Skip to main content
Cardiovascular Research logoLink to Cardiovascular Research
. 2022 Aug 25;118(18):3451–3466. doi: 10.1093/cvr/cvac132

Mechanisms shared between cancer, heart failure, and targeted anti-cancer therapies

Sanne de Wit 1, Claire Glen 2, Rudolf A de Boer 3, Ninian N Lang 4,✉,b
PMCID: PMC9897696  PMID: 36004495

Abstract

Heart failure (HF) and cancer are the leading causes of death worldwide and accumulating evidence demonstrates that HF and cancer affect one another in a bidirectional way. Patients with HF are at increased risk for developing cancer, and HF is associated with accelerated tumour growth. The presence of malignancy may induce systemic metabolic, inflammatory, and microbial alterations resulting in impaired cardiac function. In addition to pathophysiologic mechanisms that are shared between cancer and HF, overlaps also exist between pathways required for normal cardiac physiology and for tumour growth. Therefore, these overlaps may also explain the increased risk for cardiotoxicity and HF as a result of targeted anti-cancer therapies. This review provides an overview of mechanisms involved in the bidirectional connection between HF and cancer, specifically focusing upon current ‘hot-topics’ in these shared mechanisms. It subsequently describes targeted anti-cancer therapies with cardiotoxic potential as a result of overlap between their anti-cancer targets and pathways required for normal cardiac function.

Keywords: Cancer, Heart failure, Cardiotoxic drugs, Mechanisms

Graphical Abstract

Graphical Abstract.

Graphical Abstract


This article is part of the Spotlight Issue on Heart Failure.

1. Introduction

Cancer is the leading cause of non-cardiovascular (CV) mortality in patients with heart failure (HF),1 accounting for up to 9% of deaths in patients with HF with reduced ejection fraction (HFrEF) and for up to 17% of mortality in patients with HF with preserved ejection fraction (HFpEF).2,3 Conversely, CV disease (CVD) is the most frequent non-cancer cause of death in patients with malignancy.4 In addition to shared risk factors, including obesity, smoking, and diabetes, the mechanistic underpinning of the bidirectional interplay between cancer and HF is becoming clearer.5,6 Cancer and HF both have the potential to provoke profound alterations in cellular homeostasis. These effects are of relevance in isolation, but the substantial overlap between mechanistic pathways of tumour growth and CV physiology may also explain the increased propensity to develop the ‘other’ disease. In addition to pathophysiologic mechanisms that are shared between cancer and HF, overlaps also exist between pathways required for normal cardiac physiology and for tumour growth. Therefore, these overlaps may also explain the increased risk for cardiotoxicity and HF as a result of targeted anti-cancer therapies.

We will provide an overview of the bidirectional interactions between cancer and HF and will describe current ‘hot topic’ mechanisms shared by these conditions. We will also outline the relevance of anti-cancer therapies with potential cardiotoxic effects resulting from overlaps between their anti-cancer targets and pathways required for normal cardiac function.

2. Bidirectional interaction between HF and cancer

2.1. HF as a risk factor for cancer

Over the last decade, a growing number of clinical studies have demonstrated that patients with HF are at increased risk for developing cancer.7–13 The association between HF and cancer was first described in a cohort including 961 patients with HF as well as age- and sex-matched controls. Patients with HF were at increased risk of developing cancer [hazard ratio (HR): 1.68; 95% CI (1.13–2.50)], even after adjustment for body mass index, smoking, and co-morbidities.7 Several more recent studies have corroborated this; the most recent article to be published described a large community based study from the Puglia region of Italy (n = 104 020 subjects), in which cancer incidence and cancer mortality were significantly higher in patients with HF, compared to matched non-HF control subjects [HR: 1.76 (1.71–1.81) and HR: 4.11 (3.86–4.38), respectively].13 These findings were replicated in a German cohort, in which HF was significantly associated with the incidence of cancer [HR: 1.76 (1.71–1.81)].11 In the Women’s Health Initiative study, HF was associated with increased cancer incidence [HR: 1.28 (1.11–1.48)] in female patients. Notably, HFpEF but not HFrEF was associated with increased cancer incidence [HR 1.34, (1.06–1.67); and HR 0.99 (0.74–1.34), respectively].12

The association between HF and cancer can partially be explained by shared risk factors. However, several recent preclinical studies have shown that HF can also stimulate tumour growth directly.14–16 The initial evidence for a causal relation between HF and cancer comes from a study of tumour prone C57BL/6-ApcMin mice, in which tumour growth increased significantly in the context of myocardial infarction (MI)-induced HF.14 To exclude the effect of haemodynamic impairment upon tumour growth, the experiment was repeated in a model of heterotopic heart transplantation. A higher tumour load was observed in mice with a failing heart (whether in situ or transplanted) compared to controls. Several proteins were identified to be increased in the presence of HF and were also associated with proliferative effects in colon cancer cell lines, especially Serpin3A. These observations gave rise to the hypothesis that HF may promote tumour growth through secretion of paracrine factors.14 This hypothesis was recently substantiated in an aortic constriction model, in which early cardiac remodelling, without severe cardiac dysfunction, was seen to promote tumour growth in a breast cancer and lung cancer mouse model.16 Furthermore, plasma obtained from mice subjected to aortic constriction stimulated tumour cellular proliferation, building on the evidence that secreted factors play a role in HF-induced tumour growth. Periostin was identified as a potentially important mediator, given that plasma depleted of periostin no longer evoked tumour proliferative effects.16 Koelwyn et al.15 demonstrated that MI-induced HF increases breast cancer growth via epigenetic remodelling of bone-marrow immune cells which resulted in an immunosuppressed, pro-cancer phenotype. However, despite multiple layers of evidence that HF can stimulate tumour growth, these effects were not reproduced in a mouse model of renal cancer, suggesting that the tumour promoting effects of HF might be cancer-site specific.17

2.2. Cancer as a risk factor for HF

The association between cancer and CVD has been demonstrated in a retrospective cohort study of over 36 000 adults surviving at least two years after a diagnosis of cancer and compared with age and sex matched non-cancer controls. This association varied by cancer type: in comparison with controls, the risk of CVD (including HF) was significantly higher in survivors of multiple myeloma [incidence rate ratio (IRR) 1.7], lung cancer (IRR 1.58) and breast cancer (IRR 1.13).18 However, differentiation of the effect of cancer per se from the cardiotoxic effects of its treatment can be difficult to disentangle in epidemiologic studies. Nonetheless, pre-clinical models show that cancer causes systemic metabolic alterations resulting in impaired cardiac function.19,20 Cachexia represents a systemic manifestation of both cancer and HF.21,22 In animal models, cancer promotes cardiac atrophy and a reduced heart weight with subsequent deterioration in cardiac function.23,24 Cardiac wasting appears to result from increased autophagy and myocyte apoptosis23 with proinflammatory cytokines including tumour necrosis factor-α (TNF-α), interleukin (IL) 1β, and IL-6 playing pathophysiological roles.24

3. Mechanistic overlap in cancer and HF pathophysiology

3.1. Metabolic alterations

Metabolic remodelling is considered a hallmark in the pathophysiology of both cancer and HF, and has been the focus for new treatment strategies for both diseases in recent decades.25,26 HF and cancer are characterized by several common metabolic alterations (Figure 1), which begs the question as to whether metabolic derailment might play a role in the connection between HF and cancer. It remains largely unknown if metabolic switches in cancer, either in the tumour or surrounding tissues, affect the CV system. Vice versa, metabolic changes in the heart are unlikely to cause cancer development, but well-described metabolic repercussions of CVD, such as insulin insensitivity and diabetes,28 are clearly associated with an increased risk for cancer.

Figure 1.

Figure 1

Metabolic alterations in heart failure and cancer. Heart failure and cancer are characterized by several overlapping changes in metabolic pathways. Both diseases are characterized by an increase in glycolysis and a decrease in oxidative respiration. Glycolytic intermediates are redirected into branch pathways for nucleotide and lipid synthesis. Alternative fuel sources are used for the Krebs cycle, a mechanism called anaplerosis, to compensate for the decreased acetyl-CoA levels for ATP production. Adjusted from DeBerardinis et al.26 and Garcia-Ropero et al.27

3.1.1. Switch to glycolysis

One of the major commonalities in metabolic remodelling between HF and cancer is the shift in metabolic dependency, favouring glycolysis over oxidative phosphorylation. In the healthy heart, the majority of adenosine triphosphate (ATP) is produced through fatty acid (FA) oxidation and only small amounts through oxidation of glucose and ketone bodies.29 In the failing heart, however, glycolytic activity is increased,30,31 while FA and glucose oxidation is substantially decreased.30,32 The consequence of this is a net decrease in acetyl-coenzyme A (CoA) bioavailability for ATP production via the Krebs cycle. Similarly, cancer metabolism is also characterized by an increase in glycolytic activity. As long ago as 1927, Otto Warburg33 provided evidence that cancer cells obtain glucose and produce lactate irrespective of oxygen availability.34 Several oncogenes and tumour-suppressor genes are involved in the increased glycolysis. Specifically, phosphoinositide 3-kinases (PI3K), Ak transforming factor (Akt) and MYC proto-oncogene (MYC) are known to upregulate transcription and translocation of Glucose transporter 1, and increase hexokinase activity.35,36 P53, possibly the most well-known tumour suppressor gene in the field of oncology, has also been associated with metabolic remodelling, since a loss of P53 results in increased glycolytic flux.37

3.1.2. Alternative fuel and anaplerosis

Although both cancer and HF are characterized by an increase in glycolysis, glucose is not believed to be the major energy source in either disease. In end-stage HF, ATP levels only decrease by 60–70% from normal capacity.38,39 In the oncology field, several studies have shown that mitochondrial metabolism is crucial for tumour proliferation40,41 and experimental inhibition of glycolytic ATP production, via the inhibition of pyruvate kinase, does not result in reduced tumourigenesis.42 These findings suggest that compensatory mechanisms are activated in HF and cancer to maintain mitochondrial ATP production.

Anaplerosis represents a mechanism via which the Krebs cycle is fuelled by intermediaries independent of acetyl-CoA. This mechanism plays an important role in both HF and cancer metabolism. Indeed, anaplerotic flux is increased in the context of cardiac hypertrophy43,44 and also in cancer.45,46 In a pressure-overload induced HF model, pyruvate was converted to malate, which can enter the Krebs cycle.43 Additionally, glutamine utilization is increased in HF and cancer.47,48 Its subsequent conversion to glutamate is followed by the production of α-ketoglutarate, an intermediate for the Krebs cycle and, even in hypoxic conditions, glutamine is utilized for oxidative ATP production in cancer cells.49,50 Ketone bodies are utilized as an alternative energy source in HF and this phenomenon has been reported in patients with HF51 as well as animal models of HF.52 This is believed to be an important adaptive mechanism in the setting of decreased FA oxidation. The role of ketones in cancer metabolism is less well understood but several studies have provided evidence that ketone body utilization can stimulate tumour growth,53,54 although data are conflicting and treatment with ketone bodies has also been reported to decrease tumour growth.55,56

In both cancer and HF, glycolytic intermediates are often redirected to a branching pathway for biosynthesis, instead of being directed to the Krebs cycle. In cancer, glucose-6-phosphate (G6P) is redirected to the pentose phosphate pathway (PPP) for nucleotide biosynthesis and glyceraldehyde-3-phosphate can be converted to glycerol-3-phosphate for lipid synthesis.57,58 In addition, Krebs intermediates are used to produce cytosolic aspartate and acetyl-CoA for nucleotide and lipid synthesis.59,60 In HF, G6P is also redirected to the PPP for production of nicotinamide adenine dinucleotide phosphate (NADPH), which is essential for regulating oxidative stress and lipid synthesis.31 These diversions of glycolytic intermediates have a negative effect upon cardiac energetics and function. Furthermore, G6P may also enter the hexosamine biosynthetic pathway, leading to increased O-GlcNAcylation, which is further associated with HF.61,62

3.1.3. Hypoxia

Hypoxia induced factor-1 (HIF-1) is a key regulator of metabolic adaptation in cancer and HF. Proliferation of tumour cells often exceeds angiogenesis, resulting in a hypoxic environment and HIF-1 activation.26 Sustained activation of HIF-1 is also induced in cancer under normoxic conditions due to mutations in the mammalian target of rapamycin complex 1 (mTORC1) pathway or von Hippel-Lindau (VHL).63 HIF-1 regulates transcription of proteins involved in glucose metabolism and protein, lipid and nucleotide biosynthesis64 and has been shown to promote tumour growth.65–67 Interestingly, patients with VHL syndrome, characterized by sustained HIF-1 activation and development of tumours in numerous organs,68 also develop cardiopulmonary abnormalities.69,70 VHL knockout mice develop cardiac lipid accumulation, fibrosis and apoptosis.71 Increased HIF-1 expression also induces cardiac hypertrophy by regulating enzymes involved in FA and glucose metabolism.72–74 HIF-1 levels are higher in patients with hypertrophic cardiomyopathy than they are in healthy people and transverse aortic constriction (TAC) is associated with increased HIF1. Notably, ventricular depletion of HIF1α prevents TAC-induced cardiac dysfunction.72

3.1.4. Metabolic targets in cancer and HF therapy

Because of its central role in both diseases, metabolic derangement may be a valid target in cardio-oncology. Indeed, treatments targeting metabolism in HF and cancer have been studied extensively. One promising treatment might be with sodium-glucose co-transporter 2 inhibitors (SGLT2i) which were originally developed as anti-diabetic drugs.75 SGLT2i drugs reduce CV events and reduce worsening HF in both diabetic and non-diabetic HF patients.76,77 Several preclinical studies have shown that treatment with SGLT2i can positively alter cardiac metabolism in HF models, resulting in reduced cardiac remodelling.78–80 The effect of SGLT2i on tumour growth has also been studied. Both in vitro and in vivo, treatment with SGLT2i inhibited tumour growth of several obesity and diabetes-associated cancer models.81–83 Furthermore, the SGLT2i, canagliflozin, inhibits tumour growth even in tumour models without obesity or diabetes, potentially via its effects on cellular glucose levels.84,85

Many studies have focused on targeting HIF-1 as an anti-cancer treatment and this has been extensively reviewed elsewhere.86 Indeed, HIF-1 inhibition has shown promising anti-tumourigenic effects in renal,87,88 hepatocellular,89 and breast cancers.90 Downregulation of HIF1 in a mouse model ischaemia/reperfusion attenuated cardiac injury after reperfusion.91 Interestingly, treatment with Belzutifan, an inhibitor of the HIF2 isoform, has shown promising anti-tumourigenic effects in renal cancer, was shown to attenuate pulmonary hypertension and fibrosis in mice with a VHL mutation.92

3.2. Inflammation

Inflammation has frequently been considered as a nodal point linking HF and cancer. Heart disease and cancer are associated with an increase in pro-inflammatory cytokines, including TNF-α and IL-1β93–96 and chronic inflammation increases the risk of new onset cancer97,98 and CVD.99 After MI, the innate immune system is activated leading to a pro-inflammatory response, which is initially cardio-protective. However, prolonged activation of pro-inflammatory signalling, especially via IL-6, induces cardiac remodelling and cardiac dysfunction.100,101 Importantly, pro-inflammatory cytokines also promote tumourigenesis.102,103 In addition, the tumour-microenvironment is infiltrated by tumour associated macrophages, which produce cytokines to stimulate angiogenesis and inhibit the anti-tumour response of cytotoxic T-cells.104,105

3.2.1. HF-associated inflammation

Patients with HF and elevated C-reactive protein (CRP) (>2 mg/L) have an increased risk of cancer.14,106,107 In a pre-clinical model of MI-induced HF described previously, the subsequent effect of HF upon increased tumour growth was accompanied by elevated circulating concentrations of pro-cancer chemokines, such as chemokine (C-X-C motif) ligand (CXCL13). In these animals with HF, there was also an increase in monocytic myeloid-derived suppressor cells found in the tumour tissue and these suppressed CD8 + cytotoxic T cell activity, further potentiating tumour growth.15

3.2.2. Clonal haematopoiesis of indeterminate potential-associated inflammation

Clonal haematopoiesis of indeterminate potential (CHIP) reflects the accumulation of somatic, potentially pro-leukemic mutations in haematopoietic stem cells, occurring in the absence of haematological malignancy.108 The commonest mutations found in CHIP occur in genes that are also important in the regulation of inflammation.109 These include mutations occurring in the driver genes DNA methyltransferase 3A (DNMT3A), ten-eleven-translocation-2 (TET2), Janus kinase 2 (Jak2) and additional sex comb-like 1 (ASXL1). Although the risk of malignant transformation is low (<1% per year), CHIP carriers have an excess risk of mortality which reflects a heightened risk for CV events including MI and stroke,109–112 as well as an association with increased HF hospitalization and HF mortality.113,114 In a large study including five population-based cohorts and over 50 000 participants, CHIP correlated with a 25% increased risk for new onset HF.115 Clonal haematopoiesis initiates a pro-inflammatory state associated with high circulating levels of pro-inflammatory markers in humans.116,117 Pre-clinical studies demonstrated that haematopoietic mutations in TET2, DMNT3A, and Jak2 lead to an accelerated HF phenotype in several mouse HF models, accompanied by an increase in pro-inflammatory cytokines, including IL-1β and IL-6.118–120

3.2.3. Obesity-associated inflammation

Obesity is characterized by chronic inflammation. In 2016, 39% of the adult world population was overweight, of whom 14% were obese.121 In the lean state, adipose tissue is infiltrated by anti-inflammatory immune cells which are important regulators of insulin sensitivity.122,123 However, in the obese state, a shift in constituent immune cells occurs with a relative decrease in anti-inflammatory components and an increase in pro-inflammatory Th1 and CD8+ T cells. In addition, a shift occurs in the macrophage phenotype, with increased M1-like macrophages.124 This is accompanied by an increase in pro-inflammatory cytokines, chemokines, and adipokines, such as leptin. Numerous studies have shown that obesity increases the risk of a wide range of malignancies, including breast, colorectal, and liver cancer.125–129 Cytokines and adipokines secreted by adipose tissue stimulate tumour growth and progression, including IL-6, TNFα, and leptin.130,131 In addition, cancer-associated adipocytes may also be present in the tumour-microenvironment and can further stimulate tumour progression.132 Obesity is also associated with and increased risk of HF, especially HFpEF133–136 and it is notable that leptin-resistant db/db mice develop a HFpEF phenotype, with evidence of cardiac hypertrophy and interstitial fibrosis.137 IL-6, TNFα, and leptin also induce hypertension and atherosclerosis,138,139 both of which represent major pathogenetic processes in the development of HF.

