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ABSTRACT
The intimate association between the gut microbiota (GM) and the central nervous system points 
to potential intervention strategies for neurological diseases. Nevertheless, there is currently no 
theoretical framework for selecting the window period and target bacteria for GM interventions 
owing to the complexity of the gut microecosystem. In this study, we constructed a complex 
network-based modeling approach to evaluate the topological features of the GM and infer the 
window period and bacterial candidates for GM interventions. We used Alzheimer’s disease (AD) as 
an example and traced the GM dynamic changes in AD and wild-type mice at one, two, three, six, 
and nine months of age. The results revealed alterations of the topological features of the GM from 
a scale-free network into a random network during AD progression, indicating severe GM dis
equilibrium at the late stage of AD. Through stability and vulnerability assessments of the GM 
networks, we identified the third month after birth as the optimal window period for GM inter
ventions in AD mice. Further computational simulations and robustness evaluations determined 
that the hub bacteria were potential candidates for GM interventions. Moreover, our GM functional 
analysis suggested that Lachnospiraceae UCG-001 – the hub and enriched bacterium in AD mice – 
was the keystone bacterium for GM interventions owing to its contributions to quinolinic acid 
synthesis. In conclusion, this study established a complex network-based modeling approach as 
a practical strategy for disease interventions from the perspective of the gut microecosystem.
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Introduction

The gut microbiota (GM) is a complex microecosys
tem containing various microorganisms1 that parti
cipate in diverse biological processes in hosts, such 
as nutrient metabolism,2,3 immune development,4,5 

and neurological regulation.6,7 Using high- 
throughput sequencing, an increasing number of 
studies report the GM characteristics in humans 
that underlie different health statuses – such as 
type II diabetes,8 Crohn’s disease,9 and Alzheimer’s 
disease (AD)10 – as well as the associations between 
the GM components and physiological indices of 
hosts.11 Notably, the intimate association between 
the GM and brain has received extensive attention, 
prompting reports of the “gut–brain axis” in studies 
of various neurological diseases such as AD,12 

Parkinson’s disease,13 depression,14 etc.15 Previous 

studies identified that the GM is involved in the 
pathogeneses of central nervous system diseases via 
the secretion of short-chain fatty acids (e.g., acetate, 
propionate, and butyric acid)16–18 and neuroinflam
matory modulators (e.g., dopamine, serotonin, and 
GABA).12,18 However, GM interactive networks, 
which are important for the maintenance and inter
vention of the microecosystem, are seldom reported.

GM interactive network has the advantage of 
characterizing complicated microecological rela
tionships including cooperation, mutualism, compe
tition, antagonism, etc.; meanwhile, the nodes and 
edges in a network can represent the bacteria and 
relationships in a microecosystem, respectively.19,20 

Thus, utilizing network theory would assist explora
tions of GM interactive networks aiming to decipher 
the complicated interactions among gut bacteria and 

CONTACT Yu Chen yu.chen@siat.ac.cn Chinese Academy of Sciences, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced 
Technology, Shenzhen, China
†These authors contributed equally to the work.

Supplemental data for this article can be accessed online at https://doi.org/10.1080/19490976.2023.2172672

GUT MICROBES                                              
2023, VOL. 15, NO. 1, 2172672 
https://doi.org/10.1080/19490976.2023.2172672

© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1080/19490976.2023.2172672
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19490976.2023.2172672&domain=pdf&date_stamp=2023-01-31


detect the hub bacteria of a microecosystem.19 

Accordingly, we can infer the stability of an ecosys
tem and evaluate the impacts of environmental fac
tors on community dynamics based on the 
structural features of an interactive network, such 
as species richness, connectivity, interaction 
strengths, etc.21 In addition, bacterial functional ana
lysis combined with metabolic analysis would enable 
further investigation of the specific roles of hub 
bacteria in the pathogeneses of various diseases, 
providing insights into the mechanism of gut– 
brain communication.6

Complex network analysis is a powerful tool for 
detecting the ecological interactions of a 
community22 and aids investigations of the topo
logical and structural features of GM networks. 
This type of analysis is widely applied in macro
ecological research (e.g., studies on food chain, 
animal, and plant networks) and has advanced 
our understanding of the alteration and co- 
evolution of various species.23–25 Complex network 
analysis was recently applied to the study of micro
ecosystems including microbial co-occurrence net
works in marine,26 water,27 soil,28 and human gut 
environments. One recent study applied this 
approach to soil microbial communities to evaluate 
the complexity and stability of soil microbial net
works associated with climate change.29 

