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Epistasis between promoter activity and coding 
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The evolution of protein-coding genes proceeds as mutations act on two main dimensions: regulation of tran-
scription level and the coding sequence. The extent and impact of the connection between these two dimen-
sions are largely unknown because they have generally been studied independently. By measuring the fitness 
effects of all possible mutations on a protein complex at various levels of promoter activity, we show that pro-
moter activity at the optimal level for the wild-type protein masks the effects of both deleterious and beneficial 
coding mutations. Mutations that are deleterious at low activity but masked at optimal activity are slightly de-
stabilizing for individual subunits and binding interfaces. Coding mutations that increase protein abundance are 
beneficial at low expression but could potentially incur a cost at high promoter activity. We thereby demonstrate 
that promoter activity in interaction with protein properties can dictate which coding mutations are beneficial, 
neutral, or deleterious. 
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INTRODUCTION 
Mutations drive evolution through multiple effects, from altering 
gene expression to modifying the stability, assembly, and function 
of proteins, which ultimately affect cellular phenotypes and fitness. 
Therefore, measuring the fitness effects of mutations and identify-
ing the underlying molecular mechanisms have been a long-stand-
ing goal in evolutionary biology (1, 2). Because of epistasis, the 
effects of new mutations are dependent on prior mutations, 
which makes their impact on fitness difficult to predict. Epistasis 
can take place among genes or within genes (3), including 
between noncoding mutations that alter different features of a 
gene such as its regulation, including promoter activity, and 
others that are coding and that alter protein activity or stability. 

Regulatory and coding changes underlie phenotypic variation 
within and between species (4, 5). Unfortunately, both types of mu-
tations are rarely studied simultaneously when mapping the effects 
of mutations on fitness, apart from a few cases (6–9) revealing that 
epistasis between mutations affecting the expression of a gene and 
coding mutations (regulatory-by-coding) is likely frequent. For in-
stance, the relative effects of coding mutations could be amplified at 
low expression level, as demonstrated in the study of a short amino 
acid segment of the heat shock protein Hsp90 (9). Conversely, mu-
tations that are deleterious at low expression levels could become 

neutral at higher expression levels or vice versa. For example, 
some disease-associated mutations have a higher penetrance when 
linked to a regulatory variant that increases their expression (10). 
Thus, interactions between changes in gene expression and 
coding mutations could represent a vast underexplored constraint 
on protein evolution. Here, we use deep mutational scanning 
(DMS) to examine how regulatory-by-coding epistasis could 
affect the evolutionary potential of a protein by performing a com-
prehensive measurement of the fitness effects of coding mutations 
at five levels of promoter activity in the vicinity of an expression 
level that is optimal for the wild-type (WT) enzyme. 

RESULTS 
The fitness landscape of a protein complex depends on its 
promoter activity level 
We investigated the extent to which promoter activity affects the 
fitness landscape of a protein by mimicking evolutionary changes 
throughmutations affecting promoter activity using an inducible 
system. We used a metabolic enzyme that produces a metabolite 
that is conditionally essential for growth (Fig. 1A). The dihydrofo-
late reductase DfrB1 (formerly known as R67 DHFR) was first iso-
lated as one of the factors causing trimethoprim (TMP) resistance in 
Enterobacteria, including Escherichia coli (11). Contrary to the mo-
nomeric FolA-type dihydrofolate reductase encoded in the E. coli 
main chromosome (ecDHFR) that is readily inhibited by TMP 
[ecDHFR inhibition constant (Ki) ~ 20 pM], DfrB1 is essentially in-
sensitive to this antibiotic (DfrB1 Ki ~ 0.15 mM; Fig. 1B) (12, 13). 
The DfrB enzymes are obligate homotetramers that form a single, 
central active site requiring the distinct contribution from each of 
the four identical protomers (12, 14). DfrB enzymes are not homol-
ogous to the ubiquitous FolA-type DHFR enzymes that ecDHFR is 
part of (14–16). While many antibiotic resistance proteins degrade 
or inactivate molecules or expel them from the cell, DfrB1 is a met-
abolic enzyme that circumvents the inhibition of ecDHFR by dupli-
cating the same essential enzymatic reaction: the reduction of 
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dihydrofolate to tetrahydrofolate. The growth of E. coli can there-
fore be made dependent on DfrB1 activity through the inhibition 
of ecDHFR using TMP. 

We used a plasmid whereby expression of dfrB1 is driven by an 
arabinose-dependent promoter (Fig. 1B). By inducing expression in 
0 to 0.4% arabinose and measuring the extent of fitness recovery 
from ecDHFR inhibition (percentage of the growth without TMP 
achieved when expressing DfrB1 in media with TMP), we found 
that WT DfrB1 promoter activity at 0.2% arabinose completely 
complements the inhibition of ecDHFR. This induction level was 
defined as the optimal promoter activity level for WT DfrB1, and 
thus, we will use this arabinose concentration as the reference for 
most comparisons (Fig. 1C and fig. S1). Given the degree of com-
plementation at each induction level, we refer to these levels as, 
starting from the highest, above-optimal (0.4% arabinose), 
optimal (0.2% arabinose), near-optimal (0.05% arabinose), subop-
timal (0.025% arabinose), and weak (0.01% arabinose) for the WT 
enzyme. We measured the corresponding expression levels by 
fusing DfrB1 to green fluorescent protein (GFP) (Fig. 1D). E. coli 
populations displayed a unimodal expression level within this 
range of induction (median fluorescence in arbitrary units: 0% arab-
inose, 0.42; 0.01% arabinose, 0.74; 0.025% arabinose, 1.11; 0.05% 
arabinose, 2.55; 0.2% arabinose, 16.07; 0.4% arabinose, 18.85). 
DfrB1 therefore has a typical enzymatic fitness function as its 

fitness increases with promoter activity and then saturates when ad-
ditional expression becomes superfluous (17). 

We generated a library of all possible single-amino acid changes 
to the sequence of DfrB1 covering amino acid positions 2 to 78 (fig. 
S2). Individual mutants were combined in a pool and transferred to 
medium with TMP at the five arabinose concentrations defined 
above (fig. S3). The frequency of the mutants in the initial pool 
before selection and after 10 generations with TMP was measured 
by deep sequencing in a highly replicated fashion (tables S1 and S2). 
We estimated a selection coefficient (s) per DNA variant at each in-
duction level, and then, redundant codons and replicates were ag-
gregated (Fig. 2 and table S3). Selection coefficients are proportional 
to differences in growth per generation between cells with a specific 
DfrB1 mutation and cells with the WT DfrB1. Positive values of s 
indicate mutants that grow faster than the WT, negative values of s 
refer to mutants that grow slower than the WT, and a value of zero 
indicates the same growth rate as the WT (see Materials and 
Methods). Biological replicates were correlated across experiments, 
showing that the measurements are highly reproducible (fig. S4). 
We confirmed the deleterious effects of several previously reported 
catalytically inefficient mutations (figs. S5 and S6). We also validat-
ed a number of isolated mutants (n = 9) through growth curves 
(Spearman ρ = 0.85, P < 0.001; fig. S7). These results confirm the 
validity of the pooled measurements to estimate fitness effects of 
variants of this enzyme. 

Fig. 1. Inducible DfrB1 expression connects promoter activity with fitness. (A) DfrB1 converts dihydrofolate (DHF) to tetrahydrofolate, an essential metabolite. (B) 
The E. coli dihydrofolate reductase (ecDHFR) is inhibited by TMP. DfrB1 is not homologous to ecDHFR and is insensitive to TMP, and in our experiments, its transcription is 
modulated by an arabinose-inducible promoter. (C) Fitness function of DfrB1 promoter activity level. By inhibiting the endogenous ecDHFR with TMP (10 μg/ml), growth 
depends on the expression of DfrB1. Fitness is measured as a difference in growth (area under the curve) of the strain in medium with TMP relative to the same medium 
without TMP for a given arabinose concentration. The large dotsindicate the mean of six replicates (small dots), and error bars indicate 2.5 SEMs. Labels at the top indicate 
groups of recovered growth shown to be significantly different using an analysis of variance (ANOVA) and Tukey’s post hoc test (P < 0.05). (D) DfrB1-GFP expression as a 
function of arabinose concentration. Fluorescence of the WT DfrB1 is shown relative to the same E. coli strain but not expressing GFP. Three independent replicated 
cultures are shown side by side for each concentration. Labels at the top indicate groups of GFP fluorescence shown to be significantly different using an ANOVA and 
Tukey’s post hoc test (P < 0.05). AU, arbitrary units.  
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The selection coefficients of individual mutants are broadly cor-
related among promoter activity levels, revealing that most amino 
acid substitutions have effects that are relatively similar across pro-
moter activity levels. However, the magnitude of these correlations 
when the various induction levels are compared to the optimal level 
for the WT (0.2% arabinose) decreases gradually as promoter activ-
ity level deviates from this reference (Fig. 2, A and B, and fig. S8A). 
We observe a fitness effect that depends on promoter activity for 
many mutations: 598 of 1458 substitutions (41%; 74 of 77 positions) 
measured at all five promoter activity levels showed statistically sig-
nificant effects of promoter activity on selection coefficients 

[magnitude > 0.1, analysis of variance (ANOVA), false discovery 
rate (FDR) adjusted P < 0.05; fig. S8B and table S4]. 

