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Abstract

Acute kidney injury (AKI) is a serious and frequently observed disease associated with high
morbidity and mortality. Weighted gene co-expression network analysis (WGCNA) is a
research method that converts the relationship between tens of thousands of genes and
phenotypes into the association between several gene sets and phenotypes. We screened
potential target genes related to AKI through WGCNA to provide a reference for the diagno-
sis and treatment of AKI. Key biomolecules of AKI were investigated based on transcriptome
analysis. RNA sequencing data from 39 kidney biopsy specimens of AKI patients and 9 nor-
mal subjects were downloaded from the GEO database. By WGCNA, the top 20% of
mRNAs with the largest variance in the data matrix were used to construct a gene co-
expression network with a p-value < 0.01 as a screening condition, showing that the blue
module was most closely associated with AKI. Thirty-two candidate biomarker genes were
screened according to the threshold values of [MM|>0.86 and |GS|>0.4, and PPl and
enrichment analyses were performed. The top three genes with the most connected nodes,
alanine—glyoxylate aminotransferase 2(AGXT2), serine hydroxymethyltransferase 1
(SHMT1) and aconitase 2(ACQO2), were selected as the central genes based on the PPI net-
work. A rat AKI model was constructed, and the mRNA and protein expression levels of the
central genes in the model and control groups were verified by PCR and immunohistochem-
istry experiments. The results showed that the relative mRNA expression and protein levels
of AGXT2, SHMT1 and ACO2 showed a decrease in the model group. In conclusion, we
inferred that there is a close association between AGXT2, SHMT1 and ACO2 genes and the
development of AKI, and the down-regulation of their expression levels may induce AKI.

Introduction

AKT is a serious and common disease with high morbidity and mortality [1]. It is a syndrome
characterized by rapid loss of renal excretion. It is usually diagnosed by the accumulation of
end products of nitrogen metabolism (urea and creatinine) and/or progressive reduction of
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urine volume [2]. Due to the complexity of the pathophysiological process, the molecular
mechanisms of acute kidney injury are not clearly defined. It has been suggested that the use
of antiviral drugs causes drug-induced AKI, which may lead to AKI through mechanisms such
as acute tubular necrosis (ATN), allergic interstitial nephritis (AIN), and crystal nephropathy
[3]. Bioinformatics has been used for in silico analyses of biological queries using mathematical
and statistical techniques [4].

WGCNA is a systems biology method for characterizing correlation patterns between
genes in microarray samples. WGCNA can be used to find clusters (modules) of highly corre-
lated genes, to aggregate such clusters using module signature gold or modular hub genes to
correlate modules with each other (using external sample signature methods), and to calculate
module membership measures. Correlation networks facilitate network-based genetic screen-
ing methods that can be used to identify candidate biomarkers or therapeutic targets [5].
WGCNA is now widely used in biological studies of diseases, physiology, drugs, evolution, and
genomes [6], which identifies correlated gene clusters (modules), has been applied to identify
biomarkers for Diabetic kidney disease [7] and Chronic Kidney Disease [8], demonstrating
the feasibility of its use to identify biomarkers for AKI. AKI biomarkers are potential targets
for AKI risk assessment, and with the advancement of genomics, proteomics and metabolo-
mics research, new AKI markers can be explored; biological targets for AKI can be established
through artificial intelligence learning to provide an experimental basis for clinical application
and effectively reduce AKI rates.

Materials and methods
Data source and pre-processing

The GSE139061 dataset; containing 39 native human renal biopsy samples and 9 reference
nephrectomies was downloaded from GEO database [1]. The Robust Multichip Average
(RMA) method [9] in R software was then used to pre-process the downloaded raw data,
including background correction, quantile correction normalization and expression integra-
tion. After removing outliers, there were 35 native human renal biopsy samples and 9 refer-
ence nephrectomies. The probes were annotated by annotation files, and duplicate genes were
removed.

WGCNA

The top 20% of genes with the highest variance were selected (4028 genes) for WGCNA analy-
sis. A scale-free co-expression network was built using WGCNA package in R software [10]. In
this study, the value of B was set to 14 (scale-free R2 = 0.95) to ensure a scale-free network [10].
Next, the adjacency matrix was converted to a topological overlapmatrix (TOM) to cluster
genes with similar expression profiles into modules using a mean linkage hierarchical cluster-
ing approach [11]. Notably, the minimum number of genes per gene network module was set
to 30, and the Dynamic cut tree method algorithm was used to determine the gene network
modules.

Identification of candidate biomarkers

Gene connectivity was measured by the absolute value of the module membership (MM)
score, which represents the Pearson correlation coefficient between a particular gene and the
module trait value. We selected modules that met a p-value less than 0.001 for gene modules
and clinical traits and calculated the gene significance (GS) scores, which represent the correla-
tion between genes in these modules and each phenotype, were calculated in absolute values.