A microbial co-occurrence network is often con
structed to detect gut bacterial relationships under 
different health states such as cholestasis30 and 
inflammatory bowel disease.31 Some studies also 
determined the topological properties of the GM 
co-occurrence network in AD model mice at eight 
months old and report that the GM network in 
these mice has fewer edges, decreased correlation 
density, and lower transitivity compared to that in 
control mice.32 However, the dynamic changes of 
GM complex networks and their biological appli
cations in disease intervention have yet to be 
explored. In addition, newly developed algorithms 
have yielded a comprehensive understanding of 
network structures.22,33,34 For example, several fra
meworks can detect the fragility, stability, and con
trollability of complex networks and identify the 
time-dependent driver nodes for system 
intervention.22,33,34 Nevertheless, the various exist
ing algorithms and tools for complex network ana
lysis are seldom used to explore GM co-occurrence 

networks during the progression of various neuro
logical disorders. In addition, it is unknown 
whether the window period and target bacteria 
for disease intervention can be inferred through 
GM networks.

Accordingly, in this study, we hypothesized the 
following: (a) that the GM networks differ 
between AD and wild-type (WT) mice, (b) the 
topological features of GM networks change 
during AD development, and (c) complex net
work-based GM modeling can be used to explore 
the optimal window period and target bacteria for 
GM interventions during AD progression.

Results

Dynamic changes of the gut microbiota in mice

This study explored the dynamic changes of the 
GM in AD and WT mice at one, two, three, six, and 
nine months of age. Permutational multivariate 
analysis of variance (PERMANOVA) analysis 
detected the impacts of environmental factors on 
GM composition, indicating that age has the stron
gest influence on GM components (P < .05, 
Figure 1a). Bray–Curtis distance-based principal 
coordinates analysis (PCoA) yielded consistent 
results – specifically, the GM from AD and WT 
mice of the same age clustered together (Figure 1b). 
To examine the impacts of age on GM compo
nents, we further performed PCoA analyses sepa
rately on the AD and WT mice. The GM from the 
WT mice showed obvious changes with increasing 
age (Figure 1c). In contrast, the GM from AD mice 
changed only slightly within the first two months 
after birth, then changed remarkably from the third 
to ninth month of age (Figure 1d). In addition, 
examination of intergroup GM differences revealed 
that individual GM diversity increased with age in 
both AD and WT mice (Figure 1e,f). These find
ings suggest that mice with neurological dysfunc
tions have GM developmental patterns distinct 
from those of WT mice.

We then selected the top 20 genera from the 
mice and examined their changes over time 
(Figure 1g and Supplementary Figure S1). In 
mouse gut, the dominant bacterial taxa were 
Bifidobacterium, Lactobacillus, Mucispirillum, 
Muribaculum, the Lachnospiraceae NK4A136 
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group, and the Rikenellaceae RC9 gut group, which 
accounted for 69.07 ± 15.76% (mean ± SD) of the 
GM (Supplementary Figure S2). Among the GM 
components, some bacteria exhibited different 
fluctuation patterns between the AD and WT 
mice. We summarized these differences into four 
categories (Figure 1g): (1) bacteria with consis
tently higher abundance in the AD mice (e.g., 

Anaerotruncus and Roseburia); (2) bacteria with 
consistently lower abundance in the AD mice 
(e.g., Colidextribacter); (3) bacteria whose abun
dance exhibited a delayed time inflection point in 
the AD mice (e.g., Bifidobacterium and the 
Rikenellaceae RC9 gut group); and (4) bacteria 
with disordered fluctuation patterns (e.g., 
Parasutterella). These findings reveal the temporal 
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Figure 1. Longitudinal changes of gut microbiota components in Alzheimer’s disease and wild-type mice during development. (a). 
Impacts of environmental factors on gut microbiota (GM) differences observed by permutational multivariate analysis of variance 
(PERMANOVA) analysis. The contributions of environmental factors to GM variance were quantified with R2, and age significantly 
influenced GM differences. (b). Results of Bray–Curtis distance-based principal coordinates analysis (PCoA) with all samples; dots and 
triangles indicate samples from the Alzheimer’s disease (AD) and wild-type (WT) mice, respectively. Colors indicate mouse age: red, 
one month; blue, two months; Orange, three months; green, six months; yellow, nine months. Circles contain samples with 95% 
confidence intervals for the groups stratified by age. (c, d) PCoA results of the WT (c) and AD (d) samples. Colors indicate mouse age: 
pink, one month; grass green, two months; green, three months; blue, six months; purple, nine months. (e, f) Inter-group GM 
differences of the WT (e) and AD (f) mice. Horizontal and vertical axes indicate mouse age and the Bray–Curtis distance, respectively. 
(g) Fluctuation patterns of bacterial genera in the AD and WT mice. The min–max-normalized genera abundances in the AD and WT 
mice are indicated by red and blue, respectively.

