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Abstract

Accurate and precise identification of adeno-associated virus (AAV) vectors play an important role 

in dose-dependent gene therapy. Although solid-state nanopore techniques can potentially be used 

to characterize AAV vectors by capturing ionic current, the existing data analysis techniques fall 

short of identifying them from their ionic current profiles. Recently introduced machine learning 

methods such as deep convolutional neural network (CNN), developed for image identification 

tasks, can be applied for such classification. However, with smaller data set for the problem in 

hand, it is not possible to train a deep neural network from scratch for accurate classification 

of AAV vectors. To circumvent this, we applied a pre-trained deep CNN (GoogleNet) model 

to capture the basic features from ionic current signals and subsequently used fine-tuning-based 

transfer learning to classify AAV vectors. The proposed method is very generic as it requires 

minimal preprocessing and does not require any handcrafted features. Our results indicate that 

fine-tuning-based transfer learning can achieve an average classification accuracy between 90 and 

99% in three realizations with a very small standard deviation. Results also indicate that the 

classification accuracy depends on the applied electric field (across nanopore) and the time frame 

used for data segmentation. We also found that the fine-tuning of the deep network outperforms 

feature extraction-based classification for the resistive pulse dataset. To expand the usefulness 

of the fine-tuning-based transfer learning, we have tested two other pre-trained deep networks 

(ResNet50 and InceptionV3) for the classification of AAVs. Overall, the fine-tuning-based transfer 

learning from pre-trained deep networks is very effective for classification, though deep networks 

such as ResNet50 and InceptionV3 take significantly longer training time than GoogleNet.
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1. Introduction

Adeno associated virus (AAV) is a non-enveloped virus that can be engineered to deliver 

deoxyribonucleic acid (DNA) to target cells without any viral effects on the target cell [1]. 

As a result, AAV modulated gene therapy has been used to treat several diseases including 

hemophilia, cystic fibrosis [2], and cancer [3]. The ability to generate recombinant AAV 

particles containing DNA sequences of interest for various therapeutic applications has thus 

far proven to be one of the safest strategies for gene therapies [4]. However, after production, 

one considerable challenge is the difficulty of characterizing the AAV vectors based on 

their transgene packaging. Generally, enzyme-linked immunosorbent assay (ELISA) and 

polymerase chain reaction (PCR) are used for the characterization of capsid and genomic 

titers, respectively [5]. However, a blind study [6] revealed that ELISA or PCR results offer 

high variability, which is not acceptable for gene therapy since overdosing or under-dosing 

could trigger unexpected immune responses.

Recently, solid state nanopore based techniques have been employed to discriminate 

various AAVs based on their DNA loading [7]. In this type of sensor, nanopores are 

usually fabricated on thin (~50 nm) synthetic membranes that separate two chambers 

containing electrolytes. When an electric field is applied across the membrane via trans 
and cis electrodes, particles start to translocate through the pore from one chamber to 

another through the electrolyte solution. The electric field induced ionic current carries 

the information of analytes/particles that have been transported through the nanopore. For 

instance, when a virus particle passes through the pore, there is a leap or fall in base 

ionic current depending on the direction of the applied electric field and the properties of 

the particles and electrolyte. The resulting ionic current signal is known as the resistive 

pulse signal. In our previous work [8], we developed a silicon nitride (SixNy) based solid-

state nanopore device to characterize three AAV vector types – empty (AAVEmpty), AAV 

with single-stranded DNA (AAVssDNA), and AAV with double-stranded DNA (AAVdsDNA). 

Furthermore, we used feature extraction based transfer learning where a deep network 

(ResNet50) was used to extract the feature map from the resistive-pulse signals; then, a 

support vector machine [9] was employed for the classification of AAVs and flagging 

the presence of empty capsids [8]. However, the feature extraction based transfer learning 

method was not very effective when it was applied to raw resistive-pulse signals.

Deep neural networks have recently been used in image processing/classifications, 

regression, computer vision, data clustering, scene labeling, action recognition, etc. because 

of their high accuracy. For example, Krizhevsky et al. developed a deep convolutional 

neural network (CNN) architecture, known as AlexNet [10], which demonstrated significant 

improvement in image classification tasks. Following the success of AlexNet, several 

other networks such as VGGNet [11], ZFNet [12], GoogleNet [13], and ResNet [14] 

were developed to improve image classification performance. Recently, robust temporal 

feature network (RTFN) [15–17] emerged as a very popular model for feature extraction 

in time series classification. The most striking ability of CNNs is the automatic discovery 

of essential features from the images (raw pixel intensity data) [18]. In contrast to the 

identification of features by hand, this automatic feature learning method has been shown 
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to be easier, faster, and superior in efficacy [19–21]. Since, all of these high-performance 

networks are trained on the ImageNet dataset, direct use of these deep networks is only 

possible if the test/target data are also belong to one or multiple classes of the ImageNet 

dataset [22]. If a dataset (like AAV dataset) does not belong to ImageNet dataset, rebuilding 

a network from scratch could be a solution. However, rebuilding a new network requires a 

lot of labeled data. In fact, it is very expensive and sometimes impossible to collect enough 

training data by performing experiments to build a high-performance deep neural network 

on the domain of interest. Moreover, if sufficient labeled data are available, rebuilding a 

deep neural network from scratch and training the newly built model with the labeled data 

requires an enormous amount of computational time, effort, and power.

