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Abstract

Unified structural equation modeling (uSEM) implemented in the Group Iterative Multiple 

Model Estimation (GIMME) framework has recently been widely used for characterizing within-

person network dynamics of behavioral and functional neuroimaging variables. Previous studies 

have established that GIMME accurately recovers the presence of relations between variables. 

However, recovery of relation directionality is less consistent, which is concerning given the 

importance of directionality estimates for many research questions. There is evidence that strong 

autoregressive relations may aid directionality recovery and indirect evidence that a novel version 

of GIMME allowing for multiple solutions could improve recovery when such relations are 

weak, but it remains unclear how these strategies perform under a range of study conditions. 

Using comprehensive simulations that varied the strength of autoregressive relations among other 

factors, this study evaluated the directionality recovery of two GIMME search strategies: 1) 

estimating autoregressive relations by default in the null model (GIMME-AR), and 2) generating 

multiple solution paths (GIMME-MS). Both strategies recovered directionality best – and were 

roughly equivalent in performance – when autoregressive relations were strong (e.g., β = 

.60). When they were weak (β <= .10), GIMME-MS displayed an advantage, although overall 

directionality recovery was modest. Analyses of empirical data in which autoregressive relations 

were characteristically strong (resting state fMRI) versus weak (daily diary) mirrored simulation 

results and confirmed that these strategies can disagree on directionality when autoregressive 

relations are weak. Findings have important implications for psychological and neuroimaging 

applications of uSEM/GIMME and suggest specific scenarios when researchers might or might 

not be confident in directionality results.

Applied Abstract

Network modeling methods such as Group Iterative Multiple Model Estimation (GIMME) can 

provide valuable insights into person-specific processes present in time series data from multiple 
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domains, including functional neuroimaging and intensive longitudinal studies of psychological 

variables. In these applications, the directionality of contemporaneous relations (those in which 

one variable predicts another at the same time point) is often of interest. However, the 

directionality of these relations is difficult to estimate in practice, and it is unclear what methods 

or features of data may facilitate accurate estimates. In this study, we assess the ability of two 

GIMME variants to estimate directionality in data sets in which autoregressive relations (those in 

which variables predict themselves at the next time point) are strong versus weak. The first variant 

(GIMME-AR) relies on strong autoregressive relations to inform directionality during model 

estimation, while the second variant (GIMME-MS) estimates multiple models with relations in 

opposite directions and allows these models to be compared after estimation with standard fit 

indices. We found that both methods performed best, and often provided similar directionality 

estimates, when autoregressive relations in data are strong (e.g., β = .60). When autoregressive 

relations were weak (β <= .10), GIMME-MS displayed a slight advantage over GIMME-AR, 

but overall performance was modest. These results indicate that GIMME-AR is likely preferable 

to GIMME-MS for analyzing data sets with strong autoregressive relations, such as functional 

neuroimaging data, while GIMME-MS may be preferable for analyzing data sets with weak 

autoregressive relations, such as daily diary or ambulatory assessment data.
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Introduction

The promise of network models for characterizing individual-level processes in intensive 

longitudinal and functional neuroimaging time series data has precipitated a surge of 

interest across the behavioral and neural sciences. Many of these models were initially 

developed to characterize temporal and network dynamics of interactions between brain 

regions in functional magnetic resonance imaging (fMRI) data, leading to recent advances 

in the field’s understanding of the neural correlates of cognition and psychiatric syndromes 

(Beltz et al., 2018; Elbich et al., 2019; Gates et al., 2014; Litvina et al., 2019; Mumford 

& Ramsey, 2014; Nichols et al., 2014; Price, Lane, et al., 2017; Weigard et al., 2019; 

Wu et al., 2019). Applications of similar network models to data from daily diary and 

ambulatory assessment studies have also begun to provide key insights into the within-

person dynamics of basic psychological phenomena (Bar-Kalifa & Sened, 2019; Hofmans et 

al., 2019; Lydon-Staley & Bassett, 2018; Yang et al., 2019) and to elucidate person-specific 

structures, and determinants, of psychopathology (Beltz et al., 2016; Dotterer et al., 2019; 

Ellison et al., 2019; Jongeneel et al., 2019; Stroe-Kunold et al., 2016; Wright et al., 2015; 

Yang et al., 2018). A unique strength of these approaches is their ability to account 

for heterogeneity in neural and psychological processes by characterizing person-specific 

relations between variables (Beltz et al., 2016). Indeed, several recent commentaries have 

posited that integration of person-specific network models with clinical care may improve 

patient outcomes by allowing clinicians to tailor personalized interventions (Epskamp, van 

Borkulo, et al., 2018; van der Krieke et al., 2015; Wright & Zimmermann, 2019).
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The utility of these methods for advancing diverse research fields hinges on their ability to 

successfully characterize relations in time series data. However, ongoing questions remain 

about how, or even whether, such models should provide estimates of the directionality 

of relations between variables (Beltz & Molenaar, 2016; Epskamp, Waldorp, et al., 2018; 

Mumford & Ramsey, 2014). This question is especially relevant given that relations of 

interest in time series data can be both lagged (e.g., the relation between variable A 

at time t-1 and variable B at t) and contemporaneous (e.g., between variables A and 

B at t). Although the temporal ordering of lagged relations allows for inferences about 

directionality (e.g., A at t-1 influences B at t), such inferences are not straightforward 

for contemporaneous relations. In the absence of other information, a model coefficient 

that represents a directional relation from A to B at t (βBA) will provide a description 

of the data that is statistically identical to one that represents the opposite relation from 

B to A (βAB), leading to equivalent model solutions that prevent strong inferences about 

directionality (Beltz & Molenaar, 2016; Epskamp, van Borkulo, et al., 2018). Despite this 

challenge, questions about the directionality of contemporaneous relations are crucial to 

answer in many substantive applications. In the neuroimaging field, there has been a long 

history of interest in, and considerable controversy over, the development of methods that 

determine which brain regions directionally influence others (Friston, 2011; Friston et al., 

2013; Liao et al., 2010; Mumford & Ramsey, 2014; Smith et al., 2011). In clinical contexts, 

researchers and providers could more effectively target person-specific psychopathology 

processes in patient populations if they were able to determine which variables have a 

directional influence on symptoms (Dotterer et al., 2019; Epskamp, van Borkulo, et al., 

2018; van der Krieke et al., 2015). Hence, uncertainty about directionality is a limiting factor 

for many individual-level applications of these models.

Researchers have approached the challenges of estimating directionality in time series data 

in a variety of ways. One strategy is to exclusively focus on estimating the directionality 

of lagged relations between variables, for which inferences are inherently less problematic. 

This strategy is commonly implemented in dynamic structural equation modeling (DSEM) 

approaches (Hamaker et al., 2018; McNeish & Hamaker, 2020) and graphical vector 

autoregression (graphical VAR) approaches (Epskamp, Waldorp, et al., 2018; Wild et al., 

2010). For example, in graphical VAR, an initial model that estimates autoregressive 

relations (e.g., variable A at t-1 with itself at t) and directional lagged relations is fit 

to the data, and residuals are subsequently used to estimate undirected contemporaneous 

relations. Proponents of this method argue that avoiding estimation of contemporaneous 

relations’ directionality, despite the associated limitations for inference, offers several key 

advantages, For instance, it reduces the presence of equivalent models and speeds up 

parameter estimation (Epskamp, Waldorp, et al., 2018).

Another strategy is to use algorithms that are explicitly designed to infer the directionality 

of contemporaneous relations by exploiting heuristics about directed acyclic graphs (DAGs), 

which are networks assumed to have directional relations but no feedback loops (e.g., 

in which both A influences B and B influences A) (Mumford & Ramsey, 2014). For 

example, the Greedy Equivalence Search (GES) approach (Chickering, 2002; Meek, 1997, 

1995; Ramsey et al., 2010) conducts a two-stage (forward/backward) data-driven search in 

which DAGs with many possible combinations of directed edges are explored, and then 
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a scoring algorithm that penalizes for model complexity (often the Bayesian Information 

Criterion or BIC) is used for DAG selection. Extensions of GES that leverage multi-

subject data (Ramsey et al., 2010, 2011) and facilitate its use in high-dimensional (e.g., 

neuroimaging) data (Ramsey et al., 2017) have also been proposed. Finally, the Linear Non-

Gaussian Acyclic Model (LiNGAM) approach (Shimizu et al., 2006) provides directionality 

inferences by assuming non-Gaussianity of errors, which yields additional information about 

directional relations in DAGs and allows for the use of either independent components 

analysis (ICA) or likelihood ratios (Hyvärinen & Smith, 2013) to infer the character of 

relations in the network. In general, GES, LiNGAM and similar algorithmic methods 

are designed to infer the directionality of contemporaneous relations without the use of 

information about autoregressive and lagged relations in the time series data.

Although the approaches outlined above have distinct merits, the VAR-based models have 

key limitations in research contexts in which contemporaneous relations are of interest 

(e.g., neuroimaging, daily diary), and the algorithmic/DAG methods may miss important 

features of network relations by not accounting the impact of temporal trends in the data. 

In contrast, approaches based on structural VAR models, such as unified structural equation 

modeling (uSEM), combine VAR and traditional SEM to permit simultaneous estimation of 

autoregressive relations, directed lagged relations, and directed contemporaneous relations 

(Gates et al., 2010; Kim et al., 2007). Although estimation of directed contemporaneous 

relations in this framework can lead to statistically and inferentially equivalent model 

solutions (Beltz & Molenaar, 2016), the combination of uSEM with the Group Iterative 

Multiple Model Estimation (GIMME) data-driven search strategy has nonetheless shown 

promise for producing accurate estimates of relation directionality (Gates & Molenaar, 

2012).