GUT MICROBES 3



fluctuation patterns of GM in the AD and WT 
mice, indicating developmental differences in the 
GM during neurodegenerative disease progression.

Topological features and hub bacteria of the gut 
microbiota co-occurrence networks

Given that microbial communities involve complex 
synergistic and antagonistic relationships,35 we 
constructed GM co-occurrence networks for 
the AD and WT mice at different time points and 
applied the complex network approach for our 
topological and hub bacteria analyses of the GM 
networks. We considered the genera and their cor
relations as nodes and links in the GM networks. 
Based on the degree distributions of the nodes, we 
discovered that the distribution histogram of the 
networks fits the power-law model in the WT mice, 
suggesting scale-free features (Figure 2a). 
Meanwhile, in the AD mice, the distributions of 
the nodes’ degrees conformed to the power-law 
model in the first three months of age but con
formed to the Poisson model at six and nine 
months. These results suggest that the GM net
works changed from scale-free networks to ran
dom graphs in the AD mice during development 
(Figure 2a). As neurodegenerative behaviors in AD 
mice normally appear after six months of age,36 

these results indicate that the alteration of GM 
topological features occurred before the appear
ance of clinical phenotypes, providing us with 
a potential tool for AD prediction. In addition, 
compared to the WT mice, the AD mice had larger 
GM networks including more nodes and links 
(Figure 2b,c). Accordingly, the networks of 
the AD mice were more complex – for example, 
having a higher average degree and connectance 
(Figure 2d,e). The larger GM network of the AD 
mice is likely related to their higher bacterial diver
sity. However, the clustering coefficients of the net
works in the AD mice decreased at six and nine 
months (Figure 2f) and were accompanied by fewer 
hub bacteria at six months (Figure 2g). The fluctu
ating rhythm of clustering coefficients is consistent 
with the alteration of the network topological fea
tures, hinting at the sparse GM network and loss of 
influence of hub bacteria at the end stage of AD 
progression. Therefore, the potential window per
iod for GM intervention in AD mice is likely in the 

first three months. Although the longitudinal tra
cing of the GM networks helped reveal the critical 
stage of GM alteration in AD mice, this broad 
window period must be narrowed for GM- 
targeting interventions.

We further explored the hub bacteria for each 
GM co-occurrence network based on the node 
degrees. Notably, Colidextribacter and Roseburia 
were the hub taxa that maintained the GM net
works across different time points in the WT 
and AD mice, respectively (Figure 2a). Besides 
these two taxa, other hub taxa in the networks 
changed over time and differed between the AD 
and WT mice. In the GM networks of the AD mice, 
the specific hub taxon at one and two months was 
the Rikenellaceae RC9 gut group, that at three and 
six months was Lactobacillus, and that at nine 
months was Akkermansia (Figure 2a). These find
ings provide the hub bacteria of the GM network as 
potential candidates for GM manipulation, assist
ing interventions for neurological disorders via the 
gut–brain axis.

Assessment of the stability, vulnerability, and 
computational simulation-based robustness of the 
gut microbiota networks

We subsequently assessed the stability and vulner
ability of the GM networks to determine the optimal 
window period for GM intervention using the abun
dance-weighted mean interaction strength algo
rithm (detailed in the Methods). We first evaluated 
the vulnerability of the GM networks in the mice 
(Figure 3a). The results show that the GM networks 
of the WT and AD mice were most vulnerable at one 
and three months of age, respectively (Figure 3a). 
Next, we evaluated the stability of the GM networks 
at different ages in the AD and WT mice 
(Figure 3b). Along with the GM fluctuations, the 
stability of the GM networks peaked at two months 
in WT mice, gradually decreasing thereafter 
(Figure 3b). Intriguingly, the stability of the GM 
network peaked at one month in the AD mice and 
reached a nadir at six months. Moreover, compared 
to the WT mice, the GM network stability in the AD 
mice was lower at two, three, and six months of age 
but higher at one and nine months of age 
(Figure 3b). The stability and vulnerability assess
ment results collectively suggest that three months 
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of age is the optimal window period for GM inter
vention in AD mice. To further examine the find
ings of the optimal window period, we constructed 
random-forest models to distinguish the GM 
between the AD and WT mice from a machine 
learning perspective (Figure 4). At different ages, 
the areas under the curve (AUC) for the random- 
forest models peaked at three months of age 
(AUC = 0.917) (Figure 4a–e), which is consistent 

with the findings of the complex network-based 
assessment of the GM intervention window.

