster Pol II Ser2P transiently intensity increases (blue), until finally the cluster transiently unfolds and
becomes elongated.

vide complementary views of the same, stereotyped sequence
of changes in molecular properties and the shape of Pol II clus-
ters.

Discussion
In this study, we describe how the quality of images that are re-
constructed by deep-learning algorithms can be controlled for, ad-
dressing the specific case of unsupervised denoising by n2v (for
an overview of the work-flow, see Fig. 6). We implemented our ap-
proach of quality control toward the acceleration of high-speed
imaging, where camera exposure times are reduced and the re-
sulting loss of signal quality is recovered by n2v-denoising. We
then apply our approach to the example of imaging the molecu-
lar state and the shape of Pol II clusters in live zebrafish embryos.
Our work illustrates how, in a practical application setting, the
performance improvements from deep-learning algorithms in flu-
orescence microscopy can be combined with a high level of con-
fidence in the reconstructed images. The tools used in our study
are designed for data sets consisting of ordered 2D images (“hyper-
stacks”), limiting their immediate application to these types of im-
age data.

We specifically apply our quality control approach to an unsu-
pervised denoising technique, the deep learning-based tool n2v

(27). Currently, reconstructions that map from noisy to high-
quality data on the basis of paired training image data offer
the highest reconstruction performance (22). In many practical
settings, such pairs of noisy and high-quality images cannot be
obtained. An alternative is offered by reconstructions based on
matched pairs composed of noisy images only (n2n) (26). Fur-
ther developments now offer the possibility to reconstruct high-
quality images directly from single noisy images (Noise2Self (41)
and n2v (27)). Such a self-supervised approach seems ideally
suited to reconstruction tasks where fluorescence labeling ex-
hibits strong variability, optical components are changed between
different experiments, or sample properties vary on a day-to-day
basis. These characteristics are typical of biological microscopy
applications, highlighting the applicability of self-supervised re-
construction methods in this area. A crucial assumption of self-
supervised denoising approaches is that the noise in each pixel
is an uncorrelated sample from the same probability distribution.
Newer variants of these algorithms explicitly adjust the probabil-
ity distribution of the noise to different parts of the image, thus
improving the results where additional information on the noise
characteristics is available (19, 42, 43). Yet, other variants model
the structure of the signal itself (44). These newer variants of self-
supervised denoising could provide further improvements in re-
construction performance, while retaining most of the pragmatic
applicability of self-supervised reconstruction methods.
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Fig. 5. Pseudo-time analysis of data from fixed embryos relates transient engagement and activation of a gene to the phosphorylation and shape
changes observed in live embryos. (A) Example images of Pol II Ser5P (magenta signal) clusters sorted by a pseudo-time progress coordinate (s,
periodic, defined on the interval [0,1)), which is calculated based on interaction with the gene klf2b (green represents oligopaint fluorescence in situ
hybridization signal for klf2b). Center positions (weighted centroid) are indicated for the Pol II Ser5P cluster (white circle with black filling) and the gene
(black circle with white filling) and connected with a white line for illustration. For details of the reconstruction, see Figure S8 (Supplementary
Material). For an overview containing all eight genes that were assessed, see Fig. S9B (Supplementary Material). (B) Pol II Ser5P and Ser2P intensity,
elongation, and solidity of Pol II Ser5P clusters sorted by pseudo-time s. A total of n = 186 clusters from N = 4 independent samples, obtained in two
independent experiments, were included in the analysis. (C) Cross-correlation analyses for different register shifts in the coordinate s, the register shift
is in units of data points by which the coordinate s was shifted. Gray regions indicate 95% bootstrap CI.

Fig. 6. Work-flow for n2v reconstruction for time-lapse data with quality
control.

We base our assessment of image quality on two metrics, (local)
SSIM and FRC. More generally, metrics for image quality assess-
ment belong to three main groups of functionality. The first group
includes methods assessing the quality of images against a cor-
responding reference image (high-quality image). These methods
are called full-reference, emphasizing the need for high-quality
reference data (28, 45). SSIM and consecutive similarity (CSS) met-
ric, which is a variation of SSIM (46), are in this category. We used
(local) SSIM, which provides an error map by structurally compar-
ing the reconstructed image with the reference image, and based
on that error map controlled for reconstruction defects. The sec-
ond group, called reduced-reference, contains methods which are
not using matched reference images, but rather general knowl-
edge of properties and statistics that are typical of a set of ref-
erence images (47). Natural scene statistics (NSS) is one major
method in this category (45). The underlying hypothesis of all NSS-
based method is that all the original images are “natural” and that
a distortion process introduces some unnaturalness that can be
quantified by deviation from models of natural signals. Due to
the day-to-day variability of the signals produced by fluorescence
microscopy of biological samples, modeling natural signals ap-
pears challenging. The third category of image quality assessment
methods is called no-reference, because quality assessment pro-
ceeds without a matched reference image or other prior knowl-
edge (48). FRC is in this category and we used it to assess the spa-
tial resolution of the reconstructed images. Based on the achieved
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spatial resolution, we could decide how far exposure times could
be reduced while still supporting successful denoising. One tool
that implements several of these metrics for the assessment of
local anomalies in super-resolution microscopy data is SQUIRREL
(49). The quality scores and error mapping provided by SQUIRREL
can, in principle, also be applied to images reconstructed by deep-
learning methods.

