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A B S T R A C T   

Solar radiation is free, and very useful input for most sectors such as heat, health, tourism, 
agriculture, and energy production, and it plays a critical role in the sustainability of biological, 
and chemical processes in nature. In this framework, the knowledge of solar radiation data or 
estimating it as accurately as possible is vital to get the maximum benefit from the sun. From this 
point of view, many sectors have revised their future investments/plans to enhance their profit 
margins for sustainable development according to the knowledge/estimation of solar radiation. 
This case has noteworthy attracted the attention of researchers for the estimation of solar radi
ation with low errors. Accordingly, it is noticed that various types of models have been contin
uously developed in the literature. The present review paper has mainly centered on the solar 
radiation works estimated by the empirical models, time series, artificial intelligence algorithms, 
and hybrid models. In general, these models have needed the atmospheric, geographic, climatic, 
and historical solar radiation data of a given region for the estimation of solar radiation. It is seen 
from the literature review that each model has its advantages and disadvantages in the estimation 
of solar radiation, and a model that gives the best results for one region may give the worst results 
for the other region. Furthermore, it is noticed that an input parameter that strongly improves the 
performance success of the models for a region may worsen the performance success of another 
region. In this direction, the estimation of solar radiation has been separately detailed in terms of 
empirical models, time series, artificial intelligence algorithms, and hybrid algorithms. Accord
ingly, the research gaps, challenges, and future directions for the estimation of solar radiation 
have been drawn in the present study. In the results, it is well-observed that the hybrid models 
have exhibited more accurate and reliable results in most studies due to their ability to merge 
between different models for the benefit of the advantages of each model, but the empirical 
models have come to the fore in terms of ease of use, and low computational costs.   
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Nomenclature 

AI Artificial intelligence 
AAPRE Average absolute percent relative error 
ANN Artificial neural network 
ANFIS Adaptive network-based fuzzy inference system 
BAK Boruta-based feature selection algorithm 
BPNN Back propagation neural network 
C-SVM Corrected support vector machine 
CRO Coral reefs optimization 
CART Classification and regression tree 
CNN Convolutional neural network 
CS-OP-ELM Cuckoo search based optimally pruned extreme learning machine 
CSAWNN Wavelet neural network based on cuckoo search algorithm 
DA Dragonfly algorithm 
DE Differential evolution 
DL Deep learning 
DT Decision tree 
E Relative percentage error 
ELM Extreme learning machine 
erMAX Maximum absolute relative error 
FIS Fuzzy inference systems 
FFA Firefly algorithm 
FRF Fuzzy regression function 
GAMMF Genetic approach combing multi-model framework 
GFM Generalized fuzzy model 
GOA Grasshopper optimization algorithm 
GPI Global performance index 
GANN Genetic algorithm neural network 
GA Genetic algorithm 
GPR Gaussian process regression 
GRNN Generalized regression neural network 
GSO Glowworm swarm optimization 
GP Genetic programming 
GRU Gated recurrent unit 
GABPNN Genetic algorithm based back propagation neural network 
GWO Grey wolf optimization 
HMM Hidden Markov model 
KHA Krill-herd algorithm 
k-NN K-nearest-neighbors 
LSTM Long short-term memory network 
LES Linear exponential smoothing model 
LASSO Least absolute shrinkage and selection operator 
LM Levenberg marquardt back propagation 
LR Linear regression 
MARS Multivariate adaptive regression spline 
MAE Mean absolute error 
MLP Multilayer perception 
MPE Mean percentage error 
MARE Mean absolute relative error 
MLSR Multivariable least squares regression 
MABE Mean absolute bias error 
MRE Mean relative error 
M5 Model five 
MLFFNN Multilayer feedforward neural network 
MBE Mean biais error 
M5Tree Model five tree 
MAPE Mean absolute percentage error 
MA Moving average 
NARX Nonlinear autoregressive recurrent exogenous neural network 
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1. Introduction 

1.1. Research background 

Solar radiation that crosses the atmosphere and reaches the Earth’s surface plays a critical role in the chemical, physical, and 
biological processes necessary for the survival of life [1,2,3]. Changes in solar radiation directly affect climate data, hydrologic cycle, 
sensible heat, latent heat, evaporation, ecological life, migration, and other many important parameters [1,4]. In addition to all these 
critical points, solar energy has a much lower environmental footprint compared to traditional energy sources such as fossil fuels. 
Because of all these characteristics, solar energy systems are look forwarded to play a key role in the mitigation of carbon emissions and 
new employment opportunities in the near future, exclusively in developing countries [5]. In brief, solar energy is seen as one of the 
most important renewable and sustainable energy sources that can suspend the global-scale energy crisis [6]. 

With the growing concerns on environmental issues, solar energy systems have begun to be widely used on a large scale in many 
countries in the world, exclusively in those with more solar energy potential. That is because the countries that relied on solar systems 
have witnessed their advantages such as economic, and environmental aspects in the short run and they started to enhance the share of 
solar systems in their electricity production methods. Many countries noticed these positive results in the short run and increased their 
solar power plant investment by revising their energy investments considering their solar energy potentials. The electrical energy 
potential that a country can obtain from the sun can be easily understood by the solar radiation of that country. In this framework, 
Fig. 1 shows the horizontal global solar radiation potential for all countries. As can be seen from the figure, especially Africa, Australia, 
South America, Southern Europe, and Asia (especially India) have a high solar energy potential. In these regions, solar energy has been 
often used in electricity and heat generation. In regions with low solar energy potential, concentrating the radiation (concentrated 
solar systems) is accepted as a simple solution method to enhance the solar radiation potential of the relevant regions. 

In today’s technology, it is possible to benefit from solar energy in different methods. These main methods can be listed as follows: 
Solar thermal electricity generation, solar heating systems, and photovoltaic cells (PV systems) [8–10]. Among all these methods, PV 
solar systems have a wide usage area all over the world, and it is easy to generate electricity from PV solar systems. Fig. 2 shows the top 

nRMSE Normalized RMSE 
NB Naive bayes 
NS Nash-Sutcliffe model efficiency coefficient 
nMBE Normalized MBE 
NSMOBA Nondominated sorting-based multi-objective bat algorithm 
nMAE Normalized MAE 
PSO Particle swarm optimization 
PV Photovoltaic 
R2 Coefficient of determination 
RF Random Forest 
r Correlation coefficient 
RMSE Root mean square error 
RP Resilient back propagation 
RNN Recurrent neural network 
RSE Relative standard error 
RBFNN Radial basis function neural network 
RW Random walk 
RMSRE Root mean squared relative error 
RBF Radial basis function 
RRMSE Relative root mean square error 
SCG Scaled conjugate gradient 
SOM Self-organizing map 
SES Simple exponential smoothing 
SMAPE Symmetric mean absolute percentage error 
SARIMA Seasonal autoregressive integrated moving average 
SSRE The sum of squares of relative errors 
SSA Salp swarm algorithm 
SVM Support vector machine 
SVR Support vector regression 
SMGRT Simple membership function and fuzzy rule generating technique 
TDNN Time delay neural network 
U95 Uncertainty 95% 
VAR Vector autoregressive 
WT Wavelet transform 
XGBoost Extreme gradient boosting  
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10 countries with the highest solar PV power capacity for 2021 [11]. 
As can be seen in Fig. 2, China is the leading country with a new PV capacity of nearly 50 GW in the year 2021. China has about 300 

GW of solar PV power, according to 2021 data. Considering the rest of the world, a significant increment transiting to solar energy has 
been well-noticed. The reason why the countries have considerable growth in their interest in solar energy is to ensure economic 
sustainability by reducing dependence on fossil fuels year by year and some agreements such as the Paris agreement and Kyoto 
protocol, etc in which countries are involved. Other important points regarding the growing capacities in solar PV capacities are 
counted as the energy security issues and the volatility of fossil-fuel prices. This growth is expected to continue in the upcoming years. 
For example, according to the International Energy Agency (IEA), Renewables 2021 report, it is foreseen that PV systems broke a new 
record in the capacity additions of renewable energy sources in the year 2021. According to the report, almost 290 gigawatts (GWs) of 
new renewable power was commissioned in 2021, which is 3% higher than 2020’s growth. PV systems alone account for more than 
half of all renewable power expansion in 2021, followed by wind energy and hydropower, respectively. 

Although solar energy is a very useful source of renewable energy, the electricity generation capacity of PV modules largely de
pends on solar radiation, the climate of the location of the solar farm, and weather conditions [12]. Solar radiation reaching the PV 
cells significantly affects the power output of the cells. With the increase of solar radiation reaching the PV cell or module, the 
short-circuit current also increases [13,14,15,16]. This effect also increases the power output. With the increase in the installation of 
PV systems all around the world, it becomes important to estimate the solar radiation reaching the earth and the power obtained from 
these systems. In this way, both investment costs can be determined and electricity grid integration can be achieved. 

1.2. Research significance 

It is necessary to measure the solar radiation values in that region to determine the solar energy potential in a given geographical 

Fig. 1. The horizontal global solar radiation potential for all countries [7].  

Fig. 2. Solar PV power capacity for 2021 [11].  
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region. In this way, a future perspective for a solar energy system to be established in this region can be created. Solar radiation 
reaching a certain point on the earth is called direct and diffuse radiation. The sum of these two radiations is also called global solar 
radiation. Solar radiation is measured using devices such as a pyranometer, pyrheliometer, and solarmeter [17]. However, it is not 
practically possible to place these measurement devices in all regions due to their huge cost, measurement difficulties, and calibration 
problems. For example, Türkiye has 1798 meteorological measurement stations in 2020, but only 129 of these stations can measure 
solar radiation data. An important example of this case is from China. There are 756 meteorological measurement stations in China in 
2012. Only 122 of these stations can measure the solar radiation data [9]. As can be clearly understood from these significant ex
amples, access to solar radiation data for the installation of solar energy systems may be limited. 

Estimation of solar radiation not only provides information for the installation of solar energy systems. The stochastic structure of 
solar radiation is mainly caused by the motion of cloud shadows between the sun and the PV array that usually causes a ramp event to 
consist over the solar modules. This event causes major, sudden, and unexpected floatings in the output power of PV modules [18]. The 
variability of energy from PV solar systems poses a serious challenge for energy companies and operators of the transmission system. 
The operator of the power grid needs production estimates for a safe and efficient supply [5,19]. Although production amounts can be 
estimated in conventional power plants, it is not easy to make this estimation in renewable power plants. Reliable, and robust estimates 
are significantly essential for efficient usage of the floating output of energy produced in PV systems. 