To address this problem, in recent years, transfer learning has emerged as a new learning 

framework [22–25]. Transfer learning is the idea of utilizing knowledge acquired from one 

task to solve correlated ones [26–28]. Although the transferability of features depends on 

the similarity between the base task and the target task [29], the initialization of a network 

with distant task features still performs better than initialization with random features [30]. 

Transfer learning is particularly useful because the initial layers of a deep network usually 

capture low-level features, like edges and blobs, which are commonly shared between 

different types of images.

Several transfer learning algorithms including joint training, feature extraction, and fine-

tuning [31] have been developed so far. Although joint training works well on both old and 

new tasks, it is increasingly cumbersome in training as more tasks have to be learned and 

requires a great deal of storage [31]. A faster transfer learning method is based on feature 

extraction, in which the outputs (activations) of one or more layers are used as features. 

These features are then used to train another machine learning model, such as a support 

vector machine (SVM) [8, 32]. However, feature extraction is only useful if the dataset is 

comparatively small, and the new data is very similar to the original data. Moreover, loss of 

data interpretability can happen when feature extraction based transfer learning is used [33].

Transfer learning with fine-tuning [34] can eliminate several problems associated with 

feature extraction based transfer learning [31]. Fine-tuning is a process in which the task 

specific layers of an existing highly trained deep neural network are altered according to the 

requirements of the current task, and available data are used to train these layers. Since the 

pre-trained network has already learned a rich set of image features, fine-tuning a network 

is often faster and easier than constructing and training a new network. Fine-tuning reduces 

the training error and improves the classification performance of deep neural networks 

significantly in comparison to feature extraction-based networks [35, 36]. As a result, the 

transfer learning using fine-tuning has been widely used for various promising tasks such 

as speech recognition [37], plant recognition [38], biomedical image analysis [39], cellular 

morphological change analysis [40], text classification [41], brain tumor classification [42, 

43] etc.

In this work, we have proposed a pre-trained deep CNN model to capture the essential 

features of ionic current signals and applied a fine-tuning-based transfer learning to 

discriminate different variants of AAV vectors based on their contents. In addition, we 
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have compared the performances of fine-tuning-based transfer learning using three different 

pretrained networks: GoogleNet, ResNet50, and InceptionV3. Moreover, a support vector 

machine (SVM) has been used as feature extraction based approach to classify the different 

AAV vectors, where the input features for SVM were extracted using pretrained GoogleNet 

architecture. The performance of this feature extraction-based approach is compared with 

the corresponding performance of the fine-tuning-based transfer learning.

2. Method

2.1 GoogleNet architecture and its modification for transfer learning

For classification of AAVs using fine-tuning-based transfer learning, we first selected 

pretrained GoogleNet, a 22 layer deep (27 layers including pooling layers) architecture, 

as a deep network [13]. Figure 1a shows the zoomed-out structure of the full GoogleNet 

architecture, depicting the size of the feature maps in each layer. In addition to convolution 

(CNV) and maximum pooling (MP) operations, it introduces a module called “Inception”, 

which relies on the idea of running multiple operations (pooling, convolution) with several 

kernel sizes (1×1, 3×3, 5×5…) in parallel, to overcome the trade-off between the choices 

of pooling or convolutional operations. In total, there are 9 inception modules, and each 

inception layer consists of six convolution layers and one pooling layer in four parallel 

routes (Fig. 1b). These parallel routes are connected to a depth concatenation (DC) layer, 

which takes inputs of the same height and width and concatenates them along the depth 

dimension. Each inception module facilitates feature detection at different scales with 

different size filters. Moreover, it can minimize the computational cost of training a deep 

network significantly through dimensional reduction. The very last inception module (IN5b) 

is connected to a global average pooling (AP) layer. After that, GoogleNet utilizes a 

dropout (DO) layer which randomly selects 40% of the neurons and sets their weights 

to zero. Dropout offers the flexibility of a single model to imitate a large number of 

different network architectures by randomly dropping out nodes during training. Thus, 

dropout provides a computationally cheap and remarkably effective regularization method to 

reduce overfitting in deep neural networks [44]. Finally, classification is done through fully 

connected (FC) and softmax (SM) layers of 1000 nodes.

