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Abstract Heart failure (HF) and cancer are the leading causes of death worldwide and accumulating evidence demonstrates that HF 
and cancer affect one another in a bidirectional way. Patients with HF are at increased risk for developing cancer, and HF is 
associated with accelerated tumour growth. The presence of malignancy may induce systemic metabolic, inflammatory, 
and microbial alterations resulting in impaired cardiac function. In addition to pathophysiologic mechanisms that are 
shared between cancer and HF, overlaps also exist between pathways required for normal cardiac physiology and for 
tumour growth. Therefore, these overlaps may also explain the increased risk for cardiotoxicity and HF as a result of 
targeted anti-cancer therapies. This review provides an overview of mechanisms involved in the bidirectional connection 
between HF and cancer, specifically focusing upon current ‘hot-topics’ in these shared mechanisms. It subsequently de
scribes targeted anti-cancer therapies with cardiotoxic potential as a result of overlap between their anti-cancer targets 
and pathways required for normal cardiac function.
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This article is part of the Spotlight Issue on Heart Failure.

1. Introduction
Cancer is the leading cause of non-cardiovascular (CV) mortality in pa
tients with heart failure (HF),1 accounting for up to 9% of deaths in pa
tients with HF with reduced ejection fraction (HFrEF) and for up to 17% 
of mortality in patients with HF with preserved ejection fraction 
(HFpEF).2,3 Conversely, CV disease (CVD) is the most frequent non- 
cancer cause of death in patients with malignancy.4 In addition to shared 
risk factors, including obesity, smoking, and diabetes, the mechanistic 

underpinning of the bidirectional interplay between cancer and HF is be
coming clearer.5,6 Cancer and HF both have the potential to provoke 
profound alterations in cellular homeostasis. These effects are of rele
vance in isolation, but the substantial overlap between mechanistic path
ways of tumour growth and CV physiology may also explain the 
increased propensity to develop the ‘other’ disease. In addition to patho
physiologic mechanisms that are shared between cancer and HF, over
laps also exist between pathways required for normal cardiac physiology 
and for tumour growth. Therefore, these overlaps may also explain the 
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increased risk for cardiotoxicity and HF as a result of targeted 
anti-cancer therapies.

We will provide an overview of the bidirectional interactions be
tween cancer and HF and will describe current ‘hot topic’ mechanisms 
shared by these conditions. We will also outline the relevance of 
anti-cancer therapies with potential cardiotoxic effects resulting from 
overlaps between their anti-cancer targets and pathways required for 
normal cardiac function.

2. Bidirectional interaction between 
HF and cancer
2.1 HF as a risk factor for cancer
Over the last decade, a growing number of clinical studies have demon
strated that patients with HF are at increased risk for developing can
cer.7–13 The association between HF and cancer was first described in 
a cohort including 961 patients with HF as well as age- and sex-matched 
controls. Patients with HF were at increased risk of developing cancer 
[hazard ratio (HR): 1.68; 95% CI (1.13–2.50)], even after adjustment 
for body mass index, smoking, and co-morbidities.7 Several more recent 
studies have corroborated this; the most recent article to be published 
described a large community based study from the Puglia region of Italy 
(n = 104 020 subjects), in which cancer incidence and cancer mortality 
were significantly higher in patients with HF, compared to matched 
non-HF control subjects [HR: 1.76 (1.71–1.81) and HR: 4.11 (3.86– 
4.38), respectively].13 These findings were replicated in a German co
hort, in which HF was significantly associated with the incidence of can
cer [HR: 1.76 (1.71–1.81)].11 In the Women’s Health Initiative study, HF 
was associated with increased cancer incidence [HR: 1.28 (1.11–1.48)] in 
female patients. Notably, HFpEF but not HFrEF was associated with in
creased cancer incidence [HR 1.34, (1.06–1.67); and HR 0.99 (0.74– 
1.34), respectively].12

The association between HF and cancer can partially be explained by 
shared risk factors. However, several recent preclinical studies have 
shown that HF can also stimulate tumour growth directly.14–16 The ini
tial evidence for a causal relation between HF and cancer comes from a 
study of tumour prone C57BL/6-ApcMin mice, in which tumour growth 
increased significantly in the context of myocardial infarction 
(MI)-induced HF.14 To exclude the effect of haemodynamic impairment 
upon tumour growth, the experiment was repeated in a model of het
erotopic heart transplantation. A higher tumour load was observed in 
mice with a failing heart (whether in situ or transplanted) compared 
to controls. Several proteins were identified to be increased in the pres
ence of HF and were also associated with proliferative effects in colon 
cancer cell lines, especially Serpin3A. These observations gave rise to 
the hypothesis that HF may promote tumour growth through secretion 
of paracrine factors.14 This hypothesis was recently substantiated in an 
aortic constriction model, in which early cardiac remodelling, without 
severe cardiac dysfunction, was seen to promote tumour growth in a 
breast cancer and lung cancer mouse model.16 Furthermore, plasma ob
tained from mice subjected to aortic constriction stimulated tumour cel
lular proliferation, building on the evidence that secreted factors play a 
role in HF-induced tumour growth. Periostin was identified as a poten
tially important mediator, given that plasma depleted of periostin no 
longer evoked tumour proliferative effects.16 Koelwyn et al.15 demon
strated that MI-induced HF increases breast cancer growth via epigenet
ic remodelling of bone-marrow immune cells which resulted in an 
immunosuppressed, pro-cancer phenotype. However, despite multiple 

layers of evidence that HF can stimulate tumour growth, these effects 
were not reproduced in a mouse model of renal cancer, suggesting 
that the tumour promoting effects of HF might be cancer-site specific.17

