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Abstract

In this paper we show that an autoregressive fractionally integrated moving average time-series 

model can identify two types of motion of membrane proteins on the surface of mammalian 

cells. Specifically we analyze the motion of the voltage-gated sodium channel Nav1.6 and beta-2 

adrenergic receptors. We find that the autoregressive (AR) part models well the confined dynamics 

whereas the fractionally integrated moving average (FIMA) model describes the nonconfined 

periods of the trajectories. Since the Ornstein-Uhlenbeck process is a continuous counterpart of 

the AR model, we are also able to calculate its physical parameters and show their biological 

relevance. The fitted FIMA and AR parameters show marked differences in the dynamics of the 

two studied molecules.

I. INTRODUCTION

The advent of single-molecule techniques over the past two decades has revolutionized 

molecular biophysics. Amongst these techniques, single-particle tracking (SPT) has emerged 

as a powerful approach to study a variety of dynamic processes [1–4]. Individual 

trajectories have been obtained for diverse biological systems, including measurements in 

cell membranes [5–12], the cytoplasm [13–17], and the cell nucleus [18–22]. The dynamics 

of molecules in living cells typically exhibit complex behavior with a high degree of 

temporal and spatial heterogeneities, due to different factors such as spatial constraints and 

complex biomolecular interactions [23]. Each mechanism governing the diffusion process 

has different characteristics, which can give important information regarding the biological 

system [4,24–27].
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A phenomenon often observed in single-molecule experiments is subdiffusion, with a 

characteristic sublinear meansquared displacement (MSD), which largely departs from 

the classical Brownian motion (BM). Determining the mechanisms underlying anomalous 

diffusion in complex fluids, e.g., in the cytoplasm of living cells or in controlled in vitro 
experiments [28–30], is a challenging problem. Subdiffusion can be rooted in different 

physical origins including immobile obstacles, binding, crowding, and heterogeneities [31]. 

Some of the theoretical models employed to describe subdiffusion are the continuous-time 

random walk [8], obstructed diffusion [32,33], fractional Brownian motion (FBM) [29,34], 

diffusion in a fractal environment [35,36], fractional Lévy stable motion (FLSM) [37], and 

fractional Langevin equation (FLE) [16,20,34].

A discrete-time model that generalizes the above fractional models is the autoregressive 

fractionally integrated moving average (ARFIMA) process [38,39]. From the physical point 

of view, it is a discrete-time analog of FLE that incorporates the memory parameter d 
[40]. Other popular models of subdiffusive dynamics like FBM and FLSM are the limiting 

cases of the ARFIMA with different noises [41]. ARFIMA exhibits power-law long-time 

dependencies, similar to FBM and FLSM. Long-time dependencies result in anomalous 

diffusion, evident in a nonlinear MSD [37]. In contrast to FBM and FLSM, ARFIMA 

can also describe various light- and heavy-tailed distributions and an arbitrary short-time 

dependence.

ARFIMA was previously suggested as an appropriate model for SPT dynamics for various 

biological experiments, namely the motion of individual fluorescently labeled mRNA 

molecules in bacteria [42,43] and transient anomalous diffusion of telomeres in the nucleus 

of eukaryotic cells [44]. A special case of the ARFIMA process, namely fractionally 

integrated moving average (FIMA), was proposed as a useful tool for estimating the 

anomalous diffusion exponent for particle tracking data with measurement errors [45]. 

FIMA was also useful in introducing so-called calibration surfaces, which are an effective 

tool for extracting both the magnitude of the measurement error and the anomalous exponent 

for autocorrelated processes of various origins [46]. Since ARFIMA models were successful 

in analyzing data in other fields (econometrics, see 2003 Nobel Prize in Economic Sciences 

for C. W. J. Granger and R. Engel; finance and engineering [47–49]), many statistical tools 

and computer packages are readily available, e.g., Interactive Time Series Modelling (ITSM) 

[50].