Originally developed for use with neuroimaging data, GIMME leverages the fact that 

individuals in a group typically display some degree of commonality in their network 

features, as well as unique, individual-level features. GIMME begins by using Lagrange 

multiplier tests (Sörbom, 1989), which sequentially estimate relations that best improve 

fit of a null model, to determine which relations significantly improve fit for a majority 

(typically 75%) of individuals in a group. After group-level relations are established, 

GIMME then uses the group-level structure as the null model for individual-level searches, 

in which Lagrange multiplier tests are again used to sequentially estimate relations that 

best-improve fit to the individual-level data until the model achieves suitable fit according to 

traditional fit indices. Initial applications of uSEM and GIMME to simulated neuroimaging 

data (Smith et al., 2011) revealed that this approach outperformed contemporary network 

modeling methods, including, notably, the LiNGAM, GES1, and VAR-based approaches 

(i.e., Granger causality), for estimating the directionality of relations between brain regions. 

GIMME successfully identified both the presence and directionality of approximately 90% 

of relations (collapsing across contemporaneous and lagged relations) in the simulated 

data (Gates & Molenaar, 2012). These simulated neuroimaging data, however, had strong 

autoregressive relations and a large proportion of lagged, relative to contemporaneous, 

1An extension of GES, IMaGES, was able to effectively recover the direction of relations when aggregated across individuals and with 
non-normality induced (Ramsey et al., 2011).
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relations. These features are not always present in neuroimaging data, especially for task-

based designs, nor for behavioral time series data, especially when measurement intervals 

are large (e.g., 24 hours; Beltz & Molenaar, 2015).

Given the benefits of accurately estimating the directionality of contemporaneous relations 

in many research contexts, the work presented here seeks to elucidate best practices for 

doing so within the GIMME framework. Specifically, we evaluate the efficacy of two 

different GIMME-based search approaches for recovering directionality – the strengths and 

weaknesses of which have never been systematically evaluated in a side-by-side comparison 

– under a variety of conditions that are likely to be encountered when analyzing empirical 

data from behavioral and neuroimaging domains. To begin, we provide a conceptual 

introduction to both approaches, focusing on their estimation of contemporaneous relation 

directionality.

GIMME-AR

The standard search approach within GIMME (Gates & Molenaar, 2012), which we 

hereafter refer to as GIMME-AR (short for “GIMME with Default Autoregressive 

Relations”), uses lagged and autoregressive relations to inform the estimation of 

contemporaneous relations during data-driven model fitting from a Granger causality 

perspective. Granger causality evaluates whether, after controlling for two variables’ 

autoregressive relations, variable A better predicts variability in variable B, or vice versa. 

For example, without the inclusion of autoregressive relations, the estimation of a directional 

contemporaneous relation from variable A to variable B (βBA) will provide an improvement 

in model fit that is identical to that provided by estimation of a relation in the opposite 

direction (βAB). However, estimating autoregressive or lagged relations alters this dynamic 

through the inclusion of covariates. If variable A has a strong autoregressive relation that 

explains a large portion of its variance that would otherwise be explained by variable B, 

estimation of βBA may yield a more substantial improvement in model fit than estimation 

of βAB. Similarly, if there is a strong lagged relation from B to A, then estimating a 

contemporaneous relation from A to B may provide greater improvement in fit relative to 

a contemporaneous relation from B to A. Both scenarios would cause the contemporaneous 

relation from A to B (βBA) to be selected during GIMME’s data-driven search, and this 

relation would therefore be assumed to best-reflect the directionality of the underlying 

process. Thus, covariates in the model influence detection of the directionality of the 

contemporaneous relation between two given variables. In this way, the final uSEM models 

obtained are strongly influenced by relations estimated early in the model search procedure. 

The GIMME-AR search strategy relies specifically on the use of autoregressive effects as 

covariates; in this approach, all individuals have all autoregressive relations estimated by 

default in the null model before the search commences to allow these relations to inform 

estimates of directionality.

Consistent with this approach, a recent simulation study focusing on the utility of GIMME-

AR for analysis of ambulatory assessment data (Lane et al., 2019) highlighted the 

importance of autoregressive relations for recovering directionality. This study assessed 

how effectively a recently-developed variant of GIMME that allows for the creation 
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of homogenous subgroups (S-GIMME) (Gates et al., 2017) recovered the presence and 

directionality of relations while varying the number of time points, participant sample size, 

and number of variables. Autoregressive relations were not varied systematically in these 

simulations and were, on average, roughly half the strength of between-variable lagged and 

contemporaneous relations. Recovery of both the presence and directionality of between-

variable relations was quantified with two statistics: 1) “recall”, or the proportion of all 

simulated relations/directions that were recovered by the model, and 2) “precision”, or the 

proportion of relations/directions estimated by the model that were truly present in the 

simulated data.

Crucially, results indicated that both direction recall and direction precision were 

dramatically improved when all autoregressive relations were estimated by default in the 

null model, providing the first empirical demonstration that autoregressive relations play a 

key role in informing directionality estimates in GIMME (Lane et al., 2019). However, it is 

notable that even when autoregressive relations were estimated in the null model to inform 

the search process, recovery of directionality was far from perfect; average direction recall 

ranged from .43 to .72 under optimal conditions, while direction precision ranged from .57 

to .79 (Lane et al., 2019).

GIMME-MS

An alternative approach to addressing directionality estimation in GIMME was introduced 

within a study on the presence of multiple solutions in data driven uSEM analyses (Beltz 

& Molenaar, 2016). Using both simulated and empirical data, the work demonstrated that – 

when autoregressive relations are not estimated in the null model – equivalent solutions 

in which contemporaneous relations of opposite directionality provide identical model 

fit are encountered throughout the data driven search process. Equivalent solutions were 

more common in data with relatively stronger contemporaneous relations than in data with 

relatively stronger lagged relations, because these strong contemporaneous relations are 

opened earlier in the search process, and lagged relations (i.e., covariates) are therefore 

unable to contribute information about their directionality (Beltz & Molenaar, 2016). The 

authors proposed that, rather than relying on lagged or autoregressive relations opening early 

in the search to inform estimation of contemporaneous relation directionality, it would be 

valuable to consider all possible solutions, with varying accounts of directionality, that result 

from the search process and subsequently use other objective or subjective criteria to select 

an optimal model.

The resulting GIMME for Multiple Solutions (GIMME-MS) uses the same search strategy 

implemented in standard GIMME, but with one critical change in search procedures (Beltz 

& Molenaar, 2016). Whenever, in the course of either the group- or individual-level search 

processes, estimation of two or more relations with the highest modification indices would 

provide an equivalent improvement in fit - a situation which almost always results from 

contemporaneous relations of opposing directionality - the algorithm estimates a separate 

model for each of these relations and continues the search procedure for all models in 

parallel. This strategy produces “trees” of parallel group- and individual-level searches 

that can result in multiple solutions at each level. After the GIMME-MS search process 
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terminates, the researcher can then use several strategies to select an optimal model from 

these solutions, including cross-validating models in unseen data, eliminating solutions 

that are theoretically implausible, or using information from standard indices of absolute 

or relative model fit. Given that cross-validation and theoretical guidance are not always 

available and that absolute fit indices are inappropriate for model comparison, procedures 

that use relative fit indices for model selection may be most widely applicable.

One such principled solution reduction procedure proposed by Beltz and Molenaar (2016) 

that has been successfully adopted in subsequent work (Beltz et al., 2016; Dotterer et 

al., 2019; Kelly et al., 2020; Weigard et al., 2019) utilizes the AIC (Akaike, 1973), a 

log-likelihood-based index of relative model fit. Although the use of AIC can vary based on 

the research question, extant applications have taken an approach in which individual-level 

models are selected first and then used to determine the best group-level solution (e.g., 

Beltz et al., 2016; Dotterer et al., 2019; Kelly, Weigard, & Beltz, 2020; Weigard et al., 

2019). Within each group-level solution, the AIC is first used to select a best-fitting model 

for each individual out of all of their possible individual-level solutions. Next, the AIC for 

these selected models is averaged across individuals within each group-level solution and the 

group-level solution with the lowest average AIC is then selected as the optimal model. In 

a small set of simulation studies aimed at validating these methods, GIMME-MS and AIC 

were found to recover all relations from the “true” model used to simulate several data sets 

that varied in their sample size, time series length, and relative strengths of contemporaneous 

and lagged relations (Beltz & Molenaar, 2016). Hence, the combination of GIMME-MS 

with an AIC-based solution reduction strategy offers an attractive option for researchers 

wishing to obtain valid directionality estimates in uSEMs, especially in situations in which 

autoregressive and lagged relations may be too weak to precisely inform estimates of 

directionality early in standard GIMME searches.

Current Study

Despite the clear value of the uSEM network modeling approach for characterizing 

person-specific processes in neuroimaging and intensive longitudinal behavioral data, the 

importance of obtaining directionality estimates in many applications warrants further 

examination of when directionality can be accurately recovered. The work reviewed above 

suggests that two search strategies within the GIMME framework may be effective for 

providing accurate directionality estimates: 1) autoregressive relations estimated by default 

in the null model (GIMME-AR), and 2) generation of multiple uSEM solutions during the 

search process that can later be compared using the AIC (GIMME-MS). Due to the wide 

breadth of application that uSEM and related methods have seen, features of lagged and 

autoregressive relations may differ considerably across empirical data sets analyzed with 

these approaches, which may in turn have implications for model fitting and directional 

relation recovery. For example, fMRI data are known to have a high degree of temporal 

autocorrelation, especially when collected during “resting state” scans (Arbabshirani et al., 

2014; Beltz & Molenaar, 2015; Christova et al., 2011). In contrast, autoregressive relations 

in daily diary and ambulatory assessment data are often significantly weaker (Beltz et al., 

2016; Beltz & Molenaar, 2016; Lane et al., 2019). The relative efficacy of GIMME-AR and 

GIMME-MS has not been evaluated under variable conditions of autoregressive and lagged 
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relation strength (these factors were not varied by Lane et al., 2019), and GIMME-MS has 

yet to be tested in a large-scale, comprehensive simulation. Therefore, researchers currently 

have little guidance regarding how their choice of search strategy affects the integrity of 

directionality findings drawn from substantive applications of GIMME.