3.2.4. Inflammation as a therapeutic target in HF and cancer

Considering the role of inflammation in both diseases, targeting inflammatory mechanisms in HF and cancer could have therapeutic potential. Indeed, commonly used HF medications, such as statins, have some anti-inflammatory properties.140 In the Canakinumab Anti-Inflammatory Thrombosis Outcome Study (CANTOS), treatment with canakinumab, a monoclonal IL-1β antibody, reduced the rate of recurrent atherosclerotic CV events in patients with previous MI and high CRP levels (<2 mg/L).141 Notably, canakinumab also reduced HF hospitalization and HF-related mortality by 23% in patients who achieved a CRP level of <2 mg/L.142 A sub-analysis of the CANTOS study showed that treatment with Canakinumab also decreased the incidence of lung cancer143 and is being investigated further as a treatment for that indication.144

Targeting inflammatory chemokines as a therapeutic strategy for HF and cancer has also generated interest. Chemokines including Chemokine (C-C Motif) Ligand 2 (CCL2) and CXCL13 play a pivotal role in cancer145,146 and circulating levels are also increased in patients147,148 and preclinical models of HF.149 Preclinical studies using CCL2 or CXCL13 inhibitors have reported treatment-related reductions in tumour proliferation.150–153 CCL2 knockout attenuates cardiac remodelling after ischaemia/reperfusion injury, but CCL2 knockout was also associated with delayed replacement of injured cardiomyocytes with connective tissue, a process that is essential after infarction.149 Initial clinical trials examining the use of chemokine inhibitors in cancer have shown promise.154 However, clinical studies in patients with HF have not yielded positive results so far.155 A better understanding of the complex role of chemokines in the pathophysiology of cancer and HF is required in order to maximize the potential of this potential strategy.

The complex inter-relationship between the immune system, cancer and HF is exemplified by immune checkpoint inhibitors in use as anti-cancer therapy. These potent anti-cancer drugs now have a very broad, and growing, range of indications in oncology and are associated with remarkable cancer outcomes.156,157 By inhibiting immune checkpoints on cancers cells, a T cell mediated immune response is initiated, allowing immune targeting of cancer cells.156 However, myocarditis occurs in up to 2% of patients treated with these agents and CV mortality associated with these events can be up to 40%.158–160

3.3. Microbiome

The human microbiome is comprised of trillions of bacteria, archaea, and eukaryotic microbes, which maintain a mutualistic relationship with their host.161,162 Gut microbiota are essential for fermentation of dietary fibres and vitamin biosynthesis, and play an important role in intestinal health and immune regulation.161,163 The microbial composition is greatly affected by environmental factors such as food and dietary patterns, smoking and drug use. These factors can influence the microbial diversity and the abundance of specific microbial species, resulting in microbial dysbiosis.164 People with obesity, for instance, show decreased microbial diversity.165 Accumulating evidence is emerging on the bidirectional connection between the microbiome, HF and cancer. HF and cancer, and their therapies, are believed to affect the microbial composition in several ways and microbial dysbiosis can play a role in both diseases as outlined below and in Figure 2.

Figure 2.

Figure 2

The overlapping effects of microbial dysbiosis in HF and cancer. Overgrowth of pathogenic bacteria and decreased SCFA levels can induce intestinal inflammation, resulting in increased circulating PAMPs, which can induce cardiac fibrosis and dysfunction. Increased circulating levels of microbial metabolite TMAO can induce atherosclerotic plaque formation and HF. In cancer increased TMAO and pathogenic bacteria can directly promote tumour growth by activating immune cells. In addition, pathogenic bacteria can directly promote tumourigenesis by activating Wnt/β-catenin signalling. Decreased SCFA levels are favourable for tumourigenesis and tumour cells actively inhibit SCFA uptake.

3.3.1. Microbial dysbiosis in cancer and HF

The role of the gut microbiome in colorectal cancer (CRC) has been studied extensively. Patients with CRC exhibit a distinct microbial composition, characterized by an increase in Fusobacteria and pathogenic bacteria and a decrease in Clostridiales, Faecalibacterium, and Bifidobacterium.166–168 In addition, microbial dysbiosis has been associated with an increased incidence of CRC.166,167  In vivo studies have provided direct evidence that microbiota from patients with CRC can promote tumourigenesis.169,170 In these studies, stool samples from patients with CRC were transplanted into a colon cancer mouse model, or germ-free mice. Stool samples from patients had different microbial composition than stool samples from healthy individuals, and transplantation of microbiota from CRC patients led to increased tumour growth in the colon cancer model and increased colonocyte proliferation in the germ-free mice.169,170 Microbial dysbiosis has also been associated with cancer in other organs, including breast and liver.171,172

Substantial clinical evidence now exists to show that patients with HF also have a distinct gut microbial composition.173–175 The microbiome and HF appear to affect one another in a bidirectional way. Differences in microbial composition can increase atherosclerotic plaque formation and can lead to a worsening HF phenotype in mouse models.176–178 On the other hand, HF may cause gut congestion and low-grade inflammation, resulting in increased intestinal permeability, and consequent microbial dysbiosis.179,180 In addition, HF medication plays a role in the equation. HF medication can strongly affect the microbial composition 181,182 and vice versa, the microbiome can affect the response on HF drugs, altering the effectiveness of treatment.183

Notably, there are several similarities in between microbial patterns observed in cancer and those observed in HF, including an increase in Fusobacteria and a decrease in Clostridiales, and Bifidobacterium. Furthermore, the microbiome has been shown to influence both HF and cancer via mechanisms including pathogenic bacteria, microbial metabolites and short chain FAs (SCFAs) (Figure 2).

3.2.2. Pathogenic bacteria

Several bacteria have been identified to have direct tumourigenic effects, including Helicobacter pylori, Fusobacterium nucleatum, Bacteroides fragilis, and Salmonella enterica. H. pylori bind to intestinal epithelial cells and interact with Wnt/β-catenin signalling, directly regulating cell proliferation, inflammation and apoptosis.184  F. nucleatum has the ability to induce tumour proliferation by inducing a proinflammatory response through activation of the nuclear factor-κB (NF-κB) pathway185 and is associated with epithelial-to mesenchymal transition.186  B. fragilis targets intestinal tight junctions through activation of the Wnt/β-catenin and Nf-kB pathways, resulting in barrier disruption and intestinal inflammation187 and can induce proliferation through activation of celullar MYC (C-MYC).188,189

Several pathogenic bacteria are more abundant in patients with HF. Pathogenic bacteria affect gut barrier integrity, resulting in bacterial translocation and chronic inflammation, which has been associated with CVD.190 Indeed, systemic levels of several pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS), are increased in patients with HF.191 LPS exposure leads to cardiac fibrosis and dysfunction in mice.192,193

3.3.3. Trimethylamine-N-oxide

Arguably the best characterized link between HF and the microbiome is that of trimethylamine-N-oxide (TMAO).194,195 This microbial metabolite is generated from nutrients containing trimethylamine (TMA), including choline and l-carnitine. TMA is transported to the liver where it is further metabolized to TMAO. Circulating TMAO levels are associated with an increased risk for CVD and HF, and worse outcomes.196–199 These observations have been corroborated in preclinical studies, which provide evidence of direct effects of TMAO on atherosclerotic plaque formation and HF.176–178

There is increasing evidence to suggest that TMAO also plays a role in tumour growth. Higher TMAO levels have been associated with an increased risk for CRC in several studies.200–202 However, not all investigators have demonstrated this link in CRC.203 It is of note that any association between and TMAO and cancer may extend beyond the gastrointestinal tract and higher TMAO levels have also been associated with prostate cancer and oral squamous cell carcinoma.204,205 It is currently hypothesized that TMAO can induce tumourigenic effects by activating a chronic immune response.206,207

3.3.4. SCFAs

A key signature in the microbial composition found in patients with CRC as well as patients with HF is the substantially lower number of SCFA-producing bacteria, such as Roseburia and Lachnospiraceae.168,175,208,209 SCFAs, including acetate, propionate and butyrate, are fermentation products of dietary fibres, produced by gut microbiota. Butyrate is the main energy source for colonocytes and is essential for maintaining colonic health, mucus production, barrier integrity and immune regulation.210 However, cancer cells switch energy source, favouring glucose over butyrate,211 and butyrate uptake in colon cancer cells is substantially decreased.212,213 Furthermore, several preclinical studies provide evidence that butyrate possesses anti-tumourigenic properties and that butyrate treatment inhibits tumour growth in CRC cell lines.214,215

Low SCFA levels are also associated with hypertension and HF. Decreased SCFA levels can cause intestinal barrier dysfunction, resulting in translocation of microbial metabolites as well as inflammation.216 Plasma SCFA levels are decreased in patients with HF.217 and SCFA supplementation attenuates HF in mice.218–220 Butyrate supplementation protected from doxorubicin induced cardiotoxicity in vivo.218 Propionate induces vasodilatation and antibiotic-induced depletion of propionate is associated with increased blood pressure in mice.221 Whether or not this afterload effect is a relevant mechanism for the development or worsening of HF in humans is unknown.

4. Mechanistic overlap in anti-cancer targeted therapies and cardiac physiologic pathways

In addition to shared pathophysiological mechanisms in cancer and HF, there are also substantial overlaps between pathways required for tumour growth and those required for normal cardiac function. These overlapping effects make substantial contributions to the potential cardiotoxic effects of a growing number of anti-cancer therapies, with consequent left ventricular dysfunction and HF. In contrast to traditional chemotherapeutic agents, the majority of novel anti-cancer therapies are targeted and act upon specific cancer signalling pathways. Numerous targeted therapies have been associated with HF, including anti-human epidermal growth factor receptor 2 (HER2) therapies, vascular endothelial growth factor (VEGF) signalling pathway inhibitors, rapidly accelerate fibrosarcoma B-type (BRAF), and mitogen-activated extracellular signal-regulated kinase (MEK) inhibitors and proteasome inhibitors (Table 1).

Table 1.

Mechanisms of cardiotoxicity due to targeted therapies

Targeted therapy class Examples Overlapping signalling pathways for cancer growth and cardiac physiology Proposed mechanisms of cardiotoxicity
HER2 + targeted therapy Trastuzumab Pertuzumab HER2 NRG-1 HER4 PI3K/Akt MEK/ERK Src/FAK mTOR Impaired cell proliferation
Impaired angiogenesis
Impaired cardiomyocyte metabolism
Impaired autophagy
Impaired mitochondrial function
VEGF inhibitors Axitinib Cabozantinib Lenvatinib Pazopanib Sunitinib Sorafenib Vandetanib RAF/MEK/ERK PI3K/Akt VEGFR PDGFR c-Kit AMPK Hypertension
Capillary rarefaction
Cardiomyocyte apoptosis
Oxidative stress
BRAF/MEK inhibitors Dabrafenib + Trametinib Encorafenib + Binimetinib Vemurafenib + Cobimetinib RAF/MEK/ERK Hypertension
Cardiomyocyte apoptosis
Impaired cardiomyocyte hypertrophy
Proteasome inhibitors Bortezomib Carfilzomib Ixazomib Ubiquitin-proteasome system Altered protein homeostasis
Accumulation of misfolded proteins
Endothelial dysfunction
Cardiomyocyte apoptosis

HER4, human epidermal growth factor receptor 4; RAF, rapidly accelerate fibrosarcoma.

4.1. Anti-HER2-targeted therapies

The transmembrane tyrosine kinase receptor HER2 is overexpressed in approximately 20% of breast cancers.222 Trastuzumab is a monoclonal antibody against HER2 and improves survival in patients with HER2 positive breast cancer. However, it is strongly associated with cardiac toxicity. A meta-analysis of ten randomized controlled trials of trastuzumab reported that, during trial follow-up, asymptomatic left ventricular systolic dysfunction (LVSD) and symptomatic HF occurred in 7.5 and 1.9% respectively.223 Registry data from the United States of America reveal that the incidence of HF is up to 6% at 1 year and 20% at 5 years.224

HER2 and its ligand, neuregulin-1 (NRG-1), are essential for embryonic heart development, cardiomyocyte growth and survival and maintaining cardiac function in the adult heart.225,226 Cardiac-specific HER2 murine knock-out animals are apparently normal at birth but develop dilated cardiomyopathy as they age.226,227 In the physiologic state, homo- or hetero-dimerization of HER2 activates downstream signalling pathways including the PI3K/Akt which protects cardiomyocytes from apoptosis and also activates MEK/extracellular signal-regulated kinase (ERK) pathways which promote cardiomyocyte growth and proliferation.228

Trastuzumab binds to the extracellular segment of HER2 receptors and blocks downstream PI3K/Akt activity while pertuzumab, a more recently introduced anti-HER2 monoclonal antibody, inhibits signalling via inhibition of dimerization.229 Inhibition of HER2 results in a downregulation of endothelial nitric oxide synthase (eNOS) expression, accumulation of reactive oxygen species (ROS) and subsequent acceleration of apoptosis causing oxidative stress and cell injury.230 Furthermore, inhibition of HER2 downregulates the MEK/ERK and Src/focal adhesion kinase (FAK) pathways resulting in disordered myocardial structure.231 Recent studies have also shown that inhibition of HER2 with trastuzumab, in human primary cardiomyocytes, activates the Erk/mechanistic target of rapamycin (mTOR) cascade which leads to autophagy inhibition, ROS accumulation and reduced mitochondrial function.232

4.2. VEGF signalling pathway inhibitors

Angiogenesis, the process of new blood vessel growth, is vital for the nutrient supply and growth of solid organ cancers. VEGF is the most potent angiogenic factor and VEGF signalling pathway inhibitors (VSPIs) are effective anti-cancer therapies used in the treatment of a wide range of cancers including renal, hepatocellular and thyroid cancers, gastrointestinal stromal tumours, sarcoma and others. Numerous VSPIs have been developed including monoclonal antibodies and tyrosine kinase inhibitors (TKIs). Hypertension is the most commonly described CV adverse effect associated with VSPIs233,234 but these drugs are also associated with LVSD and HF.235 Meta-analysis of 21 trials including several VSPIs reported an incidence of LVSD of 2.4%.235 In addition to a fundamental role in the control of angiogenesis, VEGF signalling plays a pivotal role in endothelial cell proliferation and survival236 and acts as a compensatory mechanism in response to cardiac stressors. VEGF is secreted in response to hypertension and ischaemia and plays a key role in cardiomyocyte hypertrophy.237,238