2.2 Cancer as a risk factor for HF
The association between cancer and CVD has been demonstrated in a 
retrospective cohort study of over 36 000 adults surviving at least two 
years after a diagnosis of cancer and compared with age and sex 
matched non-cancer controls. This association varied by cancer type: 
in comparison with controls, the risk of CVD (including HF) was signifi
cantly higher in survivors of multiple myeloma [incidence rate ratio (IRR) 
1.7], lung cancer (IRR 1.58) and breast cancer (IRR 1.13).18 However, dif
ferentiation of the effect of cancer per se from the cardiotoxic effects of 
its treatment can be difficult to disentangle in epidemiologic studies. 
Nonetheless, pre-clinical models show that cancer causes systemic 
metabolic alterations resulting in impaired cardiac function.19,20

Cachexia represents a systemic manifestation of both cancer and 
HF.21,22 In animal models, cancer promotes cardiac atrophy and a re
duced heart weight with subsequent deterioration in cardiac func
tion.23,24 Cardiac wasting appears to result from increased autophagy 
and myocyte apoptosis23 with proinflammatory cytokines including tu
mour necrosis factor-α (TNF-α), interleukin (IL) 1β, and IL-6 playing 
pathophysiological roles.24

3. Mechanistic overlap in cancer and 
HF pathophysiology
3.1 Metabolic alterations
Metabolic remodelling is considered a hallmark in the pathophysiology of 
both cancer and HF, and has been the focus for new treatment strategies 
for both diseases in recent decades.25,26 HF and cancer are characterized 
by several common metabolic alterations (Figure 1), which begs the 
question as to whether metabolic derailment might play a role in the 
connection between HF and cancer. It remains largely unknown if meta
bolic switches in cancer, either in the tumour or surrounding tissues, af
fect the CV system. Vice versa, metabolic changes in the heart are 
unlikely to cause cancer development, but well-described metabolic re
percussions of CVD, such as insulin insensitivity and diabetes,28 are 
clearly associated with an increased risk for cancer.

3.1.1 Switch to glycolysis
One of the major commonalities in metabolic remodelling between HF 
and cancer is the shift in metabolic dependency, favouring glycolysis over 
oxidative phosphorylation. In the healthy heart, the majority of adeno
sine triphosphate (ATP) is produced through fatty acid (FA) oxidation 
and only small amounts through oxidation of glucose and ketone bod
ies.29 In the failing heart, however, glycolytic activity is increased,30,31

while FA and glucose oxidation is substantially decreased.30,32 The con
sequence of this is a net decrease in acetyl-coenzyme A (CoA) bioavail
ability for ATP production via the Krebs cycle. Similarly, cancer 
metabolism is also characterized by an increase in glycolytic activity. 
As long ago as 1927, Otto Warburg33 provided evidence that cancer 
cells obtain glucose and produce lactate irrespective of oxygen availabil
ity.34 Several oncogenes and tumour-suppressor genes are involved in 
the increased glycolysis. Specifically, phosphoinositide 3-kinases (PI3K), 
Ak transforming factor (Akt) and MYC proto-oncogene (MYC) are 
known to upregulate transcription and translocation of Glucose trans
porter 1, and increase hexokinase activity.35,36 P53, possibly the most 
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Figure 1 Metabolic alterations in heart failure and cancer. Heart failure and cancer are characterized by several overlapping changes in metabolic path
ways. Both diseases are characterized by an increase in glycolysis and a decrease in oxidative respiration. Glycolytic intermediates are redirected into branch 
pathways for nucleotide and lipid synthesis. Alternative fuel sources are used for the Krebs cycle, a mechanism called anaplerosis, to compensate for the 
decreased acetyl-CoA levels for ATP production. Adjusted from DeBerardinis et al.26 and Garcia-Ropero et al.27
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well-known tumour suppressor gene in the field of oncology, has also 
been associated with metabolic remodelling, since a loss of P53 results 
in increased glycolytic flux.37

3.1.2 Alternative fuel and anaplerosis
Although both cancer and HF are characterized by an increase in glycoly
sis, glucose is not believed to be the major energy source in either dis
ease. In end-stage HF, ATP levels only decrease by 60–70% from normal 
capacity.38,39 In the oncology field, several studies have shown that mito
chondrial metabolism is crucial for tumour proliferation40,41 and experi
mental inhibition of glycolytic ATP production, via the inhibition of 
pyruvate kinase, does not result in reduced tumourigenesis.42 These 
findings suggest that compensatory mechanisms are activated in HF 
and cancer to maintain mitochondrial ATP production.