To identify broad patterns of changes of individual amino acid 
substitutionsalong the gradient of promoter activity, we grouped the 
vectors of selection coefficient by similarity. Clustering using k- 
means identified four typical patterns (k = 4 clusters). This 
number of clusters is the best compromise between parsimony 
and interpretability (Fig. 2C; table S5; and fig. S9, A and B) 
because from k = 4 onward, adding more clusters does not result 
in a substantial decrease in the sum of squared errors. Representa-
tive centroids for each cluster are shown in fig. S9B. As one could 
expect, some substitutions do not have major effects on fitness 

Fig. 2. Selection coefficients (s) of amino acid changes depend on promoter activity. (A) Selection coefficient (s) of individual amino acid mutants at non-optimal 
levels of promoter activity compared to the optimal level for the WT, which is used as a reference point for comparisons. Spearman correlation coefficients are shown. 
Lines indicate LOESS regressions. Horizontal error bars indicate the SEMs observed across biological replicates at optimal promoter activity level for the WT. Vertical error 
bars indicate the SEMs observed across biological replicates at non-optimal promoter activity levels. (B) Distributions of s for individual mutants across promoter activity 
levels show reduced spread and increasing average of individual values. The larger blue dots with white crosses indicate the means of the distributions. (C) Clusters 
showing patterns of changes of s for individual mutants across promoter activity levels. Colored lines indicate mutants from the different clusters (k-means, k = 4). Number 
of mutants in each cluster: (1) 446, (2) 291, (3) 218, and (4) 581.  
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(cluster 4, n = 581). At the other end of the spectrum, others are 
deleterious at all promoter activity levels (cluster 1, n = 446). 
Many variants appear to deviate from these two patterns (clusters 
1 and 4), particularly between optimal (reference) and weak pro-
moter activity levels (Spearman ρ = 0.94; Fig. 2C). Mutants in 
cluster 3 (n = 218) are deleterious at weak and suboptimal promoter 
activity, but some become neutral or near neutral at the optimal 
promoter activity level for the WT enzyme. Mutants from cluster 
2 (n = 291) are even more deleterious at low promoter activity 
levels, but even if they remain deleterious, they improve in fitness 
as promoter activity increases, even beyond optimal induction for 
the WT. This gain of fitness of many mutants at above-optimal pro-
moter activity is also visible in the relationship shown in Fig. 2A. 
Mutations of intermediate deleterious effects at the optimal pro-
moter activity level are worse, as promoter activity is decreased 
and some are further buffered or masked at above-optimal promot-
er activity. Last, within cluster 4, some amino acid changes are ad-
vantageous at the lowest promoter activity level (see details below). 
Thus, our analyses confirm, both by statistical analysis (ANOVA for 
individual mutations, corrected for multiple hypothesis testing; 
table S4 and fig. S8B) and by machine learning (k-means clustering; 
table S5 and fig. S9), widespread epistasis between promoter activity 
level and coding mutations, with promoter activity levels having dif-
ferent impacts on the selection coefficient of individual mutations. 

We also examined whether mutants changed fitness ranking 
among promoter activity levels. A change in ranking between two 
mutations implies that a first mutation would outcompete a second 
one at a given promoter activity level but that the second mutation 
would outcompete the first at a different promoter activity level. An 
ANOVA on the ranks revealed a significant interaction between ge-
notype and promoter activity level (F = 12.15, P < 2.2 × 10−16), al-
though these effects are much smaller than those associated with 
mutations alone (F = 666.10, P < 2.2 × 10−16; table S6). To validate 
this change in ranking, we tested a few mutants (n = 8) changing 
ranks in the bulk assay in individual growth curve assays. As previ-
ously, mutants with higher fitness at optimal promoter activity for 
WT were clearly reproduced. Mutants that were less deleterious at 
lower promoter activity and that changed rank in the bulk compe-
tition experiment were not as consistent with the validation cul-
tures. For example, in the bulk competition experiment, E75R was 
estimated to be the second most deleterious substitution of the set 
considered at weak promoter activity but becomes less deleterious at 
optimal expression than mutations at positions 33 and 68 (K33E, 
K33L, K33M, and I68M). Such changes in rank would be visualized 
as crossing lines on fig. S10. E75R did indeed become less deleteri-
ous than K33L and K33M at optimal promoter activity level in the 
validation cultures, but we did not observe the expected change in 
rank of E75R with respect to K33E and I68M (fig. S10).This means 
that it is more challenging to measure precise selection coefficients 
for highly deleterious amino acid substitutions in bulk competition . 
The fact that deleterious mutations are strongly underrepresented at 
the final time point in bulk competition experiments increases ex-
perimental noise. Nevertheless, the differences in fitness between 
promoter activity levels in the individual versus bulk competition 
assays were strongly correlated (Spearman ⍴ = 0.82, P = 0.011; fig. 
S10). Overall, although changes of rank may occur, it is not the 
major type of expression-by-coding epistasis observed for DfrB1.  

The protein structure determines which amino acid 
changes have effects that depend on promoter 
activity level 
Individual amino acid mutations can alter many protein properties 
(18) and thus decrease the amount of functional protein complex 
formed, which can result from a reduction in the stability of the 
protein or of its tertiary assembly. The solubility of the protein 
can also be altered by individual mutations. For enzymes, individual 
amino acid changes can alter catalytic efficiency. To examine the 
potential underlying causes of the patterns revealed in Fig. 2, we 
mapped selection coefficients of all amino acid substitutions to in-
dividual protein positions (Fig. 3). Changes at conserved positions 
tend to be more deleterious than in nonconserved regions when 
considering diversity across homologs (entropy; Fig. 3, top; Spear-
man correlations between entropy and selection coefficients range 
between ρ = 0.82 and ρ = 0.83 across promoter activity levels, all 
with P < 4 × 10−20). The same pattern is observed when comparing 
the observed selection coefficients to predictions from patterns of 
molecular evolution (fig. S11) (20). Selection coefficients as mea-
sured in the laboratory therefore correlate with the constraints 
acting on the various positions of the protein in nature, as estimated 
by their degree of evolutionary conservation. 

The fitness effects of amino acid changes are heterogeneous 
along the length of the sequence and depend on the structural prop-
erty of each segment. For instance, substitutions in the disordered 
region (positions 2 to 20) (15, 21) tend to have a higher selection 
coefficient (less negative or more positive) than the rest of the 
protein (P < 2.2 × 10−16 for all promoter activities, Wilcoxon 
test). Results are consistent with the higher entropy of the disor-
dered region (P = 4.2 × 10−6, Wilcoxon test) and with results 
showing that the sequence essential for DfrB1 function begins 
between residues 16 to 26 (22). Mutants from specific protein func-
tional sites marked at the bottom of Fig. 3 tend to be enriched in 
different clusters (Fig. 2C) of selection coefficients across promoter 
activity levels (fig. S9C). For example, substitutions in the disor-
dered region are enriched in cluster 4 (mostly neutral) and depleted 
in cluster 1 (always deleterious; chi-square test, FDR adjusted 
P = 4.3 × 10−115). On the other hand, changes in the catalytic 
sites are particularly enriched in cluster 1 (chi-square test, FDR ad-
justed P = 4.0 × 10−18), while substitutions at the dimerization in-
terface primarily belong to clusters 1 and 2 (slight recovery with 
higher promoter activity; chi-square test, FDR adjusted P = 3.3 × 
10−30). This enrichment of negative effects at catalytic sites is con-
sistent with the strongly negative selection coefficients of most 
known catalytic mutants of DfrB1 (fig. S5). These observations 
show that the extent to which promoter activity level can modify 
the fitness effects of mutations can be explained by the various 
structural features of the enzyme (see more details below). 