Mechanisms of cardiotoxicity and HF related to VEGF inhibitors are thought to result from a combination of direct myocardial toxicity due to a reduction of cardioprotective signalling and increased cardiac afterload. The inhibition of VEGF signalling in animal models of pressure overload leads to capillary rarefaction, reduced contractile function and the development of HF.239 Preliminary data suggest a role for cardiac microvascular dysfunction in the development of LVSD in patients treated with VSPI.240 Additionally, VEGF TKIs also act on a range of non-VEGF targets and this varies between drugs. While sometimes intended to increase anti-cancer effects, these non-VEGF target effects may also be unintended or incompletely defined. Potentially cardiotoxic non-VEGF or ‘off-target’ effects include inhibition of platelet derived growth factor receptor (PDGFR) or adenosine monophosphate kinase (AMPK) downregulation.241,242

4.3. BRAF and MEK inhibitors

BRAF and MEK are key components of the mitogen activated protein kinase (MAPK) pathway, a key regulator of normal cell growth and proliferation. Mutation of the BRAF gene results in constitutive activation of BRAF’s kinase function and may be found in patients with melanoma,243 non-small cell lung cancer244 and CRC.245 The use of these drugs has had a profound impact on outcomes for patients with melanoma in particular. Inhibition of BRAF alone is associated with drug-resistance due to paradoxical hyperactivation of MEK, and combined inhibition of BRAF and MEK helps minimize resistance and improve outcomes.246 Treatment with BRAF and MEK inhibitors in combination is associated with an increased risk of HF compared to BRAF inhibitor monotherapy. Meta-analysis of five randomized controlled trials reported reduction in LVEF in 8.1% of patients in the combination therapy group compared to 2% in the BRAF inhibitor monotherapy group.247

Activation of MAPK signalling leads to a cascade of phosphorylation events and ultimately the activation of ERK. Activated ERK provokes the phosphorylation of several targets involved in the regulation of key cellular activities.248 As such, the MAPK pathway is a key component in processes including myocyte hypertrophy, cardiac remodelling and myocardial cell death.249 Animal models have also demonstrated that the MEK/ERK signalling pathway is required for the protection of myocardium following ischaemic injury.250 Disruption of the MAPK pathway by BRAF and MEK inhibitors could therefore lead to a change in these physiological cardioprotective mechanisms and affect apoptosis, remodelling and hypertrophy, ultimately leading to LVSD and HF.249,251 In mouse models, ERK null mice have normal cardiac function but are more susceptible to a subsequent cardiac insult.250 Therefore, a ‘second hit’ such as hypertension or ischaemia be the trigger to LVSD in the context of BRAF and MEK inhibitor exposure.252

4.4. Proteasome inhibitors

The proteasome is a protein complex which plays an important role in intracellular protein degradation and influences a number of intracellular processes.253 Proteasome inhibition leads to an accumulation of misfolded intracellular proteins, an unfolded protein stress response, with subsequent cell-cycle arrest and apoptosis which is toxic to cancer cells. Proteasome inhibitors including bortezomib, carfilzomib and ixazomib are used in the treatment of haematological malignancies including multiple myeloma and certain lymphomas.254 Meta-analysis of 25 clinical trials showed that bortezomib did not significantly increase the risk of cardiotoxicity compared to control patients.255 However, meta-analysis of 24 clinical trials of carfilzomib reported an incidence of HF of 4.1%256 which may be a reflection of carfilzomib’s irreversible action.

The ubiquitin-proteasome system is essential for the turnover of damaged or misfolded proteins to balance the synthesis of new proteins in the heart.257 Specific proteins are labelled with ubiquitin molecules identifying them for degradation by the proteasome. Optimal cardiomyocyte function is dependent on this equilibrium between protein synthesis and turnover. Patients with advanced HF and hypertrophic cardiomyopathy have reduced myocardial proteasome activity with a resulting relative increase in the ratio between protein synthesis and degradation.258 Bortezomib reversibly inhibits and carfilzomib irreversibly inhibits the 26S proteasome.254  In vitro studies have shown that both bortezomib and carfilzomib are directly toxic to cardiomyocytes and induce apoptosis.259 Mouse models with genetically modified ubiquitin-proteasome activity and pressure overload showed a marked increase in cardiomyocyte death causing rapidly progressive HF.260 A recent study demonstrated that dysregulation of the ubiquitin-proteasome system and expression of truncated titin proteins is implicated in the pathogenesis of dilated cardiomyopathy associated with truncating variants in the TTN gene.261 Engineered muscle generated from human induced pluripotent stem cell-derived cardiomyocytes with truncating variants in TTN showed an improvement in function in response to proteasome inhibition.261 This is in contrast to the effects of proteasome inhibition seen in the context of cancer therapy and further work is welcomed to enhance knowledge in this area.

5. Conclusion

The bidirectional interplay between cancer and HF is substantial and relates to several fundamental mechanisms. It now remains to be seen whether therapeutic targeting of these common pathophysiologic pathways can be harnessed to allow improved outcomes for patients affected by HF or cancer or, indeed, in the growing population affected by both. Furthermore, the adverse cardiac effects of a growing number of targeted anti-cancer therapies have, inadvertently, provided insight into the relevance of pathways required for normal cardiac function. These overlaps serve to further reinforce the growing relevance and need for close collaboration between cancer and CV specialists, in clinical, basic science, and drug development settings.

Contributor Information

Sanne de Wit, Department of Cardiology, University Medical Centre Groningen, University of Groningen, PO Box 30.001, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.

Claire Glen, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom.

Rudolf A de Boer, Department of Cardiology, University Medical Centre Groningen, University of Groningen, PO Box 30.001, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.

Ninian N Lang, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom.

Funding

N.N.L. is supported by a British Heart Foundation Centre of Research Excellence Grant (RE/18/6/34217). R.A.d.B. is supported by the European Research Council (ERC CoG 818715), by the Netherlands Heart Foundation (grants 2017–21; 2017–11; 2018–30; 2020B005), and by the Fondation LeDucq (Cure-PLaN).

