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Abstract

Closed-loop neural interfaces with on-chip machine learning can detect and suppress disease 

symptoms in neurological disorders or restore lost functions in paralyzed patients. While high-

density neural recording can provide rich neural activity information for accurate disease-state 

detection, existing systems have low channel counts and poor scalability, which could limit 

their therapeutic efficacy. This work presents a highly scalable and versatile closed-loop neural 
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interface SoC that can overcome these limitations. A 256-channel time-division multiplexed 

(TDM) front-end with a two-step fast-settling mixed-signal DC servo loop (DSL) is proposed to 

record high-spatial-resolution neural activity and perform channel-selective brain-state inference. 

A tree-structured neural network (NeuralTree) classification processor extracts a rich set of 

neural biomarkers in a patient- and disease-specific manner. Trained with an energy-aware 

learning algorithm, the NeuralTree classifier detects the symptoms of underlying disorders (e.g., 

epilepsy and movement disorders) at an optimal energy-accuracy trade-off. A 16-channel high-

voltage (HV) compliant neurostimulator closes the therapeutic loop by delivering charge-balanced 

biphasic current pulses to the brain. The proposed SoC was fabricated in 65nm CMOS and 

achieved a 0.227μJ/class energy efficiency in a compact area of 0.014mm2/channel. The SoC 

was extensively verified on human electroencephalography (EEG) and intracranial EEG (iEEG) 

epilepsy datasets, obtaining 95.6%/94% sensitivity and 96.8%/96.9% specificity, respectively. 

In-vivo neural recordings using soft μECoG arrays and multi-domain biomarker extraction were 

further performed on a rat model of epilepsy. In addition, for the first time in literature, on-chip 

classification of rest-state tremor in Parkinson’s disease (PD) from human local field potentials 

(LFPs) was demonstrated.

Keywords

Machine learning; neural network; decision tree; closed-loop neuromodulation; epilepsy; 
Parkinson’s disease; energy-efficient classification; seizure; tremor

I. INTRODUCTION

NEUROLOGICAL disorders are the second leading cause of global deaths and the leading 

cause of disability worldwide [1]. Epilepsy (>60M) and Parkinson’s disease (>10M) 

are among common examples, and many patients are living with medication-refractory 

symptoms of these disorders. Closed-loop brain stimulation has emerged as a promising 

therapeutic solution to treating such disorders [2]–[6], and a number of FDA-approved 

and research-based devices are currently available, including NeuroPace’s responsive 

neurostimulation and Medtronic’s Percept deep-brain stimulation (DBS) systems. However, 

these devices have a low channel count (4–6) and rely on simplistic symptom detection 

algorithms (e.g., feature thresholding), which could result in suboptimal detection accuracy 

and limited therapeutic efficacy.

Over the past decade, we have witnessed a growing adoption of machine learning (ML) 

for symptom prediction in a variety of neurological conditions such as epilepsy [7], 

Parkinson’s disease (PD) [8], depression [9], migraine [10], [11], and memory disorders 

[12]. Through neural signal acquisition, biomarker extraction, and ML-based classification, 

pathological disease states can be detected more accurately and suppressed more effectively 

than conventional methods. Moreover, ML intelligence can improve the accuracy of 

motor intention decoding in brain-machine interfaces (BMIs) for rehabilitation of motor 

impairments [13], [14]. Despite recent innovations, existing ML-embedded SoCs [5], [15]–

[22] are limited in the following aspects:
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1) Low channel count:

As the analog front-end (AFE) often dominates the overall area of a neural interface system, 

the channel count of existing ML-SoCs is limited to 8–32, which may not be sufficient to 

collect clinically meaningful information for accurate disease state prediction.

2) Low hardware efficiency:

Despite the low channel count, the area and energy consumption of the existing SoCs 

are prohibitive, making it difficult to scale up the number of channels. This is mainly 

due to their hardware complexity that grows proportional to the number of channels and 

biomarkers.

3) Limited application:

With limited sets of biomarkers and conventional classifiers, most neural interface SoCs 

reported so far have targeted a single task, epileptic seizure detection, while there exist many 

other conditions that could benefit from the closed-loop neural interface technology.

Closed-loop SoCs would advance further with a higher number of channels and greater 

adaptability to various neural classification tasks. In epileptic seizure detection, for instance, 

covering a larger brain area with a high-spatial-resolution electrocorticography (ECoG) 

array will enable more precise localization of epileptic foci and better mapping of seizure 

onset [23], thus enhancing the seizure detection accuracy of the trained classifier. In 

treating movement disorders such as PD and essential tremor, high-density DBS can engage 

target brain regions more effectively while reducing stimulation-induced side effects [24]. 

Furthermore, high-density sensing can enhance the accuracy of motor intention decoding in 

prosthetic BMIs by collecting higher-resolution motor and sensory information [25]. Fig. 

1 presents the envisioned versatile neural interface platform that integrates a large number 

of channels. A patient- and disease-specific classifier detects the pathological symptoms of 

brain disorders and activates a neurostimulator to provide cortical or deep-brain stimulation 

for symptom suppression. In BMIs, motor intention can be decoded to control prosthetic 

devices and provide sensory feedback to the brain via electrical stimulation. This high-

channel-count, versatile neural interface device could advance our understanding of complex 

brain dynamics and provide new therapeutic opportunities for people suffering from various 

neurological/psychiatric disorders and motor conditions. A miniaturized, energy-efficient 

implementation of such devices is a key to enabling next-generation closed-loop neural 

SoCs.

To overcome the aforementioned limitations of existing systems and transition towards 

the next-generation closed-loop neural interface, this paper presents a 256-channel highly 

scalable, energy-efficient neural activity classification and closed-loop neuromodulation 

SoC. A 256-channel area-efficient AFE collects high-resolution neural activity for classifier 

training, and selectively processes informative channels via energy-efficient inference. 

Enhanced by multi-symptom biomarker extraction and a multi-class tree-structured neural 

network (NeuralTree) classifier, the SoC provides greater flexibility for a broader range 

of applications beyond seizure detection. Through efficient circuit implementation and 
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circuit-algorithm co-design, this high-channel-count neural interface achieves a new class 

of energy-area efficiency.