Furthermore, we used the hub bacteria-based 
target removal (TR) method and non-hub bacteria- 
based random attack (RA) method to evaluate the 
impacts of the hub bacteria on the robustness of the 
GM networks. Repeating the simulations 10 times 
revealed that the TR method significantly 
decreased GM network robustness compared to 
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Figure 2. Dynamic changes of the gut microbiota co-occurrence networks in Alzheimer’s disease and wild-type mice. (a) Gut 
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the RA method in the WT mice (P < .05, Figure 3c). 
Notably, in the AD mice, the robustness of the GM 
networks diminished significantly under the TR 
method in the first three months of age, whereas 

the RA method reduced the robustness of the GM 
network at nine months (Figure 3d). As the GM 
networks in the AD mice changed from scale-free 
networks to random graphs from six to nine 
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months old, this indicates that the TR method is 
the optimal method for intervention in the scale- 
free GM network. Based on the computational 
simulations, we also deduced that the hub bacterial 
taxa in the third month (i.e., Muribaculum, 
Lachnospiraceae UCG-001, Oscillibacter, 
Desulfovibrio, etc.) were the optimal targets for 
GM network manipulation. Thus, this computa
tional simulation approach was convenient for 
determining the optimal stage and target bacteria 
for GM intervention.

Neurological impacts of the hub bacteria on the 
hosts

By using PICRUSt software37 and the gut–brain 
modules (GBMs) database,38 we aimed to illustrate 
the functional distributions of the GM, detect the 
neurological impacts of the hub bacteria on the 
hosts, and explore their dynamic temporal changes 

(Figure 5 and Supplementary Figure S3). 
Turicibacter – the hub bacterial taxa in the AD 
mice at one, six, and nine months old – is involved 
in kynurenine synthesis, GABA degradation, and 
quinolinic acid synthesis, suggesting that it plays 
essential roles in the nervous system and AD 
pathogenesis (Figure 5a). In contrast, 
Butyricicoccus – the hub bacterial taxa in the WT 
mice at six months old – participates in butyrate 
synthesis and tryptophan synthesis, which can sup
press neuroinflammation in hosts (Figure 5a). 
After analyzing the dynamic changes of these 
neural-related GM functions, we observed “peak 
shifts” of some functions in the AD mice compared 
with the WT mice (Figure 5b). For example, the 
abundance peaks of GABA synthesis, menaqui
none synthesis, propionate synthesis, acetate 
degradation, and hydroxybutyrate degradation 
shifted from six months of age in the WT mice to 
one month of age in the AD mice (Figure 5b). In 
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Figure 5. Distribution of gut–brain modules in Alzheimer’s disease and wild-type mice. (a) Presence of gut–brain modules (GBMs) 
among the hub bacteria of the Alzheimer’s disease (AD) and wild-type (WT) mice. Horizontal and vertical axes show the GBMs and 
genera, respectively. Yellow circles indicate the presence of GBMs in the genus. Genera marked in red, blue, and gray are the hub 
bacteria present in the AD mice, WT mice, and both, respectively. (b) Fluctuations of GBMs with respect to age in the AD and WT mice. 
The GBMs were sorted according to their peak abundances at different ages in the AD and WT mice. Orange and blue indicate high 
and low abundance, respectively.
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contrast, the abundance peaks of quinolinic acid 
degradation, isovaleric acid synthesis, and 
S-adenosylmethionine synthesis shifted from six 
months of age in the WT mice to nine months of 
age in the AD mice (Figure 5b). Moreover, these 
three GBMs existed in a majority of the hub bac
teria from the AD and WT mice (Supplementary 
Figure S4). Previous studies demonstrate that qui
nolinic and isovaleric acid play important roles 
in AD pathogenesis and synaptic neurotransmitter 
release, respectively.39,40 Therefore, the GM func
tion alterations caused by GM fluctuations in 
the AD mice suggest that they are associated with 
the altered host neural responses. In addition, we 
compared the abundance of the GBMs between 
the AD and WT mice at three months old and 
detected the hub bacteria that correspond to the 
differentially enriched GBMs (Figure 6). Using 
STAMP software,41 we discovered that the function 
of quinolinic acid synthesis was significantly 
enriched in the AD mice (Figure 6a) and that its 
corresponding bacterial taxa (i.e., Lachnospiraceae 
UCG-001) was also significantly enriched in the 
GM (Figure 6b). These results suggest that 
Lachnospiraceae UCG-001 may be an important 
target for GM intervention in three-month-old 
AD mice. Furthermore, integrating functional and 
network analyses may help narrow the scope of 
GM-targeting interventions.