Grid load estimated for the next two days provides the basis for scheduling of power plants and planning processings in the 
electricity market to balance the supply and demand of energy and to ensure reliable grid operation [20]. These load estimations are of 
great importance as they are used by utility companies, energy service providers, transmission system operators, and independent 
power producers in their scheduling, dispatching, and regulation of power [19]. 

To sum up, the estimation of solar radiation for solar energy systems (especially PV solar systems) is critical for several reasons. 
First and foremost, parameters such as system investment costs and operating costs can be determined with solar radiation data. In this 
way, the most optimum installation region for the investment can be determined. Second, estimates can be made for the fluctuating 
power output of solar PV systems. In this way, better integration can be achieved for power grids. Third, the knowledge of solar ra
diation can be a useful and very critical input to enhance the yield of crop growth in the agriculture sector. Furthermore, this esti
mation is of great importance to track and manage the possible future risk in the agriculture sector. Other important sectors using solar 
radiation data are tourism and health care. As it can be obviously understood, the accurate estimation of solar radiation is vital to very 
critical sectors. Accordingly, many researchers are dedicated to predicting solar radiation data with low errors and have improved 
many models for years. In this framework, there are quite different approaches in the literature for the estimation of solar radiation. 
While some of these approaches (empirical models, mathematical models, etc.) have been used for decades, some innovative ap
proaches (machine learning approaches, hybrid models, etc.) are available in the literature in parallel to technological development in 
computer science. Empirical and mathematical methods are regarded as conventional, while others are artificial intelligence-based. 
Each used method has its characteristics, challenges, advantages, disadvantages, limitations, and accuracy. Among these models, 
artificial intelligence-based forecasting methods have superior advantages over traditional methods. Some of the superiorities of 
artificial intelligence-based methods include the capacity to work with incomplete inputs, reasoning capabilities, and ease of updates 
and maintenance [18,21]. The advantages of traditional methods can be listed as not requiring software knowledge, being easily 
applicable, and yielding results with less input. In addition to these, the estimation scale is also important. For example, traditional 
models give very satisfactory results in monthly estimations of solar radiation. However, in estimating daily or hourly solar radiation, 
the success of these models is highly worsening. The main reason for this case is that traditional methods do not have learning ca
pabilities, unlike artificial intelligence (AI) based methods. However, the limited input data in traditional methods is one of the 
important factors affecting short-term estimation achievement. 

Different parameters (measured solar radiation, wind speed, temperature, day length, sunshine duration, pressure, humidity, etc.) 
were used as inputs to predict solar radiation. Although the main aim of all these methods is considered to be higher accuracy esti
mation of solar radiation, this is not exactly true. High-performing estimations using fewer and more accessible inputs are far more 
important. 

For these reasons, it is of major significance to reveal the estimation models performance of solar radiation under different con
ditions. The choice between models can be quite decisive for investors, companies, and decision makers. This study focused on an in- 
depth comparison of traditional and innovative solar radiation estimation methods. Accordingly, the rest of the paper is organized as 
follows: Section 2 gives a comprehensive literature review. This section is divided into five subsections. In the first four subsections, 
empirical models, time series methods, artificial intelligence methods, and hybrid methods are handled, respectively. In these sub
sections, after briefly explaining the models, which are frequently used in the estimation of solar radiation, information about the 
studies in the literature is given and the highlights of each work are detailed with the key findings. In the fifth subsection, studies based 
on different solar radiation estimation models using the same dataset are compared with each other. In this way, it has been aimed to 
make a more detailed comparison of the prominent models in the studies. In Section 3, the results obtained from the literature review 
are discussed in depth. An overall assessment of the key findings, such as the selection and importance of the inputs and the need for 
optimization in hybrid models, is presented thereof. One of the critical parts of the study is the research gaps, challenges, and future 
directions section. In Section 4, the general advantages, disadvantages, comparisons, challenges, and future directions of the models 
for the estimation of solar radiation are discussed. Finally, conclusions are drawn in Section 5. 

2. Literature review 

This section presents a literature review of the methods used to estimate solar radiation data. In this framework, the studies in the 
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Table 1 
A summary of the studies regarding the prediction of solar radiation data using empirical models.  

Location Model Input Parameters Output 
Parameter 

Data scale Statistical 
Benchmarks 

Key Findings References 

Ashanti, Owabide 
(Ghana) 

Angstrom-Prescott 
and Hargreaves 
and Samani 

Sunshine hours and air 
temperature 

Global solar 
radiation 

Five months from 
2011: April, May, 
June, October, 
November 

MBE, MPE, and 
RMSE 

Proposed models 
using sunshine hours 
and air temperature 
compatible with 
measured solar 
radiation value. 

[26] 

Ghardaïa, Algeria 6 combined new 
models 

Minimum and 
maximum temperature 

Global solar 
radiation 

365 days of 2006 RMSE, MBE, 
MAE, and MPE 

GSR predicted well in 
all models, and MPE 
values found ±10%. 

[27] 

Yucatán Peninsula, 
Mexico 

A novel empirical 
model (M5) 

Average relative 
humidity, minimum 
temperature, 
maximum 
temperature, and 
transformed rainfall 

Daily 
horizontal 
global solar 
radiation 

From 6 different 
stations on different 
dates between 2000 
and 2014. 

MPE, MAPE, 
RMSE, MBE, 
MABE, and R2 

The proposed model 
(M5) was calibrated 
using 12 existing 
models. If rainfall 
and relative 
humidity data are 
available, this model 
can be used. 

[28] 

India 32 empirical 
models in 4 
different 
categories 

Relative sunshine 
period, and clearness 
index 

Global solar 
energy 

1986–2000 MARE, MAE, 
RRMSE, RMSE, 
U95, t-stats, 
MPE, MBE, 
erMAX, r, and 
GPI 

The power model 
with a clearness 
index shows great 
performance. 

[29] 

Tropical regions of 
China 

6 temperature- 
based models 
(P1–P6) 

Temperature, relative 
air humidity, vapor 
pressure deficit, 
transformed 
precipitation, and 
precipitation 

Daily 
horizontal 
global solar 
radiation 

1966–2015 R2, RMSE, 
NRMSE, and 
MBE 

The second model 
(P2) has high 
accuracy when only 
air temperature is 
considered, but 
models 3 and 5 (P3 
and P5) have higher 
accuracy when other 
variables (eg. 
precipitation and 
relative humidity) 
are considered for 
tropical regions of 
China. 

[30] 

Muğla, Türkiye 105 different 
regression models 
and set of new 
regression models 

Sunshine duration, 
cloudless, and average 
sunshine duration 

Global 
horizontal 
solar 
radiation 

January 2007 to 
August 2015 

MPE, MBE, 
MAPE, MABE, 
RMSE, and R2 

7 new calibrated 
models were tested 
and found low error 
rates. 

[31] 

China 72 existing and 
developed 
empirical models 

Meteorological and 
solar radiation data 

Diffuse 
horizontal 
solar 
radiation 

1966–2015 R2, RMSE, 
RRMSE, MAB, 
NRMSE, t-stat, 
U95, and GPI 

In different 
categories, models 
were tested and 
developed. 

[32] 

India Three Global Solar 
Radiation models 
(M-01, M-02, M- 
03) 

Relative humidity, 
latitude, altitude, and 
sunshine duration 

Global solar 
radiation 

1986–2000 RMSE, MAE, R2, 
MPE, RMSRE 
MARE, MBE, t- 
stat, GPI, 
RRMSE, and 
U95 

M-03 model contains 
4 variables and can 
be applied with 
maximum 11.8935% 
MPE. 

[33] 

Morocco Hybrid 
temperature-based 
models 

Temperature Daily global 
solar 
radiation 

1996–2010 MBE, MSE, 
RMSE, R2, 
standard 
deviation, and 
performance 
score 

4 ML models were 
used to optimize 42 
temperature-based 
models and 
correlations (R2) 
increase. 

[34] 

China Zone model Surface meteorological 
measurements. 

Daily global 
solar 
radiation 

1970–2017 MABE, RMSE, 
and NSEC 

With the zone 
method NSEC values 
greater than 0.8 and 
RMSE% less than 
20% obtained. 

[35] 

Iran Twenty-one 
sunshine-based 
empirical models 

Number of days and 
sunshine 

Daily solar 
radiation 

2007–2017 R2, MAE, MBE, 
RRMSE, MAPE, 
RMSE, and MBE 

21 different 
sunshine-based 
empirical models 
were compared and 
calibrated. 

[36] 

(continued on next page) 
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Table 1 (continued ) 

Location Model Input Parameters Output 
Parameter 

Data scale Statistical 
Benchmarks 

Key Findings References 

Adrar, Algeria Proposed 6 
temperature-based 
models 

Daily air temperature Daily average 
horizontal 
global solar 
radiation 

4 years period MBE, RMSE, 
and R2 

Proposed M4 model 
shows best 
performance (R2 =

0.87). 

[37] 

Industrial City, the 
Kingdom of 
Saudi Arabia 

Linear, Quadratic 
and Logarithmic 

Relative humidity, 
ambient temperature, 
and sunshine duration 

Global 
horizontal 
radiation 

January–December 
2016 

r, R2, RMSE, 
MBE, MABE, 
and MAPE 

3 different models 
were examined and 
compared, the 
quadratic model has 
the highest r and R2. 

[38] 

Eskişehir, Türkiye Angström-Prescott 
model and 
improved versions 
of this model, also 
several typical 
models based on 
ambient 
temperature 

Sun radiation, sunshine 
period, temperature, 
air pressure, wind 
speed, and relative 
humidity 

Worldwide 
sun radiation 

January 
2011–December 2014 

E, MPE, MAPE, 
SSRE, RSE, 
MBE, RMSE, t- 
sat, and R2 

The author tested 
new model usage 
with 9 statistical 
techniques. 