References

  • 1. Moliner  P, Lupón  J, de Antonio  M, Domingo  M, Santiago-Vacas  E, Zamora  E, Cediel  G, Santesmases  J, Díez-Quevedo  C, Troya  MI, Boldó  M, Altmir  S, Alonso  N, González  B, Núñez  J, Bayes-Genis  A. Trends in modes of death in heart failure over the last two decades: less sudden death but cancer deaths on the rise. Eur J Heart Fail  2019;21:1259–1266. [DOI] [PubMed] [Google Scholar]
  • 2. Boer  RA, Meijers  WC, Meer  P, Veldhuisen  DJ. Cancer and heart disease: associations and relations. Eur J Heart Fail  2019;21:1515–1525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Vergaro  G, Ghionzoli  N, Innocenti  L, Taddei  C, Giannoni  A, Valleggi  A, Borrelli  C, Senni  M, Passino  C, Emdin  M. Noncardiac versus cardiac mortality in heart failure with preserved, midrange, and reduced ejection fraction. J Am Heart Assoc  2019;8:e013441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. de Boer  RA, Hulot  JS, Tocchetti  CG, Aboumsallem  JP, Ameri  P, Anker  SD, Bauersachs  J, Bertero  E, Coats  AJS, Čelutkienė  J, Chioncel  O, Dodion  P, Eschenhagen  T, Farmakis  D, Bayes-Genis  A, Jäger  D, Jankowska  EA, Kitsis  RN, Konety  SH, Larkin  J, Lehmann  L, Lenihan  DJ, Maack  C, Moslehi  JJ, Müller  OJ, Nowak-Sliwinska  P, Piepoli  MF, Ponikowski  P, Pudil  R, Rainer  PP, Ruschitzka  F, Sawyer  D, Seferovic  PM, Suter  T, Thum  T, van der Meer  P, Van Laake  LW, von Haehling  S, Heymans  S, Lyon  AR, Backs  J. Common mechanistic pathways in cancer and heart failure. A scientific roadmap on behalf of the translational research committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail  2020;22:2272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Bertero  E, Canepa  M, Maack  C, Ameri  P. Linking heart failure to cancer background evidence and research perspectives. Circulation  2018;138:735–742. [DOI] [PubMed] [Google Scholar]
  • 6. Tocchetti  CG, Ameri  P, de Boer  RA, D’Alessandra  Y, Russo  M, Sorriento  D, Ciccarelli  M, Kiss  B, Bertrand  L, Dawson  D, Falcao-Pires  I, Giacca  M, Hamdani  N, Linke  WA, Mayr  M, van der Velden  J, Zacchigna  S, Ghigo  A, Hirsch  E, Lyon  AR, Görbe  A, Ferdinandy  P, Madonna  R, Heymans  S, Thum  T. Cardiac dysfunction in cancer patients: beyond direct cardiomyocyte damage of anticancer drugs: novel cardio-oncology insights from the joint 2019 meeting of the ESC working groups of myocardial function and cellular biology of the heart. Cardiovasc Res  2020;116:1820–1834. [DOI] [PubMed] [Google Scholar]
  • 7. Hasin  T, Gerber  Y, McNallan  SM, Weston  SA, Kushwaha  SS, Nelson  TJ, Cerhan  JR, Roger  VL. Patients with heart failure have an increased risk of incident cancer. J Am Coll Cardiol  2013;62:881–886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Hasin  T, Gerber  Y, Weston  SA, Jiang  R, Killian  JM, Manemann  SM, Cerhan  JR, Roger  VL. Heart failure after myocardial infarction is associated with increased risk of cancer. J Am Coll Cardiol  2016;68:265–271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Banke  A, Schou  M, Videbæk  L, Møller  JE, Torp-Pedersen  C, Gustafsson  F, Dahl  JS, Køber  L, Hildebrandt  PR, Gislason  GH. Incidence of cancer in patients with chronic heart failure: a long-term follow-up study. Eur J Heart Fail  2016;18:260–266. [DOI] [PubMed] [Google Scholar]
  • 10. Rinde  LB, Småbrekke  B, Hald  EM, Brodin  EE, Njølstad  I, Mathiesen  EB, Løchen  ML, Wilsgaard  T, Brækkan  SK, Vik  A, Hansen  JB. Myocardial infarction and future risk of cancer in the general population—the tromsø study. Eur J Epidemiol  2017;32:193–201. [DOI] [PubMed] [Google Scholar]
  • 11. Roderburg  C, Loosen  SH, Jahn  JK, Gänsbacher  J, Luedde  T, Kostev  K, Luedde  M. Heart failure is associated with an increased incidence of cancer diagnoses. ESC Hear Fail  2021;8:3628–3633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Leedy  DJ, Reding  KW, Vasbinder  AL, Anderson  GL, Barac  A, Wactawski-Wende  J, Shadyab  AH, Eaton  CB, Levy  WC, Qi  LH, Cheng  RK. The association between heart failure and incident cancer in women: an analysis of the women’s health initiative. Eur J Heart Fail  2021;23:1712–1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Bertero  E, Robusto  F, Rulli  E, D’Ettorre  A, Bisceglia  L, Staszewsky  L, Maack  C, Lepore  V, Latini  R, Ameri  P. Cancer incidence and mortality according to pre-existing heart failure in a community-based cohort. JACC CardioOncol  2022;4:98–109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Meijers  WC, Maglione  M, Bakker  SJL, Oberhuber  R, Kieneker  LM, De  JS, Haubner  BJ, Nagengast  WB, Lyon  AR, Van Der  VB, van Veldhuisen  DJ, Westenbrink  BD, van der Meer  P, Silljé  HHW, de Boer  RA. Heart failure stimulates tumor growth by circulating factors. Circulation  2018;138:678–691. [DOI] [PubMed] [Google Scholar]
  • 15. Koelwyn  GJ, Newman  AAC, Afonso  MS, van Solingen  C, Corr  EM, Brown  EJ, Albers  KB, Yamaguchi  N, Narke  D, Schlegel  M, Sharma  M, Shanley  LC, Barrett  TJ, Rahman  K, Mezzano  V, Fisher  EA, Park  DS, Newman  JD, Quail  DF, Nelson  ER, Caan  BJ, Jones  LW, Moore  KJ. Myocardial infarction accelerates breast cancer via innate immune reprogramming. Nat Med  2020;26:1–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Avraham  S, Abu-Sharki  S, Shofti  R, Haas  T, Korin  B, Kalfon  R, Friedman  T, Shiran  A, Saliba  W, Shaked  Y, Aronheim  A. Early cardiac remodeling promotes tumor growth and metastasis. Circulation  2020;142:670–683. [DOI] [PubMed] [Google Scholar]
  • 17. Shi  C, Aboumsallem  JP, de Wit  S, Schouten  EM, Bracun  V, Meijers  WC, Silljé  HHW, de Boer  RA. Evaluation of renal cancer progression in a mouse model of heart failure. Cancer Commun  2021;41:796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Armenian  SH, Xu  L, Ky  B, Sun  C, Farol  LT, Pal  SK, Douglas  PS, Bhatia  S, Chao  C. Cardiovascular disease among survivors of adult-onset cancer: a community-based retrospective cohort study. J Clin Oncol  2016;34:1122–1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Akbay  EA, Moslehi  J, Christensen  CL, Saha  S, Tchaicha  JH, Ramkissoon  SH, Stewart  KM, Carretero  J, Kikuchi  E, Zhang  H, Cohoon  TJ, Murray  S, Liu  W, Uno  K, Fisch  S, Jones  K, Gurumurthy  S, Gliser  C, Choe  S, Keenan  M, Son  J, Stanley  I, Losman  JA, Padera  R, Bronson  RT, Asara  JM, Abdel-Wahab  O, Amrein  PC, Fathi  AT, Danial  NN, Kimmelman  AC, Kung  AL, Ligon  KL, Yen  KE, Kaelin  WG, Bardeesy  N, Wong  KK. D-2-hydroxyglutarate produced by mutant IDH2 causes cardiomyopathy and neurodegeneration in mice. Genes Dev  2014;28:479–490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Karlstaedt  A, Zhang  X, Vitrac  H, Harmancey  R, Vasquez  H, Wang  JH, Goodell  MA, Taegtmeyer  H. Oncometabolite D-2-hydroxyglutarate impairs α-ketoglutarate dehydrogenase and contractile function in rodent heart. Proc Natl Acad Sci U S A  2016;113:10436–10441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Evans  WJ, Morley  JE, Argilés  J, Bales  C, Baracos  V, Guttridge  D, Jatoi  A, Kalantar-Zadeh  K, Lochs  H, Mantovani  G, Marks  D, Mitch  WE, Muscaritoli  M, Najand  A, Ponikowski  P, Rossi Fanelli  F, Schambelan  M, Schols  A, Schuster  M, Thomas  D, Wolfe  R, Anker  SD. Cachexia: a new definition. Clin Nutr  2008;27:793–799. [DOI] [PubMed] [Google Scholar]
  • 22. Anker  MS, Sanz  AP, Zamorano  JL, Mehra  MR, Butler  J, Riess  H, Coats  AJS, Anker  SD. Advanced cancer is also a heart failure syndrome: a hypothesis. Eur J Heart Fail  2021;23:140–144. [DOI] [PubMed] [Google Scholar]
  • 23. Cosper  PF, Leinwand  LA. Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Cancer Res  2011;71:1710–1720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Belloum  Y, Rannou-Bekono  F, Favier  FB. Cancer-induced cardiac cachexia: pathogenesis and impact of physical activity (review). Oncol Rep  2017;37:2543–2552. [DOI] [PubMed] [Google Scholar]
  • 25. Bertero  E, Maack  C. Metabolic remodelling in heart failure. Nat Rev Cardiol  2018;15:457–470. [DOI] [PubMed] [Google Scholar]
  • 26. DeBerardinis  R, Chandel  NS. Fundamentals of cancer metabolism. Sci Adv  2016;2:e1600200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Garcia-Ropero Alvaro, Santos-Gallego Carlos G, Zafar M. Urooj, Badimon Juan J . Metabolism of the failing heart and the impact of SGLT2 inhibitors. Expert Opinion on Drug Metabolism & Toxicology  2019;15:275–285. [DOI] [PubMed] [Google Scholar]
  • 28. Gallagher  EJ, LeRoith  D. Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiol Rev  2015;95:727–748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Doenst  T, Nguyen  TD, Abel  ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res  2013;113:709–724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Allard  MF, Schonekess  BO, Henning  SL, English  DR, Lopaschuk  GD. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol  1994;267:742–750. [DOI] [PubMed] [Google Scholar]
  • 31. Kato  T, Niizuma  S, Inuzuka  Y, Kawashima  T, Okuda  J, Tamaki  Y, Iwanaga  Y, Narazaki  M, Matsuda  T, Soga  T, Kita  T, Kimura  T, Shioi  T. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Hear Fail  2010;3:420–430. [DOI] [PubMed] [Google Scholar]
  • 32. Doenst  T, Pytel  G, Schrepper  A, Amorim  P, Färber  G, Shingu  Y, Mohr  FW, Schwarzer  M. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res  2010;86:461–470. [DOI] [PubMed] [Google Scholar]
  • 33. Warburg  O. On the origin of cancer cells. Science  1956;123:309–314. [DOI] [PubMed] [Google Scholar]
  • 34. Koppenol  WH, Bounds  PL, Dang C  V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer  2011;11:325–337. [DOI] [PubMed] [Google Scholar]
  • 35. Zhuo  B, Li  Y, Li  Z, Qin  H, Sun  Q, Zhang  F, Shen  Y, Shi  Y, Wang  R. PI3K/Akt Signaling mediated hexokinase-2 expression inhibits cell apoptosis and promotes tumor growth in pediatric osteosarcoma. Biochem Biophys Res Commun  2015;464:401–406. [DOI] [PubMed] [Google Scholar]
  • 36. Kim  J, Gao  P, Liu  YC, Semenza  GL, Dang C  V. Hypoxia-Inducible factor 1 and dysregulated C-MYC cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol  2007;27:7381–7393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Zhang  C, Liu  J, Liang  Y, Wu  R, Zhao  Y, Hong  X, Lin  M, Yu  H, Liu  L, Levine  AJ, Hu  W, Feng  Z. Tumour-associated mutant p53 drives the Warburg effect. Nat Commun  2013;4:1–15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Beer  M, Seyfarth  T, Sandstede  J, Landschütz  W, Lipke  C, Köstler  H, Von  KM, Harre  K, Hahn  D, Neubauer  S. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with 31P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol  2002;40:1267–1274. [DOI] [PubMed] [Google Scholar]
  • 39. Ingwall  JS, Weiss  RG. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res  2004;95:135–145. [DOI] [PubMed] [Google Scholar]
  • 40. Joshi  S, Tolkunov  D, Aviv  H, Hakimi  AA, Yao  M, Hsieh  JJ, Ganesan  S, Chan  CS, White  E. The genomic landscape of renal oncocytoma identifies a metabolic barrier to tumorigenesis. Cell Rep  2015;13:1895–1908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Weinberg  F, Hamanaka  R, Wheaton  WW, Weinberg  S, Joseph  J, Lopez  M, Kalyanaraman  B, Mutlu  GM, Budinger  GRS, Chandel  NS. Mitochondrial metabolism and ROS generation are essential for kras-mediated tumorigenicity. Proc Natl Acad Sci U S A  2010;107:8788–8793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Israelsen  WJ, Dayton  TL, Davidson  SM, Fiske  BP, Hosios  AM, Bellinger  G, Li  J, Yu  Y, Sasaki  M, Horner  JW, Burga  LN, Xie  J, Jurczak  MJ, Depinho  RA, Clish  CB, Jacks  T, Kibbey  RG, Wulf  GM, Di  VD, Mills  GB, Cantley  LC, Vander  HM. PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell  2013;155:397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Sorokina  N, O’Donnell  JM, McKinney  RD, Pound  KM, Woldegiorgis  G, LaNoue  KF, Ballal  K, Taegtmeyer  H, Buttrick  PM, Lewandowski  ED. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Circulation  2007;115:2033–2041. [DOI] [PubMed] [Google Scholar]
  • 44. Kolwicz  SC, Olson  DP, Marney  LC, Garcia-Menendez  L, Synovec  RE, Tian  R. Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ Res  2012;111:728–738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Christen  S, Lorendeau  D, Schmieder  R, Broekaert  D, Metzger  K, Veys  K, Elia  I, Buescher  JM, Orth  MF, Davidson  SM, Grünewald  TGP, De  BK, Fendt  SM. Breast cancer-derived lung metastases show increased pyruvate carboxylase-dependent anaplerosis. Cell Rep  2016;17:837–848. [DOI] [PubMed] [Google Scholar]
  • 46. Sant’anna-Silva  ACB, Perez-Valencia  JA, Sciacovelli  M, Lalou  C, Sarlak  S, Tronci  L, Nikitopoulou  E, Meszaros  AT, Frezza  C, Rossignol  R, Gnaiger  E, Klocker  H. Succinate anaplerosis has an onco-driving potential in prostate cancer cells. Cancers (Basel)  2021;13:1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Lauzier  B, Vaillant  F, Merlen  C, Gélinas  R, Bouchard  B, Rivard  ME, Labarthe  F, Dolinsky  VW, Dyck  JRB, Allen  BG, Chatham  JC, Des  RC. Metabolic effects of glutamine on the heart. Anaplerosis versus the hexosamine biosynthetic pathway. J Mol Cell Cardiol  2013;55:92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Hensley  CT, Wasti  AT, DeBerardinis  RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest  2013;123:3678–3684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Wise  DR, Ward  PS, Shay  JES, Cross  JR, Gruber  JJ, Sachdeva  UM, Platt  JM, DeMatteo  RG, Simon  MC, Thompson  CB. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A  2011;108:19611–19616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Metallo  CM, Gameiro  PA, Bell  EL, Mattaini  KR, Yang  J, Hiller  K, Jewell  CM, Johnson  ZR, Irvine  DJ, Guarente  L, Kelleher  JK, Vander Heiden  MG, Iliopoulos  O, Stephanopoulos  G. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nat  2011;481:380–384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Bedi  KC, Snyder  NW, Brandimarto  J, Aziz  M, Mesaros  C, Worth  AJ, Wang  LL, Javaheri  A, Blair  IA, Margulies  KB, Rame  JE. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation  2016;133:706–716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Aubert  G, Martin  OJ, Horton  JL, Lai  L, Vega  RB, Leone  TC, Koves  T, Gardell  SJ, Krüger  M, Hoppel  CL, Lewandowski  ED, Crawford  PA, Muoio  DM, Kelly  DP. The failing heart relies on ketone bodies as a fuel. Circulation  2016;133:698–705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Bonuccelli  G, Tsirigos  A, Whitaker-Menezes  D, Pavlides  S, Pestell  RG, Chiavarina  B, Frank  PG, Flomenberg  N, Howell  A, Martinez-Outschoorn  UE, Sotgia  F, Lisanti  MP. Ketones and lactate ‘fuel’ tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle  2010;9:3506–3514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Rodrigues  LM, Uribe-Lewis  S, Madhu  B, Honess  DJ, Stubbsând  MS, Griffiths  JR. The action of β-hydroxybutyrate on the growth, metabolism and global histone H3 acetylation of spontaneous mouse mammary tumours: evidence of a β-hydroxybutyrate paradox. Cancer Metab  2017;5:1–13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Shukla  SK, Gebregiworgis  T, Purohit  V, Chaika  NV, Gunda  V, Radhakrishnan  P, Mehla  K, Pipinos  II, Powers  R, Yu  F, Singh  PK. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab  2014;2:1–19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Allen  BG, Bhatia  SK, Buatti  JM, Brandt  KE, Lindholm  KE, Button  AM, Szweda  LI, Smith  BJ, Spitz  DR, Fath  MA. Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin Cancer Res  2013;19:3905–3913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Xiaojun  X, Zur  HA, Coy  JF, Löchelt  M. Transketolase-like protein 1 (TKTL1) is required for rapid cell growth and full viability of human tumor cells. Int J Cancer  2009;124:1330–1337. [DOI] [PubMed] [Google Scholar]
