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Headache classification and automatic 
biomarker extraction from structural 
MRIs using deep learning

Md Mahfuzur Rahman Siddiquee,1,2 Jay Shah,1,2 Catherine Chong,2,3 Simona Nikolova,3 

Gina Dumkrieger,3 Baoxin Li,1,2 Teresa Wu1,2 and Todd J. Schwedt2,3

Data-driven machine-learning methods on neuroimaging (e.g. MRI) are of great interest for the investigation and classification of neuro
logical diseases. However, traditional machine learning requires domain knowledge to delineate the brain regions first, followed by fea
ture extraction from the regions. Compared with this semi-automated approach, recently developed deep learning methods have 
advantages since they do not require such prior knowledge; instead, deep learning methods can automatically find features that differ
entiate MRIs from different cohorts. In the present study, we developed a deep learning-based classification pipeline distinguishing brain 
MRIs of individuals with one of three types of headaches [migraine (n = 95), acute post-traumatic headache (n = 48) and persistent post- 
traumatic headache (n = 49)] from those of healthy controls (n = 532) and identified the brain regions that most contributed to each clas
sification task. Our pipeline included: (i) data preprocessing; (ii) binary classification of healthy controls versus headache type using a 3D 
ResNet-18; and (iii) biomarker extraction from the trained 3D ResNet-18. During the classification at the second step of our pipeline, we 
resolved two common issues in deep learning methods, limited training data and imbalanced samples from different categories, by in
corporating a large public data set and resampling among the headache cohorts. Our method achieved the following classification accur
acies when tested on independent test sets: (i) migraine versus healthy controls—75% accuracy, 66.7% sensitivity and 83.3% specificity; 
(2) acute post-traumatic headache versus healthy controls—75% accuracy, 66.7% sensitivity and 83.3% specificity; and (3) persistent 
post-traumatic headache versus healthy controls—91.7% accuracy, 100% sensitivity and 83.3% specificity. The most significant bio
markers identified by the classifier for migraine were caudate, caudal anterior cingulate, superior frontal, thalamus and ventral dienceph
alon. For acute post-traumatic headache, lateral occipital, cuneus, lingual, pericalcarine and superior parietal regions were identified as 
most significant biomarkers. Finally, for persistent post-traumatic headache, the most significant biomarkers were cerebellum, middle 
temporal, inferior temporal, inferior parietal and superior parietal. In conclusion, our study shows that the deep learning methods 
can automatically detect aberrations in the brain regions associated with different headache types. It does not require any human knowl
edge as input which significantly reduces human effort. It uncovers the great potential of deep learning methods for classification and 
automatic extraction of brain imaging–based biomarkers for these headache types.
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Abbreviations: APTH = acute post-traumatic headache; DL = deep learning; HC = healthy control; IXI = information extraction 
from images; ML = machine learning; mTBI = mild traumatic brain injury; PPTH = persistent post-traumatic headache; PTH = 
post-traumatic headache

Graphical Abstract

Introduction
Machine-learning (ML) techniques are now widely used for 
medical image analyses. Many ML methods have been devel
oped to identify structural, functional and molecular bio
markers from neuroimages such as MRI and PET. Imaging 
biomarkers have been used for classification and prognosti
cations of neurodegenerative diseases such as Alzheimer’s 
disease1,2 and Parkinson’s disease.3 The use of imaging- 
based biomarkers in the headache field to study migraine,4,5

post-traumatic headache (PTH) and other headache types is 
still in an early developmental phase. The potential value of 
ML approaches and a summary of results from ML studies in 
the headache field were presented in a 2020 article by 
Messina and Filippi.6 Traditional ML approaches rely heav
ily on pre-selecting features as input to an assumed inference 
model, hence requiring domain knowledge as a prior. While 
the pre-selection of brain regions based on prior knowledge 
is a targeted approach, it limits the discovery of other regions 
that might be important as disease biomarkers.
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The recent advances in deep learning (DL) methods have 
made it possible to learn both feature extraction and infer
ence models from the imaging data directly, and such models 
have been shown to outperform traditional ML methods.7