Discussion

Diverse microorganisms in the microecosystem 
form complex microbial networks and affect their 
hosts’ health status through exchanges of nutrition, 
energy, and information.22 Previous studies have 
mainly focused on the alterations of GM compo
nents and their associations with their hosts1,17,42 

but seldom report the features of microbial inter
active networks or the optimal time window and 
bacterial taxa for GM-targeting interventions. 
Here, we constructed a complex network-based 
GM modeling framework to explore the topologi
cal features of GM networks in AD and WT mice 
and detected the dynamic changes of these net
works and their hub bacteria during mouse devel
opment (Figure 7). In addition, we performed 
computational simulations to evaluate the impacts 
of the hub bacteria on the robustness of the GM 

networks and determine the optimal intervention 
window and candidate target bacteria for GM- 
targeting interventions in the AD mice, providing 
essential references for disease intervention from 
the perspective of the GM.

Selecting the optimal intervention window is 
a challenging but critical decision in clinical medi
cine. However, an adequate theoretical framework 
to predict this optimal intervention period is still 
lacking. Therefore, this study aimed to construct 
a complex network-based GM modeling strategy in 
order to aid the development of novel treatments for 
GM-related disorders. We comprehensively assessed 
the topological features, stability, and vulnerability 
of the GM co-occurrence networks in mice to deter
mine the GM intervention window, which yielded 
three noteworthy findings. First, the GM networks 
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Figure 6. Differentially enriched neuroactive functions and cor
responding hub bacteria in three-month-old Alzheimer’s disease 
mice. (a) Differentially enriched gut–brain modules (GBMs) in 
the Alzheimer’s disease (AD) mice at three months of age. The 
mean proportion of the GBM (left) and 95% confidence intervals 
in the enriched group (right) are shown. The AD and wild-type 
(WT) groups are indicated by red and blue, respectively. (b) 
Comparison of the hub bacteria responsible for the differentially 
enriched GBMs between the AD and WT mice. The AD and WT 
mice are indicated by red and blue, respectively. * P < .05.
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in the AD mice were scale-free networks in the first 
three months after birth, indicating that these net
works can be manipulated through their hub 
bacteria.43 Second, the vulnerability of the GM 

network peaked at three months of age in the AD 
mice, narrowing the intervention window. Third, 
the stability of the GM network in the AD mice in 
the third month was lower than that in the first 

Figure 7. Framework for gut microbiota network modeling. The framework primarily comprises four components: GM network 
construction, topological feature evaluation, and the selection of window period and bacterial candidates for interventions targeting 
the GM.

GUT MICROBES 9



and second months. These results collectively indi
cate that in the AD mice, the third month after birth 
is the optimal window period for GM-targeting 
interventions. In addition, we constructed super
vised machine learning models with bacterial profil
ing, which revealed that the AUCs of the random- 
forest model peaked in the third month of mouse 
development. The results are concordant with those 
of the GM modeling analysis, further supporting 
three months of age as the optimal intervention 
window. Therefore, the assessment of the topologi
cal features, stability, and vulnerability of GM net
works is a powerful tool for detecting the optimal 
window period for GM-targeting interventions and 
understanding the inner interactions of the GM.

We subsequently applied computational simula
tion methods to explore the possibility of the hub 
bacteria as targets for GM manipulation and disease 
intervention. We simulated the removal of the hub or 
non-hub bacteria from the GM co-occurrence net
works, detected changes in the robustness of the net
works, and identified the target bacterial taxa for GM- 
targeting interventions. The simulations of the TR 
and RA methods revealed that the former could effec
tively reduce the robustness of scale-free networks. In 
contrast, for random networks, the TR method had 
no advantage in reducing network robustness com
pared to the RA method. Based on these observations, 
we deduced that the interventions targeting the hub 
bacteria in the AD mice at the optimal window period 
(i.e., three months old) – Muribaculum, 
Lachnospiraceae UCG-001, Oscillibacter, etc. – 
would significantly alter the structure of the GM net
work. Meanwhile, from a biological perspective, the 
hub bacteria identified in our analysis are reported to 
have important functions in modulating the nervous 
system in their hosts.44–46 For example, the abundance 
of Oscillibacter is positively associated with depressive 
behaviors in humans, probably owing to the binding 
of GABA receptor and modulation of the GABA 
system by Oscillibacter-derived valeric acid.44,46,47 In 
addition, Lachnospiraceae, a dominant taxon in the 
human GM, has roles in short chain fatty acid pro
duction and anti-inflammation,45,48 and is negatively 
associated with amyloid and phospho-tau levels 
in AD pathology.49 Another hub bacterial taxa, 
Muribaculum, is enriched in AD mice and negatively 
associated with cognitive decline in an AD mouse 
model.50,51 Nevertheless, the underlying mechanisms 

by which these hub bacteria regulate brain functions 
are not well understood. Thus, in silico guided biolo
gical characterization of hub bacteria would be an 
intriguing direction for future research.