The GoogleNet has already been trained on ImageNet’s data set (http://www.image-net.org/) 

that contains 1000 object categories including keyboard, mouse, pencil, and many animals. 

Thus, to use this network for the current problem of AAV classification, we need to modify 

the network according to our dataset. Therefore, in this work, we have replaced the last three 

layers: fully connected layer, softmax layer, and classification layer (output) of GoogleNet 

with three similar layers containing the number of outputs equal to the number of classes 

available in our current dataset (Fig. 1c). Since we are not using any labeled data of the 

source domain (ImageNet dataset) and we have labeled data in the target domain (AAV 

dataset), the method presented in this paper can be identified as inductive self-taught transfer 

learning [22]. Moreover, during the training (discussed later), we are freezing the set of 

shared parameters (all weights and biases from the input layer to dropout layer), while 

during fine-tuning only the task-specific parameters (weights and biases of fully connected 

layers) will be trained [31].
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Since it is an application paper, we skip the details of the mathematical analysis of different 

layers. However, for the completeness of the paper, we have added cost function and 

parameter update methods. If ck denotes the known/true class label for an image, k, the cost 

function (CF) for a mini-batch m containing Nm examples can be formulated as [42, 45]

CFm θ = − 1
Nm ∑

k = 1

Nm

logp ck xk, θ = Nmlogγ + Nm

2 log 2π + ∑
k = 1

Nm
ck − ck 2

2γ2 (1)

where ck is the predicted class label, xk is the input feature map for an image, k, respectively 

and γ2 is the variance which is assumed to be constant. The parameter vector (θ) includes 

weight matrix, W and bias vector, b. The cost function CFm is minimized by using stochastic 

gradient descent with momentum [45] over the mini-batches of size Nm and the training cost 

is approximated by the mini-batch cost. If θt is the parameters at iteration, t, one can update 

the weights and biases in the next iteration as follows [42]

Δθt + 1 = μθt − σtη∂CFm

∂θ (2)

θt + 1 = θt + Δθt + 1 (3)

where μ is the momentum that describes the influence of previously updated weights in the 

current iteration, η is the learning rate, and σt is the scheduling rate at iteration t.

2.2 Dataset

To test our modified deep network, we used a publicly available resistive pulse dataset 

from GitHub (https://github.com/mstfwsulab/AAV-classification), where electrical signals 

obtained from solid nanopore experiments are stored for three different types of AAVs: 

without any DNA (AAVEmpty), with single-stranded (AAVssDNA), and with double-

stranded (AAVdsDNA) DNA [8]. Since pre-trained deep neural networks used for this 

work requires color (RGB) images as input, the time series resistive pulse data (current 

values across the nanopore with time) are plotted (2D plot) in MATLAB and saved as ‘jpg’ 

files. We have treated those 2D plots as RGB images and subsequently used them in the 

networks. However, for other types of datasets such as grayscale or CMYK images, the first 

convolutional layer can be altered by another one with appropriate dimensions that reflects 

the type of images in the dataset. To test the accuracy of the modified deep networks, images 

were created considering different time segments (1 sec, 2 sec, or 4 sec). Resistive pulse 

data from five different electric fields corresponding to the potential difference across the 

nanopore: −75 mV, −100 mV, −125 mV, −150 mV and −175 mV were used to demonstrate 

the usefulness of the approach. A representative segment (10 sec) of resistive pulse data is 

shown in Fig. 2 for different potential differences and AAV types.

2.3 Image preparation for deep neural network

In this study, we have created two sets of data (images) to train and validate the model. The 

first set of images was plotted (aka raw data) without any constraints. For the second set of 
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images (aka transformed data), the lower bound and upper bound of current values (vertical 

axis) were set as the global minimum and maximum value of current, respectively. For a 

particular potential difference across the nanopore, this bound was same for all AAV types. 

In other words, the transformed data were plotted by considering a fixed current change (in 

the vertical axis) for all three AAV classes. An example of raw and transformed images for 

all three AAV types is shown in Fig. 3 for an applied potential difference of −175 mV across 

the nanopore.

3. Results and Discussion

In this section, we examine the potential of the fine-tuning method applied to the resistive 

pulse images obtained from the nanopore translocation experiments. The fine-tuning-based 

transfer learning was conducted using MATLAB 2018b (academic use) and performed on 

an HP desktop computer with single GPU (Processor: Inter(R) Core(TM) i7–3770 CPU @ 

3.4GHz, Installed RAM: 16.0 GB and GPU: Nvidia Geforce GT 640).

As stated earlier, we used 1, 2, and 4 sec time frames for segmenting the single resistive 

pulse experiment data into several images. Furthermore, we have considered five different 

resistive-pulse data sets corresponding to the applied potential differences of −75, −100, 

−125, −150, and −175 mV across the nanopore. Since all datasets are drawn following 

two styles: raw and transformed, there are 30 distinguishable datasets within three different 

classes. Table 1 shows the details of all datasets used in this study along with the number 

of available images. Fig. 4 illustrates the overall information processing used for fine-tuning-

based transfer learning using a pre-trained deep neural network for AAV classifications.