Drawing upon the success of DL in the computer vision field, 
neuroimaging research has also benefited from DL for the 
study of neurodegenerative diseases, potentially contributing 
to earlier diagnosis, disease staging, prognosis and thera
peutic development.8–11 However, development of brain im
aging–based DL models for migraine and other headache 
types has been limited. We contend that one reason for DL 
methods being underutilized relates to the availability of 
relatively small data sets. Compared with computer vision 
research which is often supported by a large volume of 
images (e.g. at the million scale) for model training, 
DL-based neuroimaging research typically: (i) has much 
smaller numbers of imaging samples and (ii) the data set is 
often imbalanced, e.g. having more samples from healthy 
controls (HCs) than from headache and migraine patients. 
Both the size and the balance of the data set are crucial to 
building a robust DL model.12

In the present study, we developed a DL-based technique 
for classification of participants with migraine, acute PTH 
(APTH) or persistent PTH (PPTH) versus HC followed by 
an automated feature extractor pipeline that identified brain 
regions affected by migraine and PTH. Migraine, a primary 
headache, affects about 12% of the general population, is a 
substantial cause of disability and is a common headache 
type for which individuals seek care in the outpatient clin
ic.13–15 PTH is among the more common secondary head
ache types, is the most common symptom immediately 
following mild traumatic brain injury (mTBI), is often per
sistent and typically has symptoms that overlap with those 
of migraine.16–20 In the present study, we aimed to develop 
accurate DL-based classification models for these common 
and impactful primary and secondary headache types. In 
our method, we resolved the challenges of (i) a relatively 
small data set by incorporating HCs from a public data set 
and (ii) data imbalance by oversampling headache samples 
to match the HCs. For classification, we used a 3D 
ResNet-1821 model which has proved effective in computer 
vision tasks.22–26 The ResNet architecture supports building 
deep neural networks to capture different levels of details in 
an image without suffering from typical difficulties asso
ciated with increasing depth of the network. For medical im
aging tasks, they have been used in classification and early 
diagnosis of Alzheimer’s disease,27–29 differentiating benign 
and malignant tumours,30 subtype classification of heamor
rhages31 and skin lesion detection.32 These research studies 
show that ResNet models can automatically learn highly dis
criminative feature representations of respective medical im
aging data and perform classification with significant 
performances. Herein, we used a neuroimaging data-driven 
approach to develop and test classification models and dis
cover brain regions most contributing to such models for 
Migraine, APTH and PPTH using ResNets.

Materials and methods
Data sets
In the present study, we utilized five data sets collected by in
vestigators at the Mayo Clinic Arizona and one public data 
set (information extraction from images, IXI). The Mayo 
Clinic data sets included brain MRIs from 296 individuals, 
including HC (n = 104), Migraine (n = 95), APTH (n = 48) 
and PPTH (n = 49). The IXI public data set included MRIs 
from 428 HCs. For each data set, the total number of parti
cipants with their age and sex distribution is summarized in 
Table 1.

Institutional data sets (Data sets 1–5): participant 
enrolment and characteristics
All studies performed at the Mayo Clinic were approved by 
the Mayo Clinic Institutional Review Board. Participants 
were identified from the Mayo Clinic in Arizona and the 
Phoenix VA healthcare system. All participants provided 
written informed consent prior to participation. All study 
participants were men and women between the ages of 19 
and 65 years. Individuals with abnormal brain imaging find
ings, according to usual clinical interpretation, were ex
cluded. Women who were pregnant were excluded from 
study participation.