Comparison of the landscapes at the five promoter activity levels 
(Fig. 3) confirms a dampening of selection coefficient from weak to 
above-optimal promoter activity, showing that extreme fitness 
effects, positive as well as negative, become rarer as promoter activ-
ity level approaches the optimum for the WT. This again illustrates 
that the effects of different amino acid substitutions tend to be buff-
ered at promoter activity levels near the optimum for the WT 
enzyme. A change of promoter activity level influences which posi-
tions of the enzyme become visible to selection, as the dampening of 
selection coefficients is site dependent.  
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Fig. 3. The DfrB1 fitness landscape changes with promoter activity level in a very heterogeneous way along the protein sequence. Selection coefficient (s) of 
individual amino acid substitutions (rows) at different positions (columns) at five promoter activity levels. Annotations above the first panel indicate the protein’s local 
secondary structure (arrows indicate β strands) and sequence diversity among homologs (Shannon entropy). The annotations at the bottom of the last panel highlight 
residues that participate in the interfaces of the DfrB1 homotetramer, which come into contact with either the substrate (DHF) or the cofactor [NADPH (reduced form of 
nicotinamide adenine dinucleotide phosphate)], key catalytic residues, the disordered region, and buried sites. Interfaces are labeled as dimerization and tetramerization 
interfaces following (20). Residues marked with a dot on the heatmaps are WT residues (WT codons and their synonymous ones).  
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To quantify the effect of promoter activity level on selection co-
efficients, we calculated Δs as the difference between the selection 
coefficients of an amino acid substitution at a given promoter activ-
ity level and at the optimal level for the WT enzyme that we use as a 
reference (Δsnon-opt = snon-opt − sopt, with snon-opt referring to either 
of sweak, ssubopt, snear-opt, or sabove-opt). Heatmaps similar to Fig. 3 but 
with the Δsnon-opt scores (fig. S12A) show that (i) a majority of po-
sitions with strongly deleterious mutations are deleterious no 
matter the promoter activity level (Δsnon-opt around 0), (ii) the del-
eterious effect of some mutations is dampened at the reference pro-
moter activity level (Δsnon-opt < 0), and (iii) some mutations are 
beneficial specifically at low promoter activity (Δsnon-opt > 0). The 
dampening of mutational effects by gene expression is dose depen-
dent because the magnitude of Δsnon-opt becomes smaller as pro-
moter activity level approaches the optimum, so mutational 
effects observed at weak promoter activity would start to be damp-
ened even at suboptimal promoter activity (P ≤ 1.9 × 10−9 for all 
comparisons, Wilcoxon test for differences in means of paired 
samples; fig. S12B). We chose to focus on Δsweak in the following 
sections because it represented the most marked decrease in pro-
moter activity with respect to the optimum. 

Low promoter activity makes some coding mutations 
beneficial 
The disordered N-terminal region is distinct from the rest of the 
protein, as it contains beneficial amino acid changes whose effects 
disappear at the reference promoter activity level (Δsweak > 0), par-
ticularly at positions 2 and 3. The E2R and E2V mutations, for in-
stance, have extremely high values (lowest promoter activity level, s 
= 0.340 for E2R and s = 0.363 for E2V)(Fig. 4A). This suggests that 
the enzyme may be more catalytically efficient or at higher abun-
dance than the WT when promoter activity is low. To distinguish 
these two possibilities, we assayed enzyme activity in cellular ex-
tracts for these two mutants. We confirmed an increase in bulk en-
zymatic activity for both E2R (P = 5.7 × 10−3, t test) and E2V 
(P = 0.05, t test) relative to the WT (Fig. 4B). Although only mar-
ginally significant (P = 0.09), E2R had higher activity than E2V, 
which corresponds to the slightly higher fitness observed for E2R 
in individual growth assays (fig. S7A). 

We next examined whether the higher observed activity of the 
E2R and E2V mutants could be caused by higher protein abun-
dance. Nucleotide content and their corresponding amino acids 
in the first few codons of a gene are known to modulate protein ex-
pression in E. coli (23), which makes this region a target for bene-
ficial mutations when transcription levels are low. To test the effect 
of amino acid changes on protein abundance, we generated GFP 
fusions with (i) the entire DfrB1 WT sequence with and without 
(ii) the most beneficial mutation (E2R), (iii) the WT disordered 
N-terminal region (amino acids 1 to 25), and (iv) the disordered 
region with the E2R mutation (fig. S13). When the E2R substitution 
was introduced, we observed higher protein abundance, even when 
only fusing the disordered fragment containing E2R to GFP, reach-
ing more than a 10-fold expression change relative to the WT se-
quence (ANOVA, P < 2.2 × 10−16; Tukey post hoc test, all 
comparisons between constructs with the E2R mutation and con-
structs with the WT had P < 1.3 × 10−6; Fig. 4C and table S7). At 
the lowest promoter activity level (0.01% arabinose), the E2R 
mutant fused to GFP has an abundance that compares or that is 
slightly higher than the WT enzyme at its optimal induction level. 

Such a beneficial mutation at low promoter activity therefore acts by 
increasing protein abundance, most likely by increasing translation 
rate. The benefit extends to even lower promoter activity, as growth 
recovery is maximal for this mutant at even lower induction level 
(Fig. 4D). This result demonstrates that the promoter activity and 
coding sequence could coevolve to tune protein abundance. Thus, 
the optimal abundance of the protein could be achieved with lower 
promoter activity for the E2R and E2V mutants than for the WT. 
Conversely, when promoter activity approaches the optimum for 
the WT, the E2R and E2V mutations could lead to a decrease in 
fitness due to cost of producing an excess of the enzyme or other 
potential negative impacts. We did observe a slight significant 
fitness reduction for the E2R mutant at high induction levels 
(Fig. 4D and fig. S14). This would represent one of the few cases 
of changes in promoter activity that lead to a change in fitness 
ranking among mutants. 

Masking of fitness effects is encoded in the protein 
structure 
Unlike the individual selection coefficients at each level of promoter 
activity, the average Δsweak does not correlate with the entropy mea-
sured for each position in the alignment (Fig. 5A). Instead, the po-
sitions with the strongest masking effects are those on the outside of 
the protein and those with no clear function (Fig. 5B, mean Δsweak). 
However, strongly negative values of Δsweak are frequent at buried 
positions (Fig. 5B, minimum Δsweak), and the most strongly positive 
values are found in the disordered region (Fig. 5B, maximum 
Δsweak). As a result, promoter activity-dependent effects are ob-
served throughout the protein structure. 

The distributions of Δsweak for each kind of protein site show a 
more complete picture. Mutations that could destabilize the protein 
complex, such as those in buried sites and at the protein interfaces 
(Fig. 5C), seem to be buffered by increased promoter activity. An 
increase in expression level could compensate for lower stability fol-
lowing the law of mass action by augmenting the concentration of 
functional complexes. Even the sites in the disordered region with 
negative Δsweak (F18 and P19; Fig. 5A and fig. S15) could be ex-
plained by interaction interfaces. AlphaFold2 (25, 26) predicts res-
idues F18 and P19 to be in contact with W45 (fig. S15, A and B), 
which is known to interact with the disordered N-terminal region 
(27). These analyses show the sharp contrast between mutants ac-
cording to their structural and enzymatic roles: those involved in 
catalysis having Δsweak near 0, those in the disordered region 
often having positive Δsweak, and those at interaction interfaces 
with more negative Δsweak (Fig. 5C). These contrasts are reflected 
in the variability observed in homologous sequences, with the dis-
ordered region having higher entropy values than the interfaces and 
catalytic sites (Fig. 5A). 

An important consideration is that Δsweak = 0 could indicate not 
only mutations whose effects are not sensitive to promoter activity 
but also those that are completely neutral. For instance, the Q67C 
mutant has a catalytic efficiency reduced by 100-fold with respect to 
the WT DfrB1 (24) and has a Δsweak near 0 (Δsweak = −0.008), but 
the same is true for many mutations in the disordered region. We 
therefore mapped the effects of mutations in a two-dimensional 
space where Δsweak values are plotted against s at optimal promoter 
activity for the WT (Fig. 5D). This representation confirms the 
notable difference between promoter activity-independent effects 
of substitutions in catalytic residues and expression-modulated  
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effects at interaction interfaces (ANOVA, P < 2.2 × 10−16; Tukey 
post hoc test, P = 2.9 × 10−4 for the comparison between catalytic 
residues and the dimerization interface and P = 0.001 for the com-
parison between catalytic residues and the tetramerization interface; 
Fig. 5, C and E, and table S8). These differences remain significant 
when separating the data into residues that are exclusively annotated 
as catalytic, those that are exclusively annotated as interfaces, and 

those that are annotated as both catalytic and interface residues 
(ANOVA, P = 0.036; Tukey post hoc test, P = 0.029). Mutants 
with poor catalytic activity may not benefit much from change in 
promoter activity in this range. Of the mutants with known kcat/ 
KM, only the one with a limited (36.5%) reduction in activity 
(S65A kcat/KM = 0.275; WT kcat/KM = 0.433) appears to be signifi-
cantly improved by increasing promoter activity (S65A 