  • 58. Ying  H, Kimmelman  AC, Lyssiotis  CA, Hua  S, Chu  GC, Fletcher-Sananikone  E, Locasale  JW, Son  J, Zhang  H, Coloff  JL, Yan  H, Wang  W, Chen  S, Viale  A, Zheng  H, Paik  JH, Lim  C, Guimaraes  AR, Martin  ES, Chang  J, Hezel  AF, Perry  SR, Hu  J, Gan  B, Xiao  Y, Asara  JM, Weissleder  R, Wang  YA, Chin  L, Cantley  LC, Depinho  RA. Oncogenic kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell  2012;149:656–670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Sullivan  LB, Gui  DY, Hosios  AM, Bush  LN, Freinkman  E, Vander  HM. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell  2015;162:552–563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Bauer  DE, Hatzivassiliou  G, Zhao  F, Andreadis  C, Thompson  CB. ATP citrate lyase is an important component of cell growth and transformation. Oncogene  2005;24:6314–6322. [DOI] [PubMed] [Google Scholar]
  • 61. Umapathi  P, Mesubi  OO, Banerjee  PS, Abrol  N, Wang  Q, Luczak  ED, Wu  Y, Granger  JM, Wei  AC, Reyes Gaido  OE, Florea  L, Talbot  CC, Hart  GW, Zachara  NE, Anderson  ME. Excessive O-GlcNAcylation causes heart failure and sudden death. Circulation  2021;143:1687–1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Cannon  MV, Silljé  HH, Sijbesma  JW, Vreeswijk-Baudoin  I, Ciapaite  J, van der Sluis  B, van Deursen  J, Silva  GJ, de Windt  LJ, Gustafsson  J, van der Harst  P, van Gilst  WH, de Boer  RA. Cardiac LXRα protects against pathological cardiac hypertrophy and dysfunction by enhancing glucose uptake and utilization. EMBO Mol Med  2015;7:1229–1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Semenza  GL. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med  2002;8:S62–S67. [DOI] [PubMed] [Google Scholar]
  • 64. Semenza  GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev  2010;20:51–56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Takasaki  C, Kobayashi  M, Ishibashi  H, Akashi  T, Okubo  K. Expression of hypoxia-inducible factor-1α affects tumor proliferation and antiapoptosis in surgically resected lung cancer. Mol Clin Oncol  2016;5:295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. Giles  RH, Lolkema  MP, Snijckers  CM, Belderbos  M, Van Der Groep  P, Mans  DA, Van Beest  M, Van Noort  M, Goldschmeding  R, Van Diest  PJ, Clevers  H, Voest  EE. Interplay between VHL/HIF1α and wnt/β-catenin pathways during colorectal tumorigenesis. Oncogene  2006;25:3065–3070. [DOI] [PubMed] [Google Scholar]
  • 67. Simon  F, Bockhorn  M, Praha  C, Baba  HA, Broelsch  CE, Frilling  A, Weber  F. Deregulation of HIF1-alpha and hypoxia-regulated pathways in hepatocellular carcinoma and corresponding non-malignant liver tissue-influence of a modulated host stroma on the prognosis of HCC. Langenbecks Arch Surg  2010;395:395–405. [DOI] [PubMed] [Google Scholar]
  • 68. Varshney  N, Kebede  AA, Owusu-Dapaah  H, Lather  J, Kaushik  M, Bhullar  JS. A review of Von hippel-lindau syndrome. J Kidney Cancer VHL  2017;4:20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Smith  TG, Brooks  JT, Balanos  GM, Lappin  TR, Layton  DM, Leedham  DL, Liu  C, Maxwell  PH, McMullin  MF, McNamara  CJ, Percy  MJ, Pugh  CW, Ratcliffe  PJ, Talbot  NP, Treacy  M, Robbins  PA. Mutation of the von Hippel-Lindau gene alters human cardiopulmonary physiology. Adv Exp Med Biol  2008;605:51–56. [DOI] [PubMed] [Google Scholar]
  • 70. Menendez-Montes  I, Escobar  B, Palacios  B, Gómez  MJ, Izquierdo-Garcia  JL, Flores  L, Jiménez-Borreguero  LJ, Aragones  J, Ruiz-Cabello  J, Torres  M, Martin-Puig  S. Myocardial VHL-HIF signaling controls an embryonic metabolic switch essential for cardiac maturation. Dev Cell  2016;39:724–739. [DOI] [PubMed] [Google Scholar]
  • 71. Lei  L, Mason  S, Liu  D, Huang  Y, Marks  C, Hickey  R, Jovin  IS, Pypaert  M, Johnson  RS, Giordano  FJ. Hypoxia-Inducible factor-dependent degeneration, failure, and malignant transformation of the heart in the absence of the von Hippel-Lindau protein. Mol Cell Biol  2008;28:3790–3803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Krishnan  J, Suter  M, Windak  R, Krebs  T, Felley  A, Montessuit  C, Tokarska-Schlattner  M, Aasum  E, Bogdanova  A, Perriard  E, Perriard  JC, Larsen  T, Pedrazzini  T, Krek  W. Activation of a HIF1alpha-PPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab  2009;9:512–524. [DOI] [PubMed] [Google Scholar]
  • 73. Chu  W, Wan  L, Zhao  D, Qu  X, Cai  F, Huo  R, Wang  N, Zhu  J, Zhang  C, Zheng  F, Cai  R, Dong  D, Lu  Y, Yang  B. Mild hypoxia-induced cardiomyocyte hypertrophy via up-regulation of HIF-1α-mediated TRPC signalling. J Cell Mol Med  2012;16:2022–2034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Nicks  AM, Kesteven  SH, Li  M, Wu  J, Chan  AY, Naqvi  N, Husain  A, Feneley  MP, Smith  NJ, Iismaa  SE, Graham  RM. Pressure overload by suprarenal aortic constriction in mice leads to left ventricular hypertrophy without c-kit expression in cardiomyocytes. Sci Reports  2020;10:1–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Wright  EM, Loo  DD, Hirayama  BA. Biology of human sodium glucose transporters. Physiol Rev  2011;91:733–794. [DOI] [PubMed] [Google Scholar]
  • 76. McMurray  JJV, Solomon  SD, Inzucchi  SE, Kober  L, Kosiborod  MN, Martinez  FA, Ponikowski  P, Sabatine  MS, Anand  IS, Lohlavek  JB, Bohm  M, Chiang  CE, Chopra  VK, De  BR, Desai  AS, Diez  M, Drozdz  J, Dukat  A, Ge  J, Howlett  JG, Katova  T, Kitakaze  M, Ljungman  CEA, Merkely  B, Nicolau  JC, O’Meara  E, Petrie  MC, Vinh  PN, Schou  M, Tereshchenko  S, Verma  S, Held  C, DeMets  DL, Docherty  KF, Jhund  PS, Bengtsson  O, Sjostrand  M, Langkilde  AM. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med  2019;381:1995–2008. [DOI] [PubMed] [Google Scholar]
  • 77. Packer  M, Anker  SD, Butler  J, Filippatos  G, Ferreira  JP, Pocock  SJ, Carson  P, Anand  I, Doehner  W, Haass  M, Komajda  M, Miller  A, Pehrson  S, Teerlink  JR, Brueckmann  M, Jamal  W, Zeller  C, Schnaidt  S, Zannad  F. Effect of empagliflozin on the clinical stability of patients with heart failure and a reduced ejection fraction: the EMPEROR-reduced trial. Circulation  2021;143:326–336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78. Yurista  SR, Silljé  HHW, Oberdorf-Maass  SU, Schouten  EM, Pavez Giani  MG, Hillebrands  JL, van Goor  H, van Veldhuisen  DJ, de Boer  RA, Westenbrink  BD. Sodium–glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur J Heart Fail  2019;21:862–873. [DOI] [PubMed] [Google Scholar]
  • 79. Connelly  KA, Zhang  Y, Desjardins  JF, Nghiem  L, Visram  A, Batchu  SN, Yerra  VG, Kabir  G, Thai  K, Advani  A, Gilbert  RE. Load-independent effects of empagliflozin contribute to improved cardiac function in experimental heart failure with reduced ejection fraction. Cardiovasc Diabetol  2020;19:13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Asensio Lopez  MDC, Lax  A, Hernandez Vicente  A, Saura Guillen  E, Hernandez-Martinez  A, Fernandez del Palacio  MJ, Bayes Genis  A, Pascual Figal  DA. Empagliflozin improves post-infarction cardiac remodeling through GTP enzyme cyclohydrolase 1 and irrespective of diabetes status. Sci Rep  2020;10:13553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Nasiri  AR, Rodrigues  MR, Li  Z, Leitner  BP, Perry  RJ. SGLT2 Inhibition slows tumor growth in mice by reversing hyperinsulinemia. Cancer Metab  2019;7:10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Shiba  K, Tsuchiya  K, Komiya  C, Miyachi  Y, Mori  K, Shimazu  N, Yamaguchi  S, Ogasawara  N, Katoh  M, Itoh  M, Suganami  T, Ogawa  Y. Canagliflozin, an SGLT2 inhibitor, attenuates the development of hepatocellular carcinoma in a mouse model of human NASH. Sci Rep  2018;8:1–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Jojima  T, Wakamatsu  S, Kase  M, Iijima  T, Maejima  Y, Shimomura  K, Kogai  T, Tomaru  T, Usui  I, Aso  Y. The SGLT2 inhibitor canagliflozin prevents carcinogenesis in a mouse model of diabetes and non-alcoholic steatohepatitis-related hepatocarcinogenesis: association with SGLT2 expression in hepatocellular carcinoma. Int J Mol Sci  2019;20:5237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84. Kaji  K, Nishimura  N, Seki  K, Sato  S, Saikawa  S, Nakanishi  K, Furukawa  M, Kawaratani  H, Kitade  M, Moriya  K, Namisaki  T, Yoshiji  H. Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake. Int J Cancer  2018;142:1712–1722. [DOI] [PubMed] [Google Scholar]
  • 85. Scafoglio  C, Hirayama  BA, Kepe  V, Liu  J, Ghezzi  C, Satyamurthy  N, Moatamed  NA, Huang  J, Koepsell  H, Barrio  JR, Wright  EM. Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci U S A  2015;112:E4111–E4119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Albadari  N, Deng  S, Li  W. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opin Drug Discov  2019;14:667–682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87. Choueiri  TK, Kaelin  WG. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat Med  2020;26:1519–1530. [DOI] [PubMed] [Google Scholar]
  • 88. Jonasch  E, Donskov  F, Iliopoulos  O, Rathmell  WK, Narayan  VK, Maughan  BL, Oudard  S, Else  T, Maranchie  JK, Welsh  SJ, Thamake  S, Park  EK, Perini  RF, Linehan  WM, Srinivasan  R. Belzutifan for renal cell carcinoma in von Hippel–Lindau disease. N Engl J Med  2021;385:2036–2046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. Oh  SY, Seok  JY, Choi  YS, Lee  SH, Bae  JS, Lee  YM. The histone methyltransferase inhibitor BIX01294 inhibits HIF-1α stability and angiogenesis. Mol Cells  2015;38:528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90. Parhira  S, Zhu  GY, Chen  M, Bai  LP, Jiang  ZH. Cardenolides from Calotropis gigantea as potent inhibitors of hypoxia-inducible factor-1 transcriptional activity. J Ethnopharmacol  2016;194:930–936. [DOI] [PubMed] [Google Scholar]
  • 91. Liu  Y, Zou  J, Liu  X, Zhang  Q. MicroRNA-138 attenuates myocardial ischemia reperfusion injury through inhibiting mitochondria-mediated apoptosis by targeting HIF1-α. Exp Ther Med  2019;18:3325–3332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92. Ghosh  MC, Zhang  DL, Ollivierre  WH, Noguchi  A, Springer  DA, Linehan  WM, Rouault  TA. Therapeutic inhibition of HIF-2α reverses polycythemia and pulmonary hypertension in murine models of human diseases. Blood  2021;137:2509–2519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. Levine  B, Kalman  J, Mayer  L, Fillit  HM, Packer  M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med  1990;323:236–241. [DOI] [PubMed] [Google Scholar]
  • 94. Adamo  L, Rocha-Resende  C, Prabhu  SD, Mann  DL. Reappraising the role of inflammation in heart failure. Nat Rev Cardiol  2020;17:269–285. [DOI] [PubMed] [Google Scholar]
  • 95. Coussens  LM, Werb  Z. Inflammation and cancer. Nat  2002;420:860–867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96. Landskron  G, De la Fuente  M, Thuwajit  P, Thuwajit  C, Hermoso  MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res  2014;2014:149185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97. Jess  T, Loftus  EV, Velayos  FS, Harmsen  WS, Zinsmeister  AR, Smyrk  TC, Schleck  CD, Tremaine  WJ, Melton  LJ, Munkholm  P, Sandborn  WJ. Risk of intestinal cancer in inflammatory bowel disease: a population-based study from Olmsted county, Minnesota. Gastroenterology  2006;130:1039–1046. [DOI] [PubMed] [Google Scholar]
  • 98. El-Serag  HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology  2012;142:1264–1273.e1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99. Ungprasert  P, Charoenpong  P, Ratanasrimetha  P, Thongprayoon  C, Cheungpasitporn  W, Suksaranjit  P. Risk of coronary artery disease in patients with systemic sclerosis: a systematic review and meta-analysis. Clin Rheumatol  2014;33:1099–1104. [DOI] [PubMed] [Google Scholar]
  • 100. Hilfiker-Kleiner  D, Landmesser  U, Drexler  H. Molecular mechanisms in heart failure: focus on cardiac hypertrophy, inflammation, angiogenesis, and apoptosis. J Am Coll Cardiol  2006;48:A56–A66. [Google Scholar]
  • 101. Shimizu  I, Yoshida  Y, Katsuno  T, Minamino  T. Adipose tissue inflammation in diabetes and heart failure. Microbes Infect  2013;15:11–17. [DOI] [PubMed] [Google Scholar]
  • 102. Tselepis  C, Perry  I, Dawson  C, Hardy  R, Darnton  SJ, McConkey  C, Stuart  RC, Wright  N, Harrison  R, Jankowski  JAZ. Tumour necrosis factor-α in Barrett’s oesophagus: a potential novel mechanism of action. Oncogene  2002;21:6071–6081. [DOI] [PubMed] [Google Scholar]
  • 103. Gasche  JA, Hoffmann  J, Boland  CR, Goel  A. Interleukin-6 promotes tumorigenesis by altering DNA methylation in oral cancer cells. Int J Cancer  2011;129:1053–1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104. Hao  NB, Lü  MH, Fan  YH, Cao  YL, Zhang  ZR, Yang  SM. Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol  2012;2012:948098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105. Thomas  DA, Massagué  J. TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell  2005;8:369–380. [DOI] [PubMed] [Google Scholar]
  • 106. Oikawa  T, Sakata  Y, Nochioka  K, Miura  M, Abe  R, Kasahara  S, Sato  M, Aoyanagi  H, Shiroto  T, Sugimura  K, Takahashi  J, Miyata  S, Shimokawa  H. Increased risk of cancer death in patients with chronic heart failure with a special reference to inflammation-A report from the CHART-2 study. Int J Cardiol  2019;290:106–112. [DOI] [PubMed] [Google Scholar]
  • 107. Van’t Klooster  CC, Ridker  PM, Hjortnaes  J, Van Der  GY, Asselbergs  FW, Westerink  J, Aerts  JGJV, Visseren  FLJ, Asselbergs  FW, Nathoe  HM, De  BG, Bots  ML, Geerlings  MI, Emmelot  MH, De  JP, Leiner  T, Lely  AT, Van Der  KN, Kappelle  LJ, Ruigrok  Y, Verhaar  MC, Visseren  FLJ, Westerink  J. The relation between systemic inflammation and incident cancer in patients with stable cardiovascular disease: a cohort study. Eur Heart J  2019;40:3901–3909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108. DeZern  AE, Malcovati  L, Ebert  BL. CHIP, CCUS, and other acronyms: definition, implications, and impact on practice. Am Soc Clin Oncol Educ book  2019;39:400–410. [DOI] [PubMed] [Google Scholar]
  • 109. Mooney  L, Goodyear  CS, Chandra  T, Kirschner  K, Copland  M, Petrie  MC, Lang  NN. Clonal haematopoiesis of indeterminate potential: intersections between inflammation, vascular disease and heart failure. Clin Sci (Lond)  2021;135:991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110. Jaiswal  S, Fontanillas  P, Flannick  J, Manning  A, Grauman  PV, Mar  BG, Lindsley  RC, Mermel  CH, Burtt  N, Chavez  A, Higgins  JM, Moltchanov  V, Kuo  FC, Kluk  MJ, Henderson  B, Kinnunen  L, Koistinen  HA, Ladenvall  C, Getz  G, Correa  A, Banahan  BF, Gabriel  S, Kathiresan  S, Stringham  HM, McCarthy  MI, Boehnke  M, Tuomilehto  J, Haiman  C, Groop  L, Atzmon  G, Wilson  JG, Neuberg  D, Altshuler  D, Ebert  BL. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med  2014;371:2488–2498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111. Saiki  R, Momozawa  Y, Nannya  Y, Nakagawa  MM, Ochi  Y, Yoshizato  T, Terao  C, Kuroda  Y, Shiraishi  Y, Chiba  K, Tanaka  H, Niida  A, Imoto  S, Matsuda  K, Morisaki  T, Murakami  Y, Kamatani  Y, Matsuda  S, Kubo  M, Miyano  S, Makishima  H, Ogawa  S. Combined landscape of single-nucleotide variants and copy number alterations in clonal hematopoiesis. Nat Med  2021;27:1239–1249. [DOI] [PubMed] [Google Scholar]