Migraine: Participants were diagnosed with episodic mi
graine or chronic migraine, without and/or with aura, ac
cording to the most recent version of the International 
Classification of Headache Disorders (ICHDs) available at 
the time the participant was enrolled (ICHD-3 beta or 
ICHD-3.33,34

Post-traumatic headache: APTH and PPTH attributed to 
mTBI were diagnosed according to the most recent version 
of the ICHDs available at the time the participant was en
rolled (ICHD-3 beta or ICHD-3).33,34 Those with any his
tory of moderate or severe TBI were excluded. Those with 
APTH were enrolled between 0 and 59 days post-mTBI. 
Participants with PPTH were enrolled at any time after the 
development of PPTH.

Table 1 Summary of all the data sets

Data set No. of participants
Age  

(mean ± SD) Sex

1 34 migraine 39.8 ± 12.8 3 M, 31 F
2 28 migraine 38.5 ± 10.5 8 M, 20 F

25 HC 38.0 ± 10.4 8 M, 17 F
3 33 migraine 41.2 ± 11.3 13 M, 20 F

49 PPTH 38.1 ± 10.5 32 M, 17 F
38 HC 38.2 ± 9.6 21 M, 17 F

4 10 APTH 37.3 ± 12.7 3 M, 7 F
5 38 APTH 42.7 ± 13.3 16 M, 22 F

41 HC 38.4 ± 12.5 16 M, 25 F
6 (IXI, public) 428 HC 42.4 ± 13.0 196 M, 232 F
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Healthy controls: HC were excluded if they had any his
tory of headache other than tension-type headache on three 
or fewer days per month.35–37

Image acquisition. All participants studied at Mayo Clinic 
Arizona were imaged on one of two 3 tesla Siemens 
(Siemens Magnetom Skyra, Erlangen, Germany) scanners 
using a 20-channel head and neck coil. Anatomical 
T1-weighted images were acquired using magnetization pre
pared rapid image acquisition gradient echo (MPRAGE) se
quences. Image acquisition parameters for T1-weighted 
images are repetition time (TR) = 2400 ms; echo time (TE) = 
3.03 ms; flip angle (FA) = 8°; voxel size = 1 × 1 × 1.25 mm.3

Public data set (Data set 6): participant enrolment 
and characteristics
To support the DL effort which often requires large data sets, 
we used IXI38 data set containing MRIs from HC. The 
images were acquired between June 2005 and December 
2006. In total, 277 male and 342 female participants were 
enrolled. The participants were between 20.0 and 86.3 years 
of age with an average age of 49.4 and a standard deviation 
of 16.7. To match the age distribution of our participants 
with headache, we only included participants between 20 
and 64 years of age. Therefore, our final cohort contains 
196 male and 232 female subjects with an average age of 
42.4 and a standard deviation of 13.0.

The subjects from the IXI data set were obtained from 
three different hospitals in London: Hammersmith 
Hospital, Guy’s Hospital, and Institute of Psychiatry. The 
data set contains T1, T2, proton density, magnetic resonance 
angiography and diffusion tensor imaging for each subject. 
We used only T1-weighted images. Hammersmith Hospital 
used a Philips 3T system for acquiring the images. This sys
tem used the following T1 parameters: TR = 9.6, TE = 4.6, 
acquisition matrix = 208 × 208, FA = 8. Guy’s Hospital 
used a Philips 1.5T system with T1 parameter TR = 9.813, 
TE = 4.603, FA = 8°. The Institute of Psychiatry used a GE 
1.5T system. The T1 imaging parameters for this scanner 
were not released at the time of writing this manuscript.