Our broad goal was to assess the absolute and relative efficacy of the GIMME-AR and 

GIMME-MS search strategies for recovering the directionality of contemporaneous relations 

in time series data under different realistic conditions that were expected to either facilitate 

or hinder recovery2. Specifically, we aimed to gauge both strategies’ recall and precision 

(the same criteria used by Lane et al., 2019) in recovering the direction of contemporaneous 

relations from simulated data while varying: 1) the strength of autoregressive relations, 2) 

the relative strength of contemporaneous and lagged relations, and 3) time series length. 

Autoregressive relations were varied along a range that spanned from effectively null 

(average standardized β = .00, SD = .10) to strong (β = .60, SD = .10), which allowed us 

to evaluate recovery in data with autoregressive effects of the size commonly found across 

daily diary, ambulatory assessment, and fMRI data sets typically analyzed with GIMME 

(Beltz et al., 2016; Beltz & Molenaar, 2015, 2016; Lane et al., 2019). Contemporaneous 

relations were, in three different conditions: 1) roughly equivalent to lagged relations in 

strength, 2) systematically stronger than lagged relations, and 3) systematically weaker than 

lagged relations.

We hypothesized that GIMME-AR would display the highest rates of direction recall and 

direction precision when autoregressive relations in the simulated data were strong and when 

lagged relations were relatively stronger than contemporaneous relations. As GIMME-MS 

allows all possible outcomes of the data driven search process to be compared, rather 

than relying on strong autoregressive and lagged relations to guide the search toward a 

single solution, we hypothesized that the directionality recovery of GIMME-MS would 

be less influenced by the strength of autoregressive and lagged relationships, and that 

GIMME-MS would display relative advantages to GIMME-AR when autoregressive and 

lagged relations were weak. When autoregressive and lagged relationships were relatively 

strong, we hypothesized that the performance of the two search strategies would be similar, 

as previous work suggests that GIMME-MS may output fewer possible solutions, or only a 

single solution, when strong autoregressive and lagged relations are estimated early in the 

search (Beltz & Molenaar, 2016).

We then leveraged two empirical data sets to illustrate how the strength of naturally-

occurring autoregressive relations influences results from GIMME-AR and GIMME-MS, 

and to guide recommendations for the application of GIMME in neuroimaging and 

behavioral data, including consideration of model assumptions. We applied both GIMME-

AR and GIMME-MS to: 1) an archival resting state fMRI data set (Beltz & Molenaar, 

2015), and 2) self-ratings of mood and psychopathology symptoms from a novel 100-day 

intensive longitudinal study. Given that autoregressive relations are typically substantially 

2Although we focus on the estimation of contemporaneous relation directionality due to its unique challenges, we also present 
directionality recovery results for lagged relations in Supplemental Materials. These supplemental analyses of lagged relations 
generally support the same conclusions.
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stronger in resting state fMRI data than in daily diary data, we hypothesized that GIMME-

MS would identify a greater number of possible solutions for the daily diary data set. 

We also hypothesized that results obtained from GIMME-AR and GIMME-MS would be 

relatively similar for the resting state fMRI data, as the opening of strong autoregressive 

relations early in the GIMME-MS search process would be expected to lead the two search 

strategies to converge on similar models.

In the following sections, we first provide a detailed technical description of uSEM, 

GIMME, and the two different search strategies we assessed in this framework (GIMME-

AR and GIMME-MS). Next, we describe the methods and results of the simulation study 

and include a discussion of the key substantive implications of these results. We then 

provide a description of the methods, results, and implications of our analyses of empirical 

resting state fMRI and daily diary data. Finally, we provide a general discussion of the 

broad implications of our findings for typical applications of GIMME and related network 

modeling methods.

Technical Description of GIMME and Search Strategies

Formal Definition of uSEM and GIMME

Unified structural equation modeling (uSEM), as first proposed by Kim et al. (2007), is a 

variant of structural vector autoregressive modeling, a framework that was developed for the 

analysis of time series data in econometrics (Lütkepohl, 2005). uSEM is formally defined as 

follows (assuming mean-centered data):

ηt = Aηt + ϕηt − 1 + ζt

where ηt is the current state of a multivariate time series with p variables at time t, A is a 

p × p matrix of coefficients for contemporaneous linear relations between variables (with 

a diagonal of 0), ϕ is a p × p matrix of coefficients for linear relations between variables 

at a lag of 1 (including autoregressive relations in the diagonal), and ζ contains Gaussian 

residuals which have a mean of 0 and are assumed to reflect white noise.

Within the GIMME framework (Gates & Molenaar, 2012), uSEM can be extended in the 

following way (assuming mean-centered data):

ηi, t = Ai + Ai
g ηi, t + ϕi + ϕi

g ηi, t − 1 + ζi, t

where i represents each individual and g represents the group (i.e., full sample), Ai and 

Ai
g contain coefficients estimated at the individual-level for relations present for a given 

individual and the whole sample, respectively, and ϕi and ϕi
g contain the individual’s 

coefficients for lagged relations estimated individually and for the group, respectively. 

Hence, although GIMME leverages relations that are present for the majority of the sample 

to inform the estimation of individual-level models, all parameters, including those for 

relations that are common to the larger group, are estimated at the individual level.
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GIMME-AR Search Strategy

The GIMME-AR search strategy is a straightforward implementation of the standard 

GIMME method (Gates & Molenaar, 2012), with the stipulation that all autoregressive 

relations are estimated in the null model (before the group-level search). First, null models 

are estimated for all individuals from the 2p × 2p block Toeplitz covariance matrices 

generated from the empirical time series (Box et al., 2015; Molenaar, 1985), with only 

specific parameters from the variance-covariance matrix of the process innovation being 

freely estimated in standard GIMME. In the GIMME-AR search strategy, specifically, 

autoregressive relationships in the diagonal of the ϕ matrix are also freely estimated in these 

null models. Second, the search process begins with Lagrange multiplier tests (modification 

indices) at the group level (Sörbom, 1989), which sequentially estimate relations that 

provide the best improvement of model fit across individuals. This process continues 

until no remaining relations significantly improve fit (defined as a Bonferroni-corrected 

p<.05) for a predetermined percentage of the group (typically 75%, as validated in early 

simulations; Gates & Molenaar, 2012). Third, following the group-level search, a “pruning” 

procedure is enacted to sequentially remove relations that are no longer significant for 

the same predetermined proportion of individuals. Fourth, individual-level solutions are 

generated by using the final group-level model structure as a starting point for Lagrange 

multiplier tests that sequentially estimate significant relations (defined as p<.01) for each 

individual. These individual-level searches continue until two of four common model fit 

indices suggest “excellent” (Brown, 2006) fit (RMSEA ≤ .05, SRMR ≤ .05, CFI ≥ .95, 

NNFI ≥ .95), and are followed by an individual-level pruning procedure that again removes 

relations that are no longer significant.

GIMME-MS Search Strategy

The GIMME-MS approach (Beltz & Molenaar, 2016) is similar to the GIMME-AR 

approach, with several critical exceptions. The search process similarly begins with the 

estimation of a null model, which is defined here as having no relations in the ϕ or A 

matrices estimated. Thus, unlike GIMME-AR, the autoregressive relations in the diagonal 

of ϕ are not freely estimated in GIMME-MS and are instead subject to the same criteria for 

estimation during the search process as other relations. After estimation of the null model, 

the group-level search process proceeds with Lagrange multiplier tests. However, at steps 

in the search in which the maximum modification index is not singular (i.e., when two or 

more parameters with identical modification indices display the maximal values), separate 

“solution paths” are created in which each relation with a maximal modification index value 

is estimated. The search process continues for these solution paths in parallel, with the 

possibility of additional paths being added in subsequent iterations. For each solution path, 

the search stops when no remaining relations significantly improve fit for a predetermined 

percentage of the group (again, typically 75%), and the standard GIMME pruning process 

is implemented. Next, within the group-level solutions that result from each solution path, 

individual-level search and pruning processes are conducted using the standard GIMME 

stopping criteria based on model fit. As in the group-level search, GIMME-MS generates 

multiple solution paths for a given individual-level model when maximum modification 

indices are not singular. Hence, the GIMME-MS procedure can result in multiple solutions 

for each individual that are nested within multiple group-level solutions.
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Once all possible group- and individual-level solutions are obtained, researchers can use 

several strategies to select optimal solutions. The widely applicable AIC-based solution 

reduction procedures implemented in the current study to select final models for GIMME-

MS fits to simulated and empirical data are described in detail below.