Anaplerosis represents a mechanism via which the Krebs cycle is 
fuelled by intermediaries independent of acetyl-CoA. This mechanism 
plays an important role in both HF and cancer metabolism. Indeed, ana
plerotic flux is increased in the context of cardiac hypertrophy43,44 and 
also in cancer.45,46 In a pressure-overload induced HF model, pyruvate 
was converted to malate, which can enter the Krebs cycle.43

Additionally, glutamine utilization is increased in HF and cancer.47,48 Its 
subsequent conversion to glutamate is followed by the production of 
α-ketoglutarate, an intermediate for the Krebs cycle and, even in hypoxic 
conditions, glutamine is utilized for oxidative ATP production in cancer 
cells.49,50 Ketone bodies are utilized as an alternative energy source in 
HF and this phenomenon has been reported in patients with HF51 as 
well as animal models of HF.52 This is believed to be an important adap
tive mechanism in the setting of decreased FA oxidation. The role of ke
tones in cancer metabolism is less well understood but several studies 
have provided evidence that ketone body utilization can stimulate tu
mour growth,53,54 although data are conflicting and treatment with ke
tone bodies has also been reported to decrease tumour growth.55,56

In both cancer and HF, glycolytic intermediates are often redirected 
to a branching pathway for biosynthesis, instead of being directed to 
the Krebs cycle. In cancer, glucose-6-phosphate (G6P) is redirected to 
the pentose phosphate pathway (PPP) for nucleotide biosynthesis and 
glyceraldehyde-3-phosphate can be converted to glycerol-3-phosphate 
for lipid synthesis.57,58 In addition, Krebs intermediates are used to pro
duce cytosolic aspartate and acetyl-CoA for nucleotide and lipid synthe
sis.59,60 In HF, G6P is also redirected to the PPP for production of 
nicotinamide adenine dinucleotide phosphate (NADPH), which is essen
tial for regulating oxidative stress and lipid synthesis.31 These diversions 
of glycolytic intermediates have a negative effect upon cardiac energetics 
and function. Furthermore, G6P may also enter the hexosamine biosyn
thetic pathway, leading to increased O-GlcNAcylation, which is further 
associated with HF.61,62

3.1.3 Hypoxia
Hypoxia induced factor-1 (HIF-1) is a key regulator of metabolic adap
tation in cancer and HF. Proliferation of tumour cells often exceeds 
angiogenesis, resulting in a hypoxic environment and HIF-1 activation.26

Sustained activation of HIF-1 is also induced in cancer under normoxic 
conditions due to mutations in the mammalian target of rapamycin com
plex 1 (mTORC1) pathway or von Hippel-Lindau (VHL).63 HIF-1 regu
lates transcription of proteins involved in glucose metabolism and 
protein, lipid and nucleotide biosynthesis64 and has been shown to pro
mote tumour growth.65–67 Interestingly, patients with VHL syndrome, 
characterized by sustained HIF-1 activation and development of tu
mours in numerous organs,68 also develop cardiopulmonary 

abnormalities.69,70 VHL knockout mice develop cardiac lipid accumula
tion, fibrosis and apoptosis.71 Increased HIF-1 expression also induces 
cardiac hypertrophy by regulating enzymes involved in FA and glucose 
metabolism.72–74 HIF-1 levels are higher in patients with hypertrophic 
cardiomyopathy than they are in healthy people and transverse aortic 
constriction (TAC) is associated with increased HIF1. Notably, ventricu
lar depletion of HIF1α prevents TAC-induced cardiac dysfunction.72

3.1.4 Metabolic targets in cancer and HF therapy
Because of its central role in both diseases, metabolic derangement may 
be a valid target in cardio-oncology. Indeed, treatments targeting metab
olism in HF and cancer have been studied extensively. One promising 
treatment might be with sodium-glucose co-transporter 2 inhibitors 
(SGLT2i) which were originally developed as anti-diabetic drugs.75

SGLT2i drugs reduce CV events and reduce worsening HF in both dia
betic and non-diabetic HF patients.76,77 Several preclinical studies have 
shown that treatment with SGLT2i can positively alter cardiac metabol
ism in HF models, resulting in reduced cardiac remodelling.78–80 The ef
fect of SGLT2i on tumour growth has also been studied. Both in vitro and 
in vivo, treatment with SGLT2i inhibited tumour growth of several obes
ity and diabetes-associated cancer models.81–83 Furthermore, the 
SGLT2i, canagliflozin, inhibits tumour growth even in tumour models 
without obesity or diabetes, potentially via its effects on cellular glucose 
levels.84,85

Many studies have focused on targeting HIF-1 as an anti-cancer treat
ment and this has been extensively reviewed elsewhere.86 Indeed, HIF-1 
inhibition has shown promising anti-tumourigenic effects in renal,87,88

hepatocellular,89 and breast cancers.90 Downregulation of HIF1 in a 
mouse model ischaemia/reperfusion attenuated cardiac injury after re
perfusion.91 Interestingly, treatment with Belzutifan, an inhibitor of the 
HIF2 isoform, has shown promising anti-tumourigenic effects in renal 
cancer, was shown to attenuate pulmonary hypertension and fibrosis 
in mice with a VHL mutation.92