PLOS ONE | https://doi.org/10.1371/journal.pone.0281439  February 3, 2023 2/11


https://doi.org/10.1371/journal.pone.0281439
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139061

PLOS ONE

AGXT2, SHMT1, and ACO2 as important biomarkers of AKI

Candidate genes were screened by module membership (MM) scores and gene significance
(GS) scores. [MM]| > 0.80 indicates that the gene is correlated with the module, while |GS| >
0.2 requires that the gene expression profile is also correlated with the phenotype [5]. The
module with the smallest p-value and the gene module that matched the clinical trait with a p-
value of 0.0002 was selected, and candidate genes were screened using the following parame-
ters, module significance|MM|>0.86 and gene significance|GS|>0.4.

Co-expression network analysis and functional enrichment analysis

Based on the protein-protein interactions (PPI) from STRING (https://cn.string-db.org), PPI
networks of candidate biomarker genes were constructed in each clinically significant module
and visualized using Cytoscape. In addition, Gene ontology (GO) enrichment analysis and
Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were performed using R
package clusterProfiler [12, 13].

Animal AKI model construction

Twelve male SD rats with 180-200 g were purchased from and housed in the Experimental
Animal Center of Guangxi Medical University [Animal Certificate No.: SYXK Gui 2020-
0004]. After one week of acclimatization feeding, AKI model was constructed by two consecu-
tive tail vein injections of 5 mg/kg adriamycin. The animals were placed in a CO2 anesthesia
chamber, the CO2 valve was opened, and after the animals were unconscious, without pinch
reflex and without corneal reflex, the ventilation was continued for 2 minutes, and the blood
and kidneys were taken after the experimental animals died. The experimental procedures
were performed according to the review standards of the Animal Ethics Committee of
Guangxi Medical University.

Histopathology and immunohistochemistry

Seven days after the tail vein injection of adriamycin, blood test creatinine and urea nitrogen,
kidneys were harvested and fixed in 10% formalin, embedded in paraffin, cut into thin sections
and then HE stained to observe the kidney tissue damage. The paraffin sections were dewaxed,
subjected to EDTA Antigen Retrieval Solution (pH 9.0), endogenous peroxidase blockage,
serum closure at room temperature for 30 min. Next the sections were incubated with a pri-
mary rabbit anti-AGXT2 [14] (Sigma-Aldrich HPA037382), SHMT1 [15] (Abcam, ab186130)
and ACO2 [16] (Rosemont, 11134-1-AP) antibody diluted 1:50 in 1% BSA incubation at 4°C
overnight, secondary antibody incubation at room temperature for 50 min, and DAB color
development to quantitatively evaluate hub gene protein expression in the kidney tissue of
AKI model and control mice.

RNA isolation and RT-qPCR

Kidney tissue from control and AKI model rats, and total tissue RNA was extracted using a
FastPure Cell RNA Isolation Kit V2 (Vazyme Cat. RC112.01) kit, and reverse transcribed
using Vazyme’s HiScript III RT SuperMix for qPCR (+gDNA wiper) The instructions were
used to reverse transcribe the total RNA into cDNA and amplify it on a PCR amplifier. The
primers were designed and synthesized by Bioengineering Co., Ltd(Shanghai), and the
sequences are shown in Table 1. The QPCR mix contained 0.4 pL of each primer, 10.0 pL of
master mix, 2.0 pL of cDNA, and ddH,O to a final volume of 20.0 uL. The cycling conditions
were as follows: 95°C for 30s, 1 cycle; 95°C for 10s, 60°C for 30 s, 40 cycles. The reaction
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Table 1. PCR primer sequences.

Primers Sequence (5°-3’) Product length/bp
B-actin Forward TGTCACCAACTGGGACGATA 165
Reverse GGGGTGTTGAAGGTCTCAAA
ACO2 Forward GTGGGTGGTGATTGGAGATGAGAAC 110
Reverse TTGCGAAGCTCTTGGTGATGATGG
AGXT2 Forward GCAGCAGTTGTGACCACTCCAG 116
Reverse ACCTCAAGCACAGCAGATCCAATG
SHMT1 Forward CAGTTGAGAAGTCCGATCCTGTGTC 110
Reverse GTTGCCCTGTGTCGTGGAGATTC

https://doi.org/10.1371/journal.pone.0281439.t001

conditions were as follows: 95°C for 15s, 60°C for 60s, 95°C for 15s, 1 cycle. The relative

expression of target genes was calculated using the 2

Results

AACT pethod.