The image acquisition protocol we propose consists of a phase
during which all necessary data for quality control are collected
for a single time point (phase A), followed by high-speed time-
lapse imaging with compromised image quality (phase B). This
protocol seems appropriate for the acquisition of short bursts of
images, where the main limitation lies in how many images can
be acquired in a short amount of time. For other imaging chal-
lenges, different protocols could be developed. In a different situa-
tion where, for example, photo-bleaching limits the acquisition of
long time courses, excitation light levels could be reduced, and the
compromised signal could be recovered by denoising. In such an
experiment, quality control points could be placed at regular in-
tervals over the course of acquisition. In a setting where, for exam-
ple, sample structure or the level of fluorescence labeling changes
significantly over the course of recording, a quality control phase
at the beginning and at the end of the experiment might be advis-
able. Besides the implementation of additional control points in
the experimental procedure, such extensions of our simple two-
phase protocol would need no further modification to the quality
control approach we used in our work.

Our live-sample microscopy recordings reveal a stereotypical
sequence of events, where the Pol II recruitment and pause–
release steps of transcriptional induction are closely coordinated
with changes in the shape of Pol II clusters. While previous stud-
ies achieve high spatial or temporal resolution, our approach com-
bines high resolution in time as well as in space. Our temporal res-
olution of 1 to 2 s for a full 3D stack is comparable to previous as-
sessments of Pol II localization (50, 51). These studies, however, do
not monitor the specific phosphorylation states associated with
Pol II regulation. Imaging of these phosphorylation states was pre-
viously performed with an effective time resolution of 1 min for
a single gene (38) or 10 s for an engineered gene array (52) for
the acquisition of full 3D volumes. By fitting of kinetic models of
Pol II regulation, these studies suggest rates of pause release of
2 to 2.5 min and production of the first 1 kb of transcript length
within 2.5 min (assuming an elongation rate of 0.4 kb per min)
(38, 52). Photobleaching experiments assessing endogenous Pol II
combined with computational modeling indicated 2.3 s for initia-
tion and 42 s of pausing at the promoter, as well as an elongation
rate of 2 kb per min (53). These estimates for the elongation rates
fit well with estimates of approximately 1 kb per min from alterna-
tive sequencing-based approaches (54). Lastly, another study sug-
gests that 6.3 s are sufficient for Pol II to loosely associate with an
induced gene as well as proceed into elongation (50). While these
estimates for the duration of induction and pause–release imply
a broad spectrum of kinetics, our estimates of 2 to 3 s for pause
release and approximately 36 s for the duration of one complete
gene–cluster interaction cycle fall within the previously estimated
range for pause release and RNA production. Besides temporal co-
ordination, also relative distances have been assessed, for exam-
ple between Pol II clusters and nascent mRNA (38) and between
enhancers, Pol II, and the transcription start site (55, 56). In these
studies, nascent mRNA is displaced 100 to several hundred nm
relative to sites harboring transcriptional regulators and recruited
Pol II. This displacement is in line with our observations that genes
that undergo elongation are located outside of Pol II Ser5P clus-

ters. In contrast to previous work, our approach reveals the full
shape of the Pol II Ser5P clusters. Taken together, the kinetics of
single-gene induction suggested by our live-sample experiments
seem in line with previous work, and the spatial organization of
clusters and interacting genes directly correlates with previous
work assessing relative distances of different components of the
transcriptional machinery.