[39] 

Peru Multiple linear 
regression analysis 

Temperature, 
precipitation, and 
relative humidity 

Daily solar 
radiation 

1990–2004 
(calibration) and 
2004–2010 
(validation) 

RMSE Seven empirical 
models were 
employed for the 
prediction of daily 
solar radiation data. 

[40] 

Morroco Temperature 
-Geographic 
factors model 

Temperature- 
Geographic factors 

Global solar 
radiation 

August 
2011–September 
2015 

r, nMAE, and 
nRMSE 

22 empirical models 
and other machine 
learning methods 
were applied. 
Temperature- 
Geographic factors 
models recommend 
in all empirical 
models. 

[41] 

Iran 11 Newly 
Developed 
Empirical Models 
(NDEM) 

Month number, solar 
declination, sunshine 
duration, RH, and 
cloud cover rank 

Monthly, 
daily, and 
hourly diffuse 
solar 
radiation 

January 2008 to 
December 2017 

RMSE, NRMSE, 
and R2 

11 newly developed 
models were tested. 
Errors do not exceed 
10% for these 
models. 

[42] 

Ghana Modified 
Angström-Prescot, 
modified Steyn- 
method, Ordinary 
kriging method 

Sunshine duration Global solar 
radiation, sky 
view factor, 
cloudiness 
index 

2015–2018 r Sky conditions were 
calculated by 
different methods for 
the 4 climate regions 
of Ghana. 

[43] 

China Empirical PV 
power model, 
combined a 
sunshine-based 
model, and inverse 
distance weighting 
model 

Minimum and 
maximum 
temperature, sunshine 
duration, relative 
humidity, and 
precipitation 

Global solar 
radiation 

1961 to 2018 RMSE, MAE, 
RRMSE, R2, and 
NS 

New developed 
global solar radiation 
model can predict 
correctly. 

[44] 

Fiji island 20 empirical 
models 

Sunshine duration, 
minimum, mean, and 
maximum 
temperatures, cloud 
cover, and relative 
humidity 

Global solar 
radiation 

1984 to 2018 ME, NSE, PME, 
RMSE, and r- 
value 

20 models were 
analyzed by dividing 
into 3 different 
groups. Models with 
relative humidity in 
group 3 performed 
very well. 

[45] 

Irani (Ahvaz,  
BandarAbbas, 
and 
Kermanshah) 

Eight Rs empirical 
models, (AP, GG, 
HS, S, An, Ch, Ba, 
Ab) 

Extraterrestrial solar 
radiation, sunshine 
hours, air temperature, 
relative humidity, 
maximum possible 
sunshine hours, the 
function of daily range 
of air temperature, and 
station altitude 

Solar 
radiation 

2007 to 2017 RMSE, NMRSE, 
and R2 

They compared 8 
empirical models and 
SVM models. They 
do not recommend 
the use of empirical 
models instead of the 
SVM model, despite 
their high accuracy. 

[46]  
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literature are divided into four subsections and discussed. These subsections provide a summary of studies in the literature using 
empirical models, time-series models, artificial intelligence models, and hybrid models, respectively. After briefly introducing the 
relevant estimation models in each subsection, prominent aspects of the literature studies are highlighted. The present section ends 
with an examination of studies that analyzed the performance of forecasting methods in different categories using the same dataset. 

2.1. Empirical models 

The importance of estimation and modeling solar radiation is known to everyone. Empirical models are used for years to predict 
solar radiation. The most widely used and oldest model is the Angstrom model [22]. Different models based on this model have been 
improved by many researchers. Models estimating solar radiation generally use sunshine duration, temperature, other meteorological 
parameters, and cloudiness index [23]. However, using all of these parameters at the same time complicates the empirical correlation, 
and generally, only a few parameters are used together in the developed models. In this case, the most preferred variables are sunshine 
duration and temperature parameters. Models developed according to these variables can only be used locally, even if they have a high 
accuracy rate. 

Many parameters that affect solar radiation, and when these are entered as variables in an equation, it becomes very difficult to 
calculate. In the detailed literature study, it is seen that models using only a few variables generally make regional estimations. A 
summary of the study performed using empirical models for the estimation of solar radiation data is given in Table 1. 

It is possible to examine the models used for the estimation of solar radiation in 2 groups. The first group model predicts global 
horizontal estimation of solar radiation (H-based), and the other is models based on different weather variables (non-H-based models) 
[24]. As seen in Table 1 many researchers create different models regionally. It is seen that most of the prediction models are H-Based. 
Due to their simplicity and high accuracy, H-based models are used in many applications. It has been stated in many studies that the 
dataset and the number of variables are important while developing the empirical model. The larger the dataset, the higher the ac
curacy of the empirical model. In addition, the increase of variables in the empirical models increases the accuracy parallel. However, 
in this case, the model can become complex. In empirical models, the simplicity of the model is as important as its accuracy. In 
addition, it is very critical to determine the key factor in a model for the simple and accurate, as in the study by Jamil and Bellos, 2018 
(clearness index). 

In recent studies, although the empirical models work with high accuracy in the region where they are tested, it has been observed 
that the opposite is the case in different climatic conditions and different regions. For this reason, some researchers have tried other 
predictive AI-based models combined with empirical models and developed hybrid models [25]. These models have been calibrated 
with other models, and their application areas and accuracy have also increased. 

2.2. Time series methods 

Time series methods are one of the most common statistical techniques used for the estimation of solar radiation. Time series can be 
described as the evolution of a series of observations that are sampled at regular intervals over time. The originality of time series 
models compared to other statistical methods is that they introduce time as one of their explanatory variables. Time series improve 
mathematical models that can predict future observations based on present data [47]. Time series models such as autoregressive 
integrated moving average (ARIMA), autoregressive (AR), autoregressive moving average (ARMA), an autoregressive moving average 
model with exogenous variables (ARMAX), autoregressive integrated moving average with exogenous variables (ARIMAX), autore
gressive fractionally integrated moving average (ARFIMA), moving average (MA), and vector autoregressive (VAR) are used to esti
mate solar radiation. 

The AR model shows a process where present values can correspond to a linear combination of past values. In contrast to the AR 
model, which uses the weighted total of the past values to ensure a time series representation, the MA model consolidates n number of 
past values to develop a time series. The ARMA model was improved by consolidating AR and MA models to ensure a stingy 
parameterization for a process. The ARMAX model ensures a multivariate time series representation to increase the accuracy of the 
univariate ARMA model by including suitable information in addition to subjected time series. For example, cloud cover, humidity, 
wind speed, and direction can be included as exogenic variables in an ARMA model to improve an ARMAX model for more accurate 
forecasting of solar radiation time series [48]. The ARIMA model is preferred for non-stationary time series. Distinct sections of 
nonstationary processes show some level of similarities, although they represent differences in local trend or level. A stable ARMA 
process with the n-th difference in the time series improves an ARIMA model [49]. The ARFIMA model is preferred for long memory 
prediction. ARFIMA generalizes ARIMA by authorizing the difference to get fractional values [50]. The ARIMAX model includes past 
values of the time series in ARIMA to improve its performance and accuracy. It is a more suitable model for time series with abrupt 
variations in trends. An ARIMA process containing the past values of an exogenic variable improves an ARIMA process [48]. The VAR 
model qualifies linear dependencies among two or more time series. The VAR model utilizations multiple variables to generalize the 
univariate AR model [51]. Summary of studies using time series models for the estimation of solar radiation is given in Table 2. 

As seen in Table 2, time series models have generally yielded successful results in the estimation of solar radiation. Time series 
models make predictions using historical solar radiation data. In this framework, it makes predictions by ignoring other important 
climatic, environmental, and geographical changes. With the advancement of computer science, the use of AI algorithms has become 
widespread. AI algorithms applied to many engineering problems have provided very successful results. For example, [68], in their 
study, estimated solar radiation data for two different regions with a time series model, AI algorithm, and hybridization of these two 
models. The results were discussed with regards to RMSE, nRMSE, MBE, nMBE, MPE, and R2 statistical metrics to determine the best 
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Table 2 
A summary of the studies regarding the prediction of solar radiation data using time series methods.  

Location Model Input Parameters Output Parameter Data Scale Statistical 
Benchmarks 

Key Findings References 

Kansas, 
Denver, 
and 
Arizona, 
United 
States 

ARIMA Historical solar 
radiation 

Daily average 
global horizontal 
solar radiation 

January 01, 
1987, to 
December 31, 
1990 

MAPE ARIMA has better results 
when applied to the time- 
varying daily solar 
radiation prediction. 

[52] 

Many 
countries 
in Europe 
and Asia 

ARIMA Historical solar 
radiation 

Daily solar 
radiation 

9436 days from 
November 16, 
1978 

N/A The time series in different 
climatic conditions depend 
on the long-range 
variability of solar 
radiation. 

[53] 

Jeddah, Saudi 
Arabia 

AR Historical solar 
radiation 

Diffuse horizontal 
radiation, hourly 
global solar 
radiation, and 
direct normal 
radiation 

1998–2002 RMSE and 
MBE 

The applicable model 
developed with the entered 
parameters resulted in an 
accurate prediction. 

[54] 

Miami and 
Orlando, 
United 
States 

ARIMA Historical solar 
radiation 

Hourly global solar 
radiation 

January 1995 to 
December 2005 

MBE and 
RMSE 

It was observed that cloud 
cover information gives 
more accurate results in 
terms of prediction. 

[55] 

Awali, 
Bahrain 

ARIMA Historical solar 
radiation 

Daily average solar 
radiation 

May 2010 to 
April 2011 

MAPE It was observed that the 
different ARIMA models 
used effectively predict 
solar radiation. 

[56] 

Five cities in 
France 

ARMA Meteorological 
parameters 

Hourly global solar 
radiation 

October 2002 to 
December 2008 

nRMSE The nRMSE ranges from 
18.9 to 21.1% in five 
different cities. 

[57] 

Ajaccio, 
France 

ARMA Meteorological 
parameters 

Hourly solar 
radiation 

2007–2008 nRMSE ANN has better results than 
the ARMA model with a 
decrease of 1.3 points 
while performing error 
prediction. 

[58] 

Corsica 
Island, 
France 

AR and 
ARIMA 

Historical global 
solar radiation 

Daily global solar 
radiation 

January 1998 to 
December 2007 

RMSE, 
nRMSE, MAE 
and MBE 

An ANN with extrinsic and 
intrinsic data has better 
performance in univariate 
ARMA models. 