After uncovering the bacterial candidates 
involved in the GM alteration in mice, we further 
identified the responsible bacterium by combin
ing the computational simulation with GM func
tional analysis. We found that Lachnospiraceae 
UCG-001, which was enriched in the AD mice, 
was the potential keystone bacterial taxa owing to 
its contributions to quinolinic acid synthesis, 
which is an enriched function in the AD mice. 
Previous studies demonstrate that quinolinic 
acid is involved in AD pathogenesis via excito
toxic effects, metabolic damage, inflammatory 
responses, and neuronal and astrocytic 
apoptosis.39,52 Hence, the computational simula
tion approach developed in this study can help 
identify target bacteria and provides a theoretical 
basis for disease intervention from the perspective 
of GM network manipulation.

Besides the characteristics of the GM networks, 
our study also revealed the temporal compositional 
and functional changes of the GM and that age is 
the most important environmental factor for GM 
variation. As the AD and WT mice in this study 
were reared in the same environment, the AD- 
related genotype likely affected the GM compo
nents, thereby influencing the permeability of the 
intestinal mucosa and brain functioning via mutual 
gut–brain communications.12,53 Although this 
study revealed distinct hub bacteria in WT 
and AD mice at different ages, their effects on 
disease progression require further investigation. 
As a persistent hub bacterial taxon in the WT 
mice, Colidextribacter can reduce the risk of 
depression by repressing neuroinflammation in 
hosts.54 On the other hand, Zheng et al. report 
that the Rikenellaceae RC9 gut group, a hub bacter
ial taxon in the AD mice, is enriched in schizo
phrenia model mice, suggesting their impact on 
neuromodulation.55 These findings suggest that 
changes in the hub bacteria could both adjust the 
GM networks and affect host health status.

Thus, the above results indicate that GM-based 
approaches for disease intervention are a promising 
and challenging research direction. Previous reports 
indicate that prebiotics, specific probiotics, and 
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dietary habits could be effective strategies to modify 
the GM components.56 Specific hub bacteria can be 
targeted in vivo by ecological antagonism or phage 
therapy.57,58 Through nutrient competition, bacter
iocin secretion, and toxic metabolites, some bacteria 
could prevent the overgrowth of specific 
pathogens.58 For example, microcins produced by 
Escherichia coli could repress some 
Enterobacteriaceae species.59 On the other hand, 
bacteriophages also have potential to eliminate spe
cific bacteria.57 In a recent study, Eran Elinav et al. 
demonstrated the inhibitory effect of phage consor
tia on inflammatory bowel disease-associated 
bacteria.60 However, several challenges (e.g., dosage, 
safety, and efficacy) must be overcome prior to the 
clinical application of bacteria-manipulating 
therapies.57,58 Nevertheless, the comprehensive ana
lysis approach established in this longitudinal study 
might reveal the key bacteria that affect GM home
ostasis during disease progression, providing deeper 
insights into the bidirectional GM–host interactions 
in disease pathogenesis.

Regarding the relationship between disease sever
ity and breeding condition, compared to APP/PS1 
mice (a mouse model of AD) in a normal breeding 
environment, APP/PS1 mice bred in germ-free con
ditions or treated with antibiotics exhibit 
attenuated AD-related pathological phenotypes 
(e.g., compromised amyloid deposition, neuroin
flammation, and cognitive decline).61–63 In addition, 
our previous study demonstrates that GM altera
tions precede the development of key pathological 
features of AD.64 Together, these findings strongly 
support the notion that GM alterations in AD mice 
initially caused by heredity in turn exacerbate dis
ease progression.

The benefits of mouse models include well- 
controlled breeding environments and the conve
nience of longitudinal tracing of GM changes. 
Therefore, we utilized data from mice to generate 
a complex network-based GM modeling strategy, 
which is theoretically sound and rigorous, to 
improve our understanding of the competitive 
and cooperative relationships of microecosystems. 
Accordingly, such modeling in mice provides valu
able experience for future explorations of optimal 
window periods for GM-targeting interventions in 
humans. By tracing the dynamic GM changes dur
ing disease progression, this strategy determined 

the optimal window period for GM-targeting inter
ventions, which is essential for the effectiveness of 
clinical interventions. In addition, combining com
putational simulations with bacterial functional 
analysis can aid the discovery of target bacteria 
for GM-targeting interventions, leading to oppor
tunities for future investigations of the pathogen
eses of various diseases.