Fig. 4. Mutations that are beneficial at low 
promoter activity lead to increases in enzyme 
activity through increased protein abundance. 
(A) Distribution of differences in fitness effects 
observed for the same mutation at weak and 
optimal promoter activity. E2R and E2V have 
strongly beneficial selection coefficients at weak 
promoter activity, leading to positive Δsweak. (B) 
Lysates from cells expressing the E2R and E2V 
mutants show a higher in vitro bulk activity com-
pared to WT DfrB1. Error bars indicate the SEMs of 
three replicates. P values were calculated using t 
tests. (C) Fused DfrB1-GFP constructs have a higher 
protein abundance when they harbor the E2R 
mutation than when harboring the WT DfrB1 se-
quence. Data show the distributions of fluores-
cence intensity for 5000 cells. Labels at the top 
correspond to groups that show significant differ-
ences based on an ANOVA and Tukey’s post hoc 
test (P < 0.05). AU, arbitrary units. (D) The E2R 
mutation confers a higher growth recovery even at 
promoter activity levels far below the ones used for 
the bulk competition experiment. Dots indicate 
the average of three replicates. P values were cal-
culated from t tests comparing growth recovery of 
WT DfrB1 and E2R mutant. Concentrations of 
arabinose in bold indicate induction levels used in 
the bulk competition experiment.  
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Δsweak = −0.21; effect of promoter activity level on fitness, FDR ad-
justed P = 5.59 × 10−6; table S4). All others, with kcat/KM under 3% 
of the WT, have Δsweak near 0 (Q67C Δsweak = −0.018, I68L Δsweak- 
= −0.025, I68M Δsweak = 0.014, Y69F Δsweak = 0.024, and Y69H 

Δsweak = −0.021). Mutations that reduce enzyme activity down to 
a few percent of that of the WT are therefore unconditionally dele-
terious in this range of promoter activity. 

Slightly destabilizing mutants are masked at optimal 
promoter activity for the WT 
The previous analyses revealed that buried sites and binding inter-
faces often show mutations with effects that can be dampened by 
increasing promoter activity, suggesting that one of the causes of 
expression-dependent effects is protein destabilization. Protein de-
stabilization would reduce the amount of protein complex formed 

Fig. 5. Optimal promoter activity for the WT 
enzyme buffers mutational effects to varying 
degrees depending on the structural and catalytic 
sites. (A) Δs for weak versus optimal promoter activity 
level (Δsweak). A negative Δsweak value indicates mu-
tations that are more advantageous at optimal pro-
moter activity for the WT. A positive Δsweak value 
indicates mutations that are more advantageous at 
weak promoter activity relative to the WT. Annotations 
at the top (Shannon entropy) and bottom are the 
same as in Fig. 3. (B) Minimum, mean, and maximum 
Δsweak values mapped on the DfrB1 structure. The 
structures were generated with AlphaFold2 to include 
a representation of the disordered region, which is not 
present in PDB: 2RK1. The molecules in the active site 
represent the substrate (DHF) and cofactor (NADPH) 
for the enzymatic reaction using the coordinates from 
PDB: 2RK1. For all other structural analyses, the coor-
dinates from PDB: 2RK1 were used. (C) Δsweak values 
vary with structural properties. The shaded back-
ground corresponds to the color scale from (A). Letters 
above box plots indicate groups with statistically sig-
nificant differences as shown with an ANOVA and 
Tukey’s post hoc test (P < 0.05) (table S8). Positions 
belonging to more than one site are included in the 
individual distributions for all of those sites. (D) Overall 
landscape of selection coefficients at optimal pro-
moter activity for the WT (sopt, x axis) and Δsweak (y 
axis). Mutants close to the horizontal dashed line have 
fitness effects that are independent of promoter ac-
tivity. Labels indicate mutants with experimentally 
determined catalytic efficiency (kcat/KM) from the work 
of Strader et al. (24), also shown in figs. S5 and S6B. (E) 
Functional sites of the protein occupy distinct regions 
of the landscape. Stop codons are labeled as black 
asterisks. Horizontal dashed lines in (C) to (E) indicate 
Δsweak = 0, that is, no promoter activity-dependent 
effects on fitness.  
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for a given level of promoter activity by two major mechanisms: de-
stabilizing individual protein subunits or by reducing the binding 
affinity at the interfaces of the homotetramer (Fig. 6A). These 
factors can contribute to reducing active enzyme abundance the 
same way changes in promoter activity or translation do. To 
further examine the contribution of protein destabilization to the 
observed Δsweak, we computationally estimated the effects of 
amino acid changes on the protein and complex stability. Overall, 
we find a weak but significant correlation between ΔΔG of subunit 
stability and Δsweak (Spearman ρ = 0.10, P = 4.3 × 10−4). We mapped 
destabilizing effects in the landscape of fitness effects at optimum 
promoter activity (sopt) versus changes in fitness effects caused by 
a weak promoter activity (Δsweak; Fig. 6B). This analysis shows 
that highly destabilizing mutations, especially those affecting 
subunit stability, cluster in the same region of the landscape in 
Fig. 6B as those with poor catalytic activity in Fig. 5D and stop 
codons in Fig. 5E, corresponding to mutations for which optimal 
promoter activity for the WT has limited or no masking capacity. 

Since the same mutation can have an effect on both protein 
stability and binding affinity at either of the interfaces, we looked 
for mutations affecting only one of these parameters at a time. 
For example, to focus on protein stability, we restricted further anal-
yses to mutations causing changes between −0.5 and 0.5 kcal/mol 
on binding affinity at the interfaces. We did the same for mutations 
affecting the dimer- and tetramer-forming interfaces. We observed 
that higher promoter activity levels tend to improve fitness for all 
mutations but to a very limited extent for those with ΔΔG greater 
than 2 kcal/mol, both on protein stability and binding affinity at 
either interface, which largely behave like stop codon mutants 
(Fig. 6C and fig. S9C). Substitutions with highly destabilizing 
effects on subunit stability (P = 1.6 × 10−47) and on binding affinity 
at the dimer (P = 8.3 × 10−16) and tetramer (P = 8.6 × 10−4) inter-
faces tend to be mostly in clusters 1 (always deleterious) and 2 
(limited buffering by WT expression), as seen from the k-means 
analysis (P values were estimated using chi-square tests and adjusted 
using the Benjamini-Hochberg correction with FDR < 0.05; fig. 
S9C). In contrast, substitutions with weakly destabilizing effects 
on subunit stability (ΔΔGstab lower than 2 kcal/mol) belong 
mostly to clusters 3 (strong buffering by WT expression) and 4 
(mostly neutral) (fig. S9C). These observations also help explain 
the differences in the distribution of Δsweak between buried and un-
annotated sites (Fig. 5C) because mutations in buried sites tend to 
be more destabilizing than mutations in exposed sites. To confirm 
the predominant role of protein destabilization, we trained a 
random forest regressor (see Materials and Methods) (28) on 
Δsweak using the predicted biophysical effects of amino acid 
changes, structural features, changes in amino acid properties 
based on the differences in 57 indices from ProtScale (29), and 
the propensity of amino acids to be found in protein-protein inter-
action interfaces (table S9) (30). While the global performance was 
modest [R2 (test set) = 0.44, R2 (fivefold cross-valida-
tion) = 0.27 ± 0.031 (SEM)], it identified relative solvent accessibil-
ity, changes in hydrophobicity, and effects on subunit stability as the 
top features contributing to the predictions (fig. S16). Last, an 
ANOVA modeling selection coefficients based on expression level 
and bins of destabilizing effects found a statistically significant in-
teraction between promoter activity levels and effects on subunit 
stability (P = 0.017; table S10). As a result from these two analyses, 
we conclude that the relation between destabilizing effects of 

mutations and promoter activity is likely nonlinear, which is illus-
trated in Fig. 6C. As protein destabilization increases, the improving 
effect of increased promoter activity on fitness decreases. 

The previous section considered that protein destabilization 
would act by reducing protein abundance or catalytic activity, 
which would, in turn, reduce fitness (Fig. 6A). Fitness reduction 
could also come from an unstable protein through spurious inter-
actions with other proteins (31), leading to toxic effects that would 
increase with promoter activity. We confirmed that expression of 
WT DfrB1 was not toxic in itself at any of the tested promoter ac-
tivity levels in the absence of TMP (fig. S17). Although it is difficult 
to infer protein misfolding from the ΔΔG predictions, in principle, 
misfolded proteins that lead to toxicity would reduce fitness even in 
the absence of TMP. We therefore repeated the bulk competition 
experiment of the mutant library, inducing expression in 0 to 
0.4% arabinose, but this time removing selection for DfrB1 activity 
by omitting TMP. We observed lower signal-to-noise ratio, with a 
lower correlation between biological replicates (fig. S18) than when 
TMP selected for DfrB1 activity, consistent with very little fitness 
differences among mutants. The distributions of selection coeffi-
cients are tightly clustered around 0, confirming the lack of detect-
able fitness effects of most mutations when selection is removed 
(figs. S19 and S20). In addition, these selection coefficients do not 
correlate with patterns of molecular evolution (fig. S21) and do not 
reflect any underlying effects on subunit stability or binding affinity 
(fig. S22). As a result, most of the fitness effects measured in the 
experiment with TMP above are therefore unlikely to come from 
toxic misfolding and gains of interactions but to a lowered activity 
or abundance of the functional tetrameric enzyme. 