In this article, we focus on two types of motion in the plasma membrane, namely free and 

confined. Transient confinement within membrane domains is a very common feature in the 

plasma membrane [23]. Here, we focus on confinement within stable clusters. We propose 

the ARFIMA as a suitable model to characterize both types of dynamics. In Sec. II we 

discuss basic building blocks of the ARFIMA process: the autoregressive (AR), fractionally 

integrated (FI), and moving average (MA) parts. We show that the AR process is a discrete 

counterpart of the continuous-time Ornstein-Uhlenbeck (O-U) process. We also study the 

relationship between the ARFIMA and MSD. In Sec. III our fitting procedure (presented 

in detail in Appendix B) is applied to the motion of individual voltage-gated Na channels 

and beta-2 adrenergic receptors on the surface of live mammalian cells. In the described 

examples, we show that the increments of the nonconfined parts of the trajectories are well 
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described by the FIMA process, whereas the confined parts can be modeled by the AR. The 

analysis also suggests that the beta-2 receptors appear to be more subdiffusive in the free 

state and have a lower autoregressive parameter in the confined state. Finally, the distribution 

of the estimated ARFIMA noise sequence appears to change from Gaussian in the free state 

to non-Gaussian in the confined state.

II. ARFIMA MODEL

The ARFIMA process is a generalization of the classical autoregressive moving average 

(ARMA) process that introduces the FI part with the long memory parameter d [38,39], see 

Appendix A for a presentation of general ARFIMA processes.

In this paper we concentrate on a special case of the ARFIMA proces, namely on the 

ARFIMA with AR and MA parts of order 1, which is denoted by ARFIMA(1, d, 1). The 

ARFIMA(1, d, 1) process X(t) for t = 0, ±1, … is defined as a stationary solution of the 

fractional difference equation [50]

(1 − B)d(X(t) − ϕX(t − 1)) = Z(t) − ψZ(t − 1), (1)

where Z(t) is the noise (independent and identically distributed sequence usually Gaussian or 

in general belonging to the domain of attraction of Lévy stable law), |ϕ| < 1 and |ψ| < 1 are 

autoregressive and moving average parameters, respectively, and B is the backshift operator: 

BX(t) = X(t − 1). The fractional difference operator (1 − B)d is defined by means of the 

binomial expansion, namely (1 − B)d = ∑j = 0
∞ bj(d)Bj,, where bj(d) = Γ (j − d)

Γ (j + 1)Γ ( − d)  and Γ is 

the Gamma function. In the finite variance case we assume that the memory parameter |d| < 

1/2 and for the general Lévy α-stable case we assume that α > 1 and |d| < 1 − 1/α [51].

Let us emphasize here a very convenient “building block structure” of the ARFIMA (1, d, 1) 

model: ARFIMA(1, d, 1) = AR(1) + FI(d) + MA(1), where the AR(1), FI(d), and MA(1) are 

defined by the following equations:

X(t) − ϕX(t − 1) = Z(t), (2)

(1 − B)dX(t) = Z(t), (3)

X(t) = Z(t) − ψZ(t − 1), (4)

respectively.

The FI(d) part, which is related to the fractional difference operator, leads to the regularly 

varying (power-law) correlations which are related to the classical definition of long-range 

dependence (long memory): lack of summability of correlations [52]. In this paper we will 

call all processes with power-law correlations long-range dependent even if the correlations 

are summable in contrast to the exponentially (so much faster) decaying correlations. Long-

memory processes are often used to describe the dynamical behavior of complex systems. 

Consequently, ARFIMA models have already emerged in the physical literature, e.g., in the 
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modeling of soft x-ray solar emissions [53,54], heartbeat interval changes, air temperature 

changes [55], and the motion of molecules in live cells [42–44,46].

The ARFIMA(1, d, 1) process offers a lot of flexibility in modeling long (power-law) and 

short (exponential or finite-time) dependencies by choosing the memory parameter d in the 

FI part, and appropriate AR(1) and MA(1) process parameters (ϕ and ψ). Hence, they can be 

tailored to different empirical data. To illustrate it, let us recall three standard models used 

in the biophysics literature: confinement by a potential well, FBM and Brownian motion. 