This paper extends upon our prior work in [26] and presents a review of the state-of-the-art, 

detailed description of the proposed circuits/algorithms, and more extensive benchtop and 

in-vivo validation of the SoC. The paper is organized as follows. Section II provides a high-

level description of the 256-channel SoC. Section III describes the system-level optimization 

of the AFE and introduces a 256-channel time-division multiplexed (TDM) architecture 

with a two-step fast-settling mixed-signal DC servo loop (DSL). Sections IV and V detail 

the NeuralTree classification processor and the 16-channel high-voltage (HV) compliant 

neurostimulator, respectively. Benchtop and in-vivo measurement results are demonstrated 

in Section VI. Finally, Section VII concludes the paper.

II. SoC ARCHITECTURE

Fig. 2 presents the architecture of the proposed 256-channel neural activity classification 

and closed-loop neuromodulation SoC. Four 64-channel chopper-stabilized time-division 

multiplexed (CS-TDM) AFE modules perform high-density multi-site neural recording to 

train the classifier. A 16×16 switch matrix and row-multiplexing chopper (MUX-CHOP) 

connect the 256-channel neural inputs to the AFE modules for signal conditioning. In 

inference mode, the MUX-CHOP is configured such that any subset of 64 input channels 

can be selected and processed by the main AFE module (#1). The input selection can 

change dynamically on a window-by-window basis according to the trained input sequence, 

to perform channel-selective inference. Following signal conditioning by the main AFE 

module, a finite impulse response (FIR) filter and feature extraction engine (FEE) compute 

neural biomarkers in temporal, spectral, and phase domains. Up to 64 multi-symptom 

biomarkers are extracted on demand in a patient- and disease-specific manner. The 

extracted biomarkers are passed to the NeuralTree classifier for neural activity classification. 

The flexible NeuralTree model supports both binary and multi-class classification. Upon 

detection of pathological brain states, a 16-channel HV compliant neurostimulator delivers 

charge-balanced biphasic current pulses to the brain to close the therapeutic loop.

The all-in-one integration of high-density recording and stimulation channels, multi-

symptom neural biomarkers, and ML intelligence can easily grow the hardware complexity 

of the system. To overcome this challenge, the proposed SoC employs various circuit-

algorithm innovations and system-level hardware optimization techniques, which will be 

discussed in the remainder of this paper.

III. 256-CHANNEL ANALOG FRONT-END

As the sensor count increases, the area constraint on the AFE becomes more stringent 

and the complexity of the backend signal processing also grows significantly. We tackle 

these challenges with an area-efficient TDM AFE with a channel-selective inference 

scheme. Noting that only subsets of input electrodes capture disease-relevant neural 

activity, the channel-selective approach can greatly reduce the hardware overhead during 

inference. To validate this concept, we trained a classifier on 128-channel intracranial 
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electroencephalography (iEEG) recorded from an epileptic patient [27] to assess the 

discriminative power of each channel. The NeuralTree classifier (detailed in Section IV-C) 

was trained using two common types of seizure biomarkers (line-length and multiband 

spectral energy) extracted from the 128 channels. The importance of each channel was 

then assessed based on the number of features extracted during inference using 5-fold 

cross-validation. The non-uniform channel importance in Fig. 3 implies that high-density 

training followed by channel-selective inference can save the inference cost significantly 

while maintaining the classification accuracy.

Fig. 4 depicts the AFE configurations during classifier training and inference. In training 

mode, the four 64-channel CS-TDM AFE modules acquire 256-channel neural signals to 

exploit high-resolution brain activity information. The digitized 256-channel neural data are 

then used for offline classifier training, during which informative channel indices and feature 

types are identified. After loading the trained parameters to an on-chip memory, the MUX-

CHOP is configured to select any subset of up to 64 informative channels and connect them 

to the main AFE module via a shared input path. Here, the three auxiliary AFE modules are 

disabled to save system power. In the proposed NeuralTree model, the selected channels can 

change dynamically in each feature computation window to perform on-demand biomarker 

extraction, thus reducing the number of extracted features and enabling energy-efficient 

classification. However, the dynamic channel selection approach raises new concerns on 

electrode DC offset (EDO) cancellation that must be addressed.

A. Challenges of Electrode DC Offset Cancellation

Electrochemical polarization at the electrode-tissue interface develops DC offsets between 

electrodes [28], the magnitude of which can be as large as ±50mV [29]. Each recording 

electrode in an array can develop a unique EDO with respect to a common reference 

electrode. When many electrodes with different EDOs are multiplexed to a single amplifier, 

these EDOs appear as a large signal that fluctuates at the multiplexing frequency, as 

shown in Fig. 5. Digitizing small neural signals (~1μ–1mV) and significantly larger 

EDOs simultaneously would require a high-resolution (~16 bits) analog-to-digital converter 

(ADC), which is nontrivial to design in a compact and power-efficient way. A high-

resolution ADC would also increase the hardware complexity of the subsequent filtering and 

signal processing in the digital back-end (DBE). Another challenge imposed by the channel-

selective inference scheme is that the EDO pattern at the amplifier input changes between 

successive feature extraction windows (Fig. 5). With a conventional large-time-constant 

DSL, the amplifier would saturate predominantly in each window (~1s), resulting in a 

significant loss of neural activity information.

The 16-channel SoC in [5] multiplexed a low-noise amplifier (LNA) for every two channels 

to save chip area. Intermediate node voltages were stored on 1.5pF sampling capacitors 

for fast switching between channels with different EDOs. However, this analog S/H-based 

approach is area inefficient (~0.49mm2/channel) and thus, it is not a viable option for 

a high-channel-count system. A mixed-signal coarse-fine DSL was reported in [29]. The 

coarse loop canceled large EDOs using binary search, while the fine loop suppressed 

residual offsets. Despite achieving a small area of 0.013mm2/channel, the ADC-assisted 
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binary search loop requires many samples to converge, making it inadequate for fast settling 

in the presence of abrupt EDO changes. Recently, hardware sharing via time-division 

multiplexing has been increasingly adopted to improve the area efficiency of high-channel-

count AFEs. Specifically, to cancel EDOs between successive channels, several DSL designs 

were reported, including binary search [30], delta encoding [31], and least-mean-square 

filtering [32]. While these AFEs can ultimately settle for a fixed input EDO pattern, none are 

compatible with the channel-selective feature extraction scheme as the offset cancellation 

loops must resettle in each window when a new set of inputs (with unknown EDO patterns) 

is fed to the AFE.