Our results show that the stability of the protein and of its 
complex would create classes of promoter activity-fitness functions 
different from the one observed for the WT enzyme (Fig. 1C). 
Because the estimated selection coefficients correlate well with 
growth recovery measured in growth curve assays (fig. S7), we 
could infer fitness functions for individual mutants with different 
estimated stability classes. Using the WT promoter activity-fitness 
function (Fig. 1C) as a reference and the selection coefficients of 
individual mutations (table S3), we derived a pseudo growth recov-
ery metric (see Materials and Methods) to visualize the interaction 
between promoter activity level and mutational effects on protein 
stability and binding affinity on fitness (Fig. 6D). Growth recovery 
is higher as promoter activity increases, and this improvement tends 
to be higher for mutations with smaller effects on either protein 
stability or binding interfaces. Conversely, highly destabilizing mu-
tations have fitness functions that are nearly flat, illustrating the 
limit of the buffering capacity of the optimal promoter activity. 

DISCUSSION 
By measuring how promoter activity affects the fitness effects of 
amino acid substitutions on a small protein complex, we find that 
the selection coefficients of individual amino acid substitutions are 
highly conditioned by the activity of the promoter, revealing 
rampant regulatory-by-coding epistasis. Some coding mutations 
become strongly advantageous at low promoter activities, some mu-
tations are strongly deleterious at any promoter activity, and some 
have deleterious effects that are dampened by higher promoter ac-
tivity. Coding mutations that are advantageous specifically at low 
promoter activity increase protein abundance. Mutations that are  
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Fig. 6. Increased promoter activity masks slightly destabilizing mutations but not highly destabilizing ones. (A) Mutations can affect many aspects of a gene and 
protein function, including its transcription rate, its translation rate and its enzymatic activity through protein stability and catalytic activity. (B) Landscape of selection 
coefficients at optimal promoter activity for the WT (x axis) and Δsweak (y axis). Amino acid substitutions are represented as dots and colored according to bins of the 
magnitude of their destabilizing effects on subunit stability and binding affinity at the interfaces. Substitutions in the disordered region (IDR; positions 2 to 20) are also 
included for reference as a category of their own because they are not present in the PDB structure (2RK1), and hence, their destabilizing effects cannot be estimated. 
Highly destabilizing mutations cluster on the left where mutations are deleterious (negative s), and the deleteriousness tends to be independent of promoter activity level 
(Δsweak around 0, horizontal dashed lines). (C) Heatmaps showing medians of measured selection coefficients for mutants with different effects on protein stability or 
binding affinity at the interfaces. Stop codons from the functional protein core (residues 30 to 70) are shown for comparison. Numbers of mutations considered for each 
bin of effects on protein stability or binding affinity at the interface are listed on the right. Increases in promoter activity lead to an increase in the median fitness of 
mutations with slightly destabilizing effects but not as much for those with highly destabilizing effects. (D) Pseudo growth recovery functions for mutations from the 
different bins of effects on protein stability and binding affinity. Dots indicate the median, and shaded ribbons indicate the SEMs.  

S C I E N C E  A D VA N C E S | R E S E A R C H  A R T I C L E  

Cisneros et al., Sci. Adv. 9, eadd9109 (2023) 3 February 2023                                                                                                                                                10 of 17 



unconditionally deleterious tend to have a strong negative impact 
on the catalytic activity of the enzyme or extreme effects on its 
stability. 

Mutations with deleterious effects that are modulated by pro-
moter activity appear to be slightly destabilizing for the protein 
itself or its assembly into dimers and a tetramer. Promoter activity 
could therefore potentially evolve to increase the abundance of 
slightly underperforming enzymes. Similarly, a recent study 
showed that the effects on fitness of slightly destabilizing mutations 
in a metabolic enzyme can be compensated by a higher availability 
of the substrate (32). As for the highly destabilizing mutations and 
those affecting the catalytic sites of the enzyme, they have selection 
coefficients that are less likely to be buffered by increasing promoter 
activity within the range examined. We cannot exclude that more 
destabilizing mutations could also be buffered at higher promoter 
activity. The range of expression that we considered is from 7 to 
110% of optimal expression for the WT enzyme (Fig. 1D) to 
mimic the range observed for naturally occurring substitutions in 
promoter sequences (33), which likely is representative of what is 
available through single-step mutations. If mutations increasing 
promoter activity to a much higher level are not accessible, then 
such coding mutations would never have a chance to be maintained, 
even more so because the cost of overexpression could be a substan-
tial burden for some proteins. 

Our inferences come with shortcomings. For instance, for most 
mutants of the catalytic sites, we have not determined experimen-
tally how these changes affect catalytic efficiencies. However, by cu-
rating the literature, we identified many mutants whose catalytic 
efficiencies have been determined and those indeed remain strongly 
deleterious at all the levels of promoter activity that we examined 
(fig. S5). Similarly, computational estimations of mutational 
effects generally have a good agreement with experimental values 
but are not always as accurate (34, 35). FoldX assumes a rigid back-
bone, which restricts the study of misfolding induced by mutations 
(34). Nevertheless, our FoldX predictions agree well with the fitness 
estimations from our bulk competition experiment and reflect the 
biological effects of losses of bulk enzymatic activity. 

Many biological parameters other than promoter activity can in-
fluence how much functional enzyme is produced. The total 
amount of protein in the cell therefore depends on the interplay 
and coevolution of promoter activity, translation rate, and protein 
stability. For instance, many combinations of transcription and 
translation rates can lead to the same amount of protein (36). 
Coding mutations that increase protein abundance, for instance, 
through codon usage (23), can therefore be beneficial at low pro-
moter activity, as we observed here. Even if they produce similar 
steady-state amounts of proteins, combination of transcription 
and translation rates and protein stability are not evolutionarily 
equivalent because of selection on other features such as expression 
noise (36). In the long term, other combinations of parameters can 
enhance evolvability, as a more lowly expressed but more stable 
protein was recently shown to have access to different adaptive 
paths (37). Being able to measure how mutations affecting tran-
scriptional, posttranscriptional, translational, and posttranslational 
regulation interact to shape fitness will help better understand how 
they evolve in concert. 

Our results show that changes in gene regulation, such as alter-
ation of promoter activity by mutation, could dictate which muta-
tions will be beneficial or deleterious for a coding sequence and vice 

versa. Over the long term, promoter activity and protein sequences 
will thus coevolve. This coevolution could be disrupted when major 
changes occur in the environment and in the regulation of the ex-
pression level of a gene, such as in the event of gene duplication, 
translocation, or horizontal gene transfer. These changes could be 
advantageous but not necessarily optimal, for instance, in the case 
of drug resistance enzymes such as the one presented here. Reaching 
optimality could be achieved by a change in regulation of transcrip-
tion, translation, or protein stability. Adaptive protein evolution 
could therefore occur because of suboptimal expression level or 
vice versa. While we focused our analyses on protein stability and 
the formation of a protein complex, other protein properties such as 
solubility could play a role in determining the optimal promoter ac-
tivity for a particular variant. Overall, these results call for the joint 
consideration of coding and regulatory mutations in the study of 
protein evolution. 

Although focusing on one particular protein, our results may 
shed light on a long-standing observation in molecular evolution. 
Highly expressed proteins evolve slowly (38, 39), and this is often 
interpreted as higher selective constraints acting on highly ex-
pressed proteins, for instance, to prevent misfolding and, potential-
ly, misinteraction, which would be costly. We found potential 
misfolding to have no detectable effects for this protein, which 
could be the case for many other proteins as well. For such proteins, 
if high promoter activity buffers the effect of destabilizing muta-
tions, then one would wrongly expect highly expressed proteins to 
evolve faster. However, because highly expressed proteins are costly 
to produce (40), their expression level may actually be below the 
optimal level that would be observed in the absence of metabolic 
cost. As a result, their fitness landscape would be more similar to 
the fitness landscapes that we observed at weak and suboptimal pro-
moter activity, where purifying selection against destabilizing mu-
tations would be more intense, thereby preserving protein sequence. 

MATERIALS AND METHODS 
All strains, reagents, compounds, and softwares used in this study 
are listed and referenced in table S11. 