These models correspond to different components of the ARFIMA(1, d, 1) process, namely 

the AR(1) part, FI(d) part and partial sum process of MA(0) (which is MA(1) with ψ 
= 0, so a pure white sequence), respectively. Furthermore, the MA(1) which introduces a 

one-lag dependence can be associated with the measurement noise [45]. When added to the 

FI(d) process, we obtain the FIMA(d, 1) model: (1 − B)dX(t) = Z(t) − ψZ(t − 1), which 

corresponds to FBM with noise [45]. This leads to an efficient algorithm for extracting the 

magnitude of the measurement error for fractional dynamics based on the FIMA processes 

[46]. The relations between the different models are summarized in Table I.

If the sample comes from an ARFIMA(1, d, 1) process with noise belonging to the domain 

of attraction of Lévy α-stable law, then for large sample lengths the time-averaged MSD 

δ2(τ) behaves like

δ2(τ) τa, (5)

where the bar stands for the time average, ~ denotes asymptotic behavior and a = 2d + 

1 [37]. Therefore, the memory parameter d controls the extent of the diffusion anomaly 

regardless of the underlying distribution. If d < 0, the process is subdiffusive, and if d > 0, 

the character of the process changes to superdiffusive.

Single-particle tracking data are commonly analyzed by the MSD of the trajectories. 

However, past work has shown that MSDs can be susceptible to errors and biases. To 

improve accuracy in single particle studies guidelines with respect to measurement length 

and maximum time lags have been proposed [56].

In this article, for the purpose of identifying diffusive motions in single-particle trajectories 

we apply two special cases of the ARFIMA(1, d, 1) model, namely AR(1) and FIMA(d, 

1). FIMA(d, 1) is characterized by three parameters: fractional d giving rise to the long 

memory, the parameter ψ of the MA(1) part corresponding to the one-lag dependence, and 

the distribution of the noise sequence, which in the case of the Gaussian white noise is fully 

characterized by its variance σ2. The second model is AR(1), which is characterized by the 

AR parameter ϕ and the distribution of the noise sequence. This model is a discrete analog 

of the continuous-time O-U process X(t) defined by the overdamped Langevin equation

dX(t)
dt = − kX(t)

γ + ξ(t), (6)

where ξ(t) is white Gaussian noise with 〈ξ(t)ξ(t′)〉 = 2Dδ(t – t′). A discretization of 

equation (6) gives
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X(t) = − k
γ Δt − 1

ϕ

X(t − 1) + Δtξ(t)
Z(t)

,
(7)

which is the AR(1) model equation with ϕ = −(kΔt/γ − 1) and Gaussian white noise Z(t) = 

Δtξ(t) with variance σ 2 = 2DΔt.

III. ANALYSIS OF INDIVIDUAL MEMBRANE PROTEIN TRAJECTORIES

Single-particle tracking on the plasma membrane of mammalian cells indicates that often 

molecules are subjected to transient confinement. Here we employ ARFIMA models 

to characterize the motion of Nav1.6 channels in the soma of transfected cultured 

rat hippocampal neurons and beta-2 adrenergic receptors (B2AR) in transfected human 

embryonic kidney (HEK-293) cells. Nav1.6 channels were biotinylated at an extracellular 

site and labeled with streptavidin-conjugated CF640R. The B2AR were tagged with 

hemagglutinin (HA) and labeled with anti-HA antibody conjugated to CF640. Transfected 

cells were imaged by total internal reflection microscopy at 20 frames/s and individual 

fluorescent molecules were tracked with the u-track algorithm [57]. Experimental details 

about cell culture, transfection, and imaging were published previously [36,58].

Following Ref. [59], we employed an automated algorithm to detect changes in molecule 

dynamics. This algorithm was based on a sliding-window MSD. As a result, we obtained 

trajectories belonging to two states: free and confined. Figure 1 depicts two representative 

free and two representative confined trajectories. Trajectories from the free state resemble 

Brownian diffusion, whereas confined-state trajectories appear as realizations of a stationary 

process.