B. Two-Step Fast-Settling Mixed-Signal DC Servo Loop

To enable an area-efficient AFE implementation and address the EDO cancellation 

challenge, a 256-channel CS-TDM AFE with a two-step fast-settling mixed-signal DSL is 

proposed, as shown in Fig. 6. The timing diagram of the two-step EDO cancellation process 

during inference is illustrated in Fig. 7. At the beginning of each feature extraction window, 

coarse offset cancellation using binary search is performed for 64 selected channels. A 

dynamic comparator detects the polarity of the LNA output, and a successive approximation 

register (SAR) logic subsequently updates the input code for a 9-bit capacitive digital-to-

analog converter (CDAC). This process is repeated 9 times until the LNA output converges, 

and the EDO (≤±50mV) is digitized at 9-bit resolution. The 9-bit EDO code is then stored 

into a register. This 64-channel coarse EDO cancellation is performed only during the first 

sampling period (7.8μs/channel) of each window to enable fast settling and minimize neural 

data loss. Next, a fine loop is enabled to record neural signals and cancel any residual EDOs 

following the coarse offset cancellation (<±0.2mV). A low-pass filtering digital integrator 

extracts undesired low-frequency signal components including residual EDOs from the ADC 

output. The pre-stored 9-bit EDO is added to the 9 most significant bits of the 19-bit 

integrator output. This newly formed 19-bit code is then ΔΣ-modulated and fed back to 

the amplifier input via the 9-bit segmented (6-bit unary+3-bit binary) CDAC. Here, an 

oversampling ratio (OSR) of 50 increases the effective number of bits of the 9-bit CDAC 

to ~17 bits to suppress the DAC quantization noise to <1μV [33]. The output of the digital 

integrator can be bit-shifted to control the feedback gain for loop stability and adjust the 

highpass pole location in the closed-loop frequency response.

C. Low-Noise Amplifier and Anti-Aliasing Integrator

The AFE forward path consists of a chopper-stabilized LNA and Gm-C integrator. The 

LNA is capacitively coupled to provide a precise, moderate closed-loop gain of 26dB (CIN/

CNFB = 24pF/1.2pF). The positive feedback loop (CPFB) partially compensates for input 

impedance degradation due to chopping. Here, the value of CPFB is chosen equal to CNFB 

to avoid the instability condition (i.e., the total effective input capacitance being negative), 

and its noise contribution is negligible when referred to the electrode-tissue interface, given 

much higher electrode coupling capacitance (~1nF). The core amplifier in the LNA stage 

adopts an inverter-based current-reuse topology for improved noise efficiency [34] as shown 

in Fig. 8(a). The complementary input pairs are biased in weak inversion (gm/ID ≈ 25) and 

constructed using thick-oxide transistors to prevent gate leakage. The cascode transistors 
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boost the open-loop gain to enable a precise closed-loop gain, while isolating the input 

devices from the amplifier output not to exacerbate the Miller effect on their Cgd.

With a ΔΣ frequency of 6.4MHz, the LNA bandwidth is set to 7MHz, which is much 

higher than the ADC sampling rate of 128kS/s. This high LNA bandwidth necessitates 

an anti-aliasing filter prior to digitization to avoid noise folding. Filtering is achieved 

by a charge sampling Gm-C integrator, which provides a sinc-shaped frequency response 

with notches at integer multiples of the sampling frequency [35], [36]. Fig. 8(b) presents 

the circuit implementation of the Gm-C integrator and the timing diagram of charge 

sampling operation. A folded-cascode amplifier with source degeneration is implemented 

for improved linearity. The integration time extends to the 96% of the sampling period, 

during which high-frequency ΔΣ noise and chopper ripples are attenuated. The charge 

sampling approach relaxes the settling requirement of the amplifier [35], obviating the need 

for a power-consuming ADC buffer. The 3-bit resistor (RS) and 5-bit capacitor (CINT) banks 

provide an additional programmable gain (14–34dB) in the forward path.

In a TDM front-end, samples of the current channel can be corrupted by previous channel 

residues, which manifests as inter-channel crosstalk. To prevent this, our CS-TDM AFE 

periodically resets the intermediate nodes along the forward path between successive 

channels. During this reset operation, the kT/C noise is sampled by the input capacitors 

at 2kHz per channel. With chopper stabilization, however, this kT/C noise is up-modulated 

to integer multiples of the chopping frequency (128kHz) and subsequently attenuated by the 

notches of the Gm-C integrator.

When the neurostimulator is triggered in closed-loop mode, the recording electrodes 

experience large differential- and common-mode stimulation artifacts, the amplitude of 

which can be a few 10s and 100s of mVpp, respectively, depending on the stimulation 

current amplitude [37]. To prevent amplifier saturation by these artifacts, the AFE inputs 

are disconnected from pads via multiplexing switches in the matrix (i.e., sensing is disabled 

during stimulation). A synchronous control of recording and stimulation allows the AFE 

operation to resume immediately after the last stimulation pulse. Therefore, only residual 

artifacts and stimulation-induced DC offsets that remain at the time of AFE reconnection 

corrupt recorded neural signals. The amplitude and duration of residual artifacts are 

minimized by the charge balancing capabilities of the biphasic stimulators (detailed in 

Section V). When the AFE inputs are reconnected, the brief reset operation at every sample 

aids in fast recovery (<5ms [38]) while the two-step DSL quickly cancels newly developed 

DC offsets (Fig. 7).

D. Asynchronous Analog-to-Digital Converter

A 10-bit SAR ADC digitizes the Gm-C integrator output at 128kS/s (2kS/s per channel). 

Following charge sampling in the Gm-C integrator, only a short time (312.5ns) is 

allocated to digitization. To avoid the use of an excessively high clock frequency, we 

adopt an asynchronous SAR control with a single sampling clock [39]. A 9-bit binary-

weighted charge-redistribution DAC with top-plate sampling and monotonic switching is 

implemented, using 2.3fF metal-oxide-metal unit capacitors and bootstrapped switches [39]. 

An attenuation capacitor equal to the total 9-bit DAC capacitance is added to halve the 
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effective input range of the ADC without an additional reference voltage generator [40]. 

This approach relaxes the linearity and gain requirements of the preceding amplifiers with 

only a marginal area overhead, which is amortized across 64 channels in the proposed TDM 

AFE.

IV. NEURALTREE CLASSIFICATION PROCESSOR

The high-level architecture of the proposed NeuralTree classification processor is presented 

in Fig. 2. The configurable TDM FIR filter performs selective bandpass filtering (BPF) and 

Hilbert transformation (HT) depending on the type of feature being extracted. Following 

signal filtering, the multi-symptom TDM FEE extracts up to 64 patient- and disease-specific 

neural biomarkers in temporal, spectral, and/or phase domains. The NeuralTree classifier 

uses the extracted feature vectors to perform top-down brain-state inference along the 

most probable path of the tree. The end-to-end TDM implementation enables a seamless 

integration of key building blocks without the need for demultiplexing, thus achieving a 

new class of scalability and energy efficiency. Hardware-friendly feature approximations and 

energy-aware training algorithm further improve the NeuralTree’s hardware efficiency, as 

detailed in this section.