3.1. Training

The training of the network starts from the first convolution layer and proceeds in the 

feedforward manner until the final classification layer by back-propagating the error from 

the classification layer towards the first convolutional layer. There are 4 million trainable 

parameters (weights) in the GoogleNet architecture, and thus a large dataset was necessary 

for the training and optimization of such a deep network. However, for a small dataset, like 

the problem in hand, it is very difficult to determine the appropriate global minima for the 

loss function, and the network will suffer from overfitting or underfitting. Therefore, we 

have used the data augmentation method to increase the number of samples to handle the 

overfitting or underfitting issue. In addition, we have initialized weights based on pre-trained 

GoogleNet, which was trained using the ImageNet dataset.

After the weight transfer, we started the training process by sending the labeled data. Instead 

of training the whole dataset at one time, a minibatch (size 16) of images was applied 

to the network. The training was carried out by optimizing the cost function based on 

stochastic gradient descent (SGD) with momentum [45]. A small initial learning rate of 

η = 0.0001 was applied since a large change towards pretrained weights is not desirable 

during fine-tuning. To accelerate learning, we used a momentum of μ = 0.9 during the 

training process which describes the influence of previously updated weights in the current 

iteration. A scheduled rate of σt = 1 was used in training to facilitate a constant learning rate 

throughout the training process.
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For supervised learning problems, a labeled dataset is usually split into two subsets: training 

and validation. The training set is used for preparing the model and the validation dataset 

is used for testing the generality. In our work, the ratio of the training to validation set 

was empirically set to 7:3 because this split option has shown the highest accuracy when 

compared to the other split options [46]. Xu and Goodacre [47] found that a good balance 

(50–70% for training) between the sizes of the training set and validation set is necessary 

to have a reliable estimation of model performance because having too many or too few 

samples in the training set had a negative effect on the estimated model performance. 

Since the validation prevents the network from overfitting and helps to monitor proper 

convergence, we validated the training process after every 3 training iterations. As stated 

earlier, a stochastic gradient decent method was used to update the parameters of the last 

three layers after each feed-forward training process. Though a validation run was executed 

after three training iterations, no parameters were updated during the validation process.

Fig. 5 shows the accuracy (as well as the loss) of the training and validation process 

on transformed images for the −175 mV case. As expected, both training and validation 

accuracies were quite low at the beginning of the training process. The training or validation 

accuracies as well as loss converged within 10 epochs (2380, 1180, and 580 iterations for 1 

sec, 2 sec, and 4 sec time frames, respectively) in each run presented in this work. Therefore, 

we continued the training process up to 20 epochs ensuring the saturation of training and 

validation accuracies. As shown in Fig. 5, the overfitting is almost negligible since there 

is no observable difference between training and validation accuracies (as well as between 

training and validation loss). This indicates that despite the small dataset, fine-tuning of the 

last three layers does not hamper the generality of the network.

As stated earlier, we have replaced and trained the last three layers of GoogleNet to classify 

resistive pulse data sets and all other layers were kept frozen. Therefore, except those last 

three layers, all other layers do not contain any learnable parameters, and the number of 

FLOPs is the same as standard architecture. Thus, the training includes only 3,075 learnable 

parameters for the last three layers. These learnable parameters require total 6,155 FLOPs. 

The whole training and validation process (20 epoch) took approximately 296, 84, and 

26 minutes for 1, 2, and 4 sec time frame images on a single GPU (Processor: Inter(R) 

Core (TM) i7–3770 CPU @ 3.4GHz) with a total of 2712, 1356, and 678 transformed 

images, respectively. A similar amount of processing time was required for raw data because 

the same number of training and validation images (Table 2) were employed. This result 

shows that as the number of images decreases, less and less amount of time is required for 

training without deteriorating the accuracy. For a linear drop in the total number of images, 

a quadratic reduction in processing time requirement has been observed. As shown in Fig. 

5, in every case, the network reached the highest accuracy within 10 epochs; therefore, the 

proposed fine-tuned deep network is very fast. The processing time required for all different 

cases studied in this work is listed in Table 2.

3.2 Classification accuracy

Classification accuracy obtained from the validation datasets is shown in Fig. 6 for 1 sec 

time frames. As shown in Fig. 6, the network performance is much better on transformed 
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data than raw data. Since the transformed data set preserves the distinguishable features 

between classes, except in one case (see Fig. 6a: ssDNA), the mean accuracy for any class 

is always higher for transformed data than that of raw data. Similar results are observed for 

2 and 4 sec time frames as shown in Supplementary Figs. S1 and S2, respectively. Because 

of the feature preserving nature of the transformed data, a higher overall mean accuracy has 

been observed for transformed data compared to the raw data, irrespective of class, potential 

difference, or time frame.