  • 112. Bhattacharya  R, Zekavat  SM, Haessler  J, Fornage  M, Raffield  L, Uddin  MM, Bick  AG, Niroula  A, Yu  B, Gibson  C, Griffin  G, Morrison  AC, Psaty  BM, Longstreth  WT, Bis  JC, Rich  SS, Rotter  JI, Tracy  RP, Correa  A, Seshadri  S, Johnson  A, Collins  JM, Hayden  KM, Madsen  TE, Ballantyne  CM, Jaiswal  S, Ebert  BL, Kooperberg  C, Manson  JE, Whitsel  EA, Natarajan  P, Reiner  AP. Clonal hematopoiesis is associated with higher risk of stroke. Stroke  2022;53:788–797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113. Dorsheimer  L, Assmus  B, Rasper  T, Ortmann  CA, Ecke  A, Abou-El-Ardat  K, Schmid  T, Brüne  B, Wagner  S, Serve  H, Hoffmann  J, Seeger  F, Dimmeler  S, Zeiher  AM, Rieger  MA. Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol  2019;4:25–33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114. Pascual-Figal  DA, Bayes-Genis  A, Díez-Díez  M, Hernández-Vicente  Á, Vázquez-Andrés  D, de la Barrera  J, Vazquez  E, Quintas  A, Zuriaga  MA, Asensio-López  MC, Dopazo  A, Sánchez-Cabo  F, Fuster  JJ. Clonal hematopoiesis and risk of progression of heart failure with reduced left ventricular ejection fraction. J Am Coll Cardiol  2021;77:1747–1759. [DOI] [PubMed] [Google Scholar]
  • 115. Yu  B, Roberts  MB, Raffield  LM, Zekavat  SM, Nguyen  NQH, Biggs  ML, Brown  MR, Griffin  G, Desai  P, Correa  A, Morrison  AC, Shah  AM, Niroula  A, Uddin  MM, Honigberg  MC, Ebert  BL, Psaty  BM, Whitsel  EA, Manson  JAE, Kooperberg  C, Bick  AG, Ballantyne  CM, Reiner  AP, Natarajan  P, Eaton  CB. Supplemental association of clonal hematopoiesis with incident heart failure. J Am Coll Cardiol  2021;78:42–52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116. Cook  EK, Izukawa  T, Young  S, Rosen  G, Jamali  M, Zhang  L, Johnson  D, Bain  E, Hilland  J, Ferrone  CK, Buckstein  J, Francis  J, Momtaz  B, McNaughton  AJM, Liu  X, Snetsinger  B, Buckstein  R, Rauh  MJ. Comorbid and inflammatory characteristics of genetic subtypes of clonal hematopoiesis. Blood Adv  2019;3:2482–2486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117. Bick  AG, Weinstock  JS, Nandakumar  SK, Fulco  CP, Bao  EL, Zekavat  SM, Szeto  MD, Liao  X, Leventhal  MJ, Nasser  J, Chang  K, Laurie  C, Burugula  BB, Gibson  CJ, Lin  AE, Taub  MA, Aguet  F, Ardlie  K, Mitchell  BD, Barnes  KC, Moscati  A, Fornage  M, Redline  S, Psaty  BM, Silverman  EK, Weiss  ST, Palmer  ND, Vasan  RS, Burchard  EG, Kardia  SLR, He  J, Kaplan  RC, Smith  NL, Arnett  DK, Schwartz  DA, Correa  A, de Andrade  M, Guo  X, Konkle  BA, Custer  B, Peralta  JM, Gui  H, Meyers  DA, McGarvey  ST, Chen  IY, Shoemaker  MB, Peyser  PA, Broome  JG, Gogarten  SM, Wang  FF, Wong  Q, Montasser  ME, Daya  M, Kenny  EE, North  KE, Launer  LJ, Cade  BE, Bis  JC, Cho  MH, Lasky-Su  J, Bowden  DW, Cupples  LA, Mak  ACY, Becker  LC, Smith  JA, Kelly  TN, Aslibekyan  S, Heckbert  SR, Tiwari  HK, Yang  IV, Heit  JA, Lubitz  SA, Johnsen  JM, Curran  JE, Wenzel  SE, Weeks  DE, Rao  DC, Darbar  D, Moon  JY, Tracy  RP, Buth  EJ, Rafaels  N, Loos  RJF, Durda  P, Liu  Y, Hou  L, Lee  J, Kachroo  P, Freedman  BI, Levy  D, Bielak  LF, Hixson  JE, Floyd  JS, Whitsel  EA, Ellinor  PT, Irvin  MR, Fingerlin  TE, Raffield  LM, Armasu  SM, Wheeler  MM, Sabino  EC, Blangero  J, Williams  LK, Levy  BD, Sheu  WH, Roden  DM, Boerwinkle  E, Manson  JE, Mathias  RA, Desai  P, Taylor  KD, Johnson  AD; NHLBI Trans-Omics for Precision Medicine Consortium, Auer  PL, Kooperberg  C, Laurie  CC, Blackwell  TW, Smith  AV, Zhao  H, Lange  E, Lange  L, Rich  SS, Rotter  JI, Wilson  JG, Scheet  P, Kitzman  JO, Lander  ES, Engreitz  JM, Ebert  BL, Reiner  AP, Jaiswal  S, Abecasis  G, Sankaran  VG, Kathiresan  S, Natarajan  P. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nat  2020;586:763–768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118. Sano  S, Oshima  K, Wang  Y, MacLauchlan  S, Katanasaka  Y, Sano  M, Zuriaga  MA, Yoshiyama  M, Goukassian  D, Cooper  MA, Fuster  JJ, Walsh  K. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J Am Coll Cardiol  2018;71:875–886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119. Sano  S, Oshima  K, Wang  Y, Katanasaka  Y, Sano  M, Walsh  K. CRISPR-mediated gene editing to assess the roles of TET2 and DNMT3A in clonal hematopoiesis and cardiovascular disease. Circ Res  2018;123:335–341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120. Sano  S, Wang  Y, Yura  Y, Sano  M, Oshima  K, Yang  Y, Katanasaka  Y, Min  KD, Matsuura  S, Ravid  K, Mohi  G, Walsh  K. JAK2V617F-mediated clonal hematopoiesis accelerates pathological remodeling in murine heart failure. JACC Basic to Transl Sci  2019;4:684–697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121. WHO . Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight  (6 April 2022).
  • 122. Cipolletta  D. Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential. Immunology  2014;142:517–525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123. Wu  D, Molofsky  AB, Liang  HE, Ricardo-Gonzalez  RR, Jouihan  HA, Bando  JK, Chawla  A, Locksley  RM. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science  2011;332:243–247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124. McNelis  JC, Olefsky  JM. Macrophages, immunity, and metabolic disease. Immunity  2014;41:36–48. [DOI] [PubMed] [Google Scholar]
  • 125. Arnold  M, Pandeya  N, Byrnes  G, Renehan  AG, Stevens  GA, Ezzati  M, Ferlay  J, Miranda  JJ, Romieu  I, Dikshit  R, Forman  D, Soerjomataram  I. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol  2015;16:36–46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126. Lauby-Secretan  B, Scoccianti  C, Loomis  D, Grosse  Y, Bianchini  F, Straif  K. Body fatness and cancer—viewpoint of the IARC working group. N Engl J Med  2016;375:794–798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127. Liu  PH, Wu  K, Ng  K, Zauber  AG, Nguyen  LH, Song  M, He  X, Fuchs  CS, Ogino  S, Willett  WC, Chan  AT, Giovannucci  EL, Cao  Y. Association of obesity with risk of early-onset colorectal cancer among women. JAMA Oncol  2019;5:37–44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128. Sung  H, Ferlay  J, Siegel  RL, Laversanne  M, Soerjomataram  I, Jemal  A, Bray  F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin  2021;71:209–249. [DOI] [PubMed] [Google Scholar]
  • 129. Elangovan  A, Skeans  J, Landsman  M, Ali  SMJ, Elangovan  AG, Kaelber  DC, Sandhu  DS, Cooper  GS. Colorectal cancer, age, and obesity-related comorbidities: a large database study. Dig Dis Sci  2021;66:3156–3163. [DOI] [PubMed] [Google Scholar]
  • 130. Deng  T, Lyon  CJ, Bergin  S, Caligiuri  MA, Hsueh  WA. Obesity, inflammation, and cancer. Annu Rev Pathol Mech Dis  2016;11:421–449. [DOI] [PubMed] [Google Scholar]
  • 131. Mercurio  V, Cuomo  A, Dessalvi  CC, Deidda  M, Di  LD, Novo  G, Manganaro  R, Zito  C, Santoro  C, Ameri  P, Spallarossa  P, Arboscello  E, Tocchetti  CG, Penna  C. Redox imbalances in ageing and metabolic alterations: implications in cancer and cardiac diseases. An overview from the working group of cardiotoxicity and cardioprotection of the Italian Society of Cardiology (SIC). Antioxidants  2020;9:641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132. Dirat  B, Bochet  L, Dabek  M, Daviaud  D, Dauvillier  S, Majed  B, Wang  YY, Meulle  A, Salles  B, Le  GS, Garrido  I, Escourrou  G, Valet  P, Muller  C. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer InvasionKey role of mature adipocytes in breast cancer progression. Cancer Res  2011;71:2455–2465. [DOI] [PubMed] [Google Scholar]
  • 133. Atish  S, Enchaiah  K, Ane  J, Vans  CE, Evy  AL, Ilson  EWFW, Enjamin  MJB, Arson  AGL, Annel  IBK, Amachandran  R, Asan S  V. Obesity and the risk of heart failure. N Engl J Med  2002;35:59–60. [Google Scholar]
  • 134. Ndumele  CE, Matsushita  K, Lazo  M, Bello  N, Blumenthal  RS, Gerstenblith  G, Nambi  V, Ballantyne  CM, Solomon  SD, Selvin  E, Folsom  AR, Coresh  J. Obesity and subtypes of incident cardiovascular disease. J Am Heart Assoc  2016;5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135. Aune  D, Sen  A, Norat  T, Janszky  I, Romundstad  P, Tonstad  S, Vatten  LJ. Body mass index, abdominal fatness, and heart failure incidence and mortality: a systematic review and dose-response meta-analysis of prospective studies. Circulation  2016;133:639–649. [DOI] [PubMed] [Google Scholar]
  • 136. Savji  N, Meijers  WC, Bartz  TM, Bhambhani  V, Cushman  M, Nayor  M, Kizer  JR, Sarma  A, Blaha  MJ, Gansevoort  RT, Gardin  JM, Hillege  HL, Ji  F, Kop  WJ, Lau  ES, Lee  DS, Sadreyev  R, van Gilst  WH, Wang  TJ, Zanni  MV, Vasan  RS, Allen  NB, Psaty  BM, van der Harst  P, Levy  D, Larson  M, Shah  SJ, de Boer  RA, Gottdiener  JS, Ho  JE. The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Hear Fail  2018;6:701–709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137. Alex  L, Russo  I, Holoborodko  V, Frangogiannis  NG. Characterization of a mouse model of obesity-related fibrotic cardiomyopathy that recapitulates features of human heart failure with preserved ejection fraction. Am J Physiol - Hear Circ Physiol  2018;315:H934–H949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138. Vlasova  M, Purhonen  AK, Jarvelin  MR, Rodilla  E, Pascual  J, Herzig  KH. Role of adipokines in obesity-associated hypertension. Acta Physiol  2010;200:107–127. [DOI] [PubMed] [Google Scholar]
  • 139. Ntaios  G, Gatselis  NK, Makaritsis  K, Dalekos  GN. Adipokines as mediators of endothelial function and atherosclerosis. Atherosclerosis  2013;227:216–221. [DOI] [PubMed] [Google Scholar]
  • 140. Pello  Lázaro AM, Blanco-Colio  LM, Franco Peláez  JA, Tuñón  J. Anti-Inflammatory drugs in patients with ischemic heart disease. J Clin Med  2021;10:2835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141. Ridker  PM, Everett  BM, Thuren  T, MacFadyen  JG, Chang  WH, Ballantyne  C, Fonseca  F, Nicolau  J, Koenig  W, Anker  SD, Kastelein  JJP, Cornel  JH, Pais  P, Pella  D, Genest  J, Cifkova  R, Lorenzatti  A, Forster  T, Kobalava  Z, Vida-Simiti  L, Flather  M, Shimokawa  H, Ogawa  H, Dellborg  M, Rossi  PRF, Troquay  RPT, Libby  P, Glynn  RJ. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med  2017;377:1119–1131. [DOI] [PubMed] [Google Scholar]
  • 142. Everett  BM, Cornel  JH, Lainscak  M, Anker  SD, Abbate  A, Thuren  T, Libby  P, Glynn  RJ, Ridker  PM. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation  2019;139:1289–1299. [DOI] [PubMed] [Google Scholar]
  • 143. Ridker  PM, MacFadyen  JG, Thuren  T, Everett  B, Libby  P, Glynn  R, Ridker  P, Lorenzatti  A, Krum  H, Varigos  J, Siostrzonek  P, Sinnaeve  P, Fonseca  F, Nicolau  J, Gotcheva  N, Genest  J, Yong  H, Urina-Triana  M, Milicic  D, Cifkova  R, Vettus  R, Koenig  W, Anker  SD, Manolis  AJ, Wyss  F, Forster  T, Sigurdsson  A, Pais  P, Fucili  A, Ogawa  H, Shimokawa  H, Veze  I, Petrauskiene  B, Salvador  L, Kastelein  J, Cornel  JH, Klemsdal  TO, Medina  F, Budaj  A, Vida-Simiti  L, Kobalava  Z, Otasevic  P, Pella  D, Lainscak  M, Seung  KB, Commerford  P, Dellborg  M, Donath  M, Hwang  JJ, Kultursay  H, Flather  M, Ballantyne  C, Bilazarian  S, Chang  W, East  C, Forgosh  L, Harris  B, Ligueros  M, Bohula  E, Charmarthi  B, Cheng  S, Chou  S, Danik  J, McMahon  G, Maron  B, Ning  MM, Olenchock  B, Pande  R, Perlstein  T, Pradhan  A, Rost  N, Singhal  A, Taqueti  V, Wei  N, Burris  H, Cioffi  A, Dalseg  AM, Ghosh  N, Gralow  J, Mayer  T, Rugo  H, Fowler  V, Limaye  AP, Cosgrove  S, Levine  D, Lopes  R, Scott  J, Hilkert  R, Tamesby  G, Mickel  C, Manning  B, Woelcke  J, Tan  M, Manfreda  S, Ponce  T, Kam  J, Saini  R, Banker  K, Salko  T, Nandy  P, Tawfik  R, O’Neil  G, Manne  S, Jirvankar  P, Lal  S, Nema  D, Jose  J, Collins  R, Bailey  K, Blumenthal  R, Colhoun  H, Gersh  B. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet  2017;390:1833–1842. [DOI] [PubMed] [Google Scholar]
  • 144. Garrido  P, Pujol  JL, Kim  ES, Lee  JM, Tsuboi  M, Gómez-Rueda  A, Benito  A, Moreno  N, Gorospe  L, Dong  T, Blin  C, Rodrik-Outmezguine  V, Passos  VQ, Mok  TSK. Canakinumab with and without pembrolizumab in patients with resectable non-small-cell lung cancer: CANOPY-N study design. Futur Oncol  2021;17:1459–1472. [DOI] [PubMed] [Google Scholar]
  • 145. Hussain  M, Adah  D, Tariq  M, Lu  Y, Zhang  J, Liu  J. CXCL13/CXCR5 signaling axis in cancer. Life Sci  2019;227:175–186. [DOI] [PubMed] [Google Scholar]
  • 146. Loberg  RD, Ying  C, Craig  M, Yan  L, Snyder  LA, Pienta  KJ. CCL2 As an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia  2007;9:556–562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147. Egerstedt  A, Berntsson  J, Smith  ML, Gidlöf  O, Nilsson  R, Benson  M, Wells  QS, Celik  S, Lejonberg  C, Farrell  L, Sinha  S, Shen  D, Lundgren  J, Rådegran  G, Ngo  D, Engström  G, Yang  Q, Wang  TJ, Gerszten  RE, Smith  JG. Profiling of the plasma proteome across different stages of human heart failure. Nat Commun  2019;10:1–13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148. Hohensinner  PJ, Rychli  K, Zorn  G, Hülsmann  M, Berger  R, Mörtl  D, Richter  B, Huber  K, Wojta  J, Pacher  R, Niessner  A. Macrophage-modulating cytokines predict adverse outcome in heart failure. Thromb Haemost  2010;103:435–441. [DOI] [PubMed] [Google Scholar]
  • 149. Dewald  O, Zymek  P, Winkelmann  K, Koerting  A, Ren  G, Abou-Khamis  T, Michael  LH, Rollins  BJ, Entman  ML, Frangogiannis  NG. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res  2005;96:881–889. [DOI] [PubMed] [Google Scholar]
  • 150. Zhu  Z, Zhang  X, Guo  H, Fu  L, Pan  G, Sun  Y. CXCL13-CXCR5 axis promotes the growth and invasion of colon cancer cells via PI3K/AKT pathway. Mol Cell Biochem  2015;400:287–295. [DOI] [PubMed] [Google Scholar]
  • 151. Xu  L, Liang  Z, Li  S, Ma  J. Signaling via the CXCR5/ERK pathway is mediated by CXCL13 in mice with breast cancer. Oncol Lett  2018;15:9293–9298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152. Hao  Q, Vadgama J  V, Wang  P. CCL2/CCR2 Signaling in cancer pathogenesis. Cell Commun Signal  2020;18:1–13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153. Teng  KY, Han  J, Zhang  X, Hsu  SH, He  S, Wani  NA, Barajas  JM, Snyder  LA, Frankel  WL, Caligiuri  MA, Jacob  ST, Yu  J, Ghoshal  K. Blocking the CCL2-CCR2 axis using CCL2-neutralizing antibody is an effective therapy for hepatocellular cancer in a mouse model. Mol Cancer Ther  2017;16:312–322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154. Xu  M, Wang  Y, Xia  R, Wei  Y, Wei  X. Role of the CCL2-CCR2 signalling axis in cancer: mechanisms and therapeutic targeting. Cell Prolif  2021;54:e13115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155. Hanna  A, Frangogiannis  NG. Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc Drugs Ther  2020;34:849–863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156. Sharma  P, Allison  JP. The future of immune checkpoint therapy. Science  2015;348:56–61. [DOI] [PubMed] [Google Scholar]
  • 157. Bagchi  S, Yuan  R, Engleman  EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol  2021;16:223–249. [DOI] [PubMed] [Google Scholar]