Image preprocessing
The MRI scans for all six data sets were stored in 
Neuroimaging Informatics Technology Initiative format. In 
our preprocessing pipeline, first, we performed skull strip
ping of raw images that removed the non-brain areas from 
the scans using the Brain Extraction Tool39 available within 
the FSL package (Wellcome Center, University of Oxford, 
UK). These skull-stripped images were then aligned to the 
MNI152 template with 1 mm resolution using the linear 
registration tool FLIRT.40 We then performed White 
Matter Parcellation (wmparc) on the images using 
FreeSurfer. We overlayed the parcellation masks on the 
images and removed 14 regions from the images not relevant 
to our study. These regions are left vessel, right vessel, right 
lateral ventricle, left lateral ventricle, right unsegmented 
white matter, left unsegmented white matter, left choroid 

plexus, right choroid plexus, left inferior lateral ventricle, 
right inferior lateral ventricle, fourth ventricle, third ven
tricle, cerebral spinal fluid (CSF) and optic chiasm. We also 
set all voxels marked unknown (mostly regions outside the 
brain) in the parcellation mask to zero which helps to remove 
motion artefact, if any, from the images. Finally, we used the 
resultant images to train a 3D ResNet-18 classifier.

Headache classification and 
automatic biomarker extraction
In the present study, we performed three classification tasks: 
(i) migraine versus HC; (ii) APTH versus HC; and (iii) PPTH 
versus HC. We randomly split the data set into three: train
ing set, validation set and blind testing set (Table 2). The val
idation is to identify the best DL model and the blind test is to 
demonstrate the robustness and generalization of the model 
on unseen data. Since our training data set was highly imbal
anced, we sampled the migraine/APTH/PPTH images to 
match the number of samples in HC cohort during training. 
It is a common approach in traditional ML approach for im
balanced learning and known as oversampling. As intro
duced earlier, we used a DL-based 3D ResNet model 
(ResNet-18) for the classification tasks. Once the classifier 
was trained, in each task, we applied the GradCAM41–43

method (a well adopted method in computer vision research) 
on the trained ResNet-18 to extract brain regions that con
tributed to the classification according to the DL model. 
This is to support clinical interpretations for potential clinic
al utilization.

The training process is visualized in Fig. 1.

Statistical analyses
Statistical analyses and drawings were performed by soft
ware environment Office 365 (Microsoft). We used two- 
tailed, two-sample unequal variance t-test. P-values <0.05 
were considered statistically significant.

Results
Migraine classification
Average age (migraine 39.9 ± 11.6 years, HC 41.6 ± 12.7 
years, P = 0.2) did not differ between groups. However, there 

Table 2 Design of three classification experiments

Experiments Training Validation Blind test

Migraine versus HC 83 migraine 
520 HCa

6 migraine 
6 HCa

6 migraine 
6 HCa

APTH versus HC 36 APTH 
520 HCa

6 APTH 
6 HCa

6 APTH 
6 HCa

PPTH versus HC 37 PPTH 
520 HCa

6 PPTH 
6 HCa

6 PPTH 
6 HCa

APTH, acute post-traumatic headache; HC, healthy controls; PPTH, persistent 
post-traumatic headache. a Please note that across all the splits and tasks the HC 
subjects are the same.
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were significantly more females in the migraine group (mi
graine 71/95 or 74.74% female) than in the HC group 
(HC 291/532 or 54.70% female, P = 0.0001). Participants 
with migraine averaged 15.3 ± 7.4 headache days per 28 
days. Of these patients, 37 had episodic migraine and 58 

had chronic migraine, and on average, they had migraine 
for 21 ± 12.8 years. Presence of migraine with aura attacks 
were reported by 49/95 participants. Medications that could 
be taken for migraine prevention were being used by 27/95 
participants.

Figure 1 The research pipeline. For each task, we remove the skull and remove regions outside the brain, as well as some brain regions 
unnecessary to our study. Finally, we use a 3D ResNet-18 to classify HC versus each of the three headache types.
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Our method achieved 83.33 and 75% accuracy overall on 
validation and unseen testing data, respectively. Specifically, 
for validation, our method achieved 83.33% sensitivity and 
83.33% specificity. For the blind testing, our method achieved 
66.67% sensitivity and 83.33% specificity. The brain regions 
that most contributed to migraine classification included: 
caudate, caudal anterior cingulate white matter, superior 
frontal (white and grey matter), thalamus, ventral dienceph
alon (includes hypothalamus, subthalamic nucleus, lateral 
and medical geniculate nucleus, red nucleus, substantia nigra 
and mamillary bodies), posterior cingulate (white and grey 
matter), medial orbitofrontal white matter, pallidum, accum
bens area, putamen, rostral anterior cingulate white matter, 
lateral orbitofrontal white matter, brain stem, rostral middle 
frontal white matter, insula white matter, hippocampus, cau
dal middle frontal white matter and precentral white matter. 
These brain regions are visualized in Fig. 2.