As stated earlier, the training and validation sets are selected in a random manner; therefore, 

it should be tested how classification accuracy varies with randomness of the training 

dataset. To address this question, for each dataset, we trained the network for three times 

(which we called realization) with randomly selected training datasets. In each realization, 

the training started from the same point i.e., initialization of the network with pre-trained 

GoogleNet biases and weights, and the network was trained and validated using the method 

described before. The variation of classification accuracy with the randomness of the 

training dataset is shown by the error bar in Figs. 6, and supplementary results (Figs. S1 

and S2). Our results show that the network trained on raw images is more sensitive to the 

randomness of the training data than that of transformed images as indicated by a larger 

error bar on results of raw data in Fig. 6. This is due to the fact that when resistive pulse data 

are drawn in a fixed geometrical frame (transformed), the difference between feature maps 

for training and validation data sets reduces. Similar results were obtained for 2 and 4 sec 

time frames as shown in supplementary Figs. S1 and S2.

Another interesting result is observed when the applied voltage magnitude changed from 

−75 mV to −175 mV. As shown in Fig. 6, as the absolute value of voltage increased, 

the network performed better as indicated by higher mean accuracy for both raw and 

transformed images. In addition to higher accuracy, at higher potential difference, the 

network is less vulnerable to the arbitrariness of the training dataset as indicated by smaller 

error bars for both raw and transformed data. At a smaller potential difference, a smaller 

number of particles are translocated through the nanopore as indicated by a lesser number 

of spikes in the resistive pulse signal (Fig. 2). Moreover, the height of the spikes is also 

very small for a low magnitude of applied electric field. Therefore, at a low electric field, 

the resistive pulse signal is mostly governed by the base (signal when there is no particle 

in the pore) current signal. Since the base signal does not depend on the particle types, 

it is very difficult for a network to discriminate between signals at low electric fields. 

Although similar behaviors were obtained with 2 and 4 sec time frame images as shown 

in Fig. S1 and S2, respectively, networks trained on 4 sec time frame images were more 

vulnerable to randomness of training data, especially at low electric field. Thus, a large 

potential difference (above 100 mV) is desirable for the characterization of AAVs through 

deep learning.

Although trained networks exhibit similar behavior for 1 sec (Fig. 6), 2 sec (supplementary 

Fig. S1), and 4 sec (supplementary Fig. S2) time frame images, the classification accuracy 

is slightly lower for 2 sec time frame case compared to 1 sec or 4 sec time frames for any 

applied potential difference. The reason for better performance with 1 sec or 4 sec images 

is as follows. First, although 1 sec time frame resistive-pulse images store only limited 
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information, the number of training examples are much higher. On the other hand, 4 sec time 

frame images hold four times more information, though the number of training examples 

are small. Therefore, the slightly lower accuracy at 2 sec time frame is a combined effect of 

fewer number of training examples and less information stored by each training examples.

Nevertheless, the fine-tuning-based method is very effective in classifying AAVs from time 

series electric signals. Furthermore, it is important to note that our proposed breakdown 

of time sequence data clearly provides two benefits. First, it facilitates more images to 

train the network from a limited experimental dataset. For example, a single 10 min 

resistive-pulse signal obtained from a nanopore experiment can provide 600, 300 and 150 

images for 1 sec, 2 sec and 4 sec segmentations, respectively. Second, proper prediction 

of a class is guaranteed from the time series resistive-pulse data, even though there are a 

few misclassifications. This is again because each input electrical signal being divided into 

many images, and the final prediction class of an electrical signal is based on the average 

performance of all images of that signal, not the individual flagging of each image.

3.3 Comparison of performance between transfer learning methods

In this study, we have compared the classification performance of the fine-tuning method 

with feature extraction-based method. In case of feature extraction based transfer learning, 

we passed (just once) all available training examples through the pretrained GoogleNet and 

extracted the features from the training examples by using layer activations. In this work, 

activations of the fully connected layer (loss3-classifier) were taken as feature map; hence, 

the feature map has a dimension of 1×1×1000 for each image. From the extracted feature 

map, we have trained a multiclass support vector machine (SVM) using the one-versus-one 

method [48] for three different classes. After training, prediction of a new image was done 

through newly trained SVM classifier (for details please see [8]).