Strains, media, and plasmids 
MC1061 is the E. coli strain used for all cloning and mutagenesis 
steps, whereas E. coli BL21 (DE3) is the one used for the experi-
ments conducted in this study. Transformations with plasmids 
were done according to standard procedures with in-house chemi-
cally competent cells (41). Transformed bacteria were grown and 
selected on 2× YT + glucose medium (1.0% yeast extract, 1.6% tryp-
tone, 0.2% glucose, 0.5% NaCl, and 2% agar) (42) with ampicillin 
(AMP; 100 μg/ml). For all experiments conducted in liquid medium 
(with the exception of the growth to measure DfrB1 activity; see 
below), bacteria were grown in Luria-Bertani (LB) medium (0.5% 
yeast extract, 1.0% tryptone, and 1.0% NaCl) (43) with AMP and 
with or without L(+)-arabinose (0.001 to 0.4%) and TMP [10 μg/ 
ml in dimethyl sulfoxide (DMSO)]. To measure DfrB1 activity, bac-
teria were grown in Terrific broth (TB) medium (2.4% yeast extract, 
1.2% tryptone, 0.4% glycerol, and 89 nM potassium phosphate). 

The dfrB1 gene was expressed in bacteria from a pBAD vector 
that allows arabinose-controlled induction (44). pBAD-dfrB1 was 
constructed as follows. The pBAD vector was amplified from 
pBAD-chuA plasmid (45) with CLOP198-E9 and CLOP198-F9  
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[polymerase chain reaction (PCR) program: 5 min at 95°C; 35 
cycles: 20 s at 98°C, 15 s at 61°C, and 2 min 30 at 72°C; and a 
final extension of 3 min at 72°C]. dfrB1 was amplified from 
pDNM plasmid with CLOP198-A10 and CLOP198-B10 (PCR 
program: 5 min at 95°C; 5 cycles: 20 s at 98°C, 15 s at 62°C, and 
15 s at 72°C; 30 cycles: 20 s at 98°C, 15 s at 72°C, and 15 s at 
72°C; and a final extension of 3 min at 72°C). Both PCR products 
were incubated for 1 hour at 37°C with 20 U of DpnIenzyme to 
remove parental DNA and subsequently purified on magnetic 
beads (Axygen AxyPrep Mag PCR Clean-Up Kit). The vector 
(pBAD) and insert (dfrB1), with their overlapping regions at each 
extremity, were then assembled by Gibson DNA assembly (46), pro-
ducing pBAD-dfrB1 plasmid. 

To measure the effect of mutating the second residue of DfrB1 
on the expression level by cytometry, we fused GFP in 30 of the dfrB1 
gene sequence and of its mutant. The plasmid was amplified from 
pBAD-dfrB1 (constructed above) or from pBAD-dfrB1(E2R) (iso-
lated from the DMS plasmid collection; see below) with 
CLOP273-A3/B3 (PCR program: 5 min at 95°C; 35 cycles: 20 s at 
98°C, 15 s at 61°C, and 2 min 30 at 72°C; and a final extension of 
3 min at 72°C). GFP was amplified from pBAD-sfGFP (47) with 
CLOP273-D3/F3 (PCR program: 5 min at 95°C; 5 cycles: 20 s at 
98°C, 15 s at 62°C, and 20 s at 72°C; 30 cycles: 20 s at 98°C, 15 s 
at 72°C, and 20 s at 72°C; and a final extension of 3 min at 72°C). 
The PCR products corresponding to the plasmids and insert were 
incubated for 1 hour and 30 min at 37°C with 10 U of DpnI enzyme 
to remove parental DNA. Subsequently, the plasmids [pBAD-dfrB1 
and pBAD-dfrB1(E2R)] and insert (sfGFP) were purified on mag-
netic beads (Axygen AxyPrep Mag PCR Clean-Up Kit) and assem-
bled by Gibson DNA assembly (46), producing pBAD-dfrB1-sfGFP 
and pBAD-dfrB1(E2R)-sfGFP. 

We also fused the GFP to a fragment corresponding only to 
DfrB1 first 25 residues. Vectors and the sfGFP insert were amplified 
from the same plasmids as above but using CLOP273-A3/C3 or 
CLOP273-E3/F3 primers, respectively. After DpnI digestion and 
magnetic beads purification, the Gibson DNA assembly produced 
pBAD-dfrB1[1–25]-sfGFP and pBAD-dfrB1[1-25](E2R)-sfGFP 
plasmids. 

To insert specific mutations in the dfrB1 sequence, we per-
formed site-directed mutagenesis based on the QuickChange Site- 
Directed Mutagenesis System (Stratagene, La Jolla, CA). Briefly, we 
amplified the pBAD-dfrB1 plasmid using pairs of primers contain-
ing the desired mutation at the center (see table S12 for the primers 
specific to each mutation; PCR program: 2 min at 95°C; 22 cycles: 20 
s at 98°C, 15 s at 68°C, and 3 min at 72°C; and a final extension of 5 
min at 72°C). The PCR products were then incubated for 1 hour and 
30 min at 37°C with 6 U of Dpn I enzyme to remove parental DNA, 
and mutated plasmids were retrieved directly by transformation in 
bacteria. We used this method to generate the following mutants: 
pBAD-dfrB1(F24V), pBAD-dfrB1(K33E), pBAD-dfrB1(K33L), 
pBAD-dfrB1(K33M), pBAD-dfrB1(S59Y), and pBAD- 
dfrB1(I68M). 

To generate a mutant in which the first methionine codon of 
DfrB1 is replaced by a stop codon [M1* mutant - pBAD- 
dfrB1(M1*)], we performed a PCR reaction using 10 ng of pBAD- 
dfrB1 plasmid as a template (PCR program: 5 min at 95°C; 25 cycles: 
20 s at 98°C, 15 s at 59°C, and 2 min 30 at 72°C; and a final extension 
of 3 min at 72°C) with the nonoverlapping primers (CLOP265-A1 
and CLOP259-H5) designed to incorporate a TGA stop codon on 

the forward primer to replace the ATG. The PCR product was then 
digested at 37°C for 1 hour with 10 U of DpnI. The digested PCR 
product was purified on magnetic beads and quantified, and ~50 ng 
was taken for phosphorylation using 5 U of T4 polynucleotide 
kinase in T4 ligase buffer for 30 min at 37°C (final reaction 
volume of 5 μl). Subsequently, ligation was done in a reaction 
volume of 10 μl by adjusting the volume of T4 ligase buffer, 
adding 10 U of T4 DNA ligase, and incubating for 1 hour at 
22°C. Last, mutated plasmid was retrieved directly by transforma-
tion in E. coli BL21 bacteria. 

For fitness validation, some of the plasmids that were used were 
directly isolated from the mutagenesis pools but confirmed by se-
quencing. Briefly, an aliquot of glycerol stock for the position of in-
terest was diluted and plated on solid medium. Colony PCR was 
performed on 32 colonies to amplify the dfrB1 gene using 
CLOP228-C1/D1 (PCR program: 5 min at 94°C; 30 cycles: 30 s at 
94°C, 30 s at 54°C, and 35 s at 72°C; and a final extension of 3 min at 
72°C). Two subsequent PCR rounds were used to add specific row- 
column and plate barcodes (48). These PCRs are described in detail 
in the library sequencing section below. All pooled samples were 
sent to the Genomic Analysis Platform [Institut de biologie intégra-
tive et des systèmes (IBIS), Québec, Canada] for paired-end 300-bp 
sequencing on a MiSeq (Illumina). After identification of individual 
mutations, plasmids for clones of interest were retrieved and puri-
fied from bacteria using the Presto Mini Plasmid Kit. 

All PCR reactions mentioned above or described below were 
performed with oligonucleotides defined in table S12, using Kapa 
polymerase at the exception of the colony PCRs for which Taq 
DNA polymerase was used. The integrity of all assembled and mu-
tagenized plasmids was confirmed by Sanger sequencing [Plate-
forme de séquençage et de génotypage des génomes, Centre de 
recherche du centre hospitalier de Québec–Université Laval 
(CRCHUL), Canada] using either CLOP194-G11 or CLOP196-B5 
as a sequencing primer. 