  • 158. Heinzerling  L, Ott  PA, Hodi  FS, Husain  AN, Tajmir-Riahi  A, Tawbi  H, Pauschinger  M, Gajewski  TF, Lipson  EJ, Luke  JJ. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J Immunother Cancer  2016;4:1–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159. Mahmood  SS, Fradley  MG, Cohen  JV, Nohria  A, Reynolds  KL, Heinzerling  LM, Sullivan  RJ, Damrongwatanasuk  R, Chen  CL, Gupta  D, Kirchberger  MC, Awadalla  M, Hassan  MZO, Moslehi  JJ, Shah  SP, Ganatra  S, Thavendiranathan  P, Lawrence  DP, Groarke  JD, Neilan  TG. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol  2018;71:1755–1764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160. Moslehi  JJ, Salem  JE, Sosman  JA, Lebrun-Vignes  B, Johnson  DB. Rapid increase in reporting of fatal immune checkpoint inhibitor associated myocarditis. Lancet  2018;391:933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161. Neish  AS. Microbes in gastrointestinal health and disease. Gastroenterology  2009;136:65–80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162. Bäckhed  F, Ley  RE, Sonnenburg  JL, Peterson  DA, Gordon  JI. Host-bacterial mutualism in the human intestine. Science  2005;307:1915–1920. [DOI] [PubMed] [Google Scholar]
  • 163. Valdes  AM, Walter  J, Segal  E, Spector  TD. Role of the gut microbiota in nutrition and health. BMJ  2018;361:36–44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164. Rothschild  D, Weissbrod  O, Barkan  E, Kurilshikov  A, Korem  T, Zeevi  D, Costea  PI, Godneva  A, Kalka  IN, Bar  N, Shilo  S, Lador  D, Vila  AV, Zmora  N, Pevsner-Fischer  M, Israeli  D, Kosower  N, Malka  G, Wolf  BC, Avnit-Sagi  T, Lotan-Pompan  M, Weinberger  A, Halpern  Z, Carmi  S, Fu  J, Wijmenga  C, Zhernakova  A, Elinav  E, Segal  E. Environment dominates over host genetics in shaping human gut microbiota. Nat  2018;555:210–215. [DOI] [PubMed] [Google Scholar]
  • 165. Turnbaugh  PJ, Hamady  M, Yatsunenko  T, Cantarel  BL, Duncan  A, Ley  RE, Sogin  ML, Jones  WJ, Roe  BA, Affourtit  JP, Egholm  M, Henrissat  B, Heath  AC, Knight  R, Gordon  JI. A core gut microbiome in obese and lean twins. Nat  2008;457:480–484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166. Ahn  J, Sinha  R, Pei  Z, Dominianni  C, Wu  J, Shi  J, Goedert  JJ, Hayes  RB, Yang  L. Human gut microbiome and risk for colorectal cancer. JNCI J Natl Cancer Inst  2013;105:1907–1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167. Lu  Y, Chen  J, Zheng  J, Hu  G, Wang  J, Huang  C, Lou  L, Wang  X, Zeng  Y. Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas. Sci Rep  2016;6:26337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168. Wu  N, Yang  X, Zhang  R, Li  J, Xiao  X, Hu  Y, Chen  Y, Yang  F, Lu  N, Wang  Z, Luan  C, Liu  Y, Wang  B, Xiang  C, Wang  Y, Zhao  F, Gao  GF, Wang  S, Li  L, Zhang  H, Zhu  B. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol  2013;66:462–470. [DOI] [PubMed] [Google Scholar]
  • 169. Wong  SH, Zhao  L, Zhang  X, Nakatsu  G, Han  J, Xu  W, Xiao  X, Kwong  TNY, Tsoi  H, Wu  WKK, Zeng  B, Chan  FKL, Sung  JJY, Wei  H, Yu  J. Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology  2017;153:1621–1633.e6. [DOI] [PubMed] [Google Scholar]
  • 170. Li  L, Li  X, Zhong  W, Yang  M, Xu  M, Sun  Y, Ma  J, Liu  T, Song  X, Dong  W, Liu  X, Chen  Y, Liu  Y, Abla  Z, Liu  W, Wang  B, Jiang  K, Cao  H. Gut microbiota from colorectal cancer patients enhances the progression of intestinal adenoma in apc min/+ mice. EBioMedicine  2019;48:301–315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171. Jain  T, Sharma  P, Are  AC, Vickers  SM, Dudeja  V. New insights into the cancer–microbiome–immune axis: decrypting a decade of discoveries. Front Immunol  2021;12:102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172. Sepich-Poore  GD, Zitvogel  L, Straussman  R, Hasty  J, Wargo  JA, Knight  R. The microbiome and human cancer. Science  2021;371:eabc4552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173. Luedde  M, Winkler  T, Heinsen  FA, Rühlemann  MC, Spehlmann  ME, Bajrovic  A, Lieb  W, Franke  A, Ott  SJ, Frey  N. Heart failure is associated with depletion of core intestinal microbiota. ESC Hear Fail  2017;4:282–290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174. Beale  AL, O’Donnell  JA, Nakai  ME, Nanayakkara  S, Vizi  D, Carter  K, Dean  E, Ribeiro  RV, Yiallourou  S, Carrington  MJ, Marques  FZ, Kaye  DM. The gut microbiome of heart failure with preserved ejection fraction. J Am Heart Assoc  2021;10:20654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175. Kummen  M, Mayerhofer  CCK, Vestad  B, Broch  K, Awoyemi  A, Storm-Larsen  C, Ueland  T, Yndestad  A, Hov  JR, Trøseid  M. Gut Microbiota signature in heart failure defined from profiling of 2 independent cohorts. J Am Coll Cardiol  2018;71:1184–1186. [DOI] [PubMed] [Google Scholar]
  • 176. Koeth  RA, Wang  Z, Levison  BS, Buffa  JA, Org  E, Sheehy  BT, Britt  EB, Fu  X, Wu  Y, Li  L, Smith  JD, Didonato  JA, Chen  J, Li  H, Wu  GD, Lewis  JD, Warrier  M, Brown  JM, Krauss  RM, Tang  WHW, Bushman  FD, Lusis  AJ, Hazen  SL. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med  2013;19:576–585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177. Brandsma  E, Kloosterhuis  NJ, Koster  M, Dekker  DC, Gijbels  MJJ, van der Velden  S, Ríos-Morales  M, van Faassen  MJR, Loreti  MG, de Bruin  A, Fu  J, Kuipers  F, Bakker  BM, Westerterp  M, de Winther  MPJ, Hofker  MH, van de Sluis  B, Koonen  DPY. A proinflammatory gut Microbiota increases systemic inflammation and accelerates atherosclerosis. Circ Res  2019;124:94–100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178. Li  Z, Wu  Z, Yan  J, Liu  H, Liu  Q, Deng  Y, Ou  C, Chen  M. Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis. Lab Investig  2018;99:346–357. [DOI] [PubMed] [Google Scholar]
  • 179. Zheng  A, Yi  H, Li  F, Han  L, Yu  J, Cheng  X, Su  H, Hong  K, Juxiang  L. Changes in gut microbiome structure and function of rats with isoproterenol-induced heart failure. Int Heart J  2019;60:1176–1183. [DOI] [PubMed] [Google Scholar]
  • 180. Carrillo-Salinas  FJ, Anastasiou  M, Ngwenyama  N, Kaur  K, Tai  A, Smolgovsky  SA, Jetton  D, Aronovitz  M, Alcaide  P. Gut dysbiosis induced by cardiac pressure overload enhances adverse cardiac remodeling in a T cell-dependent manner. Gut Microbes  2020;12:1–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181. Caparrós-Martín  JA, Lareu  RR, Ramsay  JP, Peplies  J, Reen  FJ, Headlam  HA, Ward  NC, Croft  KD, Newsholme  P, Hughes  JD, O’gara  F. Statin therapy causes gut dysbiosis in mice through a PXR-dependent mechanism. Microbiome  2017;5:95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182. Zhernakova  A, Kurilshikov  A, Bonder  MJ, Tigchelaar  EF, Schirmer  M, Vatanen  T, Mujagic  Z, Vila  AV, Falony  G, Vieira-Silva  S, Wang  J, Imhann  F, Brandsma  E, Jankipersadsing  SA, Joossens  M, Cenit  MC, Deelen  P, Swertz  MA, Weersma  RK, Feskens  EJM, Netea  MG, Gevers  D, Jonkers  D, Franke  L, Aulchenko  YS, Huttenhower  C, Raes  J, Hofker  MH, Xavier  RJ, Wijmenga  C, Fu  J. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science  2016;352:565–569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183. Tuteja  S, Ferguson  JF. Gut microbiome and response to cardiovascular drugs. Circ Genomic Precis Med  2019;12:421–429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184. Cover  TL, Blaser  MJ. Helicobacter pylori in health and disease. Gastroenterology  2009;136:1863–1873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185. Alon-Maimon  T, Mandelboim  O, Bachrach  G. Fusobacterium nucleatum and cancer. Periodontol 2000  2022;00:1–15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 186. Zhang  S, Li  C, Liu  J, Geng  F, Shi  X, Li  Q, Lu  Z, Pan  Y. Fusobacterium nucleatum promotes epithelial-mesenchymal transiton through regulation of the lncRNA MIR4435-2HG/miR-296-5p/Akt2/SNAI1 signaling pathway. FEBS J  2020;287:4032–4047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 187. Wu  S, Powell  J, Mathioudakis  N, Kane  S, Fernandez  E, Sears  CL. Bacteroides fragilis enterotoxin induces intestinal epithelial cell secretion of interleukin-8 through mitogen-activated protein kinases and a tyrosine kinase-regulated nuclear factor-κB pathway. Infect Immun  2004;72:5832–5839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188. Wu  S, Morin  PJ, Maouyo  D, Sears  CL. Bacteroides fragilis enterotoxin induces C-MYC expression and cellular proliferation. Gastroenterology  2003;124:392–400. [DOI] [PubMed] [Google Scholar]
  • 189. Boleij  A, Hechenbleikner  EM, Goodwin  AC, Badani  R, Stein  EM, Lazarev  MG, Ellis  B, Carroll  KC, Albesiano  E, Wick  EC, Platz  EA, Pardoll  DM, Sears  CL. The Bacteroides fragilis toxin gene is prevalent in the colon Mucosa of colorectal cancer patients. Clin Infect Dis  2015;60:208–215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190. Pasini  E, Aquilani  R, Testa  C, Baiardi  P, Angioletti  S, Boschi  F, Verri  M, Dioguardi  F. Pathogenic gut flora in patients with chronic heart failure. JACC Hear Fail  2016;4:220–227. [DOI] [PubMed] [Google Scholar]
  • 191. Pastori  D, Carnevale  R, Nocella  C, Novo  M, Santulli  M, Cammisotto  V, Menichelli  D, Pignatelli  P, Violi  F. Gut-derived serum lipopolysaccharide is associated with enhanced risk of major adverse cardiovascular events in atrial fibrillation: effect of adherence to Mediterranean diet. J Am Heart Assoc  2017;6:e005784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 192. Lew  WYW, Bayna  E, Molle  ED, Dalton  ND, Lai  NC, Bhargava  V, Mendiola  V, Clopton  P, Tang  T. Recurrent exposure to subclinical lipopolysaccharide increases mortality and induces cardiac fibrosis in mice. PLoS One  2013;8:e61057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 193. Mao  S, Ma  H, Chen  P, Liang  Y, Zhang  M, Hinek  A. Fat-1 transgenic mice rich in endogenous omega-3 fatty acids are protected from lipopolysaccharide-induced cardiac dysfunction. ESC Hear Fail  2021;8:1966–1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194. Tang  WHW, Li  DY, Hazen  SL. Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol  2019;16:137–154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195. Witkowski  M, Weeks  TL, Hazen  SL. Gut microbiota and cardiovascular disease. Circ Res  2020;127:553–570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196. Trøseid  M, Ueland  T, Hov  JR, Svardal  A, Gregersen  I, Dahl  CP, Aakhus  S, Gude  E, Bjørndal  B, Halvorsen  B, Karlsen  TH, Aukrust  P, Gullestad  L, Berge  RK, Yndestad  A. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med  2015;277:717–726. [DOI] [PubMed] [Google Scholar]
  • 197. Tang  WHW, Wang  Z, Fan  Y, Levison  B, Hazen  JE, Donahue  LM, Wu  Y, Hazen  SL. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol  2014;64:1908–1914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198. Suzuki  T, Heaney  LM, Bhandari  SS, Jones  DJL, Ng  LL. Trimethylamine N-oxide and prognosis in acute heart failure. Heart  2016;102:841–848. [DOI] [PubMed] [Google Scholar]
  • 199. Schuett  K, Kleber  ME, Scharnagl  H, Lorkowski  S, März  W, Niessner  A, Marx  N, Meinitzer  A. Trimethylamine-N-oxide and heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol  2017;70:3202–3204. [DOI] [PubMed] [Google Scholar]
  • 200. Bae  S, Ulrich  CM, Neuhouser  ML, Malysheva  O, Bailey  LB, Xiao  L, Brown  EC, Cushing-Haugen  KL, Zheng  Y, Cheng  TYD, Miller  JW, Green  R, Lane  DS, Beresford  SAA, Caudill  MA. Plasma choline metabolites and colorectal cancer risk in the women’s health initiative observational study. Cancer Res  2014;74:7442–7452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 201. Liu  X, Liu  H, Yuan  C, Zhang  Y, Wang  W, Hu  S, Liu  L, Wang  Y. Preoperative serum TMAO level is a new prognostic marker for colorectal cancer. Biomark Med  2017;11:443–447. [DOI] [PubMed] [Google Scholar]
  • 202. Fu  BC, Hullar  MAJ, Randolph  TW, Franke  AA, Monroe  KR, Cheng  I, Wilkens  LR, Shepherd  JA, Madeleine  MM, Le  ML, Lim  U, Lampe  JW. Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the multiethnic cohort adiposity phenotype study. Am J Clin Nutr  2020;111:1226–1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 203. Guertin  KA, Li  XS, Graubard  BI, Albanes  D, Weinstein  SJ, Goedert  JJ, Wang  Z, Hazen  SL, Sinha  R. Serum trimethylamine n-oxide, carnitine, choline, and betaine in relation to colorectal cancer risk in the alpha tocopherol, beta carotene cancer prevention study. Cancer Epidemiol Biomarkers Prev  2017;26:945–952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 204. Mondul  AM, Moore  SC, Weinstein  SJ, Karoly  ED, Sampson  JN, Albanes  D. Metabolomic analysis of prostate cancer risk in a prospective cohort: the alpha-tocopherol, beta-carotene cancer prevention (ATBC) study. Int J Cancer  2015;137:2124–2132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 205. Bag  S, Banerjee  DR, Basak  A, Das  AK, Pal  M, Banerjee  R, Paul  RR, Chatterjee  J. NMR (1h and 13C) based signatures of abnormal choline metabolism in oral squamous cell carcinoma with no prominent Warburg effect. Biochem Biophys Res Commun  2015;459:574–578. [DOI] [PubMed] [Google Scholar]
  • 206. Coussens  LM, Werb  Z. Inflammation and cancer. Nature  2002;420:860–867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 207. Zhao  H, Wu  L, Yan  G, Chen  Y, Zhou  M, Wu  Y, Li  Y. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther  2021;6:1–46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 208. Wang  T, Cai  G, Qiu  Y, Fei  N, Zhang  M, Pang  X, Jia  W, Cai  S, Zhao  L. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J  2012;6:320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209. Jie  Z, Xia  H, Zhong  SL, Feng  Q, Li  S, Liang  S, Zhong  H, Liu  Z, Gao  Y, Zhao  H, Zhang  D, Su  Z, Fang  Z, Lan  Z, Li  J, Xiao  L, Li  J, Li  R, Li  X, Li  F, Ren  H, Huang  Y, Peng  Y, Li  G, Wen  B, Dong  B, Chen  JY, Geng  QS, Zhang  ZW, Yang  H, Wang  J, Wang  J, Zhang  X, Madsen  L, Brix  S, Ning  G, Xu  X, Liu  X, Hou  Y, Jia  H, He  K, Kristiansen  K. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun  2017;8:1–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 210. Liu  P, Wang  Y, Yang  G, Zhang  Q, Meng  L, Xin  Y, Jiang  X. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol Res  2021;165:105420. [DOI] [PubMed] [Google Scholar]
  • 211. Donohoe  DR, Collins  LB, Wali  A, Bigler  R, Sun  W, Bultman  SJ. The warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell  2012;48:612–626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 212. Gonçalves  P, Martel  F. Butyrate and colorectal cancer: the role of butyrate transport. Curr Drug Metab  2013;14:994–1008. [DOI] [PubMed] [Google Scholar]
  • 213. Mirzaei  R, Afaghi  A, Babakhani  S, Sohrabi  MR, Hosseini-Fard  SR, Babolhavaeji  K, Khani Ali Akbari  S, Yousefimashouf  R, Karampoor  S. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother  2021;139:111619. [DOI] [PubMed] [Google Scholar]
  • 214. Luo  S, Li  Z, Mao  L, Chen  S, Sun  S. Sodium butyrate induces autophagy in colorectal cancer cells through LKB1/AMPK signaling. J Physiol Biochem  2019;75:53–63. [DOI] [PubMed] [Google Scholar]
  • 215. Zeng  H, Taussig  DP, Cheng  WH, Johnson  LAK, Hakkak  R. Butyrate inhibits cancerous HCT116 colon cell proliferation but to a lesser extent in noncancerous NCM460 colon cells. Nutr  2017;9:25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216. Tang  WHW, Kitai  T, Hazen  SL. Gut microbiota in cardiovascular health and disease. Circ Res  2017;120:1183–1196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217. Kirschner  SK, Deutz  NEP, Rijnaarts  I, Smit  TJ, Larsen  DJ, Engelen  MPKJ. Impaired intestinal function is associated with lower muscle and cognitive health and well-being in patients with congestive heart failure. J Parenter Enter Nutr  2022;46:660–670. [DOI] [PubMed] [Google Scholar]