3.2 Inflammation
Inflammation has frequently been considered as a nodal point linking HF 
and cancer. Heart disease and cancer are associated with an increase in 
pro-inflammatory cytokines, including TNF-α and IL-1β93–96 and chronic 
inflammation increases the risk of new onset cancer97,98 and CVD.99

After MI, the innate immune system is activated leading to a 
pro-inflammatory response, which is initially cardio-protective. 
However, prolonged activation of pro-inflammatory signalling, especially 
via IL-6, induces cardiac remodelling and cardiac dysfunction.100,101

Importantly, pro-inflammatory cytokines also promote tumourigen
esis.102,103 In addition, the tumour-microenvironment is infiltrated by tu
mour associated macrophages, which produce cytokines to stimulate 
angiogenesis and inhibit the anti-tumour response of cytotoxic 
T-cells.104,105

3.2.1 HF-associated inflammation
Patients with HF and elevated C-reactive protein (CRP) (>2 mg/L) have 
an increased risk of cancer.14,106,107 In a pre-clinical model of MI-induced 
HF described previously, the subsequent effect of HF upon increased tu
mour growth was accompanied by elevated circulating concentrations 
of pro-cancer chemokines, such as chemokine (C-X-C motif) ligand 
(CXCL13). In these animals with HF, there was also an increase in 
monocytic myeloid-derived suppressor cells found in the tumour tissue 
and these suppressed CD8 + cytotoxic T cell activity, further potentiat
ing tumour growth.15
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3.2.2 Clonal haematopoiesis of indeterminate 
potential-associated inflammation
Clonal haematopoiesis of indeterminate potential (CHIP) reflects the 
accumulation of somatic, potentially pro-leukemic mutations in haem
atopoietic stem cells, occurring in the absence of haematological malig
nancy.108 The commonest mutations found in CHIP occur in genes that 
are also important in the regulation of inflammation.109 These include 
mutations occurring in the driver genes DNA methyltransferase 3A 
(DNMT3A), ten-eleven-translocation-2 (TET2), Janus kinase 2 (Jak2) 
and additional sex comb-like 1 (ASXL1). Although the risk of malignant 
transformation is low (<1% per year), CHIP carriers have an excess risk 
of mortality which reflects a heightened risk for CV events including MI 
and stroke,109–112 as well as an association with increased HF hospital
ization and HF mortality.113,114 In a large study including five population- 
based cohorts and over 50 000 participants, CHIP correlated with a 25% 
increased risk for new onset HF.115 Clonal haematopoiesis initiates a 
pro-inflammatory state associated with high circulating levels of 
pro-inflammatory markers in humans.116,117 Pre-clinical studies demon
strated that haematopoietic mutations in TET2, DMNT3A, and Jak2 lead 
to an accelerated HF phenotype in several mouse HF models, accom
panied by an increase in pro-inflammatory cytokines, including IL-1β 
and IL-6.118–120

3.2.3 Obesity-associated inflammation
Obesity is characterized by chronic inflammation. In 2016, 39% of the 
adult world population was overweight, of whom 14% were obese.121

In the lean state, adipose tissue is infiltrated by anti-inflammatory immune 
cells which are important regulators of insulin sensitivity.122,123 However, 
in the obese state, a shift in constituent immune cells occurs with a rela
tive decrease in anti-inflammatory components and an increase in 
pro-inflammatory Th1 and CD8+ T cells. In addition, a shift occurs in 
the macrophage phenotype, with increased M1-like macrophages.124

This is accompanied by an increase in pro-inflammatory cytokines, 
chemokines, and adipokines, such as leptin. Numerous studies have 
shown that obesity increases the risk of a wide range of malignancies, 
including breast, colorectal, and liver cancer.125–129 Cytokines and 
adipokines secreted by adipose tissue stimulate tumour growth and 
progression, including IL-6, TNFα, and leptin.130,131 In addition, 
cancer-associated adipocytes may also be present in the tumour- 
microenvironment and can further stimulate tumour progression.132

Obesity is also associated with and increased risk of HF, especially 
HFpEF133–136 and it is notable that leptin-resistant db/db mice develop 
a HFpEF phenotype, with evidence of cardiac hypertrophy and inter
stitial fibrosis.137 IL-6, TNFα, and leptin also induce hypertension and 
atherosclerosis,138,139 both of which represent major pathogenetic 
processes in the development of HF.

3.2.4 Inflammation as a therapeutic target in HF and 
cancer
Considering the role of inflammation in both diseases, targeting inflam
matory mechanisms in HF and cancer could have therapeutic potential. 
Indeed, commonly used HF medications, such as statins, have some anti- 
inflammatory properties.140 In the Canakinumab Anti-Inflammatory 
Thrombosis Outcome Study (CANTOS), treatment with canakinumab, 
a monoclonal IL-1β antibody, reduced the rate of recurrent atheroscler
otic CV events in patients with previous MI and high CRP levels (<2 mg/ 
L).141 Notably, canakinumab also reduced HF hospitalization and 
HF-related mortality by 23% in patients who achieved a CRP level of 