We selected five long representative trajectories corresponding to each motion (free and 

confined). The shortest were 174 (free state) and 153 (confined state) points for the the 

Nav1.6, and 84 (free state) and 300 (confined state) points for the beta-2 receptors. We 

focused on the x-coordinate of the motions. We first fitted the ARFIMA(d, 1) model to 

the increments of free-state trajectories. The simplest well-fitted model common to all 

trajectories is FIMA(d, 1). Figures 2 and 3 show a scatter plot of the estimated d and 

ψ parameters with the corresponding 95% confidence intervals obtained by Monte Carlo 

simulations. For the beta-2 receptor trajectories, the memory parameter d and the moving 

average parameter ψ are usually lower than for Nav1.6 trajectories. The MSD anomalous 

exponent a = 2d + 1 is also shown in the right axis of Fig. 2. The detailed results of the 

FIMA identification and validation procedure are presented in the Supplemental Material 

[60].

To check the goodness of fit of the FIMA model, we calculated the MSD for 1000 simulated 

trajectories of the model with parameters given in the Supplemental Material [60] and 

compared the results with the MSD values of the analyzed representative trajectories. We 

can see in Fig. 4 that the fitted FIMA processes reproduce the sample MSD well.
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Some of the empirical MSD values fall outside the interquantile range but they are always 

contained in the 95% confidence interval [61], see Fig. S1 in the Supplemental Material 

[60]. By examining the width of the boxplots, we can also observe that the variability of 

the MSD exponent in the beta-2 receptor case seems bigger than in the Nav1.6 case, which 

suggests another difference between Nav 1.6 and beta-2 receptor dynamics.

We also checked the distribution of the model residuals. First, following the procedure in 

Appendix D we found that the residuals belong to the domain of attraction of the normal 

law. Next, it appeared that the residuals can be treated as Gaussian since the test was rejected 

only for one trajectory from the confined state. Hence we conclude that the increments of 

the trajectories in the free state can be modeled by the Gaussian FIMA(d, 1). Recall that this 

model represents a Gaussian fractional process with power-law memory, which corresponds 

to fractional Brownian motion with Hurst index H = d + 1/2 [41].

We performed the same analysis for the confined case and we found that a simpler ARFIMA 

model describes well the data, namely AR(1). Its estimated parameters are depicted in Fig. 

5 with the corresponding 95% confidence intervals obtained by Monte Carlo simulations. 

Hence, with the use of the ARFIMA model we are able to distinguish between these two 

different states. Moreover, we can see that for beta-2 receptor trajectories the autoregressive 

parameter is usually lower than for the Nav1.6 trajectories. The detail results of the AR 

identification and validation procedure are presented in the Supplemental Material [60].

As we showed in Sec. II, AR(1) corresponds to the O-U process. From a physical point 

of view, this model describes the motion of a Brownian particle in a harmonic potential 

with restoring force F = −kx and damping coefficient γ [Eq. (7)]. Therefore, we calculated 

the corresponding O-U parameters and, in turn, the corresponding physical parameters that 

characterize the protein motion (Tables II and III). Namely, the diffusion is D = σ2/(2Δt), 
where σ2 is the variance of the noise term Z(t) and, in our time series, Δt = 0.05 s. By 

considering the Einstein-Smoluchowski relation, γ = kBT/D with kBT being thermal energy 

at 37°C. Next the parameter ϕ yields the constant k = γ(1 – ϕ)/Δt. At last, by equipartition, 

the variance of the particle position, i.e., the square of the characteristic radius of the 

confining domain, is found, 〈X2〉 = kBT/k = σ2/[2(1 – ϕ)]. We note that in the analyzed 

trajectories, the confining radius of Nav1.6 channels is larger than the confining radius of 

B2AR, where the former yields a mean of 53 nm, while the latter has a mean of 23 nm.

To check the goodness of fit of the AR model, we calculated the MSD for 1000 simulated 

trajectories of the model with parameters given in the Supplemental Material [60] and 

compared the results with the MSD values for the analyzed representative trajectories. We 

can see in Fig. 6 that the fitted AR processes reproduce the sample MSD well. Some of the 

empirical MSD values fall outside the interquantile range but they are always (even beta-2 

receptor trajectory no. 3) contained in the 95% confidence interval [61], see Fig. S2 in the 

Supplemental Material [60]. By examining the width of the boxplots, we can also observe 

that the variability of the MSD exponent in the Nav 1.6 case seems bigger than in the 

beta-2 receptor case, which suggests another difference between Nav 1.6 and beta-2 receptor 

dynamics.
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We also checked the distribution of the model residuals. Following the procedure in 

Appendix D, first we found that they belong to the domain of attraction of the normal 

law. However, in contrast to the free state, Gaussianity was rigorously rejected for almost 

all trajectories. Normal inverse Gaussian (NIG) and t location-scale distributions were not 

rejected for most of the trajectories. In order to make a rigorous conclusion about the model 

residuals one should analyze more trajectories. Hence we conclude that the confined state 

trajectories can be modeled by the non-Gaussian AR(1).