Figure 7 shows the prediction comparison between the fine-tuning and feature extraction 

based methods for different time frames (1 sec, 2 sec, and 4 sec) for −100 mV case. As 

shown in Fig. 7, the fine-tuning is always better than that of feature extraction. Although 

feature extraction uses a deep network to extract the feature, the final classification is 

done based on a shallow network such as support vector machine. On the other hand, 

in fine-tuning, the final classification is integrated in the deep network which allows 

the model to learn more. The reduced uncertainty in the prediction further results in a 

higher classification accuracy compared to feature extraction based method. The highest 

improvement in prediction accuracy is obtained with 1 sec time frame images (Fig. 7a) 

because there are enough training examples from which the network can learn through 

fine-tuning. However, when dataset is small (4 sec time frames for current example), the 

improvement is less significant since there is a smaller dataset to learn from (Fig. 7c). These 

results indicate that instead of using a pre-trained deep network as a feature extractor, a 

direct modification such as fine-tuning of the pre-trained deep network is preferred.

For a multiclass problem, classification accuracy alone is not very reliable for a true 

prediction. In that case, a confusion matrix is a superior way to analyze results. Therefore, 

the overlapping results of a confusion matrix of 4 sec raw and the transformed data (only 

validation set) for different realizations (R1, R2, and R3) are listed in Table 3 and 4, 
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respectively. The confusion matrix presents the number of correct and incorrect predictions 

with values broken down by each class. As shown in Table 3, the ternary classification 

tasks perform reasonably well on raw data with a high number of correct predictions and 

a few misclassifications. In addition, the behavior of the network is consistent with the 

random changes of training data, as number of correct predictions and misclassifications 

are similar among the three realizations. Moreover, as the magnitude of the applied voltage 

increases, the number of misclassifications decreases, resulting in a more accurate network. 

In comparison to the raw data (Table 3), the ternary classification tasks perform extremely 

well on the transformed data as shown in Table 4. For any applied electric field, the number 

of correct predictions increases for each class of AAVs, resulting in a reduced number of 

false negatives or false positives in the case of the transformed data. Nevertheless, even 

with some misclassifications, the fine-tuning-based transfer learning is quite promising for 

the classification of AAVs based on their transgene packaging. The confusion matrix for 

other cases, provided in supplementary materials (Table S1, S2, S3, and S4 for 1 sec raw, 

1 sec transformed, 2 sec raw, and 2 sec transformed data, respectively), show the identical 

classification accuracy.

3.4 Comparison among deep networks

To assess the effectiveness of fine-tuning-based transfer learning, we have considered 

two other deep learning networks: InceptionV3 [49] and ResNet50 [14]. We have chosen 

InceptionV3 and ResNet50 because they have similar number of layers: 48 and 50, 

respectively, and both are widely used in numerous fields of science for image classification 

[50–53] due to their reputations. ResNet50 won the ImageNet large scale visual recognition 

challenge (ILSVRC) 2015, while InceptionV3 was the second runners up of ILSVRC 2015. 

For comparison of classification accuracy results with GoogleNet, we have changed the last 

three layers: fully connected, softmax and classification layers to accommodate our dataset. 

Fig. 8 shows the performance of each network on the 4 sec time frame validation datasets for 

an applied voltage of −175 mV. Here, the error bar is obtained by training the network with 

randomly selected training and validation dataset for three times. The performance of the 

networks on raw images is presented in Fig. 8a, while corresponding results for transformed 

data are shown in Fig. 8b. The performance (numeric value of validation accuracy) of 

different models: GoogleNet, InceptionV3 and ResNet50 are provided in Table S4 and 

Table S5 for 4 sec time frame raw data and transformed data, respectively. The comparison 

of performance of networks for other voltages (on 4 sec time frame data) is shown in 

Fig. S3 in supplementary materials. As shown in the Fig. 8a, on empty class of data, 

ResNet50 exhibits the highest average accuracy, while GoogleNet yields the lowest average 

accuracy. An opposite phenomenon is observed on the ssDNA class of data, while all the 

networks behave similarly on the dsDNA data. Thus, the overall accuracy for networks on 

the validation dataset are similar for all networks. As shown in Fig. 8b, for transformed 

images, all three networks perform in the same scale. For relatively higher applied voltage, 

the GoogleNet shows more consistency on the randomness of the training and validation 

dataset, as it has smaller error bars compare to ResNet50 or InceptionV3. However, at 

low magnitude of voltages (−75 mV or −100 mV), InceptionV3 and ResNet50 provide 

around 5% higher accuracy than GoogleNet (see Fig. S3 a–d). As the magnitude of the 

voltage increases, the accuracy of GoogleNet becomes comparable with InceptionV3 and 
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ResNet50 (Fig. S3 e–h). Although the accuracy does not vary significantly with network 

architecture, the time consumption for training and validation process varies a lot with the 

network architecture because of different number of learnable parameters and corresponding 

number of FLOPs. For example, while training and validation of GoogleNet takes only 26 

minutes on average for 3,075 (total 6,155 FLOPs) learnable parameters, the InceptionV3 

and ResNet50 take ~ 182 and 155 minutes, respectively for 6,175 (total 12,299 FLOPs) 

learnable parameters. We also found that both InceptionV3 and ResNet50 start overfitting 

after 5 epochs while GoogleNet does not overfit at all (data is not shown). This may arise 

because InceptionV3 and ResNet50 has more layers and higher number of parameters than 

GoogleNet architecture. This result indicates that a comparatively less deep network works 

better for AAV classification because it offers faster training and validation with acceptable 

classification accuracy.