<2 mg/L.142 A sub-analysis of the CANTOS study showed that treat
ment with Canakinumab also decreased the incidence of lung cancer143

and is being investigated further as a treatment for that indication.144

Targeting inflammatory chemokines as a therapeutic strategy for HF 
and cancer has also generated interest. Chemokines including 
Chemokine (C-C Motif) Ligand 2 (CCL2) and CXCL13 play a pivotal 
role in cancer145,146 and circulating levels are also increased in pa
tients147,148 and preclinical models of HF.149 Preclinical studies using 
CCL2 or CXCL13 inhibitors have reported treatment-related reduc
tions in tumour proliferation.150–153 CCL2 knockout attenuates cardiac 
remodelling after ischaemia/reperfusion injury, but CCL2 knockout was 
also associated with delayed replacement of injured cardiomyocytes 
with connective tissue, a process that is essential after infarction.149

Initial clinical trials examining the use of chemokine inhibitors in cancer 
have shown promise.154 However, clinical studies in patients with HF 
have not yielded positive results so far.155 A better understanding of 
the complex role of chemokines in the pathophysiology of cancer and 
HF is required in order to maximize the potential of this potential 
strategy.

The complex inter-relationship between the immune system, cancer 
and HF is exemplified by immune checkpoint inhibitors in use as 
anti-cancer therapy. These potent anti-cancer drugs now have a very 
broad, and growing, range of indications in oncology and are associated 
with remarkable cancer outcomes.156,157 By inhibiting immune check
points on cancers cells, a T cell mediated immune response is initiated, 
allowing immune targeting of cancer cells.156 However, myocarditis oc
curs in up to 2% of patients treated with these agents and CV mortality 
associated with these events can be up to 40%.158–160

3.3 Microbiome
The human microbiome is comprised of trillions of bacteria, archaea, 
and eukaryotic microbes, which maintain a mutualistic relationship 
with their host.161,162 Gut microbiota are essential for fermentation of 
dietary fibres and vitamin biosynthesis, and play an important role in in
testinal health and immune regulation.161,163 The microbial composition 
is greatly affected by environmental factors such as food and dietary pat
terns, smoking and drug use. These factors can influence the microbial 
diversity and the abundance of specific microbial species, resulting in mi
crobial dysbiosis.164 People with obesity, for instance, show decreased 
microbial diversity.165 Accumulating evidence is emerging on the bidirec
tional connection between the microbiome, HF and cancer. HF and can
cer, and their therapies, are believed to affect the microbial composition 
in several ways and microbial dysbiosis can play a role in both diseases as 
outlined below and in Figure 2.

3.3.1 Microbial dysbiosis in cancer and HF
The role of the gut microbiome in colorectal cancer (CRC) has been 
studied extensively. Patients with CRC exhibit a distinct microbial com
position, characterized by an increase in Fusobacteria and pathogenic 
bacteria and a decrease in Clostridiales, Faecalibacterium, and 
Bifidobacterium.166–168 In addition, microbial dysbiosis has been asso
ciated with an increased incidence of CRC.166,167 In vivo studies have 
provided direct evidence that microbiota from patients with CRC can 
promote tumourigenesis.169,170 In these studies, stool samples from pa
tients with CRC were transplanted into a colon cancer mouse model, or 
germ-free mice. Stool samples from patients had different microbial 
composition than stool samples from healthy individuals, and transplant
ation of microbiota from CRC patients led to increased tumour growth 
in the colon cancer model and increased colonocyte proliferation in the 
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germ-free mice.169,170 Microbial dysbiosis has also been associated with 
cancer in other organs, including breast and liver.171,172

Substantial clinical evidence now exists to show that patients with 
HF also have a distinct gut microbial composition.173–175 The micro
biome and HF appear to affect one another in a bidirectional way. 
Differences in microbial composition can increase atherosclerotic 
plaque formation and can lead to a worsening HF phenotype in 
mouse models.176–178 On the other hand, HF may cause gut conges
tion and low-grade inflammation, resulting in increased intestinal per
meability, and consequent microbial dysbiosis.179,180 In addition, HF 
medication plays a role in the equation. HF medication can strongly 
affect the microbial composition 181,182 and vice versa, the micro
biome can affect the response on HF drugs, altering the effectiveness 
of treatment.183

Notably, there are several similarities in between microbial patterns 
observed in cancer and those observed in HF, including an increase in 
Fusobacteria and a decrease in Clostridiales, and Bifidobacterium. 
Furthermore, the microbiome has been shown to influence both HF 
and cancer via mechanisms including pathogenic bacteria, microbial me
tabolites and short chain FAs (SCFAs) (Figure 2).