For the detailed goodness-of-fit analysis of identified AR(1) and FIMA (d, 1) models we 

refer the reader to the Supplemental Material [60].

IV. DISCUSSION AND CONCLUSIONS

In this paper we demonstrated that the ARFIMA(1, d, 1) model can identify two types of 

motions of membrane proteins. We analyzed five representative trajectories chosen from 

each of two categories: free and confined states of Nav1.6 and beta-2 adrenergic receptors. 

We found that the two special cases of the model, FIMA(d, 1) and AR(1), fully identify the 

free and confined state dynamics, respectively. These results allowed us to propose a new 

unified methodology to detect certain types of motion in complex systems.

In the free state, the beta-2 receptors appear to be more subdiffusive and, moreover, the 

moving average parameter is lower. In the confined state the autoregressive parameter for 

the beta-2 receptor trajectories seems to be lower than for Nav1.6 trajectories. Furthermore, 

the distribution changes from being Gaussian in the free to non-Gaussian in the confined 

state. Since the AR(1) is a discrete-time counterpart of the O-U process, we calculated 

the parameters of the corresponding O-U processes which, we found, are biologically 

meaningful. We note that the estimated FIMA memory parameters provide more accurate 

information on the subdiffusion type than the MSD exponents since they are more robust 

with respect to the measurement noise.

We would like to point out that a very popular model for subdiffusion continuous-time 

random walk (CTRW) [62] is not considered here, but it can be represented in the form of 

subordinated O-U process, i.e., AR with randomized time described by the inverse stable 

process [63,64].

Accurate motion analysis often requires a transient motion classification [65,66]. Many 

transient motion analysis algorithms employ either rolling windows analysis [67,68] or 

hidden Markov modeling [69,70]. Our studies show that one can also consider the ARFIMA 

model as a possible tool for such classification.

We believe that our methodology provides a simple unified way to gain deeper information 

into processes leading to anomalous diffusion in single-particle tracking experiments. 

Finally, we note that in order to model the whole trajectories (free and confined 

parts of the trajectories together) the ARFIMA process is not enough. One possible 

extension is ARFIMA with noise described by the generalized autoregressive conditional 

heteroskedasticity (GARCH) model [71,72]. Such models can be useful in description 

of changing diffusivity which results in so-called transient anomalous diffusion [73,74]. 
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ARFIMA combined with GARCH can describe both power-law decay of the autocorrelation 

function with arbitrary finite-lag effects (ARFIMA part) and changing diffusion exponent 

(GARCH part). This is a subject of ongoing work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A: GENERAL ARFIMA MODEL

The ARFIMA(p, d, q) process X(t) for t = 0, ±1, … is defined as a solution of the equation

(1 − B)dΦp(B)X(t) = Ψq(B)Z(t),

where Z(t) is the noise sequence (Gaussian or, in general, in the domain of attraction of 

Lévy stable law) and B is the backshift operator, i.e., BX(t) = X(t − 1) and BjX(t) = X(t − 

j) [39,50]. Moreover the Φp and Ψq are AR and MA polynomials, respectively, known in 

classical time-series theory:

Φp(B)X(t) = X(t) − ϕ1X(t − 1) − … − ϕpX(t − p),

Ψq(B)Z(t) = Z(t) − ψ1Z(t − 1) − … − ψqZ(t − q) .

The crucial part of the above definition of ARFIMA series is the fractional difference 

operator (1 − B)d defined as a power series

(1 − B)d = ∑
j = 0

∞ d
j ( − B)j = ∑

j = 0

∞
bj(d)Bj,

where bj(d) = Γ (j − d)
Γ (j + 1)Γ ( − d)  with asymptotic behavior bj (d) ~ Γ(−d)−1j−d−1 and Γ is the 

Gamma function.