Deep mutational scanning 
A single-site mutation library of dfrB1 was generated by a PCR- 
based saturation mutagenesis method plasmid with the oligonucle-
otides defined in (table S12). Forward oligonucleotides that have de-
generate nucleotides (NNN) so each codon of dfrB1 is mutated were 
used in combination with a single reverse primer located in the 
plasmid outside the coding sequence. A first PCR to generate an 
amplicon containing the desired mutations was conducted follow-
ing these steps: 5 min at 95°C; 35 cycles of 20 s at 98°C, 15 s at 60°C, 
and 30 s at 72°C; and a final extension of 1 min at 72°C. The result-
ing PCR product was then used as a mega primer to introduce the 
mutations in pBAD-dfrB1 by amplifying the whole plasmid (PCR 
program: 5 min at 95°C; 22 cycles: 20 s at 98°C, 15 s at 68°C, and 
5 min at 72°C; and a final extension of 7 min at 72°C). The long PCR 
product was digested for 90 min at 37°C with 6 U of DpnI to remove 
parental DNA. The digestion products for individual positions were 
transformed into E. coli MC1061. More than a thousand colonies 
were retrieved from each transformation. After addition of glycerol, 
libraries for each position were stored separately. From the same 
pools of bacteria, plasmids were also extracted and purified. PCR 
amplification and Illumina MiSeq sequencing performed on these 
plasmids allowed library quality control assessment (fig. S2). In an 
initial round, mutagenesis of position 39 was not successful.  
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Mutagenesis at this position was repeated separately and added to 
the final library after quality control. 

Bulk competition assay 
First, E. coli BL21 was transformed with 75 ng of each individual 
position mutant pool (DNA Miniprep from the DMS step above). 
Start and stop codon positions (positions 1 and 79) were omitted. 
All colonies were retrieved from each transformation plate in 5 ml of 
2× YT liquid medium. Optical density at a wavelength of 600 nm 
(OD600) was measured for each pool (final OD600 between 40 and 
80 after being scraped and resuspended in medium). At this step, 
15% glycerol was added to the medium, and an aliquot of each 
pool was stored individually for further use. In parallel, pools 
were equally mixed at an OD600 of 25 to generate a starting pool 
for the bulk competition assay. This master pool was stored for 
further use. 

Two separate bulk competition assays were performed. Details 
concerning arabinose concentrations, the presence or absence of 
TMP, and the number of replicates are indicated in table S1. 
Briefly, the master pool was used to inoculate at OD600 = 0.01 a 
first preculture in LB + AMP medium. After an overnight incuba-
tion at 37°C with agitation (250 rpm), cells were diluted 1:100 in 
fresh medium with the addition of different amounts of arabinose. 
Following an 18-hour incubation at 37°C (250 rpm), cells were 
diluted again at OD600 = 0.025 in a final volume of 4 ml of fresh 
medium containing arabinose with the addition of TMP or 
DMSO (TMP solvent − no TMP control). Cultures were then incu-
bated as above until OD600 reached 0.8 (five generations). At this 
point, 125 μl was used to dilute back to OD600 = 0.025 in fresh 
medium, and cells were grown until, once again, OD600 reached 
0.8 (another five generations). Last, at two time points (18-hour pre-
culture = time point 0; after 10 generations = time point 10), 3 ml of 
the culture was used to extract plasmid DNA (fig. S3). These 
samples were treated as described below to prepare libraries for 
sequencing. 

Single mutant library sequencing 
Libraries for sequencing were generated as described in the work of 
Dionne et al. (49). Briefly, three PCR steps were done. The first one 
was performed directly on the small plasmid DNA preparations (4.5 
ng of plasmid) corresponding to single-codon mutant libraries or to 
bulk competition assay samples (PCR program: 3 min at 98°C; 20 
cycles: 30 s at 98°C, 15 s at 60°C, and 30 s at 72°C; and a final ex-
tension of 1 min at 72°C). The second PCR was performed to add 
row and column barcodes (48) for identification in a 96-well plate 
(PCR program: 3 min at 98°C; 15 cycles: 30 s at 98°C, 15 s at 60°C, 
and 30 s at 72°C; and a final extension of 1 min at 72°C). For this 
second PCR, the first PCR product was used as a template (2.25 μl of 
a 1:2500 dilution). Quantification on gel of the second PCR product 
using Image Lab (Bio-Rad Laboratories) allowed us to mix the li-
braries so each has a roughly equal amount in the final library. 
Mixed PCRs were purified on magnetic beads and quantified 
using a NanoDrop (Thermo Fisher Scientific). Last, 0.0045 ng of 
the purified mixed PCRs was used as template for the third PCR, 
which adds a plate barcode and Illumina adapters (PCR program: 
3 min at 98°C; 18 cycles: 30 s at 98°C, 15 s at 61°C, and 35 s at 72°C; 
and a final extension of 1 min at 72°C). Each reaction for the third 
PCR was performed in quadruplicate and then combined. After pu-
rification on magnetic beads, libraries were quantified using a 

NanoDrop (Thermo Fisher Scientific) and sent to the Genomic 
Analysis Platform (IBIS, Québec, Canada) for paired-end 300-bp 
sequencing on a MiSeq (Illumina) or to the Plateforme de séquen-
çage et de génotypage des génomes (CRCHUL, Québec, Canada) 
for paired-end 250-bp sequencing on a NovaSeq (Illumina). All 
raw data are available at SRA BioProject PRJNA842350 (accession 
numbers SRR19419448 and SRR19419449). 

Bacterial growth curves 
To measure fitness for individual WT or mutant DfrB1, growth was 
followed with serial OD600 measurements in a plate reader. From an 
overnight preculture grown in LB + AMP medium, cells were 
diluted 1:100 in fresh medium with the addition of 0 to 0.4% arab-
inose according to the experiment. Following an 18-hour incuba-
tion at 37°C (250 rpm), cells were diluted again at OD600 = 0.01 
in a final volume of 200 μl of fresh medium containing arabinose 
with the addition of TMP or DMSO. The 96-well plate was incubat-
ed at 37°C in an Infinite M Nano plate reader (Tecan) for 20 hours. 
OD600 measurements were taken every 15 min. The plate was agi-
tated at 200 rpm in between measurements. Growth curves were an-
alyzed with the Growthcurver R package (50) to calculate the area 
under the curve as an estimate of fitness. The percentage of recov-
ered growth upon arabinose induction was calculated as follows 

g ¼ 100�
AUCTMP;induction

AUCnoTMP;induction

� �

where g refers to the recovered growth percentage and AUC refers 
to the area under the curve in the conditions specified by the sub-
script (with or without TMP). 

Expression level measurement by flow cytometry 
To measure GFP level by cytometry, a first preculture in LB + AMP 
medium was grown with bacteria containing the plasmid of interest 
[pBAD-sfGFP, pBAD-dfrB1-sfGFP, pBAD-dfrB1(E2R)-sfGFP, 
pBAD-dfrB1[1–25]-sfGFP, and pBAD-dfrB1[1-25](E2R)-sfGFP]. 
As for the bulk competition assay, after an overnight incubation 
at 37°C with agitation (250 rpm), cells were diluted 1:100 in fresh 
medium with the addition of different amounts of arabinose. Fol-
lowing an 18-hour incubation at 37°C (250 rpm), cells were diluted 
again at OD600 = 0.025 in a final volume of 4 ml of fresh medium 
containing arabinose. Cultures were then incubated as above until 
OD600 reached 0.8 (five generations). At the different time points 
(18-hour preculture = time point 0; after five generations = time 
point 5), small aliquots of cells were taken and diluted in sterile fil-
tered water to an OD600 = 0.05 in 200 μl. GFP fluorescent measure-
ments and forward scatter (FSC) and side scatter (SSC) data were 
collected from a Guava easyCyte HT cytometer (Luminex). From 
the cytometry data, E. coli cells were selected on the basis of FSC 
and SSC. From the selected data points, the GFP fluorescence 
signal was measured after excitation with a blue laser (wavelength, 
488 nm) and detection in the green channel (525/30 nm). 

DfrB1 activity measurement 
Enzymatic activity of DfrB1 and of different mutants was tested in 
vitro. From a 16- to18-hour 5-ml LB + AMP preculture [incubation 
at 37°C with agitation (230 rpm)], a 10-ml culture in TB + AMP was 
inoculated at OD600 = 0.1 and incubated for 3 hours at 37°C 
(OD600 = 0.7 to 1) with agitation. Induction of expression was  
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initiated by addition of 1% arabinose, and incubation was continued 
at 22°C for 16 to 18 hours with agitation. After induction, cells were 
pelleted for 30 min at 3000 rpm (Eppendorf Centrifuge 5810 R) at 
21°C, resuspended in 300 μl of lysis buffer [0.1 M KH2PO4-K2HPO4 
(pH 8.0), 10 mM MgSO4, 1 mM dithiothreitol, lysozyme (0.5 mg/ 
ml), 5 U of deoxyribonuclease, 1.5 mM benzamidine, and 0.25 mM 
phenylmethylsulfonyl fluoride], and incubated for 2 hours at 30°C 
with vigorous shaking. Lysates were cleared by a 30-min centrifuga-
tion at 3000 rpm (Eppendorf Centrifuge 5810 R) at 21°C. In a 96- 
well plate, cleared lysates (20 μl) were combined with TMP (50 μg/ 
ml), 100 μM DHF [synthesized as in (51)], and 100 μM NADPH 
(reduced form of nicotinamide adenine dinucleotide phosphate) 
in 50 mM KH2PO4-K2HPO4 (pH 7.0) in a total volume of 100 μl. 
Measurement of absorbance at 340 nm was taken for 5 min in a 
Beckman Coulter DTX880 Multimode detector plate reader. 
Enzyme activity was calculated using the slope for the initial 20% 
of substrate consumption. 