3.2.2 Pathogenic bacteria
Several bacteria have been identified to have direct tumourigenic effects, 
including Helicobacter pylori, Fusobacterium nucleatum, Bacteroides fragilis, 
and Salmonella enterica. H. pylori bind to intestinal epithelial cells and 
interact with Wnt/β-catenin signalling, directly regulating cell prolifer
ation, inflammation and apoptosis.184 F. nucleatum has the ability to 

induce tumour proliferation by inducing a proinflammatory response 
through activation of the nuclear factor-κB (NF-κB) pathway185 and is 
associated with epithelial-to mesenchymal transition.186 B. fragilis targets 
intestinal tight junctions through activation of the Wnt/β-catenin and 
Nf-kB pathways, resulting in barrier disruption and intestinal inflamma
tion187 and can induce proliferation through activation of celullar MYC 
(C-MYC).188,189

Several pathogenic bacteria are more abundant in patients with HF. 
Pathogenic bacteria affect gut barrier integrity, resulting in bacterial 
translocation and chronic inflammation, which has been associated 
with CVD.190 Indeed, systemic levels of several pathogen-associated 
molecular patterns (PAMPs), such as lipopolysaccharide (LPS), are in
creased in patients with HF.191 LPS exposure leads to cardiac fibrosis 
and dysfunction in mice.192,193

3.3.3 Trimethylamine-N-oxide
Arguably the best characterized link between HF and the microbiome is 
that of trimethylamine-N-oxide (TMAO).194,195 This microbial metabol
ite is generated from nutrients containing trimethylamine (TMA), includ
ing choline and l-carnitine. TMA is transported to the liver where it is 
further metabolized to TMAO. Circulating TMAO levels are associated 
with an increased risk for CVD and HF, and worse outcomes.196–199

These observations have been corroborated in preclinical studies, which 
provide evidence of direct effects of TMAO on atherosclerotic plaque 
formation and HF.176–178

There is increasing evidence to suggest that TMAO also plays a role in 
tumour growth. Higher TMAO levels have been associated with an 

Figure 2 The overlapping effects of microbial dysbiosis in HF and cancer. Overgrowth of pathogenic bacteria and decreased SCFA levels can induce 
intestinal inflammation, resulting in increased circulating PAMPs, which can induce cardiac fibrosis and dysfunction. Increased circulating levels of microbial 
metabolite TMAO can induce atherosclerotic plaque formation and HF. In cancer increased TMAO and pathogenic bacteria can directly promote tumour 
growth by activating immune cells. In addition, pathogenic bacteria can directly promote tumourigenesis by activating Wnt/β-catenin signalling. Decreased 
SCFA levels are favourable for tumourigenesis and tumour cells actively inhibit SCFA uptake.
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increased risk for CRC in several studies.200–202 However, not all inves
tigators have demonstrated this link in CRC.203 It is of note that any as
sociation between and TMAO and cancer may extend beyond the 
gastrointestinal tract and higher TMAO levels have also been associated 
with prostate cancer and oral squamous cell carcinoma.204,205 It is cur
rently hypothesized that TMAO can induce tumourigenic effects by ac
tivating a chronic immune response.206,207

3.3.4 SCFAs
A key signature in the microbial composition found in patients 
with CRC as well as patients with HF is the substantially lower 
number of SCFA-producing bacteria, such as Roseburia and 
Lachnospiraceae.168,175,208,209 SCFAs, including acetate, propionate and 
butyrate, are fermentation products of dietary fibres, produced by gut 
microbiota. Butyrate is the main energy source for colonocytes and is es
sential for maintaining colonic health, mucus production, barrier integrity 
and immune regulation.210 However, cancer cells switch energy source, 
favouring glucose over butyrate,211 and butyrate uptake in colon cancer 
cells is substantially decreased.212,213 Furthermore, several preclinical 
studies provide evidence that butyrate possesses anti-tumourigenic 
properties and that butyrate treatment inhibits tumour growth in CRC 
cell lines.214,215

Low SCFA levels are also associated with hypertension and HF. 
Decreased SCFA levels can cause intestinal barrier dysfunction, resulting 
in translocation of microbial metabolites as well as inflammation.216

Plasma SCFA levels are decreased in patients with HF.217 and SCFA sup
plementation attenuates HF in mice.218–220 Butyrate supplementation 
protected from doxorubicin induced cardiotoxicity in vivo.218

Propionate induces vasodilatation and antibiotic-induced depletion of 
propionate is associated with increased blood pressure in mice.221

Whether or not this afterload effect is a relevant mechanism for the de
velopment or worsening of HF in humans is unknown.

4. Mechanistic overlap in 
anti-cancer targeted therapies and 
cardiac physiologic pathways
In addition to shared pathophysiological mechanisms in cancer and HF, 
there are also substantial overlaps between pathways required for tu
mour growth and those required for normal cardiac function. These 
overlapping effects make substantial contributions to the potential car
diotoxic effects of a growing number of anti-cancer therapies, with con
sequent left ventricular dysfunction and HF. In contrast to traditional 
chemotherapeutic agents, the majority of novel anti-cancer therapies 
are targeted and act upon specific cancer signalling pathways. 
Numerous targeted therapies have been associated with HF, including 
anti-human epidermal growth factor receptor 2 (HER2) therapies, vas
cular endothelial growth factor (VEGF) signalling pathway inhibitors, 
rapidly accelerate fibrosarcoma B-type (BRAF), and mitogen-activated 
extracellular signal-regulated kinase (MEK) inhibitors and proteasome 
inhibitors (Table 1).