[59] 

Seoul, South 
Korea 

ARIMA and 
SARIMA 

Historical solar 
radiation data 

Daily and monthly 
solar radiation 

1981–2017 R2 and RMSE While the ARIMA model 
has good results for daily 
solar radiation, SARIMA 
has more accurate results 
for monthly solar radiation 
estimation. 

[60] 

Oran, Algeria ARMANAR Meteorological 
parameters 

Hourly global 
horizontal solar 
radiation 

2010–2012 RMSE and 
nRMSE 

nRMSE is 0.2634 and 
0.3241, respectively for 
NAR and ARMA. 

[61] 

Seoul, South 
Korea 

SARIMA 
NARX 

Historical global 
solar radiation 

Global solar 
radiation 

1981–2015 RMSE and R2 R2 and RMSE are 0.95 and 
0.23 MJ/m2, respectively 
for NARX. 

[62] 

New Delhi, 
India 

ARIMA Meteorological 
parameters 

Monthly solar 
radiation 

July 01, 1983, to 
December 31, 
2007 

RMSE, MAPE, 
MAE, and R2 

MAPE, R2, RMSE, and MAE 
results are 6.556, 0.9293, 
0.3529, and 0.2659, 
respectively. 

[63] 

Las Vegas, 
United 
States 

ARMA Historical solar 
radiation 

Hourly solar 
radiation 

1995–2004 MBE and 
nRMSE 

MBE and nRMSE are 
0.133% and 11.76%, 
respectively. 

[64] 

Morocco ARMA and 
ARIMA 

Historical solar 
radiation 

Daily global solar 
radiation 

2018 (November 
to December) 
and 2019 
(January to 
March) 

MBE 
RMSE, and 
MAPE 

ARIMA has a better 
performance compared to 
the ARMA model. 

[65] 

Two cities 
(Algiers 
and 
Ghardaia) 
in Algeria 

AR and NAR Historical solar 
radiation 

Daily global solar 
radiation 

1 January 2005 
to 31 December 
2006 

NRMSE, S, R2, 
RMSE, MAE 
and MBE 

NAR has a better 
performance compared to 
the AR model. 

[66] 

[67] 

(continued on next page) 
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method for these two regions as seen in Table 3. 
Accordingly, the hybrid model gave the best result in all statistical metrics for the Bouzaréah region, while the AI-based algorithm 

gave the second-best result in 4 out of 6 statistical metrics. In the Ghardaia region, the hybrid algorithm had the best results in 5 of 6 
statistical measures, while the AI-based algorithm showed the second-best performance in 4 of 6 statistical measures [68]. Accordingly, 
the higher performance success of prediction algorithms consisting of hybrids of AI and AI-time series has pushed researchers to use 
more AI or hybrid algorithms in recent years. In this framework, the effects of AI-based algorithms on the estimation of solar radiation 
are covered extensively in the following subsection. 

2.3. Artificial intelligence methods 

In recent years, it has been viewed that great, effective, and successful steps have been taken with the enormous technological 
development, particularly in computer science. These steps make human life easier in many stages of daily life. One of the significant 
steps is undoubtedly artificial intelligence (AI). AI is a relatively new application that is growing in both its popularity and the variety 
of its usage area. AI is a technology that is frequently applied today in medicine, textiles, energy, machinery, economy, and other many 
important fields, and its success is now proven and accepted by human beings. Although it emerged at first as an effective alternative 
approach to traditional methods, its performance success has surpassed traditional methods in almost every field where it is applied 
today. AI represents machines with human-like intelligence, and it has a very high learning ability with the mechanism it runs in the 
background. Compared to traditional methods, artificial intelligence is a very successful tool for dealing with uncertainties and 
especially sudden changes and making quick decisions/responses. 

In particular, with its application to engineering problems, many time-consuming and costly problems are now solved in the 
computer environment. It is indispensable software for many sectors such as the economy, energy production, supply chains, logistics, 
crop yield in agriculture, etc. It also offers user optimization opportunities or investment advice by observing the minimum errors and 
results in advance. One of its wide usage areas is the energy sector. For this sector, it has been proven to offer very successful results 
about the energy potential at a given location, particularly with regards to solar and wind energy. Even decision-makers, as well as 
policymakers, have revised their future energy investment scenarios according to AI results and achieved maximum efficiency. 

The fact that the estimation of solar radiation data is of major importance for many critical sectors and the devices’ high costs that 
measure this data has led to the derivation of empirical models in this field. Although accurate and satisfactory results could be 
achieved to a certain extent with these empirical models in the literature, errors have been minimized with the introduction of AI 
technology into this field. Many researchers have proven in their studies that AI methods give more accurate results than empirical 
models. In this section, it is aimed to give an extensive literature review on the estimation of solar radiation data with AI algorithms 
and to discuss the results of the relevant studies. Considering the literature studies, it has been observed that generally ANN, SVM, DL, 
k-NN, RNN, SP, RF, SMGRT, FIS, ANFIS, LSTM, ConvLSTM, CNN, XGBoost, NB, DT, ELM, GPR, and MLP have been dominantly used in 
the estimation of solar radiation data. A summary of the studies performed using AI algorithms for the estimation of solar radiation 
data is given in Table 4. 

As seen in Table 4, most researchers trained AI algorithms using a large variety of input parameters and generally reported 
satisfactory results for each AI algorithm. On the other hand, considering the works where the same dataset is applied to different solo- 
AI algorithms, the number of studies emphasizing that there is a big difference between the algorithm successes in estimating the solar 
radiation data is very limited. Generally, AI algorithms give close estimation results to each other. Based on the literature review 
presented in Table 4, it is possible to conclude that it would not be correct to say that any AI algorithm gives the best results for all 
regions. In other words, it was well observed that while ANN gave the best estimation of solar radiation results for one region, it gave 
the worst result for another region. Furthermore, while the most significant parameter affecting the AI prediction results in a given 
region is the sunshine ratio, it may be temperature data for another region. 

Table 2 (continued ) 

Location Model Input Parameters Output Parameter Data Scale Statistical 
Benchmarks 

Key Findings References 

Ghardaia, 
Algeria 

ARMA, 
NARX, and 
AR 

Historical solar 
radiation 

Hourly global solar 
radiation 

May 2013 to 
October 2013 

RMSE, 
NRMSE, 
MAPE, NMBE 
and R 

NARX estimated the solar 
radiation data more 
accurately than other 
models.  

Table 3 
Statistical comparison of time series, AI models, and their hybrid models on the same dataset [68].  

Location Model R2 MBE (Wh/m2) RMSE (Wh/m2) MPE (%) nMBE nRMSE 

Bouzaréah ANN 0.802 − 82.459 1334 24.062 − 0.0192 0.31 
ARMA 0.716 − 60.514 1553 28.611 − 0.0141 0.361 
Hybrid 0.820 − 48.591 1286 23.408 − 0.0113 0.298 

Ghardaia ANN 0.907 − 29.364 726.65 4.150 − 0.0051 0.126 
ARMA 0.882 − 7.493 813.32 5.626 − 0.0013 0.141 
Hybrid 0.914 − 31.458 701.18 4.092 − 0.0054 0.119  
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Table 4 
A summary of the studies regarding the prediction of solar radiation data using artificial intelligence algorithms.  

Location Model Input Parameters Output 
Parameter 

Data Scale Statistical 
Benchmarks 

Key Findings References 

Cairo in Egypt MLP, ANFIS, and 
SVM 

Sunshine, temperature, 
meteorological 
parameters, and day 
number 

Daily global 
solar radiation 

2012–2015 R2, MBE, 
RRMSE, MPE, 
and RMSE 

ANFIS and MLP models 
gave similar results, but 
SVM comes to the fore 
according to these two 
models. 

[69] 

Zonguldak in Türkiye LR and GR Humidity, wind speed, 
temperature, and pressure 

Daily global 
solar radiation 

One year 
period 

MAE, MSE, 
and RMSE 

GR exhibited more 
successful performance in 
estimating the solar 
radiation data than the LR 
model. 

[70] 

North China Plain in 
China 

RF, GANN, ELM, 
and GRNN 

Diffuse solar radiation Daily diffuse 
solar radiation 

2000–2014 RRMSE, MAE, 
NS, and RE 

All models predicted 
diffuse solar radiation 
with a mean relative error 
between − 5.8% to − 5.4%. 
In general, the GANN 
model exhibited the best 
prediction performance, 
followed by ELM, RF, and 
GRNN methods, 
respectively. 

[71] 

Wuhan, Kunming, and 
Guangzhou in 
China 

SVM and 
XGBoost 

Minimum and maximum 
temperature, altitude, 
longitude, and latitude 

Daily global 
solar radiation 

1966–2015 MAE, RMSE, 
R2, and MBE 

Statistical metric results 
demonstrate that the 
XGBoost model is better at 
estimating the daily global 
solar radiation than the 
SVM algorithm. 

[72] 

National laboratory in 
the USA 

FoBa, 
leapForward, 
spikeslab, Cubist 
and 
bagEarthGCV 

Historical solar intensity 
observations 

Daily global 
solar irradiance 

January 1, 
2010, to 
December 
31, 2015 

r, R2, RMSE, 
and accuracy 
value 

Experimental results 
demonstrate that for solar 
radiation forecasts from a 
few hours to two days, the 
algorithms predicted quite 
satisfactory results 
without the seasons being 
much affected by changes 
in weather conditions. 

[73] 

34 stations in Türkiye DL Minimum and maximum 
temperatures, cloud cover 
astronomical factor, 
sunshine duration, 
extraterrestrial radiation, 
and climatic variables, 

Daily global 
solar radiation 

2001–2007 R2, MAE, and 
RMSE 

A total of 16 combinations 
of input parameters were 
tested, and it is reported 
that the sunshine duration 
is the most affecting 
parameter for GSR. 

[74] 

Abu Musa Island ANFIS, RBFNN, 
SVR, MLFFNN, 
and FIS 

Wind speed, local time, 
relative humidity, 
pressure, and temperature 

Hourly solar 
radiation 

N/F r and RMSE The correlation coefficient 
is bigger than 95% for 
most models in the 
prediction of hourly solar 
radiation. 