A. Bandpass Filtering and Hilbert Transform

Fig. 9 depicts the block diagram of the TDM FIR filter that processes digitized neural 

signals. To save silicon area, a single set of arithmetic units is shared between 64 channels 

for 32-tap bandpass filtering [5]. Band-specific FIR coefficients are retrieved from the on-

chip memory and multiplexed into the multiplier array. The FIR filter can be reconfigured 

as a 31-tap Hilbert transformer to obtain analytic signals for instantaneous phase and 

amplitude extraction. The 64-channel BPF and HT register banks are clocked at 128kHz 

and selectively clock gated depending on the feature type. For temporal feature extraction, 

the ADC output is directly fed to the FEE and the FIR is bypassed.

B. Multi-Symptom Feature Extraction

To enhance the versatility of the SoC for a broad range of neural classification tasks, 

the FEE integrates multi-symptom neural biomarkers, as summarized in Table I. Without 

careful design considerations, integrating such a broad range of biomarkers can be hardware 

intensive. The following subsections describe hardware-friendly feature approximation 

algorithms and circuit techniques that enable low-complexity, yet accurate feature extraction 

in the proposed SoC.

1) Temporal features: Line-length (LL) increases in the presence of high-amplitude or 

high-frequency neural oscillations and has been among powerful biomarkers of epileptic 

seizures [41]. LL is defined as in (1):

LL = 1
N ∑

t = 1

N
xt − xt − 1 (1)
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where N is the number of samples in a feature extraction window. Fig. 10(a) presents 

the hardware implementation of the proposed TDM temporal feature extractor. For LL 

extraction, the absolute differences between successive samples are accumulated with two 

adders and one absolute value calculator.

The Hjorth statistical parameters are highly correlated with tremor in PD [8] and used in 

BMIs for finger movement [42] and gait [43] decoding. The Hjorth activity (ACT), mobility 

(MOB), and complexity (COM) measure the variance, mean frequency, and frequency 

change of a signal, respectively, as defined below [44]:

ACT = var(x) = 1
N ∑

t = 1

N
xt − μ 2

(2)

MOB = var(Δx)
var(x) (3)

COM =
var(x) · var Δ2x

var2(Δx)
(4)

where μ, Δx, and Δ2x are the mean, first, and second derivatives of the signal x, respectively.

The three Hjorth parameters are difficult to efficiently compute in their original form, due 

to the intensive multiplication and square-root operations. Ref. [45] introduced a similar 

set of parameters, namely mean amplitude, mean frequency, and spectral purity index 

(SPI), in which the square and square-root operators are replaced by simple absolute value 

approximations. These new parameters are less intensive to compute while preserving a 

close relation to the measures of EEG amplitude and frequency. We adopt this approach 

to approximate the Hjorth features as in (5–(7), with a modification to the SPI parameter 

by taking its reciprocal, since it is better correlated with the original Hjorth complexity 

parameter:

ACT ≈ 1
N ∑

t = 1

N
xt (5)

MOB ≈
∑t = 1

N Δxt

∑t = 1
N xt

(6)

COM ≈
∑t = 1

N xt · ∑t = 1
N Δ2xt

∑t = 1
N Δxt

2 . (7)
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To calculate the approximated Hjorth features, the absolute values of the input and its 

first and second derivatives are accumulated selectively, as shown in Fig. 10(a). For MOB 

and COM extraction, the subsequent multipliers and ratio calculator further process the 

accumulated derivatives to compute features in fractional form. The ratio calculator employs 

a reciprocal-multiply approach with bit shifting instead of a complex divider, as depicted in 

Fig. 10(a).

Local motor potential (LMP) has been used as a low-complexity yet effective marker for 

motor intention decoding in BMIs [46]. The LMP feature quantifies the mean value of a 

signal as defined in (8):

LMP = 1
N ∑

t = 1

N
xt . (8)

The accumulation function can be performed by reusing the ACT extractor and bypassing 

the absolute value calculator, as shown in Fig. 10(a).

2) Spectral features: Spectral energy (SE) in multiple frequency bands of neural 

oscillations has been a commonly used biomarker in epilepsy [5], [16], [17], [19], [21], 

[22], [42], PD [8], [47], and BMIs [14], [48]. As a measure of signal power integrated over 

time, the SE can be defined in the discrete-time domain as follows:

SE = 1
N ∑

t = 1

N
xBAND, t2 (9)

where xBAND,t indicates the bandpass-filtered neural signal.

A common approximation method to avoid the square operation is to take the absolute 

output of the bandpass filter. The 16-channel EEG processor in [5] demultiplexed the output 

of the TDM FIR filter to 112 signal paths (16 channels×7 bands) to calculate 112 SE 

features in parallel. This approach requires an equal number of multi-bit adders and absolute 

value calculators with significant area overhead. To save chip area, the TDM spectral feature 

extractor in Fig. 10(a) directly receives the BPF output as the input without demultiplexing, 

and extracts up to 64 SE features using a single adder. The area efficiency is further 

improved by reusing the hardware already implemented for ACT and LMP extraction.

High-frequency (>200Hz) oscillations (HFOs) are prominent features in PD [49] and 

epilepsy (>80Hz) [50]. For instance, Ref. [51] reported the energy ratio between the slow 

(HFO1, 200–300Hz) and fast HFO (HFO2, 300–400Hz) as an indicator of rest tremor in PD:

HFOR =
∑t = 1

N xHFO1, t2

∑t = 1
N xHFO2, t2

. (10)
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The SE extractor is reused to calculate the slow and fast HFOs, while the ratio between the 

two is computed using the ratio calculator shared with the Hjorth feature extractor.

3) Phase features: Different brain regions communicate with each other through 

neuronal oscillations. Abnormal cross-regional synchronization of neural oscillations can 

indicate disease-related pathological states in neurological and psychiatric disorders. In 

epilepsy, spatial and temporal changes in cross-channel phase synchronization, quantified by 

phase locking value (PLV), play as a key indicator of seizure state [52]. Phase-amplitude 

coupling (PAC) is another mechanism for within- and cross-regional brain communication. 

