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INTRODUCTION each end of the viral DNA, and a short duplication of 4 to 7 bp

Integration is an obligatory replication step for all retrovi-
ruses. The process begins after the virus enters the cell and the
RNA genome is reverse transcribed into a double-stranded
DNA. The direct precursor to integration is the linear form of
viral DNA (4, 64). Circular DNA forms are detected in cells
but are considered to be dead-end reverse transcription prod-
ucts (49) or products resulting from autointegration events
(63). Linear viral DNA contains at its termini long terminal
repeats (LTR) sequences. The ends of these LTRs are specif-
ically recognized by the viral integrase (IN). Preintegration
complexes, capable of catalyzing integration in vitro, can be
isolated from infected cells (30). These complexes contain lin-
ear viral DNA, several viral proteins including matrix (7), re-
verse transcriptase (63), nucleocapsid (59), and IN (30) and at
least two cellular proteins, high-mobility-group [HMG-I(Y)]
(29) and barrier to autointegration factor (BAF) (62). Depend-
ing upon the retrovirus, preintegration complexes either enter
the nuclei of nondividing cells through the nuclear pore (e.g.,
human immunodeficiency virus [HIV]) or wait until the nu-
clear membrane dissolves during cell division (e.g., Moloney
murine leukemia virus [MoMuLV]) (75). In some retroviruses,
nuclear localization signals are associated with various viral
proteins, including IN, and facilitate migration to the nucleus
(34, 55, 84). Once the preintegration complex associates with
the host chromosome, viral IN catalyzes the insertion of the
viral sequences into the host DNA. The two LTR ends of the
linear viral DNA are brought together into a ternary complex
with IN and host DNA, where the insertion occurs in a coor-
dinated or concerted reaction. A 2-bp sequence is lost from
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from the host, depending upon the viral IN, is introduced into
the host sequence flanking the viral DNA. Repair of damage to
the host DNA by integration is presumably mediated by cel-
lular enzymes. Integrated viral DNA is termed the provirus.

IN was first detected in avian myeloblastosis virus as a non-
specific endonuclease of 32 kDa. Sequences from peptide frag-
ments of the protein showed sequence homology to the 8 chain
of avian sarcoma virus (ASV) reverse transcriptase (77). An
active enzyme consists of a multimeric structure of at least a
dimer (47). The primary evidence establishing that the endo-
nuclease was encoded in the viral genome came from analysis
of an IN mutant ASV, LA335, which was temperature sensitive
for replication and possessed a temperature-sensitive DNA
endonuclease (36). These observations were confirmed by ex-
periments in which mutations were introduced into conserved
residues of IN and blocked replication of the virus (73). The
first biochemical evidence linking the DNA endonuclease to
integration was the demonstration that the enzyme could spe-
cifically cleave viral LTR ends (19). It was subsequently shown
that IN could also preferentially bind to the LTR termini of
viral DNA (54, 69). However, it was not until DNA oligode-
oxynucleotides representing the ends of the viral LTRs were
used as substrates for integration in vitro that IN was shown to
be both necessary and sufficient to mediate integration (51)
and that an energy source such as ATP was not required for
the reaction.

STRUCTURE OF INTEGRASE

IN, encoded in the pol gene of the virus, is translated as part
of a large Gag-Pol polyprotein and is processed into its mature
form by the virus-encoded protease (PR). Based upon evi-
dence from limited protease digestion studies (24) and align-
ment of the primary sequences of several IN proteins (46),
which identified clusters of conserved residues, IN is thought to
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FIG. 1. Ribbon diagrams of the structures of HIV-1 IN fragments. The N-terminal domain of HIV IN is shown on the left. It is based upon PDB file IWJA (11),
coordinating a single zinc cation (black sphere) by using the HHCC motif. This motif consists of residues His12, His16, Cys40, and Cys43, depicted as black sticks. The
core domain, center, is based upon 1B14 (68), showing the active form of the HIV IN catalytic domain. The active site has a D,D(35)E motif. Residues Asp116, Asp64,
and Glu152 are depicted as black sticks, in order from left to right. Side chains of the two Asp residues bind a single magnesium cation, shown here as a black sphere.
The C-terminal DNA binding domain is based upon coordinates in PDB file 1THV (65). The N- and C-terminal domains were solved by NMR; the catalytic core domain

was solved by X-ray diffraction.