In the finite variance case we assume that |d| < 1/2 and for the general Lévy α-stable case 

we assume that α > 1 and |d| < 1 − 1/α [51]. The assumption about the exponent d ensures 

a proper definition of the operator for the Gaussian ARFIMA processes. The parameter d is 

called the memory parameter. From the physical point of view, it is known that ARFIMA 
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is a discrete time analog of the fractional Langevin equation that takes into account the 

memory parameter [40,54].

In the Gaussian case, the autocovariance function r(k) of the ARFIMA process decays as 

k2d−1. Moreover, for d > 0 we have ∑k = 0
∞ r(k) = ∞, which serves as a classical definition 

of long memory [52]. For the Lévy α-stable case with α < 2 the covariance does not exist 

and one has to replace it, e.g., with the codifference (see Ref. [75]). The codifference of the 

ARFIMA process was studied in Ref. [51], where it was proved that for d > 1 − 2/α the 

ARFIMA possesses long-term dependence in the classical sense.

A partial sum of the ARFIMA process is asymptotically self-similar with the Hurst index 

equal to d + 1/α, where α is the index of stability [76]. As a consequence Gaussian 

ARFIMA(0, 0, 0), which is just the pure white noise sequence, corresponds, in the limit 

sense, to BM. Similarly, ARFIMA(0, d, 0) corresponds to FBM with H = d + 1/2. For more 

information about the ARFIMA processes with their applications to biophysics see, e.g., 

Refs. [42,46].

The ARFIMA process (in the literature also called FARIMA) is a generalization of the 

classical stationary discrete-time ARMA process to account for the long-range dependence 

(powerlike decaying autcorrelation function) [50,52].

The ARMA models provide a general framework for studying stationary short memory 

phenomena, i.e., processes with exponentially decaying autocovariance. These models 

consist of two broad classes of time-series processes, namely the AR and the MA. The 

ARMA is usually referred to as the ARMA(p, q) model where p is the order of the 

autoregressive part and q the order of the moving average part.

Let us now concentrate on the ARMA(1, 1) case which is sufficient for many studies. The 

process X(t) is ARMA(1, 1) if it is stationary and satisfies (for every t) a linear difference 

equation with constant coefficients:

X(t) − ϕX(t − 1) = Z(t) − ψZ(t − 1), (A1)

where t = 0, ±1, …

The basic building blocks of the model are the AR(1): X(t) = ϕX(t − 1) + Z(t) and MA(1): 

X(t) = Z(t) − ψZ(t − 1) processes, where ϕ and ψ are real parameters and Z(t) is the 

noise term [50]. AR(1) stands for the autoregression and the explanatory variable is the 

observation immediately prior to our current observation. Its autocorrelation function r(k) 

decays as ϕk 〈X2(t)〉. The MA(1) part introduces one-lag dependence in the time series, 

namely X(t) is a stationary one-correlated time series: X(s) and X(t) are independent 

whenever |t − s| > 1. The dependence is fully controlled by the parameter ψ. A stationary 

solution of ARMA(1, 1) equation exists if and only if ϕ ≠ ±1. If |ϕ| < 1, then a unique 

stationary solution exists and is causal, since X(t) can be expressed in terms of the current 

and past values Z(s), s ⩽ t. Otherwise, if |ϕ| > 1, then the solution is not causal since X(t) 
is then a function of Z(s), s ⩾ t. Moreover, if |ψ| < 1 then X(t) is invertible, so the noise 

process Z(t) can be expressed in terms of past values X(s), s ⩽ t [50]. For the noise process 
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Z(t) we only assume that it belongs to the domain of attraction of Lévy α-stable law for 

α ⩽ 2 [75,77]. It can be a finite variance white noise (uncorrelated random variables with 

mean zero and variance σ2, e.g., Gaussian or Student’s t) or infinite variance independent 

and identically distributed sequence (e.g., Lévy α-stable with α < 2 or Pareto).