PAC quantifies the degree to which the low-frequency neural oscillatory phase modulates the 

amplitude of high-frequency oscillations [53]. Excessive PAC has been observed in disorders 

such as epilepsy [54], PD [55], and depression [56].

Measuring PLV and PAC requires Hilbert transformation to obtain analytic signals followed 

by several complex computations such as extraction of instantaneous phase and amplitude, 

trigonometric functions, and magnitude computation, as shown in (11) and (12):

PLV = 1
N ∑

t = 1

N
sinΔθt

2
+ ∑

t = 1

N
cosΔθt

2
(11)

PAC = 1
N ∑

t = 1

N

Atsinθt

2

+ ∑
t = 1

N
Atcosθt

2
(12)

where Δθt in (11) is the cross-channel phase difference, and θt and At in (12) are the 

modulating phase and modulated amplitude envelope, respectively.

The SoCs in [17], [57] employed multiple COordinate Rotation DIgital Computer 

(CORDIC) processors to compute these non-linear functions, consuming an excessive 

amount of power (>200μW). Alternatively, Fig. 10(b) depicts the proposed TDM phase 

feature extractor [26]. With band-specific analytic signals (Re and Im) as inputs, the 

instantaneous phase is approximated using a linear arctangent approximation (LAA) 

algorithm [58] followed by look-up table (LUT)-based error correction [59]. The l∞-norm 

is used to approximate the amplitude envelope of high-frequency oscillations in PAC, as 

well as the magnitude computations in (11) and (12). The TDM phase feature extractor can 

compute up to 32 PLV/PAC features on demand in a compact area of 0.033mm2, performing 

a higher degree of multiplexing compared to the architecture in [59].

To evaluate the accuracy of the proposed feature approximation algorithms, we analyzed the 

Pearson correlation coefficient between the ideal and approximated features in MATLAB. 

The phase and 8-band SE features were extracted from an epilepsy iEEG dataset [27], while 

a PD local field potential (LFP) dataset [8] was used to compute the HFO ratio and Hjorth 

features. The boxplot of correlation coefficients in Fig. 11 shows that the approximated 
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features are highly correlated with their ideal counterparts, exhibiting median correlations 

above 0.9.

Thanks to feature approximations and hardware sharing, the proposed multi-symptom FEE 

occupies a small silicon area of 0.12mm2, even with the complex features integrated. 

Aggressive hardware sharing among different feature calculators is possible thanks to the 

on-demand TDM scheme, where only selected features are consecutively extracted. With 

a 128kHz clock, the FEE can generate any combination of up to 64 neural biomarkers in 

each programmable feature extraction window (0.25–2s). Any unused hardware units are 

selectively clock- and data-gated to reduce dynamic power dissipation.

C. Energy-Aware, Low-Complexity NeuralTree Model

Deployment of ML algorithms in closed-loop neural interfaces can provide a more accurate 

and personalized treatment option than conventional methods with feature thresholding [60]. 

Compared to approaches that utilize an external device (e.g., FPGA) for classification, ML-

embedded closed-loop devices offer several advantages including more rapid closed-loop 

intervention, higher energy efficiency, and enhanced privacy/security, all thanks to relaxed 

data telemetry requirements [60]. These, however, come at the cost of lower flexibility of the 

on-chip algorithms, as well as their limited area and power budget. Such constraints become 

more restrictive as the demand for higher channel counts continues to grow.

Decision tree (DT)-based ML models are becoming popular for their lightweight inference 

and low memory utilization. The 32-channel seizure detection classifier in [16] employed 

an ensemble of 8 eXtreme Gradient-Boosted (XGB) DTs. A 41.2nJ/class DBE energy 

efficiency in 1mm2 area was achieved, thanks to the on-demand feature extraction and 

sequential node processing. The 8-channel seizure detection SoC with 1024 AdaBoosted 

trees in [18] reported low-complexity spectral feature extraction with bit-serial processing, 

and achieved a 36nJ/class DBE energy efficiency. However, a drawback of conventional 

DT-based classifiers is that the number of trees and signal processing units can significantly 

increase as the classification task becomes more complex.

To enhance the hardware efficiency of the on-chip classifier, we propose a hierarchical 

NeuralTree model. Fig. 12(a) illustrates a graphical representation of the NeuralTree 

classifier trained with a probabilistic routing scheme [42]. Unlike conventional axis-aligned 

binary DTs, the NeuralTree is a single oblique tree with probabilistic splits. With internal 

nodes represented by two-layer neural networks, the probability of splits in each internal 

node is computed using the sigmoid function. The feature vector xi is routed to each leaf 

node l with a probability p(l|xi; θ), where θ indicates the internal node parameters. The leaf 

nodes are parameterized by the class probability ϕ. The probability of xi belonging to class 

yi can be expressed as:

p yi ∣ xi; ω = ∑
l = 1

L
p l ∣ xi; θ ϕl, yi (13)
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where ω = θ ∪ ϕ indicates the trainable weights in the NeuralTree, and L is the number 

of leaf nodes. In the training process, we simply minimize the cross-entropy loss on the 

training data:

min
ω

∑
i = 1

N
− log p yi ∣ xi; ω . (14)

The probabilistic NeuralTree is compatible with gradient-based optimization, which allows 

the use of hardware-efficient model compression techniques such as weight pruning and 

fixed-point quantization. To enable neural activity inference at an optimal energy-accuracy 

trade-off, the NeuralTree employs energy-aware regularization [61]. Here, the power 

consumed for feature computation is added to the objective function as a regularization 

term in the training objective. Specifically, we define the energy-aware regularization term 

as:

Ψenergy = ∑
i = 1

I
pi ∑

j = 1

D
βj θi, j (15)

where I and D represent the number of internal nodes and feature types, respectively, and 

β is the normalized power cost for each feature type estimated using Synopsys PrimeTime. 

We use pi to represent the probability of visiting the internal node i and θi,j for the weight 

associated with feature j at node i. Combining (14) and (15), we derive an energy-aware 

objective function, which seeks to minimize the classification error as well as the energy 

consumption during inference:

min
ω

∑
i = 1

N
− log p yi ∣ xi; ω + C · Ψenergy xi; ω . (16)

Here, we introduce a hyperparameter C to control the energy-accuracy trade-off and penalize 

power-demanding features. The proposed NeuralTree is trained using TensorFlow [62] with 

Adam optimizer (learning rate: 0.001) [63]. Validated on the iEEG epilepsy dataset [27], 

the energy-aware regularization saves 64% power in filtering and feature extraction during 

inference, with only a marginal accuracy loss (<2%).