Simulation Study Methods

Simulation Design and Data Generation

We used Monte Carlo simulation procedures implemented in R (R Core Team, 2019), 

following Lane et al. (2019), to generate 8-variable time series data sets for simulated 

individuals. Data sets varied along several key factors: 1) number of time points (T = 

50, 100, or 300), 2) autoregressive relation strength (β = .00, .10, .30, .50, or .60 all 

with SD = .10), and 3) relative strength of contemporaneous and cross-lagged (i.e., non-

autoregressive lagged) relations (balanced, lagged-greater, or contemporaneous-greater). In 

the balanced (BA) condition, all contemporaneous relations in A were β = .30 (SD = .10) 

while cross-lagged relations in ϕ were β = −.30 (SD = .10)3. In the lagged-greater (LG) 

condition, contemporaneous relations in A were β = .30 (SD = .10) while cross-lagged 

relations in ϕ were β = −.60 (SD = .10). In the contemporaneous-greater (CG) condition, 

contemporaneous relations in A were β = .60 (SD = .10) while cross-lagged relations in ϕ 
were β = −.30 (SD=.10). The average absolute βs across these conditions allow evaluation 

of directionality recovery when contemporaneous and cross-lagged relations were either 

roughly as strong as the middle autoregressive strength condition (|β| = .30) versus when 

they were substantially stronger (|β| = .60). The range of βs for autoregressive relations was 

selected based on prior applications of GIMME to daily diary data, which typically display 

autoregressive effects at the lower end of this range, and based on applications from resting 

state fMRI data (including the specific data set used in the empirical example below; Beltz 

& Molenaar, 2015), which typically display autoregressive effects at the higher end. The 

final factorial design included 3 × 5 × 3 = 45 conditions, which were evaluated using 100 

group-level replications each, leading to the generation of 5,000 individual-level data sets 

within each condition (100 replications × 50 subjects) and 225,000 individual-level data sets 

in total.

Following Lane et al. (2019), we generated data using an algebraic manipulation of the 

standard uSEM equation:

ηi, t = Ip − Ai + Ai
g −1 ϕi + ϕi

g ηi, t − 1 + Ip − Ai + Ai
g −1ζi, t

where Ip represents the identity matrix, and errors are generated to be Gaussian white noise 

for all variables and individual subjects. The first 50 observations of each simulated time 

3Cross-lagged relations were specified as negative in all conditions for two reasons. First, negative relations balance out the influence 
of strong positive relations on the time series, which otherwise leads to instability in the time series variable values (e.g., uncontrolled 
growth). Second, previous applications of GIMME to both behavioral and fMRI data have generally found that contemporaneous 
relations are more likely to be positive while cross-lagged relations are more likely to be negative (Beltz & Molenaar, 2015; Dotterer et 
al., 2019; Wright et al., 2015).
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series were discarded prior to generating the number of observations for each condition (T = 

50, 100, or 300) in order to allow the time series to stabilize after initialization.

Individuals were nested within groups of 50 subjects each and shared 50% of their relations 

with other subjects in their group. The structure of A and ϕ was generated randomly for 

each replication and individual while holding overall network density to roughly 20% (not 

including autoregressive relations). Relations were roughly evenly distributed between A 
and ϕ and were evenly distributed between the group and individual level (i.e., for every 

subject, 50% of relations were unique to that individual rather than common to the group). 

In order to prevent unstable data generation, A matrices with maximum absolute eigenvalues 

greater than 1 were rejected, as they indicate that the density of positive input to given 

variable, or variables, would likely lead to uncontrolled growth.

All R scripts used to simulate the data, fit GIMME models to the simulated data, and 

evaluate directionality recovery, as well as all simulated data reported in the current study, 

are publicly available on the Open Science Framework (https://osf.io/zvfuh/).

Evaluation of Directionality Recovery

The GIMME-AR and GIMME-MS search strategies were applied separately to data from 

all simulation replications using the gimme (version 0.6–1) R package (Lane et al., 2019b). 

To select final models from the GIMME-MS fits, we used the AIC (Akaike, 1973), as the 

use of standard fit indices is likely to be the most widely applicable method, and as AIC 

has been previously applied for solution reduction in empirical studies using GIMME-MS 

(Beltz et al., 2016; Dotterer et al., 2019; Kelly et al., 2020; Weigard et al., 2019). First, the 

solution for each individual that displays the lowest AIC within each group-level solution 

was selected as the optimal individual-level solution for that group-level solution. Next, AIC 

was averaged across all selected individual-level solutions within each group-level solution, 

and the group-level solution with the lowest average AIC was selected.

Following the estimation and selection of final uSEMs in both frameworks, we used two 

indices to evaluate the efficacy of directionality recovery for contemporaneous relations 

(recovery for cross-lagged relations, although not to focus of this study, is also reported 

separately in Supplemental Materials): direction recall and direction precision (Lane et 

al., 2019). Direction recall is calculated as the proportion of directional contemporaneous 

relations present in the individual data-generating model that are successfully recovered in 

the uSEM (i.e., what fraction of the true relations did the model search recover?). Direction 

precision is calculated as the proportion of directional contemporaneous relations present 

in the individual uSEM that were also present in the data-generating model (i.e., what 

fraction of the relations recovered were in the data generating model?). In both cases, 

contemporaneous relations are considered to be correctly recovered if they are between the 

same variables and in the same direction as the data generating model. These indices each 

provide distinct, important information about recovery; recall evaluates how accurately the 

recovered model represents relations from the data-generating model by accounting for false 

negatives, while precision evaluates how likely recovered relations are to be true relations by 

accounting for false positives.
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When considering the absolute values of recall and precision, it is important to note 

that GIMME is a sparse network mapping approach that prioritizes the inclusion of 

strong relations and does not typically estimate weaker relations. Additionally, we are 

simultaneously assessing both: 1) the recovery of a relation, and 2) the correct directionality. 

Other work (e.g., Gates & Molenaar, 2012; Lane et al., 2018; Smith et al., 2011) assesses the 

ability to recover a relation separately from the ability to detect the direction of the relation. 

The measure we use is more strict. Therefore, recall values considerably lower than 1 are 

expected, and precision values are expected to be higher than recall values. In substantive 

applications of GIMME, precision is also a central practical consideration because it is 

directly linked to questions about how confident a researcher should be in a given result (i.e., 

how likely is it that this directional relation is truly present in the data?). Precision statistics 

close to 1 are therefore optimal.

Simulation Study Results and Discussion

Convergence and Model Checking

Across the GIMME-AR and GIMME-MS search strategies, over 99.5% of models 

converged normally4. Model plausibility was also evaluated via the standardized error 

covariance matrix for assumption-violating values below 0 or above 1. Recovery analyses 

were conducted both including and excluding implausible models to ensure that inferences 

about directionality were robust. As these sensitivity analyses produced the same general 

patterns and inferences, results from the larger data set are reported below, and results with 

implausible models excluded are reported in Supplemental Materials.

Multiple Solutions by Simulation Condition

We first evaluated our prediction that data sets with weaker autoregressive/lagged than 

contemporaneous relations would produce more solutions in GIMME-MS. Figure 1 

displays, for each condition, the average number of individual-level solutions (across all 

group-level solutions) in each replication (μIsol/rep). More detail on the levels of multiple 

solutions in each condition is available in Supplemental Materials. As expected, the relative 

strength of contemporaneous and lagged relations had a substantial influence on the 

number of solutions. Multiple solutions were rare in the lagged-greater (LG) condition 

(blue in Figure 1), with solution counts staying at, or a slight fraction above, 1 regardless 

of autoregressive relation strength or the number of time points. Furthermore, even in 

conditions in which multiple solutions were relatively common – contemporaneous-greater 

(CG) and balanced (BA) – they were infrequent when strong autoregressive relations 

were present. Notably, multiple solutions were extremely rare in the BA condition when 

autoregressive relations were systematically stronger than the off-diagonal contemporaneous 

and lagged relations (β = .50-.60 vs. β = |.30| for off-diagonal relations).

4Convergence proportions for GIMME-MS were defined as the proportion of simulated individual-level data sets for which a 
converged solution was available following solution reduction procedures (i.e., individual-level solutions that did not converge were 
not considered during solution selection, and group-level solutions for which less than 75% of individuals had at least one solution that 
converged normally were not considered).
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These results supported our prediction that GIMME-MS would generate fewer multiple 

solutions for data sets with relatively strong autoregressive or lagged relations than for those 

in which such relations are relatively weak. In fact, multiple solutions were exceedingly 

rare in conditions in which contemporaneous relations were either systematically weaker 

than lagged relations or systematically weaker than autoregressive relations. Under these 

conditions, the strong autoregressive or lagged relations are estimated early in the search 

process, preventing cases in which opening contemporaneous relations would lead to 

equivalent improvements in model fit. Therefore, when cross-lagged and/or autoregressive 

relations are strong, the GIMME-MS search process may closely resemble that of GIMME-

AR and, in turn, may generate highly similar models.

Directionality Recovery of Contemporaneous Relations

We next evaluated, and contrasted, the efficacy of GIMME-AR and GIMME-MS for 

recovering contemporaneous relation directionality. Table 1 provides a comprehensive 

summary of both search strategies’ direction recall and precision for contemporaneous 

relations, as well as the difference in recall and precision between the strategies. As 

discussed below, box plots of recall and precision values for individual-level models 

(Figures 2–5) show the effects of number of time points and autoregressive relation strength 

on contemporaneous direction recovery for the BA condition, as well as differences between 

search strategies in all conditions. Additional box plots of contemporaneous direction 

recovery in the LG and CG conditions and recovery statistics for cross-lagged relations 

are in Supplemental Materials.