4. Conclusions

We have presented a framework for fine-tuning-based transfer learning from pre-trained 

deep networks. Although there are numerous highly accurate deep neural networks for 

classification of images, we have selected GoogleNet, ResNet50 and InceptionV3 to 

distinguish adeno-associated virus vectors depending on their transgene packaging. The last 

three layers of those deep networks were modified to match the three object classes using 

a fine-tuning-based transfer learning method. Experimental data obtained from a nanopore 

translocation study was used to train and validate the modified neural networks. Our results 

suggest that the fine-tuning-based transfer learning can effectively classify different kind 

of AAVs from the resistive pulse signals/images. The comparative study of fine-tuning and 

feature extraction methods suggest that fine-tuning a network is a better choice to distinguish 

AAVs as it consistently yields a higher classification accuracy than the feature extraction. 

Additionally, for fine-tuning method, one can use any high performance pre-trained deep 

networks as our analysis shows a similar level of validation accuracy with GoogleNet, 

InceptionV3 or ResNet50. However, overfitting may be an issue if we choose a very 

deep network. For example, in contrast to InceptionV3 and ResNet50, GoogleNet does 

not show any sign of overfitting as the validation accuracy completely overlap with the 

training accuracy. Moreover, GoogleNet takes much shorter time for the overall training 

and validation process than those of InceptionV3 (one-seventh) and ResNet50 (one-sixth). 

Therefore, for an effective and fast classification of AAVs, a comparatively less deep 

network such as GoogleNet is preferable.

All the pretrained networks: GoogleNet, InceptionV3 and ResNet50 used in this work 

were trained with natural images (ImageNet dataset). Therefore, feeding the time series 

resistive pulse signal into the pre-trained networks was the main challenge of using fine-

tuning-based transfer learning to classify AAV vectors. But, in this work, we have overcome 

this restriction by creating 2D plot from the resistive pulse signal with different time frames. 

Unlike classical machine learning, we used few experimental datasets for training (for 

a given applied electric field), but the segmentation of each resistive-pulse time series 

signal helped us to attain our desired goal in the data-driven classification. Furthermore, 

transformation of the data helped in better preservation of features between the training 

and validation data. For transformed data, the mean accuracy of the network was 95% or 
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better for any class, when the applied potential difference across the nanopore was 100 

V or higher. The classification accuracy can be further improved with increasing training 

data or by training more parameters in the deep learning architecture. In addition to very 

high classification accuracy, the fine-tuning-based method is very fast as overall training 

and validation process can be done in less than an hour. Therefore, the machine learning 

based method presented in this work can be integrated with nanopore or other experiments 

to detect viruses quickly and accurately in future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(a) Schematic of GoogleNet architecture, (b) detail of an inception (layer IN3a) block, 

(c) modification of last three layers of GoogleNet architecture to adopt the number of 

target classes for AAV classification problem. Here, CNV: convolution layer, MP: max 

pooling layer, IN: inception block, AP: average pooling layer, DO: dropout layer, FC: 

fully connected layer, SM: softmax layer, DC: depth concatenation layer. The red dot (∙) 

represents a ReLU operation and the red-cross (×) indicates a cross channel normalization 

operation.
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Fig. 2. 
Representative current traces corresponding to the translocation of AAVs: AAVEmpty (top 

row), AAVssDNA (middle row), and AAVdsDNA (bottom row) for the different applied 

electric fields. The width and height of each image represent 10 sec and 2000 pA, 

respectively where pA stands for picoampere.
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Fig. 3. 
Concept of raw vs. transformed images: AAVEmpty (top row), AAVssDNA (middle row), and 

AAVdsDNA (bottom row). Since GoogleNet requires an image input size of 224 X 224, all 

images were resized to 224 X 224 ×3.