possess three structural domains. The domains consist of an
N-terminal domain of 50 amino acids with a putative zinc
binding motif resembling a zinc finger (HHCC), a central do-
main of 160 amino acids with a D,D(35)E motif, and a less
highly conserved C-terminal domain of 80 amino acids. The
crystal structures of the central ASV and HIV-1 IN core do-
mains have been solved (6, 20). Nuclear magnetic resonance
spectroscopy (NMR) solution structural data is available for
the HIV-1 IN N and C-terminal domains (11, 12, 21, 22, 65).
Figure 1 displays each of the known fragment structures of
HIV-1 IN. Unfortunately, there is no structural data for an
intact protein with or without a substrate mimic, so that we do
not know how these fragments fit together in the holoenzyme.

N-Terminal Domain

Within the N-terminal domain of IN is a putative zinc finger
of the HHCC type (Fig. 1). Amino acid substitutions in any or
all of the HHCC residues in HIV-1 IN (24, 25), nearly or
completely abolish end-processing and joining reactions in
vitro and in vivo, respectively. These results imply that the
HHCC motif is important for IN catalytic function, but they do
not demonstrate whether these residues are involved in coor-
dinating zinc. Using a zinc binding assay, Bushman et al. (8)
reported that wild-type HIV IN binds zinc. Moreover, a sub-
stitution at any of the HHCC residues reduced the level of zinc
binding. Recently a solution structure of the N-terminal do-
main was determined and revealed a dimeric structure having
an HHCC zinc binding motif that coordinates zinc. The folds
of the N termini are similar to those of other DNA binding
proteins in having a helix-turn-helix structural motif (12). N-
terminal deletions of the first 49 residues also adversely af-
fected the Mg®"-dependent catalytic activities of IN (24).

However, a truncated Rous sarcoma virus IN containing resi-
dues 54 to 286 was still capable of end-processing and limited
joining reactions in the presence of Mn** (9). Mn?* ions had
previously been shown to enhance the rate of 3’-end process-
ing but in a nonspecific manner (51). N-terminal truncations of
IN are also partly capable of reversing the integration process
in a reaction referred to as disintegration (8). Taken together,
these results suggest that the N terminus influences the cata-
lytic activity of IN but does not contain its catalytic core.
Moreover, Andrake and Skalka (2) using chemical cross-link-
ing and size exclusion chromatography, determined that the N
terminus of ASV IN was not involved in multimerization, since
an N-terminally truncated fragment containing only residues
39 to 286 formed multimeric structures.

Central Core Domain

The central core domain comprises residues 50 to 235 and
has been shown to coordinate divalent cations. The crystal
structures of the catalytic core domains for HIV-1 (20) and
ASV (6) have been solved. Crystallization of the HIV-1 core
was dependent upon a F185K substitution, which increased its
solubility (20, 44, 45); this is shown in Fig. 1. While an intact IN
protein is required for complete activity, an ASV fragment is
capable of end processing but not joining. The HIV-1 core
fragment is not capable of either reaction (6, 40). Both cores,
however, catalyze the disintegration reaction (6, 40, 45). The
overall folded structure of the catalytic core is similar to that of
nucleases such as Escherichia coli RNase H, the HIV-1 RNase
H domain of reverse transcriptase and E. coli RuvC (6, 74, 88).