Contemporaneous direction recall for both strategies increased with the number of time 

points, consistent with previous work (Lane et al., 2019; Nestler & Humberg, 2021), and 

also increased dramatically at higher autoregressive relation strengths. Figure 2 illustrates 

both effects: Data sets with stronger autoregressive relations displayed better recall than 

those with weaker autoregressive relations across all time point conditions and, notably, 

across both GIMME-AR and GIMME-MS. Recall was typically below .50 for data sets with 

weak autoregressive relations, even with many time points, but data sets with autoregressive 

relations greater than or equal to the strength of off-diagonal relations in the BA condition 

(β = .30) displayed greater recall, especially at 300 time points. Differences between recall 

in the LG and CG conditions (Table 2) illustrate effects of the relative strength of lagged 

and contemporaneous relations: Across search strategies, recall was better for the CG than 

LG condition when autoregressive relations were strong (β =.50-.60), but was similar 

between the conditions when autoregressive relations were weak. Hence, contrary to our 

expectations, stronger contemporaneous relations did not substantially degrade direction 

recall; indeed, it improved it in some conditions. As the contemporaneous relations in CG 

may have been easier to detect because they were estimated early in the search process, this 

may have combined with conditions that are more favorable for discerning directionality 

(i.e., strong autoregressive relations) to improve recall overall.

Differences in contemporaneous relation direction recall between GIMME-AR and 

GIMME-MS across all simulation conditions are illustrated in Figure 3. At low to 

moderate autoregressive strengths (β = .00-.30), GIMME-MS showed improved direction 
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recall relative to GIMME-AR. These improvements were marginal in the BA and LG 

conditions (.04 on average), but more substantial in the CG condition (.10 on average). 

However, at high autoregressive strengths, recall was typically identical between the two 

search strategies in the BA and LG conditions (as illustrated by the box plots in which 

most recall difference scores were 0), likely because the search strategies converged on 

identical models, and recall was substantially worse for GIMME-MS in the CG condition 

(by .13 on average). The advantage of GIMME-AR relative to GIMME-MS when both 

contemporaneous and autoregressive relations were relatively strong likely reflects the fact 

that strong autoregressive relations estimated in the null model in GIMME-AR provide 

guidance for the search, while strong contemporaneous relations may instead be estimated 

before them in GIMME-MS.

For contemporaneous direction precision, effects of the number of time points and the 

strength of autoregressive relations (Figure 4, Table 1) mirrored effects of direction recall, 

although precision statistics had higher absolute values because GIMME produces sparse 

and parsimonious networks by avoiding the estimation of weak (and potentially spurious) 

relations. Precision was consistently poor when autoregressive relations were weak (β 
= .00-.10) and gradually improved as the strength of these relations increased. Overall, 

optimal precision values were seen when autoregressive relations were strongest (β = 

.50-.60) and when 100 time points (average precision = .74) or 300 time points (average 

precision = .83) were available. In contrast to direction recall, however, direction precision 

was unambiguously better in the LG condition than in the CG condition (Table 2), with 

the only exceptions being for GIMME-AR at high autoregressive strengths. GIMME-AR 

obtained high precision with at least 100 time points in both conditions. Therefore, patterns 

in contemporaneous direction precision, but not contemporaneous direction recall, were 

consistent with our expectation that relatively stronger lagged relations would improve 

recovery.

Differences in contemporaneous direction precision between GIMME-AR and GIMME-MS 

(Figure 5) were similar to those for contemporaneous direction recall. At low to moderate 

autoregressive strengths (β =.00-.30), GIMME-MS provided improved precision in the CG 

condition (by .09 on average), but no clear pattern emerged in the BA or LG conditions. 

At high autoregressive strengths, the search strategies had nearly identical precision in the 

BA and LG conditions, and GIMME-MS displayed markedly worse performance in the CG 

condition (by .20 on average), similar to the effects in recall.

In summary, contemporaneous direction recall and precision were both found to be 

substantially improved when autoregressive relations were stronger, consistent with our 

expectations. Effects of the relative strength of contemporaneous and lagged relations 

were more nuanced; precision was degraded, but recall was generally improved, when 

contemporaneous relations were stronger than lagged relations. Although effects of 

autoregressive and lagged relation strengths were generally consistent between GIMME-

AR and GIMME-MS, GIMME-MS displayed incrementally better recall and precision 

than GIMME-AR when autoregressive relations were weak. When autoregressive relations 

were strong, performance of the methods was either equivocal, or, in situations in which 

contemporaneous relations were also strong, substantially worse for GIMME-MS. Hence, 
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these findings present clear implications for whether GIMME-AR or GIMME-MS may 

be preferable in specific network modeling applications: GIMME-MS may be helpful 

for improving contemporaneous directionality recovery when autoregressive relations in 

empirical data are weak (e.g., intensive longitudinal or daily diary studies), whereas 

GIMME-AR appears preferable for data sets in which autoregressive relations are known 

to be strong (e.g., resting state fMRI).

Empirical Data Analysis Methods

We applied GIMME-AR and GIMME-MS (with AIC solution reduction) to two empirical 

data sets illustrating typical situations in which autoregressive relations are strong versus 

weak: resting state fMRI and daily diary data, respectively. In doing so, we: 1) evaluate 

whether effects of autoregressive relation strength on model features (e.g., number of 

solutions in GIMME-MS) identified in the simulation study are matched in empirical 

data, 2) assess similarities and differences between models estimated by GIMME-AR and 

GIMME-MS, and 3) provide practical insights to users planning to implement GIMME 

in similar empirical data, including important considerations about how features of these 

data sets may or may not align with assumptions of directionality modeling approaches, 

including GIMME.

Resting State fMRI

The first data set was previously analyzed in a study outlining a posteriori model validation 

procedures for standard GIMME models (Beltz & Molenaar, 2015), which includes a 

detailed description of the participants, procedures and pre-processing steps. Briefly, resting 

state fMRI data were collected from 32 young adult participants (all aged 20–21 years; 

18 females) as part of a larger neuroimaging study on the neural reward and inhibitory 

processing of alcohol cues in university students. During a 2-hour neuroimaging and 

behavioral data collection session, participants were scanned using a 3-Tesla Siemens Trio 

scanner. MRI data included a high-resolution structural image as well as functional images 

collected in an EPI sequence (TR = 2000ms, TE = 25ms, FOV = 240mm, flip angle = 

80°). During a resting state scan of 164 volumes (i.e., 164 separate measurement time 

points), participants were instructed to close their eyes and relax without falling asleep. 

Standard pre-processing steps included removal of the first 4 volumes, motion correction, 

non-brain removal, spatial smoothing with a 6mm Gaussian kernel, grand-mean signal 

intensity normalization, highpass filtering, removal of physiological noise via white matter 

and cerebrospinal fluid signal regression, and normalization to MNI space. Four regions of 

interest (ROIs), which are all central to the default mode network (DMN), were identified: 

posterior cingulate cortex (PCC; x = −5, y = −49, z = 40), 2), medial prefrontal cortex 

(MPFC; x = −1, y = 47, z = −4), right lateral parietal lobule (R LP; x = 46, y = −62, z = 32), 

and left lateral parietal lobule (L LP; x = −45, y = −67, z = 36). Mean BOLD signal from 

each region was then extracted for the remaining 160 volumes in the time series.

Daily Diary of Emotion Ratings

The second data set was drawn from a larger 100-day diary study of daily emotion in 

university community participants. Questionnaires administered daily included the widely-
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used Positive and Negative Affect Schedule (PANAS), in which participants rate their levels 

of 10 Positive emotions (e.g., “Enthusiastic”) and 10 Negative emotions (e.g., “Irritable”) 

on a 1–5 scale (Watson et al., 1988), and the 7 Up 7 Down inventory (Youngstrom et al., 

2013), in which participants rate their levels of 7 Mania symptoms (e.g., “periods of extreme 

happiness and intense energy”) and 7 Depression symptoms (e.g., feeling “so down in the 

dumps you thought you might never come out of it”) on a 0–3 scale. We included data from 

32 participants who were matched on gender (18 females) and who were in roughly the 

same age range (18–23 years old) as participants in the fMRI data set to ensure samples 

were structurally and demographically similar. As the fMRI data included 4 ROIs, we 

likewise selected 4 variables from the daily diary study which were likely to show relations 

with one another: Positive affect (daily composite from the PANAS), Negative affect (daily 

composite from the PANAS), Mania symptoms (daily composite from the 7 Up 7 Down 

inventory), and Depression symptoms (daily composite from the 7 Up 7 Down inventory).

Analyses

Prior to model fitting, we considered several features of each empirical data set to determine 

the extent to which basic assumptions of GIMME were met, including the assumptions 

of equal measurement intervals, weak stationarity, and Gaussian white noise errors that 

apply to GIMME and most other directionality modeling approaches. We then analyzed 

both data sets with GIMME-AR and GIMME-MS (with identical procedures to those 

used in the simulation study) and assessed several features of the results. First, we 

examined autoregressive relation strength in the two data sets by assessing the proportion 

of autoregressive relations estimated in GIMME-MS and the β weights of autoregressive 

relations estimated in GIMME-AR. We expected that the resting state fMRI data set would 

display both a greater proportion of autoregressive relations estimated in GIMME-MS and 

higher β weights of autoregressive relations estimated in GIMME-AR. Next, we examined 

the number of solutions generated by GIMME-MS in the two data sets. As the daily 

diary data were expected to have weaker autoregressive relations, we expected this data 

set to produce more solutions in GIMME-MS than the fMRI data set. Last, we examined 

the presence and directionality of relations in the final models obtained from each search 

strategy. We expected that GIMME-AR and GIMME-MS would display similar patterns of 

directionality when applied to the fMRI data set, but that their patterns of directionality 

for the daily diary data set would be discrepant (as the search strategies would differ in 

early-estimated relations).