[75] 

Ghardaia in Algeria SVM-R Sunshine ratio Daily global 
solar radiation 

2005–2007 RMSE, rRMSE, 
and R2 

The results showed that 
global solar radiation data 
is accurately predicted 
with very satisfied 
statistical R2, RRMSE, and 
RMSE of 97.4%, 8.46, and 
1.59 (MJ/m2), 
respectively. Accordingly, 
the authors stated that 
only sunshine ratio data 
may be sufficient to 
predict the solar radiation 
data. 

[76] 

Gurugram in India SVR Pressure, relative 
humidity, day, 
temperature, and wind 
speed 

Global solar 
radiation 

2009–2011 RMSE It has been shown that the 
most important parameter 
affecting the prediction 
performance of the SVR is 
the air temperature. The 
RMSE value in this model 
is found to be 14.3 MJ/m2. 

[77] 
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Table 4 (continued ) 

Location Model Input Parameters Output 
Parameter 

Data Scale Statistical 
Benchmarks 

Key Findings References 

Austin, TX in the USA Naive Bayes Dew point, temperature, 
sky coverage, and relative 
humidity 

Two-day-ahead 
global 
horizontal 
irradiance 

August 2013 
to March 
2014 

E, MAE, RMSE, 
RMBE, MAPE, 
and MBE 

The proposed NB is a 
significantly easy and 
rapid algorithm. This 
model requires small 
training data (less than 
two months) and utilizes 
publicly available input 
data. The results were very 
satisfying in terms of the 
six statistical metrics. 

[78] 

Odeillo in France SP, ANN, and RF Historical dataset Solar radiation 
(diffuse 
horizontal, 
beam normal, 
and global 
horizontal) 

3 years of 
hourly data 

RMSE, MAE, 
nRMSE, and 
nMAE 

RF had better forecasting 
results of solar irradiation 
as compared to SP, and 
ANN. Additionally, all 
models presented worse 
results in spring and 
autumn owing to the less 
reliable of data and high 
meteorological variability 
in these seasons. 

[79] 

India (Gorakhpur 
side) 

RF, M5, MARS, 
and  
CART 

Solar azimuth, dew point, 
pressure, rainfall, wind 
speed, global solar 
radiation, and minimum- 
maximum- average 
temperatures 

One-day-ahead 
to six-day- 
ahead hourly 
solar radiation 

January 1, 
2017, to 
December 
31, 2017 

MAE, MBE, 
and RMSE 

Among the prediction 
methods trained with the 
same dataset, the best 
prediction accuracy is 
obtained with RF, whereas 
the CART method is the 
worst. 

[80] 

Four provinces 
(Tekirdağ, Afyon, 
Ağrı, Sinop, and 
Hakkâri) in 
Türkiye 

SVR, ANN, and 
DT 

Hourly solar radiation Hourly solar 
radiation 

2012 to 2016 R2 and RMSE It is observed that boosting 
the ensemble improves the 
prediction performance of 
the algorithms. 

[81] 

Toledo in Spain SVR, GPR, MLP, 
and ELM 

A clear-sky solar radiation 
model, a cloud index, and 
several reflectivity values 

Hourly global 
solar radiation 

May 2013 to 
April 2014 

MBE, MAE, 
RMSE, and R2 

The results demonstrated 
that the satellite 
measurements increased 
the input parameters and 
improved the 
predictability of global 
solar radiation of the 
machine-learning 
algorithm. 

[82] 

Isparta, Türkiye DL, SMGRT, and 
ANFIS 

Soil, and air temperature 
sunshine duration, 
relative humidity, 
cloudiness, and 
extraterrestrial solar 
radiation 

Monthly global 
solar radiation 

2007 to 2016 MBE, MSE, 
RMSE, and R2 

Each model presented very 
satisfied results in 
predicting the GSR, but 
SMGRT comes to the fore 
according to the statistical 
metrics. 

[83] 

Tuscaloosa, Alabama 
in the USA 

ANN, and RNN Wind speed, dew-point 
temperature, outdoor air- 
dry bulb temperature, 
relative humidity, and 
wind direction 

Daily global 
solar radiation 

January 14, 
2019, to 
January 21, 
2019 

RMSE, NMBE 
CV(RMSE), 
and R2 

Cloud cover was a vital 
effect on the prediction of 
GSR. RNN had better 
prediction results, but it 
had 800 times higher 
computational costs than 
ANN. 

[84] 

Sapporo, Tateno, 
Fukuoka, 
Ishigakijima, and 
Minamitorishima 
in Japan 

ANN Relative humidity, 
precipitation, minimum 
and maximum 
temperature, altitude, 
longitude, months, 
latitude, sunshine 
duration, and wind speed 

Global, direct, 
and diffuse 
solar radiation 

2011–2016 R2, MAPE, and 
RMSE 

Monthly diffuse, direct, 
and global solar radiation 
data could be predicted 
with very high accuracy 
via the developed models. 

[85] 

15 weather stations in 
China 

SVM, RF, 
M5Tree, 
CatBoost and 
XGBoost 

Relative humidity, 
maximum and minimum 
temperatures, and 
sunshine hour 

Daily diffuse 
horizontal solar 
radiation 

1996–2015 RMSE, MAE 
NRMSE, and 
R2 

The same dataset of 15 
different stations with 
different climate 
conditions predicted 
different algorithms, and 

[86] 

(continued on next page) 
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2.4. Hybrid methods 

The continuous expansion of solar energy has made the subject of highly precise estimation of solar radiation important. Because of 
the atmospheric conditions variety and the non-steady action of solar radiation parameters, single prediction models such as empirical, 
artificial intelligence, and time series, may be insufficient to provide high forecasting performance [5]. From this point of view, re
searchers have focused on developing new models in which these methods are hybridized to eliminate the disadvantages of single 
estimation models and enhancement the estimation accuracy. A comprehensive literature review of recent trends in hybrid methods 
for the estimation of solar radiation data is presented in Table 5. 

As can be seen in Table 5, researchers have successfully applied hybrid methods that combine the superior features of at the least 
two methods to solar radiation data estimation at different time horizons. For example, Ibrahim and Khatib [100] estimated the hourly 
global solar radiation of King Valley, Malaysia using a method called the random forests-firefly algorithm (RFs-FFA), which was 

Table 4 (continued ) 

Location Model Input Parameters Output 
Parameter 

Data Scale Statistical 
Benchmarks 

Key Findings References 

the results showed that 
CatBoost gave lower error 
magnitudes against the 
varying climate conditions 
in comparison to other 
algorithms. 

Ghardaia in India MLP and RBF Day, day duration, 
declination angle, air 
temperature (min, mean, 
and max), sunshine 
duration, atmospheric 
pressure, maximum 
elevation, and sunshine 
ratio 

Global solar 
radiation 

2014–2016 RMSE, rRMSE, 
and R2 

Both algorithms gave a 
very low prediction error, 
but the MLP algorithm 
slightly comes to the fore 
as compared to the RBF 
algorithm. 

[87] 

Four different 
locations (Borno, 
Kano, Yobe, and 
Zamfara) in 
Nigeria 

ANN, CNN, 
RNN, SVR, PR 
RF 

Wind speed, sun height, 
and ambient temperature 

Global and 
diffuse solar 
radiation 

2005–2016 r, MAE, RMSE, 
and NMBE 

It has been observed that 
deep learning methods 
achieve better prediction 
accuracy compared to 
machine learning 
methods. Overall, the 
application of RNN for the 
global solar radiation 
forecast in Yobe had the 
best performance with a 
0.9546 r-value, 82.22 W/ 
m2 of RMSE, and 36.52 W/ 
m2 of MAE. 

[88] 

Johannesburg in 
South Africa 

LSTM, 
ConvLSTM, 
CNN, RF, 
XGBoost, and 
SVM 

Historical meteorological 
data 

Hourly solar 
radiation 

2009–2018 nRMSE FR and CNN models gave 
the worst nRMSE values of 
19.8%, and 12.61%, 
respectively. The best 
nRMSE result was 
obtained to be 1.51% for 
the ConvLSTM algorithm. 

[18] 

Four provinces 
(Karaman, Tokat, 
Nevşehir and 
Kırklareli) in 
Türkiye 

ANN, DL, SVM, 
and k-NN 

Extraterrestrial solar 
radiation, day length, 
minimum and maximum 
temperature, cloud cover, 
and solar radiation 

Daily global 
solar radiation 

January 1, 
2018, to 
December 
31, 2019 

rRMSE, MAPE, 
RMSE, MBE, 
MABE, R2, and 
t-stat 

ANN generally has lower 
error results than the other 
three ML algorithms. 

[9] 

Five cities (Dhaka, 
Bogura, Dinajpur, 
Chuadanga, and 
Satkhira) in 
Bangladesh 

RNN, LSTM, and 
GRU 

Minimum and maximum 
values of both 
temperature and 
humidity, wind speed, and 
solar radiation 

Daily global 
solar radiation 

2014–2019 MSE, MAE, 
RMSE, and 
MAPE 

Among the three models, 
the GRU model gave the 
best result with a MAPE 
score of 19.28%. 

[89] 

Ghardaia, Algeria SVM and C-SVM Minimum, maximum, and 
mean temperatures 

Daily global 
solar radiation 

1 May 2013 
to 31 
December 
2015 

RMSE, rRMSE, 
MABE, and r 

C-SVM gave the best 
performance, based on 
RMSE and r analysis. 

[90] 

Tamil Nadu, India LM, SCG, and RP Global and direct solar 
radiation, average 
ambient temperature, 
average wind speed, 
latitude, and longitude 

Hourly solar 
radiation 

N/F MAD, MSE, 
RMSE, MAPE, 
and R 

The LM algorithm has the 
advantage of converging 
in a shorter time and has 
reached the result with 
minimum error (R =
0.9376). 

[91]  
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Table 5 
A summary of the studies regarding the prediction of solar radiation data using hybrid methods.  