The ARFIMA process is a d-differenced ARMA process, where d is a fractional memory 

parameter. As a consequence, ARFIMA(1, d, 1) process X(t) is defined as a stationary 

solution of the fractional difference equation [50]

(1 − B)d[X(t) − ϕX(t − 1)] = Z(t) − ψZ(t − 1) . (A2)

APPENDIX B: ARFIMA PARAMETER ESTIMATION

In order to estimate the ARFIMA parameters one can apply the maximum likelihood 

estimation method, which is implemented, e.g., in ITSM [50], or its approximation given 

by the Whittle estimator [78,79]. The Whittle estimator is particularly simple to implement 

in any computer software and it benefits from the elementary form of the ARFIMA spectral 

density. Briefly, let {x1, x2, …, xN} be a trajectory of length N. For the model FIMA(d, 1), 

we estimate the vector β = (ϕ, d). We denote the normalized periodogram by

IN(λ) =
∑t = 1

N xte−iλt 2

∑t = 1
N xt2

, − π ⩽ λ ⩽ π . (B1)

The Whittle estimator is defined as the vector argument (ϕ, d) for which the following 

function attains its minimum value:

∫
0

π
IN(λ)W (λ, ϕ)(2 − 2cosλ)ddλ, (B2)

where

W (λ, ϕ) = 1 − 2ϕcosλ + ϕ2 . (B3)

For the AR(1) the estimator minimizes

∫
0

π
IN(λ) 1 − 2ϕcosλ + ϕ2 dλ . (B4)

APPENDIX C: ARFIMA MODEL VALIDATION

Having fitted the ARFIMA process, the next step is to investigate the residuals obtained 

either by fractional differencing the data [80] or as prediction errors [50].

i. If there is no dependence among the residuals, we can regard them as 

observations of independent random variables and there is no further modeling to 

be done except to estimate their mean and variance [50].
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ii. If there is a significant dependence among the residuals, we need to evaluate a 

more complex stationary time-series model for the noise that accounts for the 

dependence, e.g. the GARCH process [71,72].

We now recall some simple tests for checking the hypothesis that the residuals are observed 

values of independent and identically distributed random variables. If they are, we conclude 

the model describes the data well.

First, we plot the sample autocorrelation function with its 95% confidence interval. In the 

Gaussian case about 95% of the sample autocorrelations should fall between the bounds 

±1.96/ n. The same can be done for squares of the observations to check for a dependence 

in variance. Next, we apply the Ljung-Box, and McLeod-Li tests, which are portmanteau 

tests [50]. The Ljung-Box test relies on the sample autocorrelation function, which, at lag h, 

has a chi-squared distribution with h degrees of freedom. The McLeod-Li test is similar but 

on the squared data.

APPENDIX D: ARFIMA RESIDUAL DISTRIBUTION

Having found an appropriate ARFIMA model describing the data, we can identify the 

distribution underlying the noise sequence. Information about the distribution is helpful in 

determining confidence intervals for the estimated parameters and also in construction of 

prediction intervals. We now investigate the distribution of the residuals.

Following Ref. [81], we first check if the underlying distribution belongs to the domain of 

attraction of the Gaussian or non-Gaussian Lévy-stable distributions by examining its rate of 

convergence.

i. If the results suggest the Gaussian domain of attraction, we consider three typical 

light-tailed probability distributions for the residuals of the ARFIMA model, 

namely Gaussian, t location-scale and NIG.

ii. If the non-Gaussian Lévy stable domain of attraction is suggested, we test for 

Lévy α-stable distributions.

The t location-scale distribution generalizes ordinary Student’s t distribution. The 

probability density function (PDF) of this distribution is given as

ft(x) = n− 1
2

σB n
2 , 1

2
1 + [(x − μ)/σ]2

n
− n + 1

2
, (D1)

where B is the beta function B(x, y) = ∫0
1tx − 1(1 − t)y − 1dt and n denotes the degrees of 

freedom parameter. This distribution is useful for modeling data with heavier tails than the 

normal. It approaches the Gaussian distribution as n approaches infinity and smaller values 

of n yield heavier tails.