To adjust for the individual age-related GM 
diversity in mice and validate our current findings 
in future studies, we will utilize a larger sample size. 
Moreover, in vivo experiments based on the results 
of computational analysis may help us assess the 
feasibility of our strategy for clinical applications. 
The GM functions and metabolites (e.g., quinolinic 
and isovaleric acid) that differ between the AD and 
WT mice are powerful indicators of the roles of the 
GM in AD pathogenesis.39,40 Nevertheless, these 
GM metabolic changes must be verified by mass 
spectrometry, and their functions need to be 
explored through in vivo experiments. Finally, 
findings about the GM in mice are not fully repre
sentative of the GM in humans because of differ
ences in the genetic backgrounds, physiological 
features of gastrointestinal tracts, and dietary 
habits between mice and humans.65 Compared to 
humans, the intestinal tract in mice has lower pH, 
lower oxygen tension levels, and different glycan 
profiles, which are partially responsible for the 
differential GM compositions between species.65 

Furthermore, intestinal transit time (the time 
food takes to travel through the digestive tract) is 
shorter in mice than in humans, which also con
tributes to GM differences.65 Therefore, the appli
cation of the GM network modeling strategy 
reported herein must be validated and optimized 
for patients with AD or other neurodegenerative 
diseases to detect specific intervention windows 
and target bacteria.

In summary, we constructed a complex net
work-based modeling approach to investigate the 
GM, explore dynamic GM network changes in AD 
and WT mice, and identify the optimal window 
period and bacterial candidates for GM-targeting 
interventions in the AD mice. Theoretically, our 
study integrates complex network theory with 
longitudinal GM research, opening new avenues 
for manipulating the microbial community in 
hosts. Practically, we can extend the network 
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modeling approach to neurological diseases or 
even broader clinical research fields, which would 
facilitate the faster and more efficient development 
of disease interventions.

Methods

Data acquisition

This study used previously published 16S rRNA 
amplicon data obtained from APP/PS1 mice (i.e., 
B6C3-Tg [APPswe, PSEN1dE9] 85Dbo/J) and their 
WT littermates.64 In brief, we collected 204 stool 
samples from the AD and WT mice at one month 
(n = 21 and 15, respectively), two months (n = 23 
and 17, respectively), three months (n = 24 and 17, 
respectively), six months (n = 26 and 25, respec
tively), and nine months (n = 18 and 18, respec
tively). We then isolated microbial DNA from the 
stool samples (DNeasy PowerSoil Kit, QIAGEN, 
Germantown, MD, USA), amplified the 16S 
rRNA V4 region (AP221-02, TransGen Biotech, 
Beijing, China), and performed 200-nt paired-end 
sequencing with the HiSeq 1500 platform 
(Illumina, San Diego, CA, USA). This study was 
performed in accordance with the recommenda
tions of the National Care and Use of Animals 
Guidelines (China) and approved by the 
Institutional Animal Care and Use Committee 
(IACUC) of the Shenzhen Institute of Advanced 
Technology, Chinese Academy of Sciences.

Data filtration and taxonomical annotation

We used an in-house script to filter out the low- 
quality reads from the raw sequencing data when 
they contained >10 low-quality bases (<Q30) or 15 
adapter bases. We then made taxonomical anno
tations with the clean reads using QIIME2 soft
ware (version 2021.11.0).66,67 First, we merged the 
paired-end reads into tags based on their overlaps 
using vsearch software (version 2.7.0).68 Second, 
we obtained the amplicon sequence variants after 
tag clustering with deblur software (version 
1.1.0).69 Third, we used the sklearn-based taxon
omy classifier and trained SILVA Database (ver
sion 138.99) to perform taxonomical annotation 
of the amplicon sequence variants.70 Last, we 

profiled the samples according to their taxonomi
cal annotation results.

Functional prediction and gut–brain module 
analysis

We obtained the distributions of GM functions 
with the amplicon sequence variants using 
PICRUSt2 software (version 2.3.0).37 The func
tional profile contained the abundances of 
KEGG Orthology and metabolic pathways for 
all samples. Using the KEGG Orthology profile, 
we further detected the neurological-related 
functions in the GM through the previously 
published GBMs database.38 First, we collected 
the KEGG Orthology list for each GBM and 
calculated the abundance of GBMs for each 
sample through the KEGG Orthology abun
dance. To obtain the relationships between the 
GBMs and the bacterial taxa, we then bridged 
the taxa and the GBMs through the amplicon 
sequence variants.

Construction of random-forest models

We constructed the AD-risk models using the 
“randomForest” package in R and the GM profiles 
at one, two, three, six, and nine months of age. For 
each model, we extracted the GM profiles from 
the AD and WT mice at the same age and ran
domly divided them into three groups: two groups, 
which comprised the training group, and one test 
group. We then detected the optimal variance and 
tree numbers using the genus profiling from the 
training group and constructed the AD-risk model 
using the “randomForest” function. We also 
assessed the Gini value for each genus in the risk 
model. Finally, we detected the accuracy and sen
sitivity of the model using the “predict” function 
and presented the results as receiver operating 
characteristic (ROC) curves with AUCs.