Location Model Input parameters Output 
parameter 

Data scale Statistical 
benchmarks 

Key findings References 

Gurgaon, India ANN, ANFIS, 
and HMM- 
GFM 

15 different 
combinations of 
inputs 

Global solar 
radiation 

2009 to 2011 r-value, RMSE, 
and MAPE 

For the best 
prediction accuracy, 
the combination of 
input parameters is as 
follows: relative 
humidity, 
atmospheric pressure, 
sunshine, day 
number, and 
temperature. The 
proposed HMM-GFM 
method achieved the 
best estimation 
accuracy with 7.9124 
MJ/m2 of RMSE, 
3.0083% of MAPE, 
and 0.9921 of r-value. 

[92] 

Murcia, Spain CRO–ELM, 
ELM, and SVR 

Meteorological 
variables 

Global solar 
radiation 

January 1, 2010, 
to December 31, 
2011 

RMSE and 
MAE 

The prediction 
accuracy of the CRO- 
ELM is higher than 
the conventional SVR 
and ELM algorithms. 

[93] 

Singapore GAMMF, 
TDNN, 
ARMA (1,1), 
and ARMA- 
TDNN 

Historical global 
solar radiation 

5 min ahead 
solar 
radiation 

2009 to 2010 SMAPE and 
RMSE 

GAMMF achieved 
higher predictive 
accuracy compared to 
other methods. 

[94] 

Six locations in 
the USA 

CS-OP-ELM, 
OP-ELM, 
ARMA, and 
BPNN 

Eight input variables Hourly clear 
and real sky 
global 
horizontal 
radiation 

Hourly data from 
2008 to 2010 

MRE and 
RMSE 

CS-OP-ELM had 
better prediction 
results of solar 
irradiation as 
compared to 
conventional OP- 
ELM, ARMA, and 
BPNN. 

[95] 

Four sites in the 
USA 

RBF, Hard- 
ridge-RBF, DE- 
hard-ridge- 
RBF, and CS- 
hard-ridge- 
RBF 

12 meteorological 
parameters 

Monthly 
average 
global solar 
radiation 

1998 to 2010 RMSE and 
MAPE 

The RMSE and MAPE 
metric results showed 
that the hybrid 
methods (DE-hard- 
ridge-RBF and CS- 
hard-ridge-RBF) 
predict solar radiation 
with higher accuracy 
than conventional 
RBF and hard-ridge- 
RBF models. 

[96] 

USA (Colorado) 
and 
Singapore 

SOM- SVR- 
PSO, ARIMA, 
SES, LES, and 
RW 

Past 8-hour data Hourly 
global solar 
radiation 

USA (1997–2013) 
Singapore 
(2010–2013) 

nRMSE and 
nMBE 

The mean nRMSE 
value of the proposed 
hybrid model for USA 
data is on average 4% 
better than the 
ARIMA, LES, SES, and 
RW methods. For the 
Singapore data, the 
nMBE value of all 
models is usually less 
than 3%. 

[97] 

Three provinces 
(Maiduguri, 
Jos, and 
Iseyin) in 
Nigeria 

GP, ANN, and 
SVM–FFA 

Sunshine duration, 
min and max 
temperatures 

Monthly 
mean 
horizontal 
global solar 
radiation 

1987 to 2007 r, R2, RMSE, 
and MAPE 

The proposed SVM- 
FFA gave the best 
prediction results 
with r, R2, RMSE, and 
MAPE of 0.8532, 
0.7280, 1.8661 MJ/ 
m2, and 11.5192%, 
respectively. 

[98] 

(continued on next page) 
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Table 5 (continued ) 

Location Model Input parameters Output 
parameter 

Data scale Statistical 
benchmarks 

Key findings References 

Four sites in the 
USA 

SVM, 
SVM-HARD, 
GSO-SVM- 
HARD, and 
HARD-RIDGE- 
SVM 

Meteorological 
variables 

30 daily 
global solar 
radiations 

One year MSE, MAPE, 
and RMSE 

It was observed that 
the hybrid GSO-SVM- 
HARD method 
achieved the best 
estimation accuracy 
in all regions. Also, 
the MAPE values of 
the hybrid method 
were between 5% and 
15%. 

[99] 

Klang Valley, 
Malaysia 

RFs–FFA, 
ANN-FFA, 
ANN, and RFs 

Number of hours per 
day, humidity, day 
and month number 
ambient 
temperature, and 
sunshine ratio 

Hourly 
global solar 
radiation 

Hourly 
meteorological 
data for one year 

MBE, 
MAPE, and 
RMSE 

The proposed RFs-FA 
method is more 
successful in terms of 
prediction accuracy 
with 2.86% MBE, 
6.38% MAPE, and 
18.98% RMSE 
compared to hybrid 
ANN-FFA, ANN, and 
RFs models. 

[100] 

Four locations in 
India 

DCGSO- 
LASSO, 
LASSO, 
SVM, and 
GRESH 

Relative humidity, 
wind direction, wind 
speed, pressure, 
solar zenith angle, 
temperature, and 
precipitation 

5 days global 
horizontal 
radiation 

January 1, 2014 
to December 31, 
2014 

RMSE, 
MAPE, and 
RMSE/Avg 

The proposed 
DCGSO-LASSO 
achieved the best 
prediction accuracy 
for the four locations 
respectively with 
16.815/23.02/ 
22.354/11.437 of 
RMSE, 7.148%/ 
13.101%/7.756%/ 
1.782% of MAPE, and 
2.991%/4.939%/ 
4.423%/2.302% of 
RMSE/Avg. 

[101] 

Türkiye (65 
locations) 

FRF-SVM, 
ANFIS, and 
GenProg 

Relative humidity, 
mean air 
temperature, 
altitude, latitude, 
and longitude 

Horizontal 
global solar 
radiation 

2000 to 2013 MAE, RMSE, 
IQR-AE, and 
MaxAE 

In the training set, it 
was determined that 
the most suitable 
model was Gaussian 
kernel-based FRF- 
SVM with 0.531 of 
MAE and 1.571 of 
RMSE. In the testing, 
the error value of 
FRF-SVM-Gauss is 
slightly higher 
compared to the 
GenProg approach. 

[102] 

USA NSMOBA, 
BPNN, 
GABPNN, 
GRNN, and 
CSAWNN 

12 meteorological 
variables 

Global solar 
radiation 

1991 to 2010 MAE, MSE, 
and MAPE 

The developed 
NSMOBA algorithm 
gave lower error 
values compared to 
other individual and 
hybrid prediction 
algorithms. 

[103] 

The Mashhad 
province of 
Iran 

ANN-SA, 
ANN, 
SVM, 
MLSR, and GP 

Relative humidity, 
atmospheric 
pressure, earth skin 
temperature, wind 
speed, minimum, 
average, and 
maximum air 
temperatures 

Daily solar 
radiation 

1995 to 2014 R2, MAE, and 
RMSE 

The prediction results 
demonstrated that 
integrating the SA 
algorithm into the 
ANN modeling 
process increased 
prediction accuracy. 

[104] 

Malaysia (Kuala 
Terengganu) 

ANFIS, ANFIS- 
DE, ANFIS-GA, 
and ANFIS- 
PSO 

Clearness index, 
minimum and 
maximum 
temperature, 
monthly rainfall, 

Monthly 
global solar 
radiation 

January 2006 to 
December 2014 

r, R2, MABE, 
MAPE, 
RMSE, and 
RRMSE 

ANFIS-PSO gave the 
best prediction results 
with 0.9963 of r, 
0.9921 of R2, 0.2482 
MJ/m2 of MABE, 
1.4097% of MAPE, 

[105] 
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Table 5 (continued ) 

Location Model Input parameters Output 
parameter 

Data scale Statistical 
benchmarks 

Key findings References 

and sunshine 
duration 

0.3065 MJ/m2 of 
RMSE, and 1.7933% 
of RRMSE. 

Eight provinces 
(Isfahan, 
Tabriz, 
Tehran, 
Zabol, 
Kermanshah, 
Bandar 
Abbas, 
Ahvaz, and 
Mashhad) of 
Iran 

SVR-KHA and 
SVR 

Historical global 
solar radiation data 

Global solar 
radiation 

1979 to 2014 MAE, MAPE, 
RMSE, R2 and 
RRMSE 

SVR-KHA model gave 
low error compared 
to classical SVR with 
0.93 of R2, 7.4% of 
MAPE, and 1.98 MJ/ 
m2 of RMSE. 

[106] 

North Dakota, 
USA 

ANFIS-muSG, 
ANFIS-GA 
ANFIS-GWO 
ANFIS-GOA, 
ANFIS-DA, 
ANFIS-SSA, 
ANFIS-PSO, 
and ANFIS 

Minimum, mean, 
and maximum air 
temperatures 

Global solar 
radiation 

2010 to 2018 R2, MAE, 
RMSE, 
MARE, 
MRE, 
AAPRE, and 
RMSRE 

Hybrid ANFIS-muSG 
performed 25.7%– 
54.8% better than its 
competitors in terms 
of RMSE metric for 
different locations of 
the studied region. 

[107] 

Three provinces 
(Dhahran, 
Riyadh, and 
Jeddah) in 
Saudi Arabia 

SVR-GOA-BAK, 
ANN, DT, 
KNN, and RF 

14 input variables Global 
horizontal 
irradiance (at 
the 1-h ahead 
time horizon) 

June 1, 2013, to 
May 31, 2017 

R2, 
MAE, nMAE, 
MAPE, 
RMSE, and 
nRMSE 

The hybrid SVR-GOA- 
BAK, achieved 
32.15–39.69% better 
prediction accuracy 
in terms of MAPE 
performance criterion 
compared to the 
individual SVR 
methods. 

[108] 

China (Station of 
longitude 
124.181 W 
and latitude 
44.382 N) 

Hybrid WT- 
CEEMDAN- 
IASO-ORELM, 
and nine 
competitive 
models 

Historical solar 
radiation data 

Short-term 
(10 min 
ahead) solar 
radiation 

Different months 
of 2020 year: 
March, June, 
September, and 
December 

MAPE, MAE, 
RMSE, and r- 
value 

It has been observed 
that the proposed 
hybrid WT- 
CEEMDAN-IASO- 
ORELM model gives 
excellent results for 
short-term solar 
radiation prediction 
and is a prospective 
technology. 