4.1 Anti-HER2-targeted therapies
The transmembrane tyrosine kinase receptor HER2 is overexpressed in 
approximately 20% of breast cancers.222 Trastuzumab is a monoclonal 
antibody against HER2 and improves survival in patients with HER2 posi
tive breast cancer. However, it is strongly associated with cardiac tox
icity. A meta-analysis of ten randomized controlled trials of 
trastuzumab reported that, during trial follow-up, asymptomatic left 
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Table 1 Mechanisms of cardiotoxicity due to targeted therapies

Targeted 
therapy class

Examples Overlapping signalling pathways for cancer 
growth and cardiac physiology

Proposed mechanisms of 
cardiotoxicity

HER2 + targeted 

therapy

Trastuzumab Pertuzumab HER2 NRG-1 HER4 PI3K/Akt MEK/ERK Src/FAK 

mTOR

Impaired cell proliferation

Impaired angiogenesis

Impaired cardiomyocyte 
metabolism

Impaired autophagy

Impaired mitochondrial function
VEGF inhibitors Axitinib Cabozantinib Lenvatinib Pazopanib 

Sunitinib Sorafenib Vandetanib

RAF/MEK/ERK PI3K/Akt VEGFR PDGFR c-Kit AMPK Hypertension

Capillary rarefaction

Cardiomyocyte apoptosis
Oxidative stress

BRAF/MEK 

inhibitors

Dabrafenib + Trametinib Encorafenib + 

Binimetinib Vemurafenib + Cobimetinib

RAF/MEK/ERK Hypertension

Cardiomyocyte apoptosis
Impaired cardiomyocyte 

hypertrophy

Proteasome 
inhibitors

Bortezomib Carfilzomib Ixazomib Ubiquitin-proteasome system Altered protein homeostasis
Accumulation of misfolded 

proteins

Endothelial dysfunction
Cardiomyocyte apoptosis

HER4, human epidermal growth factor receptor 4; RAF, rapidly accelerate fibrosarcoma.
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ventricular systolic dysfunction (LVSD) and symptomatic HF occurred in 
7.5 and 1.9% respectively.223 Registry data from the United States of 
America reveal that the incidence of HF is up to 6% at 1 year and 
20% at 5 years.224

HER2 and its ligand, neuregulin-1 (NRG-1), are essential for embryon
ic heart development, cardiomyocyte growth and survival and maintain
ing cardiac function in the adult heart.225,226 Cardiac-specific HER2 
murine knock-out animals are apparently normal at birth but develop di
lated cardiomyopathy as they age.226,227 In the physiologic state, homo- 
or hetero-dimerization of HER2 activates downstream signalling path
ways including the PI3K/Akt which protects cardiomyocytes from apop
tosis and also activates MEK/extracellular signal-regulated kinase (ERK) 
pathways which promote cardiomyocyte growth and proliferation.228

Trastuzumab binds to the extracellular segment of HER2 receptors 
and blocks downstream PI3K/Akt activity while pertuzumab, a more 
recently introduced anti-HER2 monoclonal antibody, inhibits signal
ling via inhibition of dimerization.229 Inhibition of HER2 results in a 
downregulation of endothelial nitric oxide synthase (eNOS) expres
sion, accumulation of reactive oxygen species (ROS) and subsequent 
acceleration of apoptosis causing oxidative stress and cell injury.230

Furthermore, inhibition of HER2 downregulates the MEK/ERK and 
Src/focal adhesion kinase (FAK) pathways resulting in disordered 
myocardial structure.231 Recent studies have also shown that inhib
ition of HER2 with trastuzumab, in human primary cardiomyocytes, 
activates the Erk/mechanistic target of rapamycin (mTOR) cascade 
which leads to autophagy inhibition, ROS accumulation and reduced 
mitochondrial function.232

4.2 VEGF signalling pathway inhibitors
Angiogenesis, the process of new blood vessel growth, is vital for the nu
trient supply and growth of solid organ cancers. VEGF is the most potent 
angiogenic factor and VEGF signalling pathway inhibitors (VSPIs) are ef
fective anti-cancer therapies used in the treatment of a wide range of 
cancers including renal, hepatocellular and thyroid cancers, gastrointes
tinal stromal tumours, sarcoma and others. Numerous VSPIs have been 
developed including monoclonal antibodies and tyrosine kinase inhibi
tors (TKIs). Hypertension is the most commonly described CV adverse 
effect associated with VSPIs233,234 but these drugs are also associated 
with LVSD and HF.235 Meta-analysis of 21 trials including several VSPIs 
reported an incidence of LVSD of 2.4%.235 In addition to a fundamental 
role in the control of angiogenesis, VEGF signalling plays a pivotal role in 
endothelial cell proliferation and survival236 and acts as a compensatory 
mechanism in response to cardiac stressors. VEGF is secreted in re
sponse to hypertension and ischaemia and plays a key role in cardiomyo
cyte hypertrophy.237,238

Mechanisms of cardiotoxicity and HF related to VEGF inhibitors are 
thought to result from a combination of direct myocardial toxicity 
due to a reduction of cardioprotective signalling and increased cardiac 
afterload. The inhibition of VEGF signalling in animal models of pressure 
overload leads to capillary rarefaction, reduced contractile function and 
the development of HF.239 Preliminary data suggest a role for cardiac 
microvascular dysfunction in the development of LVSD in patients trea
ted with VSPI.240 Additionally, VEGF TKIs also act on a range of 
non-VEGF targets and this varies between drugs. While sometimes in
tended to increase anti-cancer effects, these non-VEGF target effects 
may also be unintended or incompletely defined. Potentially cardiotoxic 
non-VEGF or ‘off-target’ effects include inhibition of platelet derived 
growth factor receptor (PDGFR) or adenosine monophosphate kinase 
(AMPK) downregulation.241,242