Empirical Data Analysis Results and Discussion

Assumptions and Empirical Data Features

Simulation study data were explicitly derived from a data-generating process that met the 

assumptions of GIMME. However, it is possible (and perhaps likely) that empirical data 

sets violate these assumptions to some extent. Therefore, we begin by assessing several key 

assumptions in the empirical fMRI and daily diary data sets. These assumptions and other 

important considerations are reviewed in greater detail in prior GIMME tutorials (Beltz & 

Gates, 2017).
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The assumption of equal measurement intervals is met in both empirical data sets. The 

fMRI data were collected at a precise interval (2000ms TR) and, in the daily diary study, 

participants were asked to respond to the mood measures between 8PM and bedtime each 

day and to reflect on how they generally felt throughout the past 24 hours.

The current implementation of uSEM within GIMME also assumes “weak stationarity”, 

or that data means, variances and covariances are stable across time. Preprocessing steps 

typically used to prepare resting state fMRI data for analysis help to maintain stationarity, 

and many of those steps were applied to these empirical fMRI data. They include high pass 

filtering, which removes low-frequency temporal trends from the data, and the covariation of 

nuisance signals (e.g., from white matter and cerebrospinal fluid), which removes variance 

associated with nonstationary contaminant processes like participant motion. Therefore, we 

expect that the stationarity assumption is met in the empirical fMRI data, although this 

assumption is naturally dependent on the success of preprocessing strategies for removing 

impactful non-stationary trends.

Stationarity considerations particularly relevant to intensive longitudinal behavioral 

data, such as the daily diary data analyzed here, include whether extreme values 

disproportionately influence model estimates. For example, a person experiencing a 

profoundly negative life event (e.g., loss of employment or the death of a loved one) may 

report extreme levels of negative affect on a small set of days. These outliers may not reflect 

the otherwise-stationary processes that govern the rest of the time series. To examine outliers 

in the empirical data, we standardized observations of each variable for each individual to 

Z-scores and plotted histograms of individuals’ most extreme Z-score absolute value for 

each variable (Supplemental Figure 14). Notable outliers were relatively uncommon in the 

resting state fMRI data. For each variable, fewer than half of individuals displayed a value 

>3SD from the mean, and there were only two instances (for two separate variables) in 

which a single individual displayed an outlier >6SD from the mean. In the daily diary data, 

however, the majority of individuals displayed values >3SD from the mean, and it was also 

common for individuals to display outliers >6SD, especially for Manic Symptoms (41% 

of the sample) and Depression Symptoms (34%). It is possible these two variables were 

more likely to display extreme values because they represent items that are infrequently 

endorsed by most individuals in non-clinical samples, and therefore, only display high levels 

on a subset of days during which individuals potentially experienced life events that had a 

substantial impact on their mood. Overall, the presence of more extreme values in the daily 

dairy data supports the notion that these data are more likely to contain influential cases 

than neuroimaging data and suggests that users of these data should consider sensitivity 

analyses to gauge the impact of outliers on inferences. Possible sensitivity analyses may 

include re-running GIMME while excluding these extreme values or including the severity 

of an individuals’ outliers as a covariate in follow-up tests.

A third basic assumption of uSEM within GIMME is that errors will reflect Gaussian “white 

noise”, or noise without any remaining temporal dependencies; although autoregressive 

effects of the first order, or even higher orders, may be present in empirical data, the first-

order autoregressive terms in GIMME are assumed to be able to effectively model temporal 

dependencies, leaving only “white noise” in the residual time series. Figure 6 displays, 
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for all variables and individuals in both data sets, the observed temporal autocorrelation 

coefficients at the first order (i.e., lag of 1, which GIMME estimates) through the seventh 

order. Note that this is the empirical data rather than the noise, so white noise is not 

expected. These coefficients indicate that the observed resting state fMRI data exhibited 

strong temporal dependencies. Autocorrelation was most pronounced at the first order, but 

also appears, on average, to be substantial (e.g., ≥0.20) at the second order, and many 

individuals displayed statistically significant autocorrelation effects at higher orders. In 

contrast, the daily diary data showed much weaker temporal dependencies; autocorrelation 

was only substantial for the first order, although these first-order effects were much 

smaller than those in the fMRI data, and few individuals displayed statistically significant 

autocorrelation effects at higher orders. This contrast suggests that the resting state fMRI 

data may require models with higher order autoregressive effects to fully account for all 

temporal dependencies. In fact, Beltz and Molenaar (2015) used this specific fMRI data set 

to explore, in depth, the validity of the assumption that the first-order effects modeled by 

default GIMME can adequately account for temporal dependencies in neuroimaging data. 

The authors found that 14 participants (44% of the sample) required the addition of a second 

order autoregressive term to produce white noise residuals. However, relevant to our focus 

in the current paper, this term only appeared to alter the estimation of contemporaneous 

relations for a minority of individuals.

Although these daily diary data appear to exhibit relatively weak autocorrelation 

coefficients, a key consideration for intensive longitudinal behavioral data is whether mood 

or behavior follows cyclical trends, for instance across days of the week (e.g., feeling 

positive on Saturdays). If such trends exert a predominant effect on variation in the 

time series, or if they are of specific interest for a given research question, the current 

implementation of GIMME is not an ideal analysis option because it does not explicitly 

model such features. Figure 6 indicates that the daily diary data exhibited a generally 

monotonic decreasing pattern as orders increase and, importantly, that there was no uptick 

in autocorrelation at the seventh order, suggesting a lack of weekly trends. A handful of 

individuals (13–16%, depending on the variable) displayed small, statistically significant 

autocorrelation coefficients at the seventh order. However, this was also true at most other 

orders and even true for the seventh order of one of the fMRI variables (which is not 

on a weekly cycle). Hence, there is little evidence that systematic cyclical trends have a 

significant impact on these daily diary data.

Finally, prior to conducting any directionality modeling analysis, users should consider 

whether the method’s general assumptions about the functional form of relations between 

time series variables (in this case, linear) and the shape of the error distribution (e.g., 

Gaussian) are appropriate. It is possible that some neuroimaging or intensive longitudinal 

behavioral data sets may contain nonlinear relations or atypical error distributions, and 

methods for analyzing these data sometimes eschew these assumptions (e.g., the non-

Gaussian errors assumed by the LiNGAM method; non-linear basis vectors in GIMME: 

(Duffy et al., 2021)). Therefore, researchers should carefully consider the possible 

limitations that these general assumptions entail for interpreting specific effects. In the 

current analysis, linearity and Gaussian errors were assumed, which follows most other 

network approaches.
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GIMME Results

We next turn to summarizing the empirical results. Models from both search strategies 

successfully converged for all participants in the two empirical data sets. Final models for 

the fMRI data from GIMME-AR and GIMME-MS displayed identical average fit indices, 

which generally indicated good fit (RMSEA = .09, SRMR = .04, NNFI = .94, CFI = 

.97). Group-level autoregressive relations were present for all brain regions, along with 

group-level relations from the right lateral parietal lobe (R LP) to the left lateral parietal 

lobe (L LP) and from the L LP to posterior cingulate cortex (PCC). The presence of 

these group-level relations is consistent with their well-established role as “hubs” of the 

DMN (Buckner et al., 2008). For the daily diary data set, average fit indices for final 

models from both GIMME-AR (RMSEA = .04, SRMR = .06, NNFI = .99, CFI = .99) 

and GIMME-MS (RMSEA = .03, SRMR = .06, NNFI = .99, CFI = .98) also indicated 

good fit. No off-diagonal group-level relations were identified by either search strategy, 

though, possibly indicating a high degree of heterogeneity in the sample. However, as 

illustrated by models for three example participants displayed in Figure 7, individual-level 

relations were abundant and were generally consistent with conventional assumptions about 

the emotion variables in the data set. For example, participants tended to display a negative 

relation between Positive Affect and Negative Affect, positive relations between Negative 

Affect and Depression Symptoms, and positive relations between Positive Affect and Mania 

Symptoms. However, as discussed in detail below, GIMME-AR and GIMME-MS often 

provided differing estimates of the direction of these relations.

The fMRI data displayed substantially stronger autoregressive relations than the daily 

diary data, as illustrated by differences between the data sets in both the proportion of 

autoregressive relations opened in GIMME-MS and the average β weights of autoregressive 

relations estimated within GIMME-AR (Table 3). Moreover, β weights were all within 

the range of those used in the simulations; autoregressive relations in the daily diary data 

were of low to moderate strength (β =.11-.28) whereas those in the resting state fMRI 

data were comparable to the strongest simulated autoregressive relations (β =.43-.56). This 

correspondence was expected given that the simulation was informed by previous empirical 

applications of GIMME.

There were also striking differences between the data sets in the number of solutions 

identified by GIMME-MS. There were no multiple solutions identified at either the group 

or individual levels for the fMRI data. In contrast, there was only one group-level solution 

identified for the daily diary data set (and this solution contained no group-level relations, 

as noted above), but GIMME-MS returned an average of 2.91 individual-level solutions per 

person (ranging from 1 to 6 across participants). Therefore, consistent with the simulation 

study findings, empirical data sets with weak autoregressive relations are the most likely to 

generate multiple solutions.

Inspection of the contemporaneous and lagged (excluding autoregressive) relations 

identified by GIMME-AR and GIMME-MS indicated that the two search strategies resulted 

in identical models for every single subject in the fMRI data set. Therefore, consistent with 

findings from the simulation study, GIMME-MS and GIMME-AR converge when applied 

to empirical data sets with strong autoregressive relations because GIMME-MS only detects 
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multiple solutions if they are likely (due to identical modification indices). In contrast, 

recovered models for the daily diary data set were discrepant between search strategies. 