[109] 

Queensland, 
Australia (Six 
solar farms) 

CNN-REGST, 
CNN, LSTM, 
DNN, ELM, 
REGST, RFR, 
GBM, and 
MARS 

Meteorological 
parameters 

Daily global 
solar 
radiation 

54 years of data r-value, RMSE, 
MAE, RMSEr, 
RRMSE, 
RMAE, WI, 
NSE, LM, KGE, 
DS, APB, EVar 

Given all metric 
results, it has been 
seen that the 
proposed hybrid 
CNN-REGST model 
exhibits a successful 
forecasting 
performance in daily 
GSR forecasting 
compared to deep 
learning and ML 
methods. 

[110] 

Four stations 
(Dori, Po, 
Gaoua and 
Boromo) in 
Burkina Faso 

XGB-CMAES, 
adn MARS- 
CMAES 

Minimum and 
maximum values of 
both weather 
temperature and 
humidity, wind 
velocity, 
evaporation, and 
vapor pressure 
deficit 

Daily global 
solar 
radiation 

January 1, 1998, 
to December 31, 
2012 

NSE, RMSE, 
MAE, R, and 
VAF 

MARS-CMAES 
method gave better 
prediction 
performance 
compared to XGB- 
CMAES. 

[111]  
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Table 6 
A summary of the studies comparing different models using the same dataset.  

Location Model Input Parameters Output Parameter Data Scale Statistical 
Benchmarks 

Key Findings References 

China ANN, and Empirical 
regression models (Model 
1, Model 2) 

Sunshine percentage, and 
clearness index 

Monthly mean daily 
diffuse solar 
radiation 

1995 to 2004 RMSE, MPE, and MBE ANN is superior to empirical models. ANN 
estimated the actual values of Zhengzhou with 
94.81% accuracy. 

[113] 

Türkiye (73 
different 
locations) 

ANN and MLR Months of the year, latitude 
satellite-estimated LST, 
longitude, and altitude 

Solar radiation 
forecasting 

2000 to 2002 R2, RMSE, and MBE ANN achieved high accuracy compared to MLR. [114] 

Iran Five empirical models, 
WR, GEP, and ANN 

Daylight hours, extraterrestrial 
global solar radiation, daily 
mean clearness index, and daily 
temperature 

Daily global solar 
radiation 

1982 to 2016 GPI, MAE, RMSRE, 
MBE, RMSE, RRMSE, 
U95, MARE, R2, 
erMAX, and t-stat, 

The statistical metric results gave that the best 
prediction performance was exhibited by the 
ANN method. 

[115] 

Paris, France ARMA, SIM, SVM, and NN Global solar radiation Hourly solar 
radiation 

January 1, 
2004, to 
December 31, 
2015 

nRMSE NN model gave better performance than other 
models. 

[116] 

Kerman, Iran 3rd degree empirical 
model, ANN, SVM–RBF, 
SVM–WT 

Daily clearness index Diffuse solar 
radiation 

2006 to 2012 r, RMSE, and MABE The SVM–WT method has better estimation 
accuracy than its competitors with 0.9631 of r, 
0.6940 MJ/m2 of RMSE, and 0.5757 MJ/m2 of 
MABE. 

[117] 

Tamil Nadu 
(India) 

SVM, ANN, and empirical 
models 

Relative humidity, longitude, 
day length, month, latitude, 
maximum and minimum 
temperature, and bright 
sunshine hours 

Monthly mean daily 
global solar 
radiation 

2003 to 2012 MBE, MAPE, RMSE, t- 
stat, and r-value 

SVM algorithms gave better results than both 
those of ANN and empirical models. 

[118] 

Iran Empirical models, 
ordinary and coupled 
ANN models 

Sunshine duration, minimum 
and maximum air temperatures, 
and daily global solar radiation 

Daily global solar 
radiation 

1992 to 2015 R2, RMSE, and MBE The prediction performance of the ordinary 
ANN models was enhanced considerably after 
being coupled with a genetic algorithm. 

[119] 

Abu Musa Island, 
Iran 

SVR, MLFFNN, FIS 
RBFNN, and ANFIS 

Inputs (N1): 
Wind speed, temperature, 
relative humidity, pressure, and 
local time 
Input (N2): Solar radiation 

Hourly solar 
radiation 

2010 to 2016 r, RMSE, and MSE The results of N1 give that, MLFFNN and SVR 
methods exhibited the best prediction 
performance with r = 0.9999 and 0.9795, 
respectively. Furthermore, ANFIS, MLFFNN, 
and SVR methods obtained a correlation 
coefficient of over 0.95 in the test data for N2. 

[75] 

Four climatic 
zones of 
China 

12 ML models, and 12 
versions of the 
Ångström–Prescott model 

Daily historical data Daily global solar 
radiation 

1966 to 2015 R2, RMSE, U95 MBE, 
t-stat, and NRMSE 

Each prediction method used the same dataset 
and ML methods gave lower error values than 
empirical models. Among the ML methods, four 
models come to the fore: ANFIS, ELM, LSSVM, 
and MARS. 

[120] 

Four provinces 
(Şırnak, Kilis 
Ankara, and 

Angstrom type-empirical 
models, RSM, Holt- 
Winters, and ANN 

Wind speed, pressure, relative 
humidity, ambient temperature, 
and sunshine duration 

Monthly average 
daily global solar 
radiation 

2008 to 2018 MAPE, RMSE, MBE, t- 
stat, and R2 

Each model used the same dataset, and ANN 
exhibited the best results for global solar 
radiation data with R2, MAPE, RMSE, MBE, and 

[112] 
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Table 6 (continued ) 

Location Model Input Parameters Output Parameter Data Scale Statistical 
Benchmarks 

Key Findings References 

Karaman) in 
Türkiye 

t-stat of 0.9911, 4.93%, 0.78 MJ/m2, 0.1323 
MJ/m2, and 0.58, respectively. 

Five locations, 
Morocco 

22 empirical models, RF, 
MLP, Boost, and Bag 

Relative humidity, ambient 
temperature, wind speed, and 
solar radiation 

Daily global solar 
radiation 

2011 to 2015 r, nMAE, and nRMSE RF method gave the best performance. r, nMAE 
and nRMSE are 81.73–95.14%, 5.88–13.86%, 
and 8.22–18%, respectively. Among the 
empirical models, the TG1 model was 
recommended. r, nMAE and nRMSE are 
72.38–93.46%, 6.96–17.94%, and 
9.89–22.39%, respectively. 

[41] 

Alabama, United 
States 

KNNR, ANN, SVM, and 
BILSTM 

Global solar radiation Hourly solar 
radiation 

May 1, 2011, 
to February 18, 
2013 

RMSE, 
MAE, and R2 

The BILSTM model outperformed KNNR, ANN, 
and SVR methods in terms of RMSE, MAE, and 
R2 evaluation benchmarks. 

[121] 

North Carolina, 
and Southern 
Spain 

MLP, ELM, GRNN, SVM, 
RF, and XGBoost 

Temperature-based variables Daily 
extraterrestrial 
solar radiation 

2000 to 2018 MBE, RMSE, RRMSE, 
NSE, R2, and GPI 

MLP and SVM are recommended for arid and 
semi-arid areas, while RF and XGBOOST are 
recommended for semi-humid and humid areas. 

[122] 

Tetouan in 
Morocco 

ARIMA, FFNN, and k-NN Top of atmosphere radiation, 
clearness index, maximum, 
average, delta, and ratio 
temperature 

Daily global solar 
radiation 

January 1, 
2013, to 
December 31, 
2015 

MAPE, RMSE, MBE, 
NRMSE, Ts and σ 

FFNN (6 × 10 × 1) gave better results than those 
of time series, and k-NN model with very low 
error magnitudes. 

[123]  
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developed by hybridizing the random forest technique and the firefly algorithm. The underlying reason for hybridizing these two 
methods is to develop the estimation accuracy of the traditional RFs method by finding the best number of trees and leaves per tree in 
the forest using the firefly algorithm. The authors evaluated the performance of the algorithms with regards to MAPE, RMSE, and MBE 
metrics. The hybrid RFs-FFA method achieved better prediction results with 6.38% of MAPE, 18.98% of RMSE, and 2.86% of MBE 
compared to single RFs. In another study, Mousavi et al. [104] estimated the daily solar radiation of the Mashhad province of Iran with 
an artificial intelligence-based hybrid algorithm. The authors hybridized the single ANN with the simulated annealing (SA) optimi
zation algorithm to develop the calibration performance of the ANN method, which is frequently used in solar radiation prediction 
studies. The reason why the SA method was preferred in hybridization is that the algorithm is a non-greedy optimization approach and 
thus avoids local solution traps. The dataset used in the relevant study flaps the years 1995 and 2014 and it is separated into two stages: 
training and testing. The dataset between 1995 and 2009 was used to train the algorithms, while the remaining dataset (between 2010 
and 2014) was used to confirm the fitting model. The authors reported that the predictive acuity of the hybrid ANN/SA method is 
superior to that of the single ANN as well as SVM and machine learning methods. Similarly, in numerous scientific papers, it has been 
observed that the researcher utilizes nature-inspired meta-heuristic optimizations in hybridization to improve the performance of 
single prediction methods. Table 5 details some existing literature studies focusing on hybridization with meta-heuristic algorithms. 
Accordingly, researchers used various meta-heuristic algorithms such as coral reefs optimization [93], cuckoo search algorithm [95], 
firefly algorithm [98], glowworm swarm optimization [99,101], nondominated sorting-based multiobjective bat algorithm [103], 
particle swarm optimization [105], genetic algorithm [105], differential evolution [105], grasshopper optimization algorithm [107], 
salp swarm algorithm [107], grey wolf optimizer [107], and dragonfly algorithm [107]. In the reference studies, metaheuristics were 
used to optimize the prediction structure and network parameters. In addition, new hybrid models have been proposed using different 
data pre-processing techniques or third methods to produce high-quality solutions to the estimation problems of solar radiation, which 
has a complex structure due to the distinct climatic conditions and estimation horizons of the studied regions. The HMM-GFM [92], 
GAMMF [94], FRF-SVM [102], SOM-SVR-PSO [97], and ANFIS-muSG [107] prediction algorithms can be given as examples of this 
type of hybridization. For example, Dong [97] applied the novel hybrid model based on self-organizing maps-support vector regression 
and particle swarm optimization (SOM-SVR-PSO) for the estimation of hourly solar radiation in the USA and Singapore. In the pro
posed hybrid method, the self-organization map, which is an example of the cluster-based ensemble learning approach, is used to 
separate the raw data into clusters with similar characteristics. While SVR is used to generate forecast data for each region, PSO is 
applied in the parameter selection of the SVR model. 