Our pseudo-time reconstruction revealed that the changes in
Pol II phosphorylation and cluster shapes are temporally coor-
dinated with the visit of genes to the Pol II clusters. Previous
work suggests that the Pol II clusters in early embryonic develop-
ment form on regulatory chromatin regions, including superen-
hancers (36, 57, 58). Accordingly, our data seem to directly show
single genes that undergo transcriptional activation during a visit
to Pol II-enriched clusters that contain regulatory chromatin re-
gions. Different models for such enhancer–promoter communica-
tion in transcriptional control were proposed (59–61). The stereo-
typical sequence suggested by our data fits most closely to a
condensate hit-and-run model, where genes transiently interact
with enhancer-associated condensates for transcription initia-
tion, and leave from the condensate in association with the on-
set of transcriptional elongation (61). A condensate hit-and-run
model can also explain earlier observations suggesting cyclic in-
teractions, where genes repeatedly engage with and depart from
Pol II-enriched clusters (62). Such a model also could support the
proximity-dependent activation of Shh by its enhancer ZRS (63,
64). The activation of genes by enhancers was also found to not
require direct contact, but can occur over a distance of 200 nm
or more (65, 66). These observations, together with evidence in
support of the condensate hit-and-run model, allow speculations
about a liquid-bridge model of enhancer–gene communication. In
such a liquid-bridge model, genes transiently become embedded
within an enhancer-associated condensate, allowing the transfer
of transcriptional machinery, including Pol II, to the gene pro-
moter (61, 67, 68). While previous work indicates that the onset
of RNA production at newly activated genes results in their exclu-
sion from the enhancer-associated condensates (37, 69–72), the
initial engagement with the enhancer-associated condensates is
less well understood. Such an engagement would, however, be
naturally explained by the formation of small condensates at pro-
moters. Such condensates could emerge, for example, at CpG-rich
regions that are placed directly upstream of promoter regions of
many developmental genes and were found to contribute to gene–
promoter contacts in 3D space (73).

Methods Summary
Live imaging of primary cell culture of human
cheek cells
Short-term primary cell cultures of human cheek cells were ob-
tained by a buccal smear, stained with Hoechst 33342, and trans-
ferred into an 8-well ibidi μ-Slide (#1.5 selected glass) for mi-
croscopy. Microscopy data were recorded using a commercial im-
plementation of the instant-SIM high-speed super-resolution con-
focal microscopy principle (VisiTech iSIM) (33) built on a Nikon
Ti2-E stand. A Nikon Silicone Immersion Objective (NA 1.35, CFI
SR HP Plan Apochromat Lambda S 100XC Sil) was used. Detailed
description see Supplementary Material Appendix.

Zebrafish husbandry, live imaging, and fixation
Embryos were obtained through spontaneous mating and de-
chorionated with pronase. For STED microscopy of DNA in fixed
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zebrafish embryos protocols from our previous work were fol-
lowed (74). STED microscopy was performed using a Leica TCS SP8
STED microscope with a 775-nm depletion line and a motorized-
correction 93x NA 1.30 glycerol objective (HC PL APO 93X/1.30
GLYC motCORR). For live-imaging of Pol II CTD phosphorylation,
embryos were microinjected with covalently labeled fragments of
antibodies (Fab). Microscopy images were recorded by iSIM with
the silicon immersion objective. Detailed description see Supple-
mentary Material Appendix.

Oligopaint FISH and immunofluorescence
Following protocols from our previous work (36), fixed sphere-
stage zebrafish embryos were subjected to oligopaint FISH label-
ing of genomic regions surrounding zygotically expressed genes
(75–78), followed by indirect immunofluorescence detection of Pol
II CTD phosphorylation, and mounted in Vectashield H-1000 un-
der #1.5 selected cover glass. Image data were recorded by iSIM
using a Nikon Oil Immersion Objective (NA 1.49, CFI SR HP Apo
TIRF 100XAC Oil). Detailed description see Supplementary Mate-
rial Appendix.

Metrics for image assessment
For SSIM and local SSIM analysis, we only used the structural
term

SSIM(x, y) = 2σx,y + C3

σxσy + C3
.

The FRC analysis is based on the cross-correlation of two im-
ages in frequency space:

FRC(r) =
∑

ri∈r F1(ri ) · F2(ri )∗√∑
ri∈r(F1(ri ))2 · ∑

ri∈r(F2(ri ))2
,

where F1, F2 are the Fourier transforms of two images and ri refers
to all frequency space bins that fall within a given ring radius r.
Images are considered reliably resolved up to the frequency F(r)
for which FRC(r) falls below the commonly used threshold value
of 1/7. Details are described in Supplementary Material Appendix.

Image analysis
The analysis of Pol II clusters in live-imaging data as well as the
pseudo-time reconstruction from fixed-sample data were imple-
mented in the form of MatLab scripts. The analysis steps and
script availability are described in SI Appendix.
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