The central core is thought to be the catalytic domain of the
enzyme. Using chimeric IN proteins, Katzman and Sudol pro-
posed that the DNA binding domain of the conserved CA
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dinucleotide in the viral LTR resides in the catalytic core,
implying that the core contains the active site (52). The core
domain contains a catalytic triad of three highly conserved
residues, D,D(35)E. The triad for ASV is D64, D121, and
E157. Substitutions of any of these residues generally abolish
end-processing and/or joining reactions (57). The comparable
triad for HIV-1 IN is D64, D116, and E152 (Fig. 1). Here
again, most substitutions inactivate the enzyme, with two ex-
ceptions: a D116N substitution results in a more active HIV-1
IN than wild type in vivo (25), and an enzyme with D116E and
E152D substitutions, while incapable of end processing and
joining, catalyzes detectable disintegration reactions (24).
Crystal structures of the catalytic core, coordinating a divalent
cation, have been determined for ASV by using Mg®* and
Mn?* (5) and for HIV by using Mg?* (35, 68). The divalent
cations were found to be coordinated by the two conserved
aspartic acid residues of the catalytic triad. A comparison of
HIV-1 and ASV cores indicated that the two aspartic acid
residues are similarly positioned within the respective HIV-1
and ASV structures (5, 6, 20, 35, 68). A relatively extensive
mutational analysis of conserved residues in the catalytic core
of the intact IN has been performed (18, 20, 24, 44, 45, 53, 57,
58, 60). While some of the substitutions affect end-processing,
joining, and disintegration reactions to various extents, others
are less disruptive and in some cases allow end processing but
prevent joining. These results imply that not all conserved
residues in the core are essential to catalytic activity.

C-Terminal Domain

The C terminus of IN is the least highly conserved of the
three domains (13, 67). An HIV-1 fragment representing res-
idues 235 to 288 binds nonspecifically to DNA (26, 53, 66, 71,
82, 87). The structure of the C-terminal domain of HIV-1 IN,
residues 220 to 270, has been determined by NMR (21, 65) and
contains an SH3 fold motif (Fig. 1). Such structures have been
found in a number of proteins but only in one other protein
involved in DNA binding, Sso7d (3, 21, 65). In addition, mul-
timerization of IN appears to be defective, suggesting that the
C terminus of the protein is needed for dimerization or mul-
timerization of the enzyme. Nuclear localization signals, which
facilitate the entry of preintegration complexes into the nucleus,
have been mapped to the C-terminal IN domain of several ret-
roviruses and transposons. In ASV IN, the nuclear localization
signal contains both basic and proline residues (55).

MULTIMERIZATION OF INTEGRASE

Several groups have examined the parameters of multimer-
ization both in vitro and in vivo (23, 32, 80). While truncated
N- or C-terminal HIV-1 IN fragments are incapable of sup-
porting end-processing or joining reactions, a mixture of N-
terminally truncated IN and C-terminally truncated IN has
detectable activity (23, 80). These results imply that HIV-1
integrase is active as a dimer or higher-order multimer and that
only a single N- or C-terminal domain is required for activity.
In other mixing experiments, IN proteins containing single
substitutions in the catalytic triad of the core domain could be
complemented by IN proteins containing truncations to either
the N- or C-terminal domains (23, 80). By using IN monomers
having truncations in the N or C terminus, cis to the catalytic
core and complemented with monomers having the missing
truncated region, it was shown that the C-terminal domains cis
to the catalytic site were active in end-processing and joining
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reactions in vivo whereas N-terminal truncations were not ac-
tive in cis (23, 80).

MECHANISM OF RETROVIRAL INTEGRATION

Integration occurs in two well-characterized catalytic steps,
referred to as end processing and joining, respectively. End
processing involves removal of a dinucleotide, adjacent to a
highly conserved CA dinucleotide, from the 3’ strand of the U3
and US viral DNA LTRs in a reaction involving a water mol-
ecule or other nucleophile (27, 83) (Fig. 2). This exposes a 3’
hydroxyl group, whose oxygen is used as an attacking nucleo-
phile on the target DNA during the joining reaction, in which
the viral DNA is inserted into the cellular DNA (27, 83).
Engleman et al. identified three different forms of the cleaved
dinucleotide resulting from end processing, depending upon
the nucleophile used in the reaction (27). The most abundant
form was a dinucleotide with a 5" phosphate and a 3’ hydroxyl,
which would arise when a water molecule acted as the nucleo-
phile. It is believed that a Mg®" atom coordinated [through the
conserved D,D(35)E residues] in the active site of IN facili-
tates the deprotonation of the water to activate it as a nucleo-
phile. This mechanism is analogous to the polymerization re-
action catalyzed by DNA polymerases, including reverse
transcriptase, or to activity catalyzed by adenosine cyclase (48,
79, 89), although in this case IN is believed to coordinate one
rather than two Mg?" atoms. A second dinucleotide product
was detected when glycerol, introduced together with IN, acted
as the nucleophile. This species was poorly phosphorylated and
was resistant to phosphatase activity, implying the absence of a
5" phosphate (27, 83). The third dinucleotide was identified as
a 3'-5' cyclic pGpToyy. This form arises when the hydroxyl of
the terminal T acts as the attacking nucleophile to break a
phosphodiester bond on the same strand (27).