Only 59% and 53% of the lagged and contemporaneous relations, respectively, that were 

recovered by GIMME-AR were also recovered by GIMME-MS, and only 42% and 53% of 

the lagged and contemporaneous relations recovered by GIMME-MS were also recovered by 

GIMME-AR.

The discrepancies in recovered lagged relations, and the fact that far fewer of the lagged 

relations recovered by GIMME-MS were recovered by GIMME-AR than vice versa, can 

be explained in part by the fact that GIMME-MS identified more off-diagonal lagged 

relations (24 total) than GIMME-AR (17 total). This pattern may indicate that opening the 

autoregressive terms at the beginning of the search process in GIMME-AR causes signal 

from off-diagonal lagged relations to be incorrectly attributed to autoregressive relations.

Interestingly, out of the 70 total cases in which contemporaneous relations were discrepant 

between the GIMME-AR and GIMME-MS models, 50 (71%) were cases in which relations 

between the same two variables were identified, but the relation was modeled in the opposite 

direction in the two search strategies. Figure 7 illustrates this phenomenon in the three 

example participants; participants A and C display reversals in the directionality of relations 

between Positive Affect and Negative Affect, participants B and C display reversals in the 

directionality of relations between Positive Affect and Mania Symptoms, and B displays 

a reversal in the directionality of Depression Symptoms’ relation with Negative Affect. 

These results are generally consistent with previous work (Lane et al., 2019) showing that 

GIMME-AR is often able to effectively identify the presence of important relations in the 

network model, even in situations in which recovery of the directionality of these relations is 

poor or variable (as in the case with low autoregressive effects).

In summary, results from analyses of the empirical data sets were highly consistent with 

several aspects of the simulation study results. Notably, this consistency was apparent 

despite possible violations of GIMME’s assumptions, including higher-order temporal 

dependencies in a portion of the fMRI data and the presence of some extreme values 

in the daily diary data, and suggests that conclusions from the simulations are robust to 

minor violations. Therefore, guidelines derived from the simulations should be broadly 

applicable in real-world research projects involving data with relatively weak (daily diary) 

and relatively strong (fMRI) autoregressive relations.

General Discussion

The current study assessed the efficacy of two data-driven search strategies within the 

GIMME framework for correctly identifying the directionality of contemporaneous relations 

in person-specific network models. One strategy relies on the default estimation of 

autoregressive relations in the null model to inform estimation of directional relations during 

the search (GIMME-AR), whereas the second strategy estimates multiple solutions when 

relations of opposing directionality may lead to equivalent improvements in model fit that 

can be compared following the search (GIMME-MS). We assessed directionality recovery 

under conditions in which autoregressive and lagged relations were relatively strong versus 
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relatively weak because we predicted that each search strategy would have unique strengths 

and weaknesses in these situations, which may in turn have important consequences 

for empirical applications. Through a principled simulation-recovery analysis paired with 

empirical examples, this study provides the first one-to-one comparison of GIMME-AR and 

GIMME-MS for directionality recovery under a variety of relevant conditions that may be 

encountered across different substantive applications. Notably, this also represents the first 

large-scale and comprehensive (i.e., involving many conditions and random replications) 

evaluation of the directionality recovery of GIMME-MS.

The overall pattern of findings suggests several important recommendations about which 

situations are most appropriate for the use of each strategy, and which features of empirical 

data allow researchers to place greater, or lesser, confidence in the resulting directionality 

estimates. As hypothesized, we found that direction recall (the proportion of relations in the 

“true” model that are recovered) and direction precision (the proportion of relations present 

in the estimated model that are also in the “true” model) were both dramatically improved 

when autoregressive relations in time series data were strong. Although we had initially 

expected this pattern to be more apparent for GIMME-AR, due to its reliance on strong 

autoregressive relations to guide the search, we found that the pattern was pronounced for 

both search strategies. However, each search strategy displayed relative advantages under 

certain conditions.

GIMME-MS displayed a clear advantage when autoregressive relations were very weak 

(β <= .10), likely because subjecting these relations to the same data-driven criteria for 

estimation as other relations may have prevented small or spurious autoregressive relation 

estimates from influencing the search process. In contrast, GIMME-AR and GIMME-MS 

often displayed highly similar direction recall and precision when autoregressive relations 

were strong (β > .30, or systematically stronger than contemporaneous relations). Both the 

simulation and empirical analyses suggested that this similarity resulted from the fact that 

GIMME-MS typically does not identify multiple solutions when autoregressive relations are 

strong, likely because these autoregressive relations are estimated early in the search. This 

causes GIMME-AR and GIMME-MS to converge on similar, or even identical, models for 

individuals. Notably, the latter occurred for all individuals in our analysis of empirical fMRI 

data with strong autoregressive relations.

GIMME-AR displayed markedly better direction recall and precision then GIMME-MS 

when autoregressive relations and contemporaneous relations were comparably strong 

(the contemporaneous greater, CG, condition in our simulations with autoregressive 

β >= .50). One possible reason for this is that GIMME-MS often estimates strong 

contemporaneous relations prior to estimating the strong autoregressive relations in these 

data sets, which prevents the latter from effectively guiding selection of the true direction of 

the contemporaneous relations. As these strong autoregressive relations are automatically 

estimated in the null model in GIMME-AR, this may explain GIMME-AR’s relative 

advantage in these situations. Correspondingly, the advantage of GIMME-MS for data sets 

with weak autoregressive relations (β <= .10) was also enhanced in the CG condition, 

which suggests that the relative strengths and weaknesses of each search strategy for 
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contemporaneous relation direction recovery become more apparent when contemporaneous 

relations are stronger overall.

These patterns of results raise important implications for person-specific network modeling 

of time series data. The first major implication is that, if estimating contemporaneous 

relation directionality is important for a given research question, researchers should consider 

whether features of their empirical data set may be better suited for the application of 

GIMME-AR or GIMME-MS. Specifically, the application of GIMME-MS to daily diary, 

ambulatory assessment, and other intensive longitudinal behavioral data sets, which typically 

have weak autoregressive processes (Beltz et al., 2016; Beltz & Molenaar, 2016; Lane et 

al., 2019), should allow for improved contemporaneous directionality estimates. In contrast, 

GIMME-AR is likely to provide estimates of contemporaneous relation directionality that 

are comparable to, or even better than, those from GIMME-MS for empirical data sets with 

strong autoregressive processes, such as those drawn from fMRI (Arbabshirani et al., 2014; 

Beltz & Molenaar, 2015; Christova et al., 2011; Lund et al., 2006) and other neuroimaging 

methods such as functional near-infrared spectroscopy (Barker et al., 2016).

It should be noted that GIMME-MS often requires significantly more computing time 

than GIMME-AR due to the repetition of the search process for multiple solutions at the 

group and individual levels. GIMME-MS may also require more time and effort on the 

part of researchers to select optimal solutions after the search process ends. Therefore, 

despite the advantages of GIMME-MS in certain contexts, researchers may consider whether 

these trade-offs in human and computational resources are worth the improvements in 

directionality recovery that GIMME-MS allows. As the increases in direction recall and 

precision that GIMME-MS provides are often modest (typically in the .04 to .10 range 

depending on the index), GIMME-AR may still be preferable for addressing certain research 

questions that involve data with relatively weak autoregressive processes (e.g., applications 

in which contemporaneous relation directionality is not of great concern).

A second major implication follows from our finding that high direction precision 

for contemporaneous relations (e.g., .70-.90) was achieved in situations with strong 

autoregressive and/or cross-lagged relations (β >= .50) and a substantial number of 

observations (>=100), but that direction precision was often significantly lower without 

these features. Therefore, researchers should place greatest confidence in GIMME’s 

estimates of contemporaneous relation directionality for data sets that meet these specific 

criteria (e.g., fMRI data with hundreds of observations). Although these findings indicate 

limitations of directionality inferences for data sets with weak autoregressive and lagged 

relations or with limited time points, previous work demonstrates that, even in situations in 

which the directionality of relations is not recovered correctly, GIMME’s estimates of the 

presence versus absence of relations are often highly accurate (Lane et al., 2019). Hence, 

these limitations pose less of a problem for GIMME applications in which contemporaneous 

relation directionality is not central to the research question, or in which some amount of 

error in directionality estimates is deemed to be acceptable (e.g., when researchers focus on 

identifying general patterns across individuals or on using GIMME output for data driven 

prediction analyses).
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This study also has several limitations that should be acknowledged. First, although we 

assessed the extent to which the example empirical data sets met GIMME’s assumptions and 

determined that the conclusions from the simulation study were mirrored in the empirical 

examples despite minor assumption violations in these data, GIMME’s assumptions may be 

violated to different degrees in different data sets. If major assumption violations are present, 

then the simulations results may not generalize to a given data set. Therefore, it is imperative 

that GIMME users take steps, such as those outlined in this study and in other GIMME 

tutorial papers (e.g., Beltz & Gates, 2017), to assess the degree to which assumptions are 

met and the ways in which violations may impact their conclusions; this is also true for other 

directionality modeling approaches.

Second, this study did not include the possibility of undirected contemporaneous relations 

between variables. Although such relations are assumed by alternate modeling methods 

(Epskamp, van Borkulo, et al., 2018; Epskamp, Waldorp, et al., 2018; Wild et al., 2010), 

they have only recently been considered within the GIMME framework (Luo et al., 

Submitted; Molenaar & Lo, 2016). Future extensions of the current study are needed to 

assess how the presence of undirected contemporaneous relations impacts the performance 

of the GIMME-AR and GIMME-MS search strategies under varying conditions of 

autoregressive relation strength.