The regularization is applied on all types of features (Table I) extracted from 256 channels. 

Following this, network pruning is performed to compress the tree structure by reducing the 

number of extracted features (i.e., maximum 64 per node). The NeuralTree with a depth of 

4 contains up to 15 internal nodes, each assigned a unique set of up to 64 features. Once an 

optimal feature set is determined for each node via regularization and pruning, the feature 

types and associated channel indices are stored in the on-chip memory for inference. Thanks 

to network pruning and fixed-point weight quantization (12 bits), the trained parameters 

of the compressed NeuralTree require only 2.93kB of memory. Through energy-aware 
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regularization and network pruning, features with an optimal energy-accuracy trade-off are 

extracted in a patient- and disease-specific way.

Considering that most samples are routed with high certainty during training, the inference 

can be performed through top-down conditional computations, as depicted in Fig. 12(b). 

By reusing a single multiply-and-accumulate (MAC) unit and a comparator, the standalone 

NeuralTree occupies a significantly smaller area compared to large tree ensembles. In 

addition to conventional binary classification tasks (e.g., seizure or tremor detection), 

the NeuralTree further supports multi-class classification tasks such as finger movement 

detection. This additional functionality is achieved with only a marginal memory overhead 

to store multi-bit class labels in the decision LUT. As a proof of concept, a 6-class finger 

movement classification task was simulated using a human ECoG dataset [64], where the 

NeuralTree decoded finger movements with 73.3% accuracy.

During inference, the NeuralTree performs sequential node processing along the most 

probable path, thus reducing the number of computed features and weighted summations. 

Only one node is visited in each feature computation window, during which a maximum 

of 64 features are extracted from any subset of channels, as shown in Fig. 12(b). The 

NeuralTree is clocked at 128kHz but only activated during the last 64 clock cycles in each 

feature extraction window to perform 64 feature-weight MAC operations. The lightweight 

channel-selective inference coupled with energy-aware learning considerably enhances the 

model’s energy efficiency and scalability.

V. HIGH-VOLTAGE COMPLIANT NEUROSTIMULATOR

A single-chip integration of neurostimulator with other building blocks is desired to 

reduce the size of the implantable device and interconnection complexity. However, 

depending on the electrode impedance and stimulation amplitude, the voltage compliance 

required at the electrode-tissue interface can exceed the gate-oxide breakdown limits 

in standard CMoS processes [65]. To facilitate a seamless integration of the closed-

loop neuromodulation system in a standard low-power CMoS process, a 16-channel 

neurostimulator is implemented with a stacked HV compliant architecture.

Fig. 13(a) presents the 12-stage 4-phase charge pump (CP) that generates an 8V supply 

for the current drivers. Each stage in the 4-phase CP consists of four elements in parallel, 

thus reducing output ripples by a factor of four without the need for large output capacitors 

[66]. To minimize the reversion loss in the CP, flying capacitors (CP) are controlled by a 

non-overlapping clock generator. The ring VCO generates a high-frequency clock at 1GHz, 

which allows the use of small flying capacitors (0.8pF) for improved area efficiency [65]. To 

further save chip area, a single CP is shared among four individually addressable stimulation 

channels with constraints on the maximum current when more than one channel is active.

Fig. 13(b) shows the architecture of the stacked H-bridge output driver. A single current 

sink (IDAC) is used in both anodic and cathodic phases to reduce charge mismatch. To 

ensure precise charge balancing (CB), an offset-regulation active CB technique combined 

with passive discharging is employed [67]. The residual voltage at the electrode is 
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monitored following biphasic stimulation. If the residual voltage exceeds the safety level 

(±VSAFE = ±50mV), the active CB is enabled to provide an additional current such 

that the two stimulation phases are balanced. Following active CB, any residual charges 

on the two electrodes are discharged to the ground. To provide sufficient flexibility for 

various applications, the stimulation parameters such as current amplitude, pulse width, and 

frequency are programmable.

VI. MEASUREMENT RESULTS

The SoC was fabricated in a TSMC 65nm 1P9M low-power CMOS process with a chip 

dimension of 4mm×2mm. The chip micrograph and SoC power breakdown are presented 

in Figs. 14(a) and (b), respectively. The 256-channel SoC only occupies an active area of 

3.48mm2 (0.014mm2/channel) and consumes 453μW at 1.2V supply voltage in inference 

mode.

A. AFE Characterization

The 256-channel TDM AFE including the digital DSL occupies an area of 1.1mm2 

(0.004mm2/channel) and consumes 387μW (1.51μW/channel) in training mode. During 

channel-selective inference, the LNAs and DSLs in the three auxiliary AFE modules are 

disabled, reducing the AFE power to 182μW. Fig. 15(a) shows the measured AFE gain 

that is programmable between 40.7 and 57.9dB. The location of the high-pass pole can 

be adjusted by bit-shifting the output of the digital integrator, as demonstrated in Fig. 

15(b). With a 2.5mVpp, 40.039Hz sine input, the entire AFE including the ADC achieved 

a signal-to-noise and distortion ratio (SNDR) of 49dB and a spurious-free dynamic range 

(SFDR) of 61.6dB, measured with 2048-point FFT. Fig. 15(d) presents the input-referred 

noise (IRN) performance measured with the high-pass corner set to 1Hz. The noise was 

measured at the ADC output and thus factored in noise folding incurred by the broadband 

Gm-C integrator as well as ADC noise. Without chopping, the measured IRN was 60.4μVrms 

in the 1–500Hz band. It is dominated by the kT/C noise resulting from the reset operation 

for crosstalk reduction. When chopping was enabled, the IRN reduced to 3.2μVrms with the 

kT/C and 1/f noise up-modulated by the chopper and filtered out by the Gm-C integrator, 

as discussed in Section III–C. With the fine DSL disabled, the IRN was measured at 

1.5μVrms. This indicates that when the fine DSL is active, ~2× noise folding occurs due 

to the insufficient LNA bandwidth with respect to the Δω frequency [33]. The noise 

performance could be improved by increasing the LNA bandwidth and lowering the OSR 

with a higher-order ΔΩ modulator. Fig. 15(e) demonstrates the fast-settling behavior of 

the proposed coarse-fine DSL in the presence of abrupt EDO changes over 1s windows, 

which enables channel-selective inference. With the DSL disabled, the AFE was completely 

saturated by the offsets. When only the fine DSL was activated, the AFE failed to capture a 

significant portion of signals during its settling, as other existing DSLs would behave. With 

a 128kHz chopping frequency, the input impedance was measured to be 24.5MΩ at 100Hz 

(10.8MΩ without positive feedback in simulations). The limited impedance boosting (~2.3×) 

is due to process variations and parasitic effects [68]. A tunable capacitor bank could be 

incorporated to account for such non-idealities and further boost the input impedance, with 

a negligible impact on the per-channel area of our TDM AFE. The common-mode rejection 
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ratio (CMRR) and power-supply rejection ratio (PSRR) at 50Hz were 70dB and 71dB, 

respectively. Crosstalk between channels was less than −79.8dB inter-module and −72.8dB 

intra-module.