The actual mechanism of viral DNA insertion was shown, by
use of a phosphothioate-substituted target, to invert the chiral-
ity of the phosphate at the site of insertion (27). This indicates
that a single-step transesterification reaction occurs and elim-
inates the possibility that IN forms a covalent intermediate
with DNA. Such enzyme-DNA intermediates are found for
topisomerases (14) and for IN of lambda bacteriophage (70,
81), where the chirality of the electrophile phosphate is main-
tained in joining the DNA.

The IN recognition sequence within the LTRs is relatively
short. MuLV IN recognizes 11 to 12 bp (76), ASV IN recog-
nizes 15 bp (51), and HIV-1 IN recognizes 20 bp (78). Cross-
linking and substitution of bases in the LTR of HIV-1 have
demonstrated that specific interactions between IN and the
terminal LTR sequences are required for end-processing and
joining reactions (28, 38, 39). The sequences at the U5 and U3
LTR ends are both derived from nearly perfect inverted re-
peats. Addition or deletion of sequences at or near the con-
served CA dinucleotide at the termini of the LTRs alters the
efficiency of DNA integration (17). For example, addition of
sequence 3’ to the conserved CA dinucleotide in MuLV LTRs
resulted in a delay in growth of the virus by several days.
However, subsequent passages of the mutant virus selected for
viruses with wild-type growth rates and concomitant nucleotide
changes in the LTR sequences. One revertant contained a
C-to-A transition 4 bases from the 3’ termini; another con-
tained an 11-base deletion such that integration utilized a new
internal CA dinucleotide. Replacement of 2 bases in the ASV
US LTR adjacent to the CA dinucleotide or 4 bases adjacent to
and including the C of the CA dinucleotide also decreased the
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FIG. 2. Diagrammatic representation of the mechanism of integration. (A) End-processing reaction. A viral DNA is depicted with the U3 LTR sequence on the
left. Magnified below is the 20-bp sequence of the terminal HIV-1 U3 LTR. In an initial reaction, there is a loss of 2 bases from the 3’ strand, adjacent to a highly
conserved CA dinucleotide (underlined), via a nucleophilic attack by a water molecule. (B) Joining reaction. The processed LTR DNA ends are brought together into
a complex with the target DNA. Insertion of the donor into the target DNA involves a nucleophilic attack by using the 3’ hydroxyl groups on the exposed 3’ strand.
The result is a gapped DNA with 5’ 2-base overhangs. Overhang removal, gap, and nick repair would complete the integration reaction.

efficiency of integration and resulted in a delayed-growth phe-
notype (16).

EARLY IN VITRO-RECONSTITUTED
INTEGRATION SYSTEMS

Fujiwara and Craigie (33) described the first cell-free inte-
gration system that used extracts of MoMuLV, a large linear
donor DNA containing modified LTR termini with 5’ over-
hangs, and lambda DNA as the target. The donor DNA was
constructed by placing an Ndel cleavage site between tandemly
linked U5 and U3 LTR termini inserted in a plasmid. After
restriction digestion, a linear donor was produced with LTR
termini that differed from wild-type LTR termini by 1 bp and
contained 5’ 2-base AT overhangs rather than blunt ends. Katz
et al. (50) used purified ASV IN to reconstitute integration
with a similar Ndel-constructed ASV donor DNA. Integrants
in both systems were analyzed by packaging the lambda accep-
tor DNA, introducing the phage into cells, plaque purifying,
and sequencing. Integrants displayed properties characteristic
of in vivo retroviral integration, including the loss of 2 bp from
the ends of both LTR termini, short duplications of the lambda
DNA at the site of integration, and random distribution of
integration sites.