Clustering of co-expression modules eigengenes in AKI

Expression profiles of 44 samples from two different kidney tissue sources were included in
the co-expression analysis, with 4028 genes subjected to WGCNA analysis. After excluding the
abnormal samples, no discrete samples were found by clustering the samples (Fig 1A); and to
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Fig 1. Determination of soft threshold parameters for WGCNA analysis: (A) analysis of outliers; (B) Analysis of scale-free fit
indices at different soft threshold parameters p and determination of the average connectivity at soft threshold parameters; (C)
Correlation of log (k) and log [P(k)]; (D) Sample clusters of module eigengenes.

https://doi.org/10.1371/journal.pone.0281439.g001
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ensure that the network was scale-free, an empirical analysis was performed to select the opti-
mal parameter . As depicted in Fig 1B and 1C, the scale-free topological model fit index (R2)
and the average connectivity reached a steady state when B was equal to 14. Fig 1D displays the
clusters of module eigengenes.

Identification of key modules of AKI

After determining the weighting coefficients, the disTOM of 4028 genes was obtained (Fig
2A), and 13 modules were identified by mean linkage hierarchical clustering, each represented
by a different color (Fig 2B). A heat-map was plotted to explore the association between mod-
ule eigenvalues and AKI, as presented in Fig 2C, with each column showing the correlation
coefficient and the corresponding p-value. Red represents positive correlations, and blue rep-
resents negative correlations, and the darker the color, the larger the correlation coefficient.
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Fig 2. (A) Heat map of gene network visualization, the darker the red, the better the overlap; (B) Tree diagram of all differentially
expressed genes based on clustering by the degree of difference (1-TOM); (C) Heat map of correlation between different modules
and AKL

https://doi.org/10.1371/journal.pone.0281439.9002
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AKI correlated most with the blue module, with a coefficient of 0.53 and p-value 0.0002.
Therefore, it was selected as the module of significance for further analysis.

Screening of candidate genes significantly associated with AKI

As described in Fig 3A, candidate biomarker genes were selected based on the thresholds |
MM]|>0.86 and |GS|>0.4 to obtain 32 candidate genes. As illustrated in Fig 3B, PPI networks
covering these candidate genes in each module were constructed using Cytoscape based on
PPI interactions from STRING, and the top three genes were selected as the final candidates,
namely AGXT2, SHMT1, and ACO2.

Hub gene enrichment analysis

GO, and KEGG analyses were performed to reveal the role of candidate genes in the pathogen-
esis of AKI. GO analysis (Fig 4A) revealed that candidate biomarker genes in biological pro-
cesses were mainly enriched in the alpha-amino acid biosynthetic process [17-19] and the
carboxylic acid biosynthetic process [20]; The molecular functions were mainly enriched in
vitamin B and vitamin binding [21, 22], amino acid binding [23, 24] S-methyltransferase activ-
ity [25, 26]; The cellular components were significantly enriched in brush border [27, 28], api-
cal plasma membrane [29, 30], apical part of cell [31]. In addition, as shown in Fig 4B, KEGG
analysis indicated that candidate genes were mainly enriched in Glycine, serine and threonine
metabolism [32, 33] Cysteine and methionine metabolism [34] and Biosynthesis of amino
acids [35, 36]. The pathway enrichment analysis demonstrated that candidate biomarkers are
mainly linked to amino acid synthesis and metabolism. Abnormal functions of these genes
may cause abnormalities in amino acid synthesis and metabolism in the body and promote the
development of kidney diseases.

Experimental validation of the hub gene in a rat model of AKI

As seen in Table 2, serum creatinine and urea nitrogen increased, indicating that the AKI

model was successfully constructed. Histopathologically, renal tissue presented significant
cytoplasmic swelling and nuclear cleavage of tubular epithelial cells, and renal tubular cell
extranuclear changes, mainly in the proximal tubules, as displayed in Fig 5A. The qPCR
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Fig 3. (A) Scatter plot of data concentration and P-value Cox regression, the X-axis indicates regression degree, the Y-axis
indicates gene significance, and each circle represents a gene; (B) Network plot of key genes in the blue module, nodes
indicate genes.

https://doi.org/10.1371/journal.pone.0281439.9003
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https://doi.org/10.1371/journal.pone.0281439.9004

analysis (Fig 5B, Table 3) showed that the relative mRNA expression of AGXT2, SHMT1 and
ACO2 in renal tissue of AKI rats decreased (p < 0.001). IHC staining revealed that AGXT2

and ACO2 were mainly expressed in the renal tubules, and SHMT1 was mainly expressed in
glomeruli and blood vessels (Fig 5C, Table 4).