B. Stimulator Characterization

The stimulator occupies a small area of 0.05mm2/channel, which is 4× and 7× more compact 

than the stacked architectures in [15] and [65], respectively. Figs. 16(a)–(c) present biphasic 

stimulation current outputs with different parameters, measured using a 6kΩ+330nF load. 

Each channel can generate moderate currents ranging from 65μA to 600μA. With a 640kHz 

input clock, the pulse width and frequency are programmable within 9.375μs–203.125μs and 

9.6Hz–53.3kHz, respectively. The range of these parameters can be adjusted with a variable 

input clock depending on stimulation needs. The stimulator output measured in vitro using 

custom electrodes is presented in Fig. 16(d). Under the maximum load current condition, the 

charge mismatch between the anodic and cathodic phases was measured to be <0.1%.

C. In-vivo Measurements

The neural recording and biomarker extraction capabilities of the SoC were validated in 
vivo in the experimental setup shown in Fig. 17(a). The animal experiments were performed 

with the approval of all experimental and ethical protocols and regulations granted by 

the Veterinary Office of the Canton of Geneva, Switzerland, under License No. GE/33A 

(33223). All procedures were in accordance with the Regulations of the Animal Welfare 

Act (SR 455) and Animal Welfare Ordinance (SR 455.1). We implanted two 15-channel 

200μm-diameter soft μECoG arrays, shown in Fig. 17(b), into the somatosensory cortex 

of a Lewis rat. The μECoG arrays were fabricated using an e-dura technology with gold 

thin films [69]. Pentylenetetrazol (20mg) was injected intraperitoneally to the anesthetized 

rat to induce seizures [70]. Figs. 17(c) and (d) present ECoG recordings and neural 

biomarkers in a normal and seizure state, respectively. Prominent increases in temporal 

and spectral biomarkers at the seizure onset and strong cross-channel phase synchronization 

were observed during a seizure event in a short acute recording session. In future work, the 

real-time seizure detection capability of the SoC will be further validated in vivo with a 

collection of sufficient seizure activity and objective seizure annotation.

D. Epileptic Seizure Detection

The classification performance of the SoC was validated on the CHB-MIT EEG [71] and 

iEEG.org [27] datasets of epileptic patients. We analyzed 983-hour EEG recordings of 24 

patients and 596-hour iEEG recordings of 6 patients, which contain 176 and 49 annotated 

seizures, respectively. Blockwise data partitioning was used to avoid data leakage from 

training to inference [16]. We performed 5-fold cross-validation for most patients and 

adopted a leave-one-out approach for patients with fewer than 5 seizures. The number of 

correctly detected seizures was counted to assess the sensitivity, while the specificity was 

calculated based on the window-based true negative rate averaged over multiple runs.

In training mode, each patient’s multi-channel neural data (18–28 EEG and 47–108 iEEG 

channels) were fed to the AFE. The digitized AFE outputs were processed offline to extract 

features using a bit-accurate FEE model in MATLAB for training the classifier. The trained 
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NeuralTree parameters were then stored in the on-chip memory for inference, and the 

NeuralTree performance on the test data was evaluated. The SoC achieved 95.6%/94% 

sensitivity and 96.8%/96.9% specificity on the EEG and iEEG datasets, respectively. The 

SoC’s seizure detection performance on an epileptic patient is demonstrated in Fig. 17(e).

E. Parkinsonian Tremor Detection

The SoC’s performance was further validated on a PD patient with rest-state tremor 

recruited by the University of Oxford [8]. A 4-channel DBS lead was implanted into the 

subthalamic nucleus to collect LFps, while the acceleration of the contralateral limb was 

used to label the tremor. Window-based true positive and negative rates were used to 

assess the sensitivity and specificity, respectively, using 5-fold cross-validation. The SoC 

achieved 82.6% sensitivity and 78.4% specificity. Fig. 17(f) presents an example of the 

SoC’s tremor detection performance, where tremor states with inconspicuous neural activity 

were successfully detected by the NeuralTree. To the best of our knowledge, this is the first 

demonstration of PD tremor detection with an on-chip classifier.

F. Comparison with the State-of-the-Art

Table II compares the proposed SoC with the state-of-the-art seizure detection SoCs with 

on-chip ML. The 256-channel SoC achieves an 8× improvement in channel count, 9.3× 

in per-channel area, and 4.3× in system energy efficiency over the state-of-the-art. The 

compressed NeuralTree takes up 2.93kB out of the 3.17kB on-chip memory, enabling more 

efficient memory utilization than SVM classifiers [5], [17], [19], [20], [22]. For instance, 

the recent SVM classifier in [22] utilized 70kB of memory to store 256 support vectors 

for 16 channels. The proposed SoC achieves better multi-channel scalability than previous 

DT-based SoCs [16], [18] thanks to the end-to-end TDM implementation. Moreover, 

the SoC integrates the broadest range of neural biomarkers reported so far to provide 

greater flexibility for multiple neural classification tasks. In this work, the classification 

performance on human datasets was validated using the entire system including the AFE. 

Furthermore, the NeuralTree was trained on all neural channels without any pre-selection. 

Such aspects should be considered when comparing the classification performance of 

different SoCs.

VII. CONCLUSION

To pave the way towards next-generation closed-loop neural interfaces, this article presented 

a highly scalable, versatile neural activity classification and closed-loop neuromodulation 

SoC integrating an area-efficient dynamically addressable 256-channel mixed-signal front-

end, multi-symptom biomarker extraction, an energy-aware NeuralTree classifier, and a 

16-channel HV compliant neurostimulator. A channel-selective inference scheme was 

introduced to overcome the limited scalability and low hardware efficiency of existing 

SoCs. Through aggressive system-level time-division multiplexing and energy-efficient 

circuit-algorithm co-design, the proposed 256-channel SoC achieved the highest level of 

integration reported so far, as well as the highest energy and area efficiency. The versatility 

of the SoC was demonstrated using human epilepsy and Parkinson’s datasets with multiple 
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signal modalities (EEG, iEEG, and LFP). This high-channel-count SoC with the multi-class 

NeuralTree model can be further used for motor intention decoding in prosthetic BMIs.
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Fig. 1. 
Versatile closed-loop neural interface platform with high-density sensing and stimulation 

capabilities.