Acute post-traumatic headache 
classification
Age (APTH 41.5 ± 13.3 years, HC 41.6 ± 12.7 years, P = 1) 
and sex (APTH 29/48 female, HC 291/532 female, P = 0.4) 
did not differ between groups. Those with APTH had onset 
of APTH an average of 24.5 ± 14.5 days at their time of im
aging, and they had headaches on an average of 76.3±29.6% 
of days since APTH onset. Medications that can be used for 
headache prevention were being taken by 5/48 participants. 
mTBIs were due to motor vehicle accidents (n = 20), falls (n = 
21) and direct hits to the head (n = 7).

The classification model achieved 91.67% accuracy on 
validation (83.33% sensitivity, 100% specificity) and 75% 
accuracy on unseen testing data (66.67% sensitivity, 

83.33% specificity). The brain regions that most contributed 
to APTH classification included: lateral occipital (white mat
ter and grey matter), cuneus (white matter and grey matter), 
lingual (white matter and grey matter), pericalcarine (white 
matter and grey matter), superior parietal (white matter 
and grey matter), precuneus (white and grey matter), inferior 
parietal (white matter and grey matter) and cerebellum grey 
matter. These brain regions are visualized in Fig. 3.

Persistent post-traumatic headache 
classification
Age did not differ between the two groups (PPTH 38.2 ± 
10.6 years, HC 41.6 ± 12.7 years, P = 0.04), while sex did 
(PPTH 17/49 female, HC 291/532 female, P = 0.007). 
Those with PPTH averaged 15.3 ± 7.4 headache days per 
month, and they had PPTH for an average of 10.6 ± 8 years. 
Medications that can be used for headache prevention were 
being taken by 23/49 participants. mTBIs were attributed to 
sport related injuries (n = 8), falls (n = 12), motor vehicle ac
cidents (n = 7) and blast injuries (n = 22).

The classification model achieved 66.67% accuracy on 
validation (83.33% sensitivity, 50% specificity) and 
91.67% accuracy on unseen testing data (100% sensitivity, 
83.33% specificity). The brain regions that most contributed 
to PTH classification included: cerebellum (white and grey 
matter), middle temporal (white matter and grey matter), in
ferior temporal white matter, inferior parietal (white and 
grey matter), superior parietal (white and grey matter), 
banks of superior temporal sulcus (bankssts) (white and 
grey matter), precuneus (white and grey matter), supramar
ginal (white and grey matter), fusiform white matter, lingual 
(white matter and grey matter), lateral occipital white 

Figure 2 Visualization of brain regions most contributed to migraine classification. ant, anterior; ctx, cortex; dc, diencephalon; post, 
posterior; sup, superior; wm, white matter.
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matter, postcentral (white and grey matter), precentral white 
matter and posterior cingulate white matter. These brain re
gions are visualized in Fig. 4.

Discussion
This study used a DL approach for the development and test
ing of brain MRI-based classification models for migraine, 

APTH and PPTH. MRI data from several of our studies and 
a publicly available data set were combined to achieve a large 
sample size and to enhance the generalizability of the classifi
cation models. Using previously unseen brain MRIs (i.e. MRIs 
not included during model training) for testing, the classifica
tion tasks differentiating those with headache from HCs 
achieved overall accuracy of 75% for migraine, 75% for 
APTH and 92% for PPTH. Furthermore, the brain regions 
most contributing to the classifications were identified.