Khan et al. Page 19

J Signal Process Syst. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Flow chart of the fine-tuning-based deep learning method for AAV classification
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Fig. 5. 
The accuracy of network on transformed images for time frame of (a) 1 sec, (b) 2 sec, 

and (c) 4 sec. After initializing the GoogleNet with known biases and weights, 16 images 

(minibatch) were passed through the network. Using the forward calculation, the class levels 

(predicted level) of those 16 images were found. The training or validation accuracies are 

calculated as the total number of correct predictions divided by the total number of images.
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Fig. 6. 
Efficacy of deep convolutional neural networks in classification of AAVs from nanopore 

experimental data obtained at different applied potential difference: (a) −75 mV, (b) −100 

mV, (c) −125 mV, (d) −150 mV and (e) −175 mV for 1 sec time frame images. For a 

particular class, 70% of the data were randomly selected from all images of that class for 

training the network, while the rest of the images of that class were used for validation.
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Fig. 7. 
Comparison between feature extraction and fine-tuning methods for: a) 1 sec, b) 2 sec, and 

c) 4 sec time frames. Image data were obtained from solid state nanopore experiments for an 

applied potential difference of −100 mV.
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Fig. 8. 
Performance comparison of GoogleNet, InceptionV3, and ResNet50 for (a) raw and (b) 

transformed images on 4 sec time frame data. Image data were obtained from solid state 

nanopore experiments for an applied voltage −175 mV.
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Table 1.

Number of images in training and validation dataset for each AAV type.

Applied potential difference (mV) AAVs Type

Time Frame (sec)

1 2 4 1 2 4

Number of Images

Training Validation

−75

Empty 678 339 169 290 145 73

ssDNA 720 360 180 308 154 77

dsDNA 501 251 125 215 107 54

−100

Empty 431 216 108 185 92 46

ssDNA 760 381 190 328 163 82

dsDNA 720 360 180 308 154 77

−125

Empty 588 294 147 252 126 63

ssDNA 840 420 210 360 180 90

dsDNA 459 230 115 197 98 49

−150

Empty 420 210 105 180 90 45

ssDNA 633 316 158 271 136 68

dsDNA 420 210 105 180 90 45

−175

Empty 714 357 179 306 153 76

ssDNA 812 406 203 348 174 87

dsDNA 384 192 96 164 82 41

J Signal Process Syst. Author manuscript; available in PMC 2023 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Khan et al. Page 26

Table 2.

Training time requirements for different datasets.

Potential difference Time frame (sec)
Training time (minutes)

Raw data Transformed data

−75 mV

1 293 291

2 83 84

4 26 26

−100 mV

1 296 291

2 84 85

4 26 27

−125 mV

1 288 287

2 84 83

4 26 26

−150 mV

1 186 184

2 55 54

4 18 18

−175 mV

1 291 296

2 84 87

4 26 26

J Signal Process Syst. Author manuscript; available in PMC 2023 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Khan et al. Page 27

Table 3.

Overlapping results of confusion matrix obtained on 4 sec raw data (validation set) for different realizations 

(R1, R2, and r3) at different voltages (−75, −100, −125, −150, and −175 mV). In this table ‘ds’, ‘E’ and ‘ss’ 

stand for three types of AAVs: dsDNA, Empty, and ssDNA, respectively.

−75 (mV) −100 (mV) −125 (mV) −150 (mV) −175 (mV)

╲ ds E ss ds E ss ds E ss ds E ss ds E ss

R1

ds 40 12 2 67 6 4 42 3 4 44 0 1 41 0 0

E 5 63 5 2 40 4 1 57 5 2 41 2 0 66 10

ss 3 7 67 8 3 71 2 0 88 7 0 61 1 2 84

R2

ds 40 11 3 69 0 8 42 3 4 43 0 2 41 0 0

E 10 58 5 4 37 5 4 57 2 0 43 2 0 71 5

ss 5 5 67 1 1 80 4 1 85 2 2 64 0 9 78

R3

ds 45 5 4 74 0 3 42 3 4 40 0 5 40 0 1

E 13 55 5 2 43 1 1 57 5 0 37 8 0 64 12

ss 4 2 71 11 5 66 2 0 88 0 0 68 1 3 83
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Table 4.

Overlapping results of confusion matrix obtained on 4 sec transformed data (validation set) for different 

realizations (R1, R2, and R3) at different voltages (−75, −100, −125, −150, and −175 mV). In this table ‘ds’, 

‘E’ and ‘ss’ stand for three types of AAVs: dsDNA, Empty and ssDNA, respectively.

−75 (mV) −100 (mV) −125 (mV) −150 (mV) −175 (mV)

╲ ds E ss ds E ss ds E ss ds E ss ds E ss

R1

ds 43 5 6 75 0 2 48 1 0 44 0 1 41 0 0

E 1 68 4 3 43 0 2 61 0 0 43 2 1 74 1

ss 1 3 73 9 1 72 5 0 85 0 0 68 0 0 87

R2

ds 53 1 0 73 3 1 42 0 7 43 0 2 41 0 0

E 5 57 11 0 45 1 2 61 0 1 44 0 2 73 1

ss 1 2 74 12 6 64 3 0 87 1 0 67 0 0 87

R3

ds 50 0 4 73 0 4 41 0 8 44 0 1 41 0 0

E 5 63 5 4 36 6 0 63 0 0 44 1 1 74 1

ss 1 0 76 4 0 78 1 0 89 0 0 68 0 0 87
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