Shin et al. Page 25

IEEE J Solid-State Circuits. Author manuscript; available in PMC 2023 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Proposed 256-channel scalable, versatile closed-loop SoC architecture.
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Fig. 3. 
The relative importance of 128 iEEG channels recorded from an epileptic patient and 

evaluated with 5-fold cross-validation.
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Fig. 4. 
The AFE configurations for (a) classifier training with high-density sensing, and (b) 

channel-selective inference, where any subset of 64 input channels can be selectively 

processed on a window-by-window basis.
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Fig. 5. 
Illustration of EDO fluctuations at the input of the proposed TDM AFE in channel-selective 

inference mode. Among 256 input channels, up to 64 channels with unique EDOs are 

multiplexed to the AFE in each feature extraction window. Therefore, the AFE must cancel 

the EDOs that change abruptly between successive channels and feature extraction windows.
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Fig. 6. 
Modular architecture of the proposed 256-channel CS-TDM AFE with a two-step fast-

settling mixed-signal DSL. In training mode, the 4×16 switch matrix in each AFE module 

sequentially selects 64 input channels (row-major order) for signal conditioning. In each 

feature extraction window during inference, the four MUX-CHOPs select up to 64 channels 

out of 256 and route them to the main AFE module via the shared input path drawn in red.
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Fig. 7. 
Timing diagram of the two-step (coarse/fine) DSL operation in channel-selective inference 

mode. (a) The coarse EDO cancellation using 9-bit binary search is performed in the first 

sampling period in each feature extraction window. (b) The ΔΣ fine loop for residual EDO 

cancellation operates for the rest of the feature extraction window.
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Fig. 8. 
Circuit implementations of the forward-path amplifiers: (a) core amplifier in the LNA stage 

and its common-mode feedback (CMFB) circuit, and (b) Gm-C integrator and the timing 

diagram of operation.
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Fig. 9. 
Configurable TDM FIR filter and multi-symptom TDM FEE.
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Fig. 10. 
Hardware implementations of the TDM FEE: (a) temporal and spectral feature extractor, and 

(b) phase feature extractor.
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Fig. 11. 
Boxplot of the Pearson correlation coefficients between the ideal and approximated features.
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Fig. 12. 
NeuralTree classifier: (a) probabilistic NeuralTree trained with energy-aware regularization 

and network pruning, and (b) the NeuralTree hardware implementation and system operation 

under the proposed singlepath channel-selective inference scheme. The NeuralTree is trained 

on neural activity from all 256 channels. Following the regularization and network pruning, 

each internal node contains an optimal set of up to 64 features, which can be associated with 

any input channels.
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Fig. 13. 
Architecture of the HV compliant neurostimulator: (a) 12-stage 4-phase charge pump 

with high-frequency clocking, and (b) HV compliant H-bridge output driver with charge 

balancing.
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Fig. 14. 
(a) Chip micrograph, and (b) SoC power breakdown.
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Fig. 15. 
Measured AFE performance: (a) programmable gain, (b) programmable high-pass pole, 

(c) output power spectral density with a single-tone input, (d) input-referred noise spectral 

density, and (e) two-step fast-settling DSL operation in the presence of abrupt offset changes 

over three successive 1s windows.
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Fig. 16. 
Biphasic outputs of the neurostimulator: (a) programmable current amplitude, (b) pulse 

width, (c) frequency, and (d) in-vitro measured output.
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Fig. 17. 
The SoC validation on a rat model of epilepsy and human datasets: (a) the experimental 

setup for in-vivo testing, (b) a 15-channel soft μECoG array with a flexible cable, (c) ECoG 

recordings and neural biomarker extraction in a normal state, (d) ECoG recordings and 

neural biomarker extraction in a seizure state, (e) epileptic seizure detection from iEEG, and 

(f) Parkinsonian tremor detection from LFPs.
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TABLE I

TASK-SPECIFIC NEURAL BIOMARKERS INTEGRATED ON THE SOC

Epileptic Seizure Description

Line-Length Average of absolute temporal derivative

Hjorth Activity Variance of signal

Delta Energy Spectral energy in 1–4 Hz

Theta Energy Spectral energy in 4–8 Hz

Alpha Energy Spectral energy in 8–13 Hz

Beta Energy Spectral energy in 13–30 Hz

Low-Gamma Energy Spectral energy in 30–50 Hz

Gamma Energy Spectral energy in 50–80 Hz

High-Gamma Energy Spectral energy in 80–150 Hz

Ripple Energy Spectral energy in 150–250 Hz

Phase-Amplitude Coupling Coupling of the phase in 4–8 Hz to the amplitude envelope in 80–150 Hz

Phase Locking Value Synchronization between two-channel phases in 13–30 Hz

Parkinsonian Tremor Description

Hjorth Activity Variance of signal

Hjorth Mobility Mean frequency of signal

Hjorth Complexity Change in signal frequency

Tremor Energy Spectral energy in 1–4 Hz

Beta Energy Spectral energy in 13–30 Hz

Low-Gamma Energy Spectral energy in 30–45 Hz

Gamma Energy Spectral energy in 60–90 Hz

High-Gamma Energy Spectral energy in 100–200 Hz

Slow High-Frequency Oscillation Spectral energy in 200–300 Hz

Fast High-Frequency Oscillation Spectral energy in 300–400 Hz

High-Frequency Oscillation Ratio Ratio of the energy in 200–300 Hz to the energy in 300–400 Hz

Phase-Amplitude Coupling Coupling of the phase in 13–30 Hz to the amplitude envelope in 150–400 Hz

Finger Movement Description

Local Motor Potential Mean value of signal

Hjorth Activity Variance of signal

Hjorth Mobility Mean frequency of signal

Hjorth Complexity Change in signal frequency

Alpha Energy Spectral energy in 8–13 Hz

Beta Energy Spectral energy in 13–30 Hz

Low-Gamma Energy Spectral energy in 30–60 Hz

Gamma Energy Spectral energy in 60–100 Hz

High-Gamma Energy Spectral energy in 100–200 Hz
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