Discussion

AKI is one of the most complex kidney diseases, and its molecular mechanisms have not been
fully elucidated. Therefore, studies are urgently needed to identify potential biomarkers of AKI
and to reveal the importance of molecular mechanisms for clinical practice. In this study, we
analyzed the gene expression profiles of 35 AKI kidney biopsy samples and 9 normal kidneys
and subjected 4028 genes to WGCNA analysis, identifying three genes, AGXT2, SHMT1 and
ACO2, as hub genes. An AKI animal model was then constructed to verify the expression of
these three genes, showing that AGXT2, SHMT1 and ACO2 were down-regulated in the kid-
ney tissue of the model group.
Asymmetric dimethylarginine (ADMA), a metabolite of the amino acid L-arginine, com-
petitively inhibits the enzymatic response to the cellular signal substance nitric oxide. AGXT2
metabolizes ADMA to ADGV (asymmetrico-keto-dimethylguanidinovaleric acid) which later
can be excreted [37, 38] and decreased AGXT2 enzyme activity causes ADMA accumulation,
leading to renal disease development. Low AGXT?2 expression and activity have also been
reported to affect symmetrical dimethylarginine (SDMA) metabolism, SDMA can compete for

Table 2. Expression of serum creatinine and urea nitrogen.

Item Control AKI T-test P
blood serum creatinine 19.20+1.83 78.56+45.16 -3.179 0.024
blood urea nitrogen 8.91+0.68 22.92+0.78 -33.108 <0.001

https://doi.org/10.1371/journal.pone.0281439.t002
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Table 3. Relative mRNA expression of the three genes.

Gene Control AKI T-test P
AGXT2 1.02+0.06 0.60+0.06 9.606 <0.001
SHMT1 0.99+0.04 0.30+0.05 20.282 <0.001
ACO2 0.99+0.04 0.68+0.05 9.338 <0.001
https://doi.org/10.1371/journal.pone.0281439.t003

Table 4. Expression of three proteins in renal tissue.

Gene Control AKI T-test P
AGXT2 0.38+£0.01 0.19+0.03 10.921 <0.001
SHMT1 0.31+0.04 0.18+0.01 5.404 0.006
ACO2 0.33+0.03 0.24+0.03 3.810 0.019

https://doi.org/10.1371/journal.pone.0281439.t004

L-arginine transport on membrane and indirectly inhibit NO synthesis, leading to renal dys-

function [39]. The reduced AGXT2 expression in AKI model rats validates this claim.

SHMT1 is a key enzyme in folate metabolism, providing the essential one-carbon unit for
biosynthesis [40]. SHMT1 gene hypermethylation causes impaired folate metabolism and
abnormal homocysteine (Hcy) remethylation through reduced SHMT1 expression, resulting
in Hey accumulation in the blood and hyperhomocysteinemia, which enhances oxidative
stress in the kidney and induces structural damage and apoptosis in the podocytes, causing

PLOS ONE | https://doi.org/10.1371/journal.pone.0281439  February 3, 2023

8/11


https://doi.org/10.1371/journal.pone.0281439.t003
https://doi.org/10.1371/journal.pone.0281439.t004
https://doi.org/10.1371/journal.pone.0281439.g005
https://doi.org/10.1371/journal.pone.0281439

PLOS ONE

AGXT2, SHMT1, and ACO2 as important biomarkers of AKI

kidney injury [41]. Silent expression of SHMT1 promotes bone-chondrogenic signaling in vas-
cular smooth muscle cells by inducing cellular oxidative stress, thereby exacerbating phos-
phate-induced calcification of vascular smooth muscle cells and promoting chronic kidney
injury [42], consistent with our experimental validation.

The mitochondrial ACO2 gene encodes an enzyme that catalyzes citrate conversion to iso-
citrate in the tricarboxylic acid cycle. Biallelic variants in ACO2 are purported to cause two dis-
tinct disorders: infantile cerebellar-retinal degeneration (ICRD), characterized by CNS
abnormalities, neurodevelopmental phenotypes, optic atrophy, and retinal degeneration [43].
It has been reported that the expression of the aerobic oxidative metabolism-related protein
ACO2 is reduced in urinary exosomes of diabetic patients [44]. downregulation of ACO2
expression activates ROS and induces HEK293T cell death [44, 45]. In the current study, the
effect of ACO2 in the kidney is still underreported. Our animal model verified that ACO2 is
lowly expressed in renal injury. The biomarkers we screened have only been validated on rat
models and have not yet been involved in human experiments.

Our experimental results are based on animal models and have not been verified in patients
with acute kidney injury. Patients will be collected for subsequent verification. The biomarkers
we screened provide reference for the diagnosis and treatment of AKIL

Conclusion

In clinical diagnosis and treatment, renal biopsy is used to extract renal tissue for rapid PCR
detection of AGXT2, SHMT1 and ACO2, which has reached the possibility of evaluating AKI
in patients.
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