Gut microbiota co-occurrence network construction 
and characterization

We constructed the GM co-occurrence networks for 
the AD and WT mice at one, two, three, six, and 
nine months of age. With the GM profiles for each 
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group, we calculated the Spearman correlation coef
ficients between genera using the “psych” package in 
R and kept the correlations r < −0.4 or r > 0.4 
(P < .05). We then plotted the GM co-occurrence 
networks using Gephi (version 0.9.2).71 To charac
terize the topological features of the GM co- 
occurrence networks, we used the “igraph” package 
in R and analyzed the numbers of nodes and edges, 
average degree, degree distribution, clustering coef
ficient, and connectance in each network. In the GM 
co-occurrence networks, each node indicated 
a genus, and each link indicated a relationship 
between genera. Furthermore, we defined the bac
teria as hub nodes when their degrees exceeded the 
third quartile of the degree in a network.

Network stability evaluation

RTIS_A_2168546Before evaluating the stability of 
the GM networks, we first detected the effect of the 
nodes in a network by using the abundance- 
weighted mean interaction strength (wMISi) 
index.29 We calculated the wMISi index for each 
node in a network with the following formula: 

wMISi ¼

P
j�i bj Ri;j

�
�
�
�

P
j�i bj 

where i is a node in a network, j is the node con
nected to node i, bj is the relative abundance of 
node j, and Ri,j is the Spearman correlation coeffi
cient between nodes i and j. To evaluate the stabi
lity of the networks throughout mouse 
development, we first detected the core nodes in 
the networks, wherein the core nodes were defined 
as the consistent bacteria existing in the GM net
works of the AD or WT mice across different time 
points. We then calculated the stability of the net
works (Sa) according to the wMISi index using the 
following formula: 

Sa ¼

Pm
i¼1 wMISi

Pn
j¼1 wMISj 

where m is the core nodes in network a and n is 
all nodes in network a.

Network vulnerability evaluation

We also evaluated the vulnerability of the GM net
works by calculating the maximal global efficacy 
decreasing ratio (mEDR). Before determining the 
mEDR, we first calculated the averaged efficacy of 
a network (Ea), which implies the transferring 
speed of information in the network. We calculated 
Ea using the following formula: 

Ea ¼
1

n n � 1ð Þ

X

i�j

1
di;j 

where n is the number of nodes in network a and di;j 
is the number of edges in the shortest path between 
nodes i and j. We then removed each node from the 
network one by one, evaluated the altered E0a after 
each node’s removal, and selected the maximal EDR 
as the mEDR using the following formula: 

mEDR ¼ max
Ea � E0a

Ea

� �

Computational simulation and network robustness 
evaluation

We simulated the processes of hub bacteria-based 
TR and non-hub bacteria-based RA in the GM co- 
occurrence network and defined the network 
robustness (Ra) as the ratio of remaining bacterial 
wMISi to the total wMISi of a network after compu
tational simulation. We calculated Ra using the fol
lowing formula: 

Ra ¼

Pn
j¼1 wMISj �

Pm
i¼1 wMISi

Pn
j¼1 wMISj 

where m is the removed nodes in the network a and 
n is all nodes in network a. For the TR simulation, 
we randomly removed half of the hub bacteria from 
the network and calculated the R0a of the network. 
We also randomly removed the same number of 
non-hub bacteria from the network and calculated 
the R00a of the network. Upon repeating this process 
10 times, we compared the network robustness 
between the TR and RA methods.
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Statistical analysis

We evaluated the data size with rarefaction curves 
using the “vegan” package in R (bootstrap = 500, 
Supplementary Figure S5). We then calculated the 
Bray–Curtis distances among the samples (also 
using the “vegan” package in R) and applied the 
Wilcoxon rank-sum test to examine the differences 
between groups. We assessed the impacts of envir
onmental factors on GM composition by 
PERMANOVA analysis with 9,999 permutations. 
Based on the Bray–Curtis distances, we performed 
PCoA. We adopted the min–max normalization 
method to analyze bacterial abundance when detect
ing the fluctuation pattern of the bacteria. To iden
tify differentially enriched GBMs between groups, 
we used STAMP software (version 2.1.3)41 with 
a two-tailed Welch’s t-test (P < .05). We sorted the 
GBMs in the AD and WT mice according to their 
scaled relative abundance across different time 
points and visualized the results as heatmaps created 
using the “pheatmap” package in R. We adjusted the 
statistical results from the Wilcoxon rank-sum test 
and Spearman correlation analysis according to the 
Benjamini and Hochberg method (false discovery 
rate [FDR] < 0.05) using the “p.adjust” package in 
R. We plotted the ROC curves using the “pROC” 
package in R and generated other corresponding 
figures using the “ggplot2” package in R.
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