Figure 3 Visualization of brain regions that most contributed to APTH classification. ctx, cortex; inf, inferior; sup, superior; wm, 
white matter.

Figure 4 Visualization of brain regions that most contributed to PPTH classification.; bankssts, banks of superior temporal sulcus; ctx, 
cortex; inf, inferior; post, posterior; sup, superior; temp, temporal; wm, white matter.
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Our group and others have previously developed brain 
MRI-based classification models for migraine and PTH. 
This study is unique due to the DL approach, the large num
ber of MRIs included during model development, validation 
and testing, and the determination of model accuracy using 
an independent set of brain MRIs that were not included dur
ing model development or validation. Despite the assump
tion that classification accuracy would be lower when 
using an independent testing set, our classification accuracies 
in this study meet or exceed those reported in prior publica
tions which have typically used leave-one-out cross- 
validation methods.

Prior publications that have developed imaging-based clas
sification models for migraine or PTH have used structural 
(e.g. regional volumes, cortical thickness) and functional con
nectivity measures. ML methods have typically been used for 
model development. These approaches require a priori identi
fication of brain regions of interest for inclusion in the classi
fication models. The DL approach used in our study does not 
require pre-selection of regions, reducing the chance of miss
ing important features, while still allowing identification of 
brain areas that most contributed to headache classification.

Prior brain imaging-based classification models for mi
graine have achieved leave-one-out classification accuracies 
ranging from about 68 to 84% for differentiating migraine 
from HC. A study using measures of cortical thickness, sur
face area and volume for 68 brain regions classified migraine 
from HCs with 68% accuracy.4 A resting-state functional 
connectivity study including 33 regions of interest had 
81% accuracy for differentiating migraine from HCs.44

Studies combining functional connectivity and structural 
data have reported classification accuracies of 
83–84%.45,46 The accuracy of the DL-based classification 
model in our study (75%) falls within the previously re
ported ranges, is superior to prior models that included 
only measures of brain structure and is likely to be a better 
estimate of true accuracy, since it was determined using a 
completely independent test set. Brain areas found to most 
contribute to classification in our study included several 
that were found to be important in prior studies, such as 
Schwedt et al.4 These regions are caudal anterior cingulate, 
caudal middle frontal, posterior cingulate, insula, medial or
bitofrontal, precentral, rostral anterior cingulate, rostral 
middle frontal and regions of the ventral diencephalon.

Prior brain imaging-based classification models for APTH 
and PPTH are scarce. We have previously published a classi
fication model based on measures of brain structure and pa
tient clinical features that differentiated PPTH from migraine 
with a leave-one-out classification accuracy of 78%.47 The 
classification accuracy for differentiating PPTH from HC 
in this current study was quite high (92%), suggesting that 
those with PPTH have substantial brain structural changes 
associated with their underlying brain injuries and persistent 
post-TBI symptoms. Regions that most contributed to APTH 
classification included lateral occipital, cuneus, lingual, 
pericalcarine, superior parietal, precuneus, inferior parietal 
and cerebellum. Regions contributing to PPTH classification 

were cerebellum, middle temporal, inferior temporal, inferior 
parietal, superior parietal, bankssts, precuneus, supramargi
nal, fusiform white matter, lingual, lateral occipital, postcen
tral, precentral and posterior cingulate. Several of these 
regions have been previously demonstrated to differ in struc
ture between those with PTH and HCs including precentral, 
precuneus, supramarginal, superior and inferior parietal.48

Large anterior parietal and temporal opercular regions are re
ported by Burrowes et al.49 and Schwedt et al.50 reported or
bitofrontal, supramarginal and superior frontal regions.