A random variable X is said to have a NIG distribution if it has a PDF,
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fNIG(x) = αδ
π eδ α2 − β2 + β(x − μ)

K1 α δ2 + (x − μ)2

δ2 + (x − μ)2 . (D2)

The NIG distribution, introduced in Ref. [82], is described by four parameters (α, β, δ, 

μ), where α stands for tail heaviness, β for asymmetry, δ is the scale parameter, and μ is 

the location. The normalizing constant Kλ(t) in (D2) is the modified Bessel function of the 

third kind with index λ, also known as the MacDonald function. The NIG distribution is 

more flexible than the Gaussian distribution since it allows for fat-tails and skewness. The 

Gaussian distribution arises as a special case by setting β = 0, δ = σ2α, and letting α → ∞.

In order to check the goodness of fit of the distributions considered here, we apply the 

Anderson-Darling test [83], which is based on the A2 statistic:

A2 = N∫
−∞

∞ FN(x) − F (x) 2

F (x)[1 − F (x)] d F (x), (D3)

where FN (x) and F(x) denote the empirical and theoretical distribution functions, 

respectively. The test is one of the most powerful statistical tools for detecting most 

departures from normality [83].
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FIG. 1. 
Representative Nav1.6 (left panel) and beta-2 receptor (right panel) trajectories. The top 

panel illustrates the receptor dynamics in three dimensions, where the z axis corresponds 

to time. The (upper) blue trajectories show molecules in the free state and the (lower) red 

trajectories show molecules in the confined state.
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FIG. 2. 
Fitted d parameter (with the 95% confidence interval) of the FIMA(d, 1) model to the 

increments of the free state Nav1.6 and beta-2 receptor five representative trajectories.
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FIG. 3. 
Fitted ψ parameter (with the 95% confidence interval) of the FIMA(d, 1) model to the 

increments of the free state Nav1.6 and beta-2 receptor five representative trajectories.
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FIG. 4. 
Boxplots of estimated MSD exponents for 1000 simulated trajectories of the fitted FIMA 

processes for free state Nav1.6 and beta-2 receptor five representative trajectories. The 

dashed horizontal line stands for the MSD exponent obtained for the analyzed empirical 

trajectory.
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FIG. 5. 
Fitted ϕ parameter (with the 95% confidence interval) of the AR(1) model to the confined 

state Nav1.6 and beta-2 receptor five representative trajectories.
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FIG. 6. 
Boxplots of estimated MSD exponents for 1000 simulated trajectories of the fitted AR 

processes for the confined state Nav1.6 and beta-2 receptor five representative trajectories. 

The dashed horizontal line stands for the MSD exponent obtained for the analyzed empirical 

trajectory.
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TABLE I.

Physical (with and without measurement noise) and corresponding ARFIMA(1, d, 1) models.

Physical model ARFIMA(1, d, 1)

Confinement by a potential well (O-U) AR(1)

O-U + noise ARMA(1,1)

BM MA(0)

BM + noise MA(1)

FBM FI(d)

FBM + noise FIMA(d, 1)

Phys Rev E. Author manuscript; available in PMC 2023 February 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Burnecki et al. Page 23

TABLE II.

Ornstein-Uhlenbeck process parameters for the representative confined state Nav1.6 trajectories.

Traj. ϕ σ2(nm2) D(μm2/s) γ(10−8kg/s) k(pN/μm) 〈X2〉(nm2)

1 0.30 1948 0.019 22.0 3.08 1391

2 0.18 7966 0.080 5.4 0.88 4857

3 0.23 4319 0.043 9.9 1.53 2804

4 0.14 4053 0.041 10.6 1.82 2356

5 0.11 6105 0.061 7.0 1.24 3430
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TABLE III.

Ornstein-Uhlenbeck process parameters for the representative confined state beta-2 receptor trajectories.

Traj. ϕ σ2(nm2) D(μm2/s) γ(10−8kg/s) k(pN/μm) 〈X2〉(nm2)

1 0.02 553 0.006 77.4 15.18 282

2 −0.05 1327 0.0013 32.3 6.77 632

3 0.07 1485 0.015 28.8 5.36 799

4 0.09 1696 0.017 25.2 4.59 932

5 0.33 252 0.003 169.9 22.76 188
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