Data analyses 
Inferring fitness scores from sequencing data 
Quality control of the MiSeq and NovaSeq sequencing data was per-
formed using FastQC version 0.11.4 (52). Trimmomatic version 
0.39 (53) was used to select reads with a minimal length from the 
raw data (MINLEN parameter: 299 for MiSeq reads and 250 for 
NovaSeq reads) and trim them to a final length (CROP parameter: 
270 for MiSeq reads and 225 for NovaSeq reads). Selected reads 
were aligned using Bowtie version 1.3.0 (54) to the plate, row, and 
column barcodes to demultiplex sequences from each pool (arabi-
nose concentration + time point). The remaining paired reads were 
merged with Pandaseq version 2.11 (55), and identical sequences 
were aggregated using vsearch version 2.15.1 (56). Last, aggregated 
reads were aligned to the reference sequence of DfrB1 to identify the 
mutant codon in each read. Stop codon TAG was removed from all 
analyses because it has been shown to have a lower termination ef-
ficiency than the other stop codons in E. coli (57, 58). 

Raw read counts were normalized by the total number of reads in 
each pool (arabinose + time point). The resulting read proportions 
were used to calculate selection coefficients based on the end point 
and the starting point of each experiment using the following equa-
tion 

s ¼

log2

Nmut;t10
medianðNWT;t10Þ

Nmut;t0
medianðNWT;t0Þ

" #

k 
where s is the selection coefficient, N is the number of reads for the 
corresponding mutant at a specific time point, and k is the number 
of generations (k = 10). Last, biases in the bimodal distributions for 
some samples were corrected using the mixtools R package (59) so 
that the second mode of the distributions would be centered at zero, 
the corresponding value for neutral mutations. 

Because the selection coefficients were correlated with changes 
in growth recovery (fig. S7), we used the selection coefficients 
(table S3) and the growth recovery for WT at each promoter activity 
level (Fig. 1C) to derive a pseudo growth recovery metric that could 
approximate the expected growth recovery for each mutation. This 
metric was calculated as follows 

ĝ ¼ gWT�ð1þ sÞ

where ĝ is the estimated pseudo growth recovery at a given promoter 
activity level, gWT is the experimentally determined growth recovery 
for the WT, and s is the selection coefficient of a given mutant. 
Evolutionary analysis (GEMME, Evol, and jackhmmer) 
A set of seven DfrB1 homologs was extracted from data published 
by Toulouse et al. (60). These seven sequences were then submitted 
to the online jackhmmer tool (www.ebi.ac.uk/Tools/hmmer/ 
search/jackhmmer) (61) using the UniProt database as a target to 
look for additional homologous sequences. The resulting set of se-
quences was filtered with the following criteria, considering that the 
full-length DfrB1 sequence is 78 residues long: (i) E score < 1 × 10−6, 
(ii) alignment length > 50, and (ii) sequence length < 100. 

Applying these filters resulted in a final set of 82 high-confidence 
DfrB1 homologs. These sequences were aligned with MAFFT 
version 7.475 (62, 63) using the iterative refinement method (64, 
65). The resulting alignment was then analyzed with the Evol 
library from the ProDy suite version 2.0 (66) to calculate Shannon 
entropy at each position in the alignment as a metric of evolutionary 
variation. In parallel, the same MAFFT alignment was analyzed 
with the GEMME model (20) to obtain predictions of the fitness 
landscape based on the variation in the alignment. 
Machine learning analyses  

k-means clustering. We used k-means clustering to identify the 
typical patterns of expression-dependent changes in fitness effects 
(Fig. 2C). The k-means clustering was run using the kmeans func-
tion from the R base stats package (67) by setting the seed and using 
the values of k from 1 to 10 (fig. S9A) and the following parameters: 
iter.max = 10 and nstart = 25. k = 4 was selected as the best com-
promise between parsimony (based on the diminishing decrease in 
the sum of squared errors) and interpretability (cluster visualization 
in Fig. 2C). Centroids reflecting the central selection coefficients of 
mutants from each cluster are visualized in fig. S9B and provided in 
table S5. To estimate relative enrichment of mutants from specific 
clusters at the sites of interest, we organized the data in separate con-
tingency tables indicating whether a particular mutant was assigned 
to that site and its corresponding cluster. We calculated the log2 fold 
ratio of observed versus expected counts of mutants from each 
cluster at each site (fig. S9C). To compare whether the distribution 
was statistically significant from expectations, we derived contin-
gency tables with counts of mutations from each cluster belonging 
to the region analyzed and to the rest of the protein. We performed 
chi-square tests on these contingency tables and used the Benjami-
ni-Hochberg correction (FDR < 0.5) for multiple hypothesis testing.  

Random forest regressor. A random forest regressor was trained to 
identify the features that better explain variation in promoter activ-
ity level–dependent Δs. Explanatory variables included in the model 
were as follows: 

1) Relative solvent accessibility (RSA). Solvent accessibility was 
calculated using DSSP version 2.2.1 (68) on the biological assembly 
of DfrB1 present in the Protein Data Bank (PDB: 2RK1) (15). RSA 
was then obtained by dividing the solvent accessibility of each 
residue by the maximum solvent accessibility of that residue, as de-
scribed by Miller et al. (69). 

2) Biophysical effects of mutations. FoldX version 5.0 (34, 70) 
was used with the MutateX wrapper (71) to simulate all possible 
mutations on the biological assembly of DfrB1 (PDB: 2RK1). 
Effects of mutations on subunit stability and binding affinity at 
the dimerization and tetramerization interfaces were measured.  
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3) Differences in amino acid scores. Fifty-seven amino acid 
indices were downloaded from the ProtScale database (29) on 21 
January 2019, as well as the index on propensity of each amino 
acid to participate in protein-protein interaction interfaces (30). 
For each mutation, we calculated the differences in index scores 
between the mutant residue and the WT residue. 

All the explanatory variables were divided by their maximum 
values to scale them between −1 and 1. The random forest model 
was trained using the sklearn Python library (72, 73) with 80% of the 
data and tested with the remaining 20%. We used the Python rfpimp 
library (https://github.com/parrt/random-forest-importances; 
version 1.3.7) to estimate relative importances of each variable by 
calculating the decrease in R2 of the predictions if the values of a 
particular feature are permuted (fig. S16A). Because of the high 
degree of collinearity in our set of explanatory variables, retraining 
the random forest with different seeds can suggest a different set of 
top variables. We introduced a random variable N(0, 1) as an inter-
nal control in the training set to identify which variables have sig-
nificant contributions to the model. We selected the variables that 
have a higher relative importance than the random variable and re-
trained the random forest to obtain the final model. Last, we eval-
uated the relative importance of the variables in the final model by 
comparing the decrease in R2 when the final model is retrained 
without that variable (fig. S16D). 

Statistical analyses 
Analyses of variance 
We used two different types of ANOVAs to characterize expression- 
dependent changes in fitness effects of coding mutations. First, we 
performed an ANOVA for each mutation considering all of its rep-
licates at all the promoter activity levels to identify mutants whose 
fitness effects were significantly affected by changes in gene expres-
sion. To correct for multiple hypothesis testing, we applied the Ben-
jamini-Hochberg correction with an FDR of 0.05 using the 
FDRestimation R package (table S4) (74). Then, we did an 
ANOVA on ranks with all replicates of all mutations at all the pro-
moter activity levels by applying the Aligned Rank Transform from 
the ARTool R package (75, 76) to estimate the contribution of the 
interaction between promoter activity level and coding mutants to 
fitness relative to their separate contributions (table S6). 

We used ANOVAs to analyze differences in the fluorescence 
measured for different constructs (Fig. 4C and table S7) and differ-
ences in the distribution of Δs based on the protein sites (Fig. 5C 
and table S8). In both cases, we complemented the ANOVA with 
Tukey’s post hoc test using the agricolae R package (77).  

Correction (14 August 2023): Due to a production error, the reference citations throughout 
the paper and Supplementary Materials did not correspond to the correct references. The 
reference citations have been updated. In addition, references (25–27) have been added, as they 
relate to the model of the protein of interest used. The PDF, Supplementary Materials, and 
HTML have been updated to reflect these changes. 
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Legends for tables S1 to S12 
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Table S1 to S12 
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