  • 218. Russo  M, Guida  F, Paparo  L, Trinchese  G, Aitoro  R, Avagliano  C, Fiordelisi  A, Napolitano  F, Mercurio  V, Sala  V, Li  M, Sorriento  D, Ciccarelli  M, Ghigo  A, Hirsch  E, Bianco  R, Iaccarino  G, Abete  P, Bonaduce  D, Calignano  A, Berni Canani  R, Tocchetti  CG. The novel butyrate derivative phenylalanine-butyramide protects from doxorubicin-induced cardiotoxicity. Eur J Heart Fail  2019;21:519–528. [DOI] [PubMed] [Google Scholar]
  • 219. Bartolomaeus  H, Balogh  A, Yakoub  M, Homann  S, Markó  L, Höges  S, Tsvetkov  D, Krannich  A, Wundersitz  S, Avery  EG, Haase  N, Kräker  K, Hering  L, Maase  M, Kusche-Vihrog  K, Grandoch  M, Fielitz  J, Kempa  S, Gollasch  M, Zhumadilov  Z, Kozhakhmetov  S, Kushugulova  A, Eckardt  KU, Dechend  R, Rump  LC, Forslund  SK, Müller  DN, Stegbauer  J, Wilck  N. Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation  2019;139:1407–1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 220. Zhang  L, Du  J, Yano  N, Wang  H, Zhao  YT, Dubielecka  PM, Zhuang  S, Chin  YE, Qin  G, Zhao  TC. Sodium butyrate protects ­against high fat diet-induced cardiac dysfunction and metabolic disorders in type II diabetic mice. J Cell Biochem  2017;118:2395–2408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 221. Pluznick  JL, Protzko  RJ, Gevorgyan  H, Peterlin  Z, Sipos  A, Han  J, Brunet  I, Wan  LX, Rey  F, Wang  T, Firestein  SJ, Yanagisawa  M, Gordon  JI, Eichmann  A, Peti-Peterdi  J, Caplan  MJ. olfactory receptor responding to gut microbiotaderived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A  2013;110:4410–4415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 222. Waks  AG, Winer  EP. Breast cancer treatment: a review. JAMA  2019;321:288–300. [DOI] [PubMed] [Google Scholar]
  • 223. Chen  T, Xu  T, Li  Y, Liang  C, Chen  J, Lu  Y, Wu  Z, Wu  S. Risk of cardiac dysfunction with trastuzumab in breast cancer patients: a meta-analysis. Cancer Treat Rev  2011;37:312–320. [DOI] [PubMed] [Google Scholar]
  • 224. Bowles  EJA, Wellman  R, Feigelson  HS, Onitilo  AA, Freedman  AN, Delate  T, Allen  LA, Nekhlyudov  L, Goddard  KAB, Davis  RL, Habel  LA, Yood  MU, McCarty  C, Magid  DJ, Wagner  EH. Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: a retrospective cohort study. J Natl Cancer Inst  2012;104:1293–1305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225. Lemmens  K, Doggen  K, De  KG. Role of neuregulin-1/ErbB signaling in cardiovascular physiology and disease: implications for therapy of heart failure. Circulation  2007;116:954–960. [DOI] [PubMed] [Google Scholar]
  • 226. Crone  SA, Zhao  YY, Fan  L, Gu  Y, Minamisawa  S, Liu  Y, Peterson  KL, Chen  J, Kahn  R, Condorelli  G, Ross  J, Chien  KR, Lee  KF. Erbb2 is essential in the prevention of dilated cardiomyopathy. Nat Med  2002;8:459–465. [DOI] [PubMed] [Google Scholar]
  • 227. Mercurio  V, Pirozzi  F, Lazzarini  E, Marone  G, Rizzo  P, Agnetti  G, Tocchetti  CG, Ghigo  A, Ameri  P. Models of heart failure based on the cardiotoxicity of anticancer drugs. J Card Fail  2016;22:449–458. [DOI] [PubMed] [Google Scholar]
  • 228. Vermeulen  Z, Segers  VFM, De  KG. Erbb2 signaling at the crossing between heart failure and cancer. Basic Res Cardiol  2016;111:60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 229. Hudis  CA. Trastuzumab–mechanism of action and use in clinical practice. N Engl J Med  2007;357:39–51. [DOI] [PubMed] [Google Scholar]
  • 230. Gordon  LI, Burke  MA, Singh  ATK, Prachand  S, Lieberman  ED, Sun  L, Naik  TJ, Prasad SV  N, Ardehali  H. Blockade of the erbB2 receptor induces cardiomyocyte death through mitochondrial and reactive oxygen Species-dependent pathways. J Biol Chem  2009;284:2080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 231. Wu  Q, Bai  B, Tian  C, Li  D, Yu  H, Song  B, Li  B, Chu  X. The molecular mechanisms of cardiotoxicity induced by HER2, VEGF, and tyrosine kinase inhibitors: an updated review. Cardiovasc Drugs Ther  2021;2021:1–14. [DOI] [PubMed] [Google Scholar]
  • 232. Mohan  N, Shen  Y, Endo  Y, ElZarrad  MK, Wu  WJ. Trastuzumab, but not pertuzumab, dysregulates HER2 signaling to mediate inhibition of autophagy and increase in reactive oxygen species production in human cardiomyocytes. Mol Cancer Ther  2016;15:1321–1331. [DOI] [PubMed] [Google Scholar]
  • 233. Small  HY, Montezano  AC, Rios  FJ, Savoia  C, Touyz  RM. Hypertension due to antiangiogenic cancer therapy with vascular endothelial growth factor inhibitors: understanding and managing a new syndrome. Can J Cardiol  2014;30:534–543. [DOI] [PubMed] [Google Scholar]
  • 234. Van  DD, Dobbin  SJH, Neves  KB, Herrmann  J, Herrmann  SM, Versmissen  J, Mathijssen  RHJ, Danser  AHJ, Lang  NN. Hypertension and prohypertensive antineoplastic therapies in cancer patients. Circ Res  2021;131:1040–1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 235. Ghatalia  P, Morgan  CJ, Je  Y, Nguyen  PL, Trinh  QD, Choueiri  TK, Sonpavde  G. Congestive heart failure with vascular endothelial growth factor receptor tyrosine kinase inhibitors. Crit Rev Oncol Hematol  2015;94:228–237. [DOI] [PubMed] [Google Scholar]
  • 236. Simons  M, Gordon  E, Claesson-Welsh  L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol  2016;17:611–625. [DOI] [PubMed] [Google Scholar]
  • 237. Zheng  W, Seftor  EA, Meininger  CJ, Hendrix  MJC, Tomanek  RJ. Mechanisms of coronary angiogenesis in response to stretch: role of vegf and tgf-β. Am J Physiol Hear Circ Physiol  2001;280:H909-17. [DOI] [PubMed] [Google Scholar]
  • 238. Levy  AP, Levy  NS, Loscalzo  J, Calderone  A, Takahashi  N, Yeo  KT, Koren  G, Colucci  WS, Goldberg  MA. Regulation of vascular endothelial growth factor in cardiac myocytes. Circ Res  1995;76:758–766. [DOI] [PubMed] [Google Scholar]
  • 239. Hahn  VS, Zhang  KW, Sun  L, Narayan  V, Lenihan  DJ, Ky  B. Heart failure with targeted cancer therapies: mechanisms and cardioprotection. Circ Res  2021;128:1576–1593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 240. Dobbin  SJH, Mangion  K, Berry  C, Roditi  G, Basak  S, Sourbron  S, White  J, Venugopal  B, Touyz  RM, Jones  RJ, Petrie  MC, Lang  NN. Cardiotoxicity and myocardial hypoperfusion associated with anti-vascular endothelial growth factor therapies: prospective cardiac magnetic resonance imaging in patients with cancer. Eur J Heart Fail  2020;22:1276–1277. [DOI] [PubMed] [Google Scholar]
  • 241. Force  T, Krause  DS, Van Etten  RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer  2007;7:332–344. [DOI] [PubMed] [Google Scholar]
  • 242. Dobbin  SJH, Petrie  MC, Myles  RC, Touyz  RM, Lang  NN. Cardiotoxic effects of angiogenesis inhibitors. Clin Sci  2021;135:71–100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 243. Akbani  R, Akdemir  KC, Aksoy  BA, Albert  M, Ally  A, Amin  SB, Arachchi  H, Arora  A, Auman  JT, Ayala  B, Baboud  J, Balasundaram  M, Balu  S, Barnabas  N, Bartlett  J, Bartlett  P, Bastian  BC, Baylin  SB, Behera  M, Belyaev  D, Benz  C, Bernard  B, Beroukhim  R, Bir  N, Black  AD, Bodenheimer  T, Boice  L, Boland  GM, Bono  R, Bootwalla  MS, Bosenberg  M, Bowen  J, Bowlby  R, Bristow  CA, Brockway-Lunardi  L, Brooks  D, Brzezinski  J, Bshara  W, Buda  E, Burns  WR, Butterfield  YSN, Button  M, Calderone  T, Cappellini  GA, Carter  C, Carter  SL, Cherney  L, Cherniack  AD, Chevalier  A, Chin  L, Cho  J, Cho  RJ, La  CY, Chu  A, Chudamani  S, Cibulskis  K, Ciriello  G, Clarke  A, Coons  S, Cope  L, Crain  D, Curley  E, Danilova  L, D’Atri  S, Davidsen  T, Davies  MA, Delman  KA, Demchok  JA, Deng  QA, Deribe  YL, Dhalla  N, Dhir  R, Dicara  D, Dinikin  M, Dubina  M, Ebrom  JS, Egea  S, Eley  G, Engel  J, Eschbacher  JM, Fedosenko K  V, Felau  I, Fennell  T, Ferguson  ML, Fisher  S, Flaherty  KT, Frazer  S, Frick  J, Fulidou  V, Gabriel  SB, Gao  J, Gardner  J, Garraway  LA, Gastier-Foster  JM, Gaudioso  C, Gehlenborg  N, Genovese  G, Gerken  M, Gershenwald  JE, Getz  G, Gomez-Fernandez  C, Gribbin  T, Grimsby  J, Gross  B, Guin  R, Gutschner  T, Hadjipanayis  A, Halaban  R, Hanf  B, Haussler  D, Haydu  LE, Hayes  DN, Hayward  NK, Heiman  DI, Herbert  L, Herman  JG, Hersey  P, Hoadley  KA, Hodis  E, Holt  RA, Hoon  DS, Hoppough  S, Hoyle  AP, Huang  FW, Huang  M, Huang  S, Hutter  CM, Ibbs  M, Iype  L, Jacobsen  A, Jakrot  V, Janning  A, Jeck  WR, Jefferys  SR, Jensen  MA, Jones  CD, Jones  SJM, Ju  Z, Kakavand  H, Kang  H, Kefford  RF, Khuri  FR, Kim  J, Kirkwood  JM, Klode  J, Korkut  A, Korski  K, Krauthammer  M, Kucherlapati  R, Kwong  LN, Kycler  W, Ladanyi  M, Lai  PH, Laird  PW, Lander  E, Lawrence  MS, Lazar  AJ, Łaźniak  R, Lee  D, Lee  JE, Lee  J, Lee  K, Lee  S, Lee  W, Leporowska  E, Leraas  KM, Li  HI, Lichtenberg  TM, Lichtenstein  L, Lin  P, Ling  S, Liu  J, Liu  O, Liu  W, Long G  V, Lu  Y, Ma  S, Ma  Y, Mackiewicz  A, Mahadeshwar  HS, Malke  J, Mallery  D, Manikhas  GM, Mann  GJ, Marra  MA, Matejka  B, Mayo  M, Mehrabi  S, Meng  S, Meyerson  M, Mieczkowski  PA, Miller  JP, Miller  ML, Mills  GB, Moiseenko  F, Moore  RA, Morris  S, Morrison  C, Morton  D, Moschos  S, Mose  LE, Muller  FL, Mungall  AJ, Murawa  D, Murawa  P, Murray  BA, Nezi  L, Ng  S, Nicholson  D, Noble  MS, Osunkoya  A, Owonikoko  TK, Ozenberger  BA, Pagani  E, Paklina O  V, Pantazi  A, Parfenov  M, Parfitt  J, Park  PJ, Park  WY, Parker  JS, Passarelli  F, Penny  R, Perou  CM, Pihl  TD, Potapova  O, Prieto  VG, Protopopov  A, Quinn  MJ, Radenbaugh  A, Rai  K, Ramalingam  SS, Raman  AT, Ramirez  NC, Ramirez  R, Rao  U, Rathmell  WK, Ren  X, Reynolds  SM, Roach  J, Robertson  AG, Ross  MI, Roszik  J, Russo  G, Saksena  G, Saller  C, Samuels  Y, Sander  C, Sander  C, Sandusky  G, Santoso  N, Saul  M, Saw  RP, Schadendorf  D, Schein  JE, Schultz  N, Schumacher  SE, Schwallier  C, Scolyer  RA, Seidman  J, Sekhar  PC, Sekhon  HS, Senbabaoglu  Y, Seth  S, Shannon  KF, Sharpe  S, Sharpless  NE, Shaw  KRM, Shelton  C, Shelton  T, Shen  R, Sheth  M, Shi  Y, Shiau  CJ, Shmulevich  I, Sica  GL, Simons J  V, Sinha  R, Sipahimalani  P, Sofia  HJ, Soloway  MG, Song  X, Sougnez  C, Spillane  AJ, Spychała  A, Stretch  JR, Stuart  J, Suchorska  WM, Sucker  A, Sumer  SO, Sun  Y, Synott  M, Tabak  B, Tabler  TR, Tam  A, Tan  D, Tang  J, Tarnuzzer  R, Tarvin  K, Tatka  H, Taylor  BS, Teresiak  M, Thiessen  N, Thompson  JF, Thorne  L, Thorsson  V, Trent  JM, Triche  TJ, Tsai  KY, Tsou  P, Van Den  BD, Van  AE, Veluvolu  U, Verhaak  RG, Voet  D, Voronina  O, Walter  V, Walton  JS, Wan  Y, Wang  Y, Wang  Z, Waring  S, Watson  IR, Weinhold  N, Weinstein  JN, Weisenberger  DJ, White  P, Wilkerson  MD, Wilmott  JS, Wise  L, Wiznerowicz  M, Woodman  SE, Wu  CJ, Wu  CC, Wu  J, Wu  Y, Xi  R, Xu  AW, Yang  D, Yang  L, Yang  L, Zack  TI, Zenklusen  JC, Zhang  H, Zhang  J, Zhang  W, Zhao  X, Zhu  J, Zhu  K, Zimmer  L, Zmuda  E, Zou  L. Genomic classification of cutaneous melanoma. Cell  2015;161:1681–1696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 244. Planchard  D, Besse  B, Groen  HJM, Souquet  PJ, Quoix  E, Baik  CS, Barlesi  F, Kim  TM, Mazieres  J, Novello  S, Rigas  JR, Upalawanna  A, D’Amelio  AM, Zhang  P, Mookerjee  B, Johnson  BE. Dabrafenib plus trametinib in patients with previously treated BRAFV600E-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol  2016;17:984–993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245. Corcoran  RB, Andre  T, Atreya  CE, Schellens  JHM, Yoshino  T, Bendell  JC, Hollebecque  A, McRee  AJ, Siena  S, Middleton  G, Muro  K, Gordon  MS, Tabernero  J, Yaeger  R, O’dwyer  PJ, Humblet  Y, de Vos  F, Jung  AS, Brase  JC, Jaeger  S, Bettinger  S, Mookerjee  B, Rangwala  F, van Cutsem  E. Research article combined BRAF, EGFR, and MEK inhibition in patients with BRAF V600E -mutant colorectal cancer. Cancer Discov  2018;8:428–443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 246. Solit  DB, Rosen  N. Resistance to BRAF inhibition in melanomas. N Engl J Med  2011;364:772–774. [DOI] [PubMed] [Google Scholar]
  • 247. Mincu  RI, Mahabadi  AA, Michel  L, Mrotzek  SM, Schadendorf  D, Rassaf  T, Totzeck  M. Cardiovascular adverse events associated with BRAF and MEK inhibitors: a systematic review and meta-analysis. JAMA Netw Open  2019;2:e198890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 248. Roberts  PJ, Der  CJ. Targeting the RAF-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene  2007;26:3291–3310. [DOI] [PubMed] [Google Scholar]
  • 249. Rose  BA, Force  T, Wang  Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev  2010;90:1507–1546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 250. Lips  DJ, Bueno  OF, Wilkins  BJ, Purcell  NH, Kaiser  RA, Lorenz  JN, Voisin  L, Saba-El-Leil  MK, Meloche  S, Pouysségur  J, Pagès  G, De Windt  LJ, Doevendans  PA, Molkentin  JD. MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation  2004;109:1938–1941. [DOI] [PubMed] [Google Scholar]
  • 251. Banks  M, Crowell  K, Proctor  A, Jensen  BC. Cardiovascular effects of the MEK inhibitor, trametinib: a case report, literature review, and consideration of mechanism. Cardiovasc Toxicol  2017;17:487–493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 252. Glen  C, Tan  YY, Waterston  A, Evans  TRJ, Jones  RJ, Petrie  MC, Lang  NN. Mechanistic and clinical overview cardiovascular toxicity of BRAF and MEK inhibitors: JACC: CardioOncology state-of-the-art review. JACC CardioOncol  2022;4:1–18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 253. Peters  JM. Proteasomes: protein degradation machines of the cell. Trends Biochem Sci  1994;19:377–382. [DOI] [PubMed] [Google Scholar]
  • 254. Kortuem  KM, Stewart  AK. Carfilzomib. Blood  2013;121:893–897. [DOI] [PubMed] [Google Scholar]
  • 255. Xiao  Y, Yin  J, Wei  J, Shang  Z. Incidence and risk of cardiotoxicity associated with bortezomib in the treatment of cancer: a systematic review and meta-analysis. PLoS One  2014;9:e87671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 256. Waxman  AJ, Clasen  S, Hwang  WT, Garfall  A, Vogl  DT, Carver  J, O’Quinn  R, Cohen  AD, Stadtmauer  EA, Ky  B, Weiss  BM. Carfilzomib-associated cardiovascular adverse events a systematic review and meta-analysis. JAMA Oncol  2018;4:e174519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 257. Willis  MS, Patterson  C. Proteotoxicity and cardiac dysfunction—Alzheimer’s disease of the heart?  N Engl J Med  2013;368:455–464. [DOI] [PubMed] [Google Scholar]
  • 258. Predmore  JM, Wang  P, Davis  F, Bartolone  S, Westfall  MV, Dyke  DB, Pagani  F, Powell  SR, Day  SM. Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies. Circulation  2010;121:997–1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 259. Hasinoff  BB, Patel  D, Wu  X. Molecular mechanisms of the cardiotoxicity of the proteasomal-targeted drugs bortezomib and carfilzomib. Cardiovasc Toxicol  2017;17:237–250. [DOI] [PubMed] [Google Scholar]
  • 260. Ranek  MJ, Zheng  H, Huang  W, Kumarapeli  AR, Li  J, Liu  J, Wang  X. Genetically induced moderate inhibition of 20S proteasomes in cardiomyocytes facilitates heart failure in mice during systolic overload. J Mol Cell Cardiol  2015;85:273–281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 261. Fomin  A, Gärtner  A, Cyganek  L, Tiburcy  M, Tuleta  I, Wellers  L, Folsche  L, Hobbach  AJ, von Frieling-Salewsky  M, Unger  A, Hucke  A, Koser  F, Kassner  A, Sielemann  K, Streckfuß-Bömeke  K, Hasenfuss  G, Goedel  A, Laugwitz  KL, Moretti  A, Gummert  JF, dos Remedios  CG, Reinecke  H, Knöll  R, van Heesch  S, Hubner  N, Zimmermann  WH, Milting  H, Linke  WA. Truncated titin proteins and titin haploinsufficiency are targets for functional recovery in human cardiomyopathy due to TTN mutations. Sci Transl Med  2021;13. [DOI] [PubMed] [Google Scholar]

Articles from Cardiovascular Research are provided here courtesy of Oxford University Press

RESOURCES