CONCERTED DNA INTEGRATION

Murphy and Goff (72) demonstrated that when deletions
were placed in the U3 LTR, 5’ to the conserved CA dinucle-
otide, end processing in both U3 and U5 LTRs was adversely
affected. This result implies that integration in vivo occurs by a
concerted mechanism in which the two LTR ends of the viral

DNA are inserted into a single target site, such that a mutation
in one LTR can influence the processing of the other. Unfor-
tunately, oligodeoxynucleotide model substrates do not exhibit
the concerted properties characteristic of in vivo integration.
One exception was described by Kukolj and Skalka (56), who
designed short duplex substrates whose sequences matched
those of U3 and U5 ends of ASV and HIV-1 DNA but were
covalently synapsed across the termini by short single-stranded
linkers. These substrates were used more efficiently than were
unlinked oligodeoxynucleotides duplexes. Moreover, sub-
strates with a paired wild-type and mutated terminus were
cleaved poorly at both ends, indicating that when termini were
juxtaposed, the processing of both ends displayed concerted
behavior. By using tethered donor molecules, the optimum
spacing for the ASV system was shown to be 2 nucleotides.
This placed the two conserved CA dinucleotide-processing
sites 6 nucleotides apart, a separation equal to the staggered
break introduced into the target DNA. The optimum separa-
tion of the HIV-1 conserved CA dinucleotides was 5 nucleo-
tides, again matching the staggered break introduced into the
target DNA in vivo. If both strands were tethered, the effi-
ciency of the reaction was considerably decreased, due in part
to a loss of torsional flexibility imparted by the gap in one
strand. These results provided biochemical evidence that mo-
lecular communication must take place between IN bound to
both viral DNA ends.

RECONSTITUTION OF AVIAN SARCOMA VIRUS
CONCERTED DNA INTEGRATION

A concerted integration system using purified IN was re-
ported by Fitzgerald et al. (31). The system included purified
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AMYV IN; lambda as the linear acceptor DNA; a donor DNA,
3.4 kb in length, containing 30 bp from the ends of the LTRs
with preprocessed 5’ AT overhangs; and a supF suppressor
gene as a selectable marker. The presence of the supF tRNA
gene in the mini-donor DNA provides for genetic selection of
individual integrants in bacterial cells containing an expression
vector with antibiotic resistance genes with amber mutations in
the coding sequences. The linear donor was again constructed
by using the Ndel restriction enzyme site (31). A small per-
centage of the integrants isolated from the reaction exhibited
concerted integration and displayed properties expected of
ASV DNA integration in vivo. However, the remainder arose
through nonconcerted integration events, which produced de-
letions in the acceptor DNA. Vora et al. (86) established a
similar system by using a 487-bp donor DNA that was also with
precleaved Ndel ends. Here again, products arose from both
concerted and nonconcerted reactions. Further analysis of the
concerted integration products showed that they resulted from
two one-ended integration events by different donor DNAs
into the same acceptor rather than from both ends being pro-
vided by the same donor. As a consequence, U3-US5, U3-U3, or
US5-US donor combinations were detected, complicating the
analysis of the integration product (31, 86). In subsequent
reports, changing of the buffer conditions (31, 85, 86) improved
the overall efficiency of integration but with different percent-
ages of concerted products detected.