This study was not designed to directly compare brain struc
ture between the three different headache groups. However, it 
is notable that many of the brain regions most contributing to 
migraine classification are located in the anterior portions of 
the brain, while many regions most contributing to PTH clas
sification are located more posteriorly. Future studies compar
ing migraine with PTH should further explore this finding, 
especially given the multifaceted relationships between the 
two headache types: (i) PTH often has symptoms that are 
very similar to migraine; (iii) migraine is a risk factor for devel
oping PTH; and (iii) for those with pre-existing migraine, it can 
be difficult to differentiate post-injury migraine exacerbation 
from the development of post-injury PTH.20,51–53

The diagnosis of primary headaches and some secondary 
headaches is currently based on information obtained from 
a clinical interview. We do not presume that this approach 
would change in the future, even if highly accurate 
imaging-based classification models are available. 
However, classification tasks like those presented in this 
manuscript are helpful for identifying brain regions that 
are likely to most contribute to the pathophysiology of mi
graine and PTH. Furthermore, studies like these set the stage 
for future investigations that aim to use imaging for differen
tiating between headache types that have substantial clinical 
overlap, for identifying new headache subtypes based on im
aging data, and perhaps for studies that use imaging data for 
predicting or tracking patient outcomes.

Limitations of this study include: (i) Smaller headache co
hort size than the HC—with larger headache cohort, we ex
pect higher variance of features that would further improve 
the generalizability of the model. (ii) Although overall our 
studies included a relatively large number of MRIs, the sam
ple sizes for the validation and independent testing sets were 
still small. We look forward to testing these classification 
models further as we collect more brain MRIs from patients 
who have migraine or PTH and as we collaborate with other 
research groups collecting similar information. (iii) Patient 
and HC MRIs were collected from several different scanners 
using different acquisition parameters. Although this could 
be seen as a limitation, it can also be interpreted as a strength 
of our study. It can be argued that the heterogeneity in the 
data set might reduce the classification accuracy while mak
ing the classification results more likely to generalize to new 
populations of patients. (iv) Some of the brain imaging data 
included in these studies have been included in prior ana
lyses.4,5,47,48,50 Some of the consistency in brain regions 
that most contributed to classification in this study with 
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findings from our prior studies could be due to the existence 
of patient overlap between the studies. (v) Although the par
ticipants in the IXI data set are considered healthy partici
pants, it is possible that they were not screened for 
migraine, history of mTBI and PTH. For example, we might 
assume that about 12% (51 individuals) of the healthy par
ticipants had migraine. If some of the participants in this 
HC data set had migraine or PTH, this would have reduced 
the accuracy of our classification models; (vi) Older indivi
duals were included in our studies. Although having partici
pants with a broad range of ages could be seen as a strength 
of the study, it also increases the likelihood of there being un
diagnosed comorbidities that could impact brain structure 
and brain structural changes that occur naturally with age. 
However, it is unlikely that such situations exerted a major 
impact on our results since images that contained structural 
abnormalities that were visible to the human eye were ex
cluded from the analysis and only a small proportion of par
ticipants with migraine or PTH were over the age of 60: 4/95 
(4.2%) with migraine and 5/97 (5.2%) with PTH. The oldest 
migraine or PTH participant was 65 years old. (vii) Future 
studies should investigate DL methodology like that reported 
herein not only to differentiate those with headache from 
HCs, but also to help differentiate between headache types, 
and perhaps for other purposes such as prognosticating pa
tient outcomes. (viii) Information from 14 regions not rele
vant to our study (including ventricles, vessels, CSF, optic 
chiasm, choroid plexus and unsegmented white matter) 
were not included in the analysis, and it is therefore possible 
that some activation in these regions might have been missed.

Conclusion
DL approaches are promising for developing migraine and 
PTH imaging-based classification models. Our studies de
monstrated moderate-to-high classification accuracies and 
identified brain regions that most contributed to classifica
tion. Future studies will further validate and fine-tune these 
models and investigate the possibility of using similar meth
odologies for building models that differentiate headache 
types and prognosticate patient outcomes.
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