4.3 BRAF and MEK inhibitors
BRAF and MEK are key components of the mitogen activated protein 
kinase (MAPK) pathway, a key regulator of normal cell growth and pro
liferation. Mutation of the BRAF gene results in constitutive activation of 
BRAF’s kinase function and may be found in patients with melanoma,243

non-small cell lung cancer244 and CRC.245 The use of these drugs has had 
a profound impact on outcomes for patients with melanoma in particu
lar. Inhibition of BRAF alone is associated with drug-resistance due to 
paradoxical hyperactivation of MEK, and combined inhibition of BRAF 
and MEK helps minimize resistance and improve outcomes.246

Treatment with BRAF and MEK inhibitors in combination is associated 
with an increased risk of HF compared to BRAF inhibitor monotherapy. 
Meta-analysis of five randomized controlled trials reported reduction in 
LVEF in 8.1% of patients in the combination therapy group compared to 
2% in the BRAF inhibitor monotherapy group.247

Activation of MAPK signalling leads to a cascade of phosphoryl
ation events and ultimately the activation of ERK. Activated ERK pro
vokes the phosphorylation of several targets involved in the 
regulation of key cellular activities.248 As such, the MAPK pathway 
is a key component in processes including myocyte hypertrophy, car
diac remodelling and myocardial cell death.249 Animal models have 
also demonstrated that the MEK/ERK signalling pathway is required 
for the protection of myocardium following ischaemic injury.250

Disruption of the MAPK pathway by BRAF and MEK inhibitors could 
therefore lead to a change in these physiological cardioprotective 
mechanisms and affect apoptosis, remodelling and hypertrophy, ul
timately leading to LVSD and HF.249,251 In mouse models, ERK null 
mice have normal cardiac function but are more susceptible to a sub
sequent cardiac insult.250 Therefore, a ‘second hit’ such as hyperten
sion or ischaemia be the trigger to LVSD in the context of BRAF and 
MEK inhibitor exposure.252

4.4 Proteasome inhibitors
The proteasome is a protein complex which plays an important role in 
intracellular protein degradation and influences a number of intracellu
lar processes.253 Proteasome inhibition leads to an accumulation of 
misfolded intracellular proteins, an unfolded protein stress response, 
with subsequent cell-cycle arrest and apoptosis which is toxic to can
cer cells. Proteasome inhibitors including bortezomib, carfilzomib and 
ixazomib are used in the treatment of haematological malignancies in
cluding multiple myeloma and certain lymphomas.254 Meta-analysis of 
25 clinical trials showed that bortezomib did not significantly increase 
the risk of cardiotoxicity compared to control patients.255 However, 
meta-analysis of 24 clinical trials of carfilzomib reported an incidence 
of HF of 4.1%256 which may be a reflection of carfilzomib’s irreversible 
action.

The ubiquitin-proteasome system is essential for the turnover of da
maged or misfolded proteins to balance the synthesis of new proteins in 
the heart.257 Specific proteins are labelled with ubiquitin molecules iden
tifying them for degradation by the proteasome. Optimal cardiomyocyte 
function is dependent on this equilibrium between protein synthesis and 
turnover. Patients with advanced HF and hypertrophic cardiomyopathy 
have reduced myocardial proteasome activity with a resulting relative in
crease in the ratio between protein synthesis and degradation.258

Bortezomib reversibly inhibits and carfilzomib irreversibly inhibits the 
26S proteasome.254 In vitro studies have shown that both bortezomib 
and carfilzomib are directly toxic to cardiomyocytes and induce apop
tosis.259 Mouse models with genetically modified ubiquitin-proteasome 
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activity and pressure overload showed a marked increase in cardiomyo
cyte death causing rapidly progressive HF.260 A recent study demon
strated that dysregulation of the ubiquitin-proteasome system and 
expression of truncated titin proteins is implicated in the pathogenesis 
of dilated cardiomyopathy associated with truncating variants in the 
TTN gene.261 Engineered muscle generated from human induced pluri
potent stem cell-derived cardiomyocytes with truncating variants in 
TTN showed an improvement in function in response to proteasome 
inhibition.261 This is in contrast to the effects of proteasome inhibition 
seen in the context of cancer therapy and further work is welcomed 
to enhance knowledge in this area.

5. Conclusion
The bidirectional interplay between cancer and HF is substantial and re
lates to several fundamental mechanisms. It now remains to be seen 
whether therapeutic targeting of these common pathophysiologic path
ways can be harnessed to allow improved outcomes for patients af
fected by HF or cancer or, indeed, in the growing population affected 
by both. Furthermore, the adverse cardiac effects of a growing number 
of targeted anti-cancer therapies have, inadvertently, provided insight 
into the relevance of pathways required for normal cardiac function. 
These overlaps serve to further reinforce the growing relevance and 
need for close collaboration between cancer and CV specialists, in clin
ical, basic science, and drug development settings.
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