The ASV reconstituted system that appears to most closely
approximate the concerted integration in vivo uses purified
recombinant ASV IN, a 3.4-kb supercoiled or linear target
DNA, and a “mini” linear donor DNA substrate of only 294 bp
with blunt authentic unprocessed viral termini (1, 42). This
small size was chosen to maximize the probability that ends
from the same donor would come in contact to facilitate con-
certed integration. The donor contains a supF suppressor
tRNA gene flanked by only 15 bp from the ASV LTR termini.
To increase the integration efficiency of this system, a host cell
protein was also added to the reaction mixture by Aiyar et al.
(1). The host cell protein was from the HMG family and has
the ability to bend DNA that could assist in juxtaposing the U3
and U5 LTR termini in an integration complex. This bending
of the donor DNA could favor concerted DNA integration.
While only a small percentage of the donor DNA was inte-
grated into the acceptor in this system, more than 90% of the
integrants detected used a concerted mechanism with a single
donor molecule (1). Removal of either the U3 or the U5 LTR
sequences from the donor substrate resulted in a substantial
reduction in the total number of integration products detected.

HMG-1 was the initial HMG protein family member added
to this system. It stimulated the integration reaction about
fourfold compared with the activity observed in the presence of
IN alone (1). Subsequently, Farnet and Bushman (29) reported
that an HMG protein family member, HMG-I(Y), could be
detected in HIV-1 preintegration complexes isolated from in-
fected-cells and that integration was dependent upon the con-
tinued presence of HMG-I(Y). The addition of HMG-I(Y) to
the ASV mini-donor DNA reconstituted system stimulated
integration by more than 10-fold, with the mini-donor DNA
being integrated via a concerted mechanism during the
course of the reaction (42). Individual integrants, isolated
from reactions reconstituted in the presence of HMG-1 or
HMG-I(Y), showed end processing, concerted insertion
with base pair duplication of acceptor DNA flanking the
integrated donor DNA, and non-sequence-specific integra-
tion of the donor into the target, all characteristic of in vivo
integration (1, 42).
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MUTATIONS IN THE US OR U3 AVIAN SARCOMA
VIRUS LONG TERMINAL REPEATS INFLUENCE
INTEGRATION

The value of reconstituted systems lies in the ability to rap-
idly analyze mutations that influence integration. In ASV IN,
the percentage of nonconcerted integration events can be in-
creased by introducing base changes into the LTR sequences
(1, 41, 85), which presumably alter the binding affinity of IN for
the LTR recognition sequences. By changing the reaction con-
ditions to favor IN-DNA contacts, the concerted nature of the
integration can be rescued and individual integrants can be
sequenced (41). When a 4-bp substitution was placed in the
ASV US LTR, changing CTTCATT to GAAGATT, it resulted
in a slight decrease in the efficiency of integration activity
compared to that for a donor with a wild-type U5 LTR (1).
However, one of every seven integrants sequenced contained
deletions in the LTRs. In one case, 10 bases were removed
from the U5 LTR, so that IN used the first internal CA dinu-
cleotide for the nucleophilic attack. In a second integrant, IN
left the mutation in the U5 LTR but deleted sequences in the
wild-type U3 LTR, utilizing the first internal GA dinucleotide
to drive the integration reaction (1). This latter result repro-
duced genetic changes observed in vivo (72) when a mutation
placed at one LTR altered the processing of the other. Note
also that mutations placed in U3 and U5 have similar effects on
integration in terms of specificity. However, mutations placed
in U3 have a threefold more deleterious effect on the efficiency
of integration in vitro than do the same mutations introduced
into the U5 LTR (41, 51, 85).