Third, this study did not explore how GIMME’s subgrouping algorithm (Gates et al., 2017; 

Lane et al., 2019; Price, Gates, et al., 2017) impacts directionality recovery of the two search 

strategies. Significant theoretical work is required in order to fully integrate GIMME-MS 

with the subgrouping algorithm in the gimme R package.

Fourth, this study provides limited guidance about the use of approaches outside of the 

uSEM/GIMME frameworks for estimating directionality in time series data. Most of these 

approaches focus on inferring directionality from lagged relations (e.g., DSEM, graphical 

VAR) or, conversely, attempt to estimate contemporaneous relation directionality without 

considering relations of other temporal orders (e.g., GES, LiNGAM). Hence, the primary 

focus of our study – the influence of autoregressive and lagged relation strength on the 

recovery of contemporaneous relation directionality – has less or at least a substantially 

different meaning in these approaches, and future work is necessary to assess the possible 

impact of autoregressive relations on inferences from them.

In conclusion, we combined large-scale simulation studies that varied the strength 

of autoregressive relations with analyses of empirical data sets that shared the same 

autoregressive features to evaluate the efficacy of the GIMME-AR and GIMME-MS search 

strategies for recovering the directionality of contemporaneous relations in person-specific 

temporal network models. We found that both strategies performed best, and that their 

performance was often highly similar, when autoregressive relations were strong. GIMME-

MS displayed specific advantages when autoregressive relations were weak, although 

overall directionality recovery under these conditions was still modest. Taken together, 

these findings have clear implications for methodological choices researchers encounter in 

common applications of GIMME and other person-specific network modeling methods to 
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functional neuroimaging and behavioral data sets that naturally differ in the strength of 

autoregressive processes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Average number of individual-level solutions per subject across all group-level solutions 

in each replication (μIsol/rep) for the balanced (red), lagged-greater (blue) and 

contemporaneous-greater (green) conditions. The black dashed line in each plot highlights 

the value of 1, where each statistic would fall if multiple solutions were not found. Plots that 

break down the solution counts by level (group/individual) are available in Supplemental 

Figure 1.
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Figure 2. 
Box plots of contemporaneous relation direction recall for individual-level models in the 

balanced (BA) simulation condition for GIMME-AR (top/green) and GIMME-MS (bottom/

blue) search strategies.
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Figure 3. 
Box plots of contemporaneous relation direction recall differences between the two search 

strategies (GIMME-MS minus GIMME-AR) for individual-level models in all simulation 

conditions.
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Figure 4. 
Box plots of contemporaneous relation direction precision for individual-level models in the 

balanced (BA) simulation condition for GIMME-AR (top/green) and GIMME-MS (bottom/

blue) search strategies.
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Figure 5. 
Box plots of contemporaneous relation direction precision differences between the two 

search strategies (GIMME-MS minus GIMME-AR) for individual-level models in all 

simulation conditions.
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Figure 6. 
Observed temporal autocorrelation coefficients at lags of the first order (correlation between 

time t and time t-1) through the seventh order (correlation between time t and time t-7) 

for all variables in the resting state fMRI (top row) and daily diary (bottom row) data 

sets. The thick red line represents the sample average while the thinner and fainter lines 

represent the autocorrelation coefficients of each individual in the sample. Grey dashed 

lines represent the values that the autocorrelation coefficient would have to surpass to be 

considered significantly (p<.05) different from 0 given the time series length in each data 

set.
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Figure 7. 
Schematics of networks generated by GIMME-AR and GIMME-MS for three example 

participants (A-C) from the daily diary data set. Circular arrows indicate autoregressive 

relations, straight dotted-lined arrows indicate lagged relations, and straight solid-lined 

arrows indicate contemporaneous relations. Numbers indicate β weights for recovered 

relations. Man. = Mania Symptoms; Dep. = Depression Symptoms; PA = Positive Affect; 

NA = Negative Affect
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Table 1.

Direction recall and direction precision for contemporaneous relations across all simulation conditions and the 

GIMME-AR and GIMME-MS search strategies, as well as the difference between strategies (GIMME-MS 

values minus GIMME-AR values). BA = balanced contemporaneous and lagged relations condition; LG = 

lagged-greater condition; CG = contemporaneous-greater condition; Auto. = autoregressive

GIMME-AR GIMME-MS MS - AR Difference

Recovery Statistic Time Points Auto. Strength BA LG CG BA LG CG BA LG CG

Direction Recall

50

0.00 0.27 0.29 0.31 0.30 0.36 0.37 0.03 0.07 0.06

0.10 0.28 0.31 0.29 0.30 0.37 0.40 0.02 0.06 0.11

0.30 0.33 0.37 0.36 0.31 0.36 0.46 −0.02 0.00 0.10

0.50 0.40 0.41 0.65 0.35 0.37 0.49 −0.05 −0.04 −0.17

0.60 0.42 0.43 0.70 0.42 0.42 0.54 0.00 −0.02 −0.16

100

0.00 0.34 0.37 0.37 0.40 0.41 0.40 0.06 0.05 0.03

0.10 0.38 0.38 0.33 0.41 0.46 0.46 0.04 0.08 0.13

0.30 0.45 0.45 0.40 0.43 0.47 0.52 −0.03 0.02 0.12

0.50 0.51 0.47 0.75 0.51 0.46 0.58 0.00 −0.01 −0.16

0.60 0.51 0.48 0.81 0.51 0.48 0.69 0.00 0.00 −0.12

300

0.00 0.45 0.43 0.38 0.51 0.47 0.47 0.06 0.04 0.10

0.10 0.47 0.41 0.35 0.55 0.51 0.49 0.08 0.10 0.13

0.30 0.63 0.51 0.47 0.60 0.55 0.57 −0.03 0.04 0.10

0.50 0.67 0.56 0.76 0.67 0.55 0.63 0.00 −0.01 −0.14

0.60 0.64 0.56 0.82 0.64 0.56 0.77 0.00 0.00 −0.05

Direction Precision

50

0.00 0.42 0.58 0.34 0.44 0.58 0.39 0.02 0.00 0.05

0.10 0.42 0.58 0.32 0.44 0.60 0.41 0.02 0.02 0.10

0.30 0.49 0.62 0.37 0.43 0.53 0.43 −0.06 −0.08 0.06

0.50 0.56 0.64 0.66 0.46 0.50 0.42 −0.10 −0.14 −0.24

0.60 0.60 0.66 0.70 0.58 0.60 0.47 −0.02 −0.07 −0.23

100

0.00 0.47 0.72 0.37 0.51 0.67 0.41 0.05 −0.05 0.04

0.10 0.51 0.71 0.32 0.53 0.72 0.46 0.02 0.01 0.13

0.30 0.61 0.78 0.38 0.53 0.69 0.46 −0.08 −0.09 0.08
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GIMME-AR GIMME-MS MS - AR Difference

Recovery Statistic Time Points Auto. Strength BA LG CG BA LG CG BA LG CG

0.50 0.71 0.83 0.75 0.70 0.77 0.50 −0.01 −0.06 −0.25

0.60 0.76 0.83 0.83 0.75 0.81 0.64 −0.01 −0.02 −0.19

300

0.00 0.55 0.68 0.35 0.61 0.65 0.46 0.05 −0.04 0.11

0.10 0.55 0.60 0.32 0.63 0.69 0.47 0.07 0.09 0.15

0.30 0.75 0.76 0.42 0.68 0.77 0.51 −0.07 0.01 0.09

0.50 0.89 0.88 0.72 0.89 0.87 0.54 0.00 −0.02 −0.18

0.60 0.91 0.90 0.80 0.91 0.90 0.72 0.00 0.00 −0.09
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Table 2.

Effects of the relative strength of contemporaneous and lagged relations on direction recall and direction 

precision for GIMME-AR (AR) and GIMME-MS (MS) search strategies. Values in the table represent 

difference scores obtained by subtracting recovery statistics in the contemporaneous greater (CG) condition 

from those in the lagged greater (LG) condition. Therefore, positive values indicate better recall or precision in 

the LG condition, whereas negative values indicate better recall or precision in the CG condition.

Recall Precision

Time Points Auto. Strength AR MS AR MS

50

0.00 −0.02 −0.01 0.24 0.19

0.10 0.01 −0.03 0.27 0.19

0.30 0.00 −0.10 0.24 0.10

0.50 −0.25 −0.11 −0.02 0.08

0.60 −0.27 −0.12 −0.03 0.13

100

0.00 0.00 0.01 0.34 0.26

0.10 0.05 0.00 0.39 0.26

0.30 0.05 −0.05 0.39 0.23

0.50 −0.27 −0.12 0.08 0.27

0.60 −0.33 −0.21 0.00 0.17

300

0.00 0.05 −0.01 0.33 0.19

0.10 0.05 0.02 0.27 0.22

0.30 0.03 −0.02 0.34 0.26

0.50 −0.21 −0.07 0.17 0.33

0.60 −0.26 −0.21 0.10 0.18
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Table 3.

Proportion of individuals in the sample for which autoregressive relations were opened for each variable in 

GIMME-MS and the average β weights estimated for each variable’s autoregressive relation in GIMME-AR. 

Auto. = autoregressive; PCC = posterior cingulate cortex; MPFC = medial prefrontal cortex; LPL = lateral 

parietal lobule.

Data Set Variable GIMME-MS Auto. Proportion Opened GIMME-AR Average Auto. β Weights

Resting State fMRI

PCC 1.00 0.43

MPFC 1.00 0.56

Right LPL 1.00 0.54

Left LPL 1.00 0.48

Daily Diary

Mania Symptoms 0.16 0.11

Depression Symptoms 0.34 0.20

Positive Affect 0.44 0.28

Negative Affect 0.34 0.18
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