RECONSTITUTION OF HUMAN IMMUNODEFICIENCY
VIRUS CONCERTED DNA INTEGRATION

Goodarzi et al. (37) have reported a reconstituted concerted
HIV-1 IN-dependent integration system involving a 469-bp
donor DNA constructed with the Ndel preprocessed ends. This
system still exhibits insertion of two donor DNA molecules
into a target, and only about half of the integrants resulted
from a concerted DNA mechanism. An HIV-1 mini-donor
DNA integration system comparable to the ASV system de-
scribed by Aiyar et al. (1) has also been developed by using
recombinant HIV-1 IN (42). This system appears to approxi-
mate integration in vivo more closely. The HIV-1 donor DNA
contains only 20 bp of the HIV-1 LTR termini flanking the
supF suppressor gene and uses the same target DNA and
HMG protein family members as does the ASV system. In
contrast to the ASV reconstituted system, where 60% of the
sequenced integrants had 6-bp acceptor DNA duplications
characteristic of ASV integration in vivo, the duplication of the
acceptor DNA at the site of HIV-1 donor integration was
almost exclusively 5 bp, characteristic of HIV-1 integration in
vivo (42). The differences in base pair duplications in the ASV
and HIV-1 reconstituted systems may reflect differences in the
stability or conformational characteristics of protein-protein
interactions among the respective ASV and HIV-1 IN dimers
or tetramers, which form complexes with the ends of the donor
and the acceptor DNA. Such differences could influence the
spacing of staggered breaks introduced into the acceptor DNA,
thereby altering the size of the duplications. The HIV-1 IN-
dependent reactions also differ from those of ASV in that less
than half or approximately 75% of the HMG-2 and HMG-I(Y)
integrants examined, respectively, resulted from a concerted
mechanism. The remainder resulted from multiple indepen-
dent one-ended donor integration events that produce dele-
tions in the target DNA (42). While all of the HMG proteins
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tested stimulated integration in vitro, HMG-I(Y) yielded the
most concerted DNA integration products, consistent with the
finding of this protein in HIV-1 preintegration complexes (29).

CELLULAR PROTEINS

HMG proteins represent a large family of nonhistone DNA
binding proteins which are localized primarily in the nucleus of
eukaryotic cells and which can be extracted in the presence of
acid and salts. The proteins are classified into several families
including HMG-1/-2, HMG-14/-17, and HMG-I(Y). The
HMG proteins are relatively small, ranging from approxi-
mately 11 kDa for HMG-I(Y) and HMG-14/-17 to 25 kDa for
HMG-1/-2, and are known to modulate chromatin structure
and function (10). HMG proteins have common functional
features, including (i) binding to the minor groove of double-
stranded DNA; (ii) recognizing DNA structure rather than
sequence; (iii) preferentially interacting with bent, supercoiled,
or distorted DNA structures; (iv) binding to non-B-form DNA
structures such as four-way-junctions and cisplatin adducts; (v)
unwinding, bending, and supercoiling DNA substrates in the
absence of ATP hydrolysis; and (vi) selectively interacting with
other sequence-specific transcription factors as part of gene
transcription regulatory complexes.

HMG protein family members increase the efficiency of in-
tegration in vitro by acting on the donor DNA (1) without
forming stable complexes with IN or the LTR IN recognition
sequences, as judged from gel shift and coprecipitation exper-
iments (42). A truncated HMG-I(Y) protein (A50-90), which
preserves the region of HMG-I(Y) that binds most tightly to
substrate DNAs (43), is capable of stimulating integration as
well as wild-type HMG-1(Y) does. In contrast, another mutant
of HMG-I(Y) (II, IIT) which has several point mutations pre-
venting protein-DNA interactions while retaining protein-pro-
tein interactions, does not stimulate integration in vitro. Taken
together, these results imply that HMG-I(Y) needs to associ-
ate with the DNA to stimulate integration.

In addition to HMG proteins, another host protein may be
essential for in vivo integration. BAF functions as a required
factor for efficient integration by preventing autointegration.
Lee and Coffin first noted that MoMuLV was resistant to
autointegration and hypothesized that the lack of autointegra-
tion was due to incomplete reverse transcription (63). Lee and
Cragie found that a cellular protein, BAF, prevented autointe-
gration, and Chen and Engleman demonstrated that BAF
could stimulate integration, implying that BAF maintains a
competent integration complex by binding the viral DNA into
a “open-mesh” complex (15, 61, 62).

PROSPECTIVE

With the availability of reconstituted concerted DNA inte-
gration assays that closely mimic the genetic complexities of
integration in vivo, our understanding of the basic mechanism
of integration should dramatically increase. Moreover, these
systems will provide the means to screen for drugs targeted at
HIV-1 IN, which will potentially open a third avenue of ther-
apy to attack HIV-1-induced AIDS.
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