As a result, many studies have declared that hybrid algorithms achieve higher prediction accuracy compared to single empirical, 
artificial intelligence, and time series prediction methods for the estimation of solar radiation. However, hybrid models have higher 
computational complexity in comparison to that of single methods. 

2.5. Performance comparison of different-based models on the same dataset 

This subsection evaluates literature studies involving performance comparison of the methods defined in the previous four sub
sections on the same dataset. Current studies comparing different models using the same dataset are given in Table 6. Let’s examine 
some of these studies in detail. Bounoua et al. [41] applied 22 different empirical models, RF, MLP, Boost, and Bag models for different 
cities in Morocco to estimate solar radiation. Daily global estimation of solar radiation was made by using ambient temperature, 
relative humidity, wind speed, and solar radiation as input parameters. The dataset between 2011 and 2015 was used. Among the 
models, the RF model gave the best estimate. Performance parameters for the RF model were obtained as 87.753–96.22%, 5.84%– 
11.81%, and 7.85–15.33% for r, nMAE, and nRMSE, respectively. Among the machine learning models, the best performance was 
determined as 81.73%–95.14%, 5.88%–13.86%, and 8.22%–18% for R, nMAE, and nRMSE, respectively. Among the 22 empirical 
models, the model that gave the best performance was the TG1 model. For the TG1 empirical model was determined as 72.38%– 
93.46%, 6.96%–17.94%, and 9.89%–22.39% for R, nMAE, and nRMSE, respectively. Gürel et al. [112] ANN, Holt-Winters, RSM, and 
Angstrom type empirical models were used to estimate solar radiation for four different cities in Türkiye. Monthly and daily global 
estimation of solar radiation was made using ambient temperature, pressure, wind speed, sunshine duration, and relative humidity as 
input parameters. Meteorological data between 2008 and 2018 were used. ANN model gave the best performance among all models. 
MAPE, R2, t-stat, RMSE, and MBE values were determined as 4.9263%, 0.9911, 0.582, 0.78 MJ/m2-day, and 0.1323 MJ/m2-day. 

As seen in Table 6, time series models give better results than empirical models. AI models perform better when compared to time 
series models. Hybrid models, which are formed by combining single estimation models with each other, make a better estimation of 
solar radiation than all models. 

3. Survey assessment 

Nowadays, air pollution is becoming more visible, and rapidly growing public awareness has accelerated the transition to other 
clean, renewable, and sustainable energy sources, particularly solar energy. In addition to all these, the damage of non-renewable 
energy sources to the sustainable economic development of the government has made renewable energy sources very attractive in 
the short, medium, and long term. Even today, the energy production policy of governments is considered an indicator of the 
development level of that country. Until now, the demand for renewable resources, which was approached with prejudice, had slowed 
the transition of countries to these power systems. However, it has now been seen that renewable energy systems have offered very 
attractive results in high-level issues such as environmental pollution, economy, and energy security. Therefore, countries have revised 
their future energy investments and increased the level of renewable energy sources in total energy production as much as they can. In 
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fact, many countries have made efforts to produce the main components that they can use for these power systems with their own 
technologies. 

Solar radiation is a piece of very strategic information for a given region where the investment will be made before designing for 
solar energy systems. In order to provide this information, knowing the solar radiation value for a particular region in advance is of 
vital importance in the feasibility studies for that region. All these have been the subjects that have attracted researchers for the 
estimation of these data. In this regard, many models/methods have been developed and focused on estimating solar radiation data 
with the smallest possible error. Based on the comprehensive literature review, it is well-noticed that the solar radiation data have been 
estimated using different methods so far. As observed in the literature, solar radiation data was initially achieved by empirical 
mathematical models. Once the importance of solar radiation data was recognized and now widely used in many important sectors 
such as agriculture, energy production, tourism, etc. All these have led to ongoing attempts to estimate solar radiation more accurately 
in the upcoming years. One of the most considerable factors affecting the success of the estimation of solar radiation is undoubtedly the 
creation of the correct dataset for the relevant region. In this framework, many researchers have tried to estimate solar radiation data 
using distinct input parameters (see Fig. 3). A majority of the input parameters generally consist of the environmental and ecological 
input parameters such as sunshine duration, relative humidity, ambient temperature, sunshine ratio, minimum, maximum and mean 
air temperature, earth skin temperature, wind speed, wind direction, clear-sky estimates, satellite images, rainfall, and atmospheric 
pressure, etc. However, considering that solar radiation is a time-dependent variable, it has been observed that some of the researchers 
include data such as hours, days, months, and years in their algorithm for the training stages in addition to environmental and 
ecological input parameters. Furthermore, in addition to all these input parameters, a noteworthy number of researchers also considers 
that the solar radiation value is a location-dependent variable, they included some significantly important geographical data such as 
latitude, longitude, altitude, and elevation for the region to be studied. Consequently, it was viewed that while estimating solar ra
diation data for any region, it was possible to include the parameters directly related to solar radiation in that region. In other words, it 
was noticed from the published works that during the training of an algorithm, researchers did not face a problem due to insufficient/ 
missing data to train their algorithms. In fact, they can create very big datasets, since much data about solar radiation is easily 
measurable and easily accessible. However, too many datasets may complicate the solution, control, and parameter optimization of 
algorithms. In this framework, it is reasonable that the researchers can use the most easily accessible data for the regions to be studied. 
Before starting the estimation, they can detect the correlation between each input parameter and solar radiation and perform feature 
extraction to enhance the performance achievement of the algorithms. Accordingly, researchers are dedicated to estimate the solar 
radiation data using various methods with the mentioned dataset. Based on the literature review, it is noticed that the number of 
studies that implemented the times series, and artificial intelligence methods have been exponentially increased. The previous papers 
have proved that solar radiation data can be estimated at a satisfactory rate with these methods. However, with advancing computer 
science, researchers focused on estimating these data with low errors. In this framework, the researchers deeply understood that each 
method has its own advantages and disadvantages in the estimation of solar radiation. All of this has resulted in the development of 
new hybrid models in which at least two methods are combined and which will generally reduce the disadvantages of single-model use. 
In the results, a large number of statistical error metrics are handled to discuss the performance success of the models in estimating the 
solar radiation data. Considering the results of the previous studies, it is obvious that there is no one model that is best for each region. 
That is, one model may estimate the solar radiation data with the lowest error at a given region, while the same model may do the worst 
solar radiation forecast at another region. This case may be attributable to the learning authority, size of the dataset, correlation of the 
dataset, and proper optimization of the model parameters. In this regard, the researchers tried to determine the usage dataset for the 
region where they focused on. As an overhead assessment, it is feasible to say that the hybrid models offer better results in estimating 
solar radiation data with lower errors than mono and empirical mathematical models. However, many researchers reported that 
empirical mathematical models have a considerable advantage with regards to facilitate of application and their estimation of solar 

Fig. 3. Various inputs used in solar radiation data estimation.  
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radiation success is generally at a very satisfactory level for most regions. 
In line with the major findings obtained from this review, it is possible to reach the following conclusions.  

● It is very important that the dataset contains easily measurable data as well as its robust correlation with solar radiation. 
Furthermore, the availability of sufficient data for any region is among the issues of great importance for a more accurate esti
mation of solar radiation.  

● The climatic characteristics of the studied region are of critical importance in the selection of the inputs. Therefore, appropriate 
inputs (temperature, humidity, pressure, etc.) should be selected according to the climatic characteristics of the region.  

● Empirical models can be preferred in many studies in terms of easy application. However, the accuracy rates remain low compared 
to other machine learning-based estimation methods. 

● In addition, it is very difficult to work with different variables in empirical models and to determine how much effect these var
iables have. For this reason, the results obtained are generally evaluated regionally.  

● Time series models were improved based on statistical correlation. They generally have higher accuracy than empirical models, but 
do not describe well the nonlinear correlation between historical and other parameters.  

● It can be said that time series models and ANN are equivalent in the quality of prediction under definite variability conditions, but 
the flexibility of ANN as a universal nonlinear approach is more preferred than time series models. In general, the accuracy of these 
methods relies on the quality of the training data.  

● As a general conclusion, AI-based methods give very satisfactory results. However, the easy application of empirical models 
highlights the use of these models, especially in insignificant estimation differences.  

● In general, ANN is seen as a “black box” in terms of engineering problems. In other words, ANN receives information from the 
outside and gives the outputs it produces to the outside. This problem may shake the trust in ANN. In contrast, time series and 
empirical models can be easily replicated by other researchers.  

● Overall, it is possible to say that hybrid prediction methods created by combining two or more individual models produce better 
quality solutions to solar radiation problems at different time horizons compared to empirical, artificial intelligence, and time series 
models. The main goal of hybridization is to increase the final prediction accuracy by overcoming the various limitations of in
dividual prediction methods.  

● One of the components in double or triple hybridization is mostly meta-heuristic search algorithms. Because finding the most 
suitable parameters for the model is very important with regards to increasing the estimation accuracy. Recently, it is seen that 
researchers tend to use hybrid methods intensively in solar radiation prediction solutions. 

4. Research gaps, challenges, and future directions 

Solar radiation data is of immense importance in solar energy research. Where these data are not measured and meteorological data 
are not obtained, the estimation of solar radiation plays an important role. These estimation methods consist of empirical models, time 
series models, ANN (including machine learning algorithms), and hybrid methods. In the literature, these estimation methods are used 
to make the most precise estimation of solar radiation. However, these methods still require improvement. The research gaps, chal
lenges, and future directions of estimation methods are outlined below.  

● There is no model that works best for every region, an algorithm that works best for one region may give the worst result for another 
region. In this case, the estimation of solar radiation is dependent on the learning capabilities of the algorithms, as well as on the 
atmospheric, geographic, and climatic conditions of the given region, the size of the correlation value of the dataset with solar 
radiation, and the presence of sufficient data. Therefore, researchers should test multiple models for the given regions, and then 
they can only decide which model is better for the studied region.  

● Based on the literature review, it is feasible to remark that the best results for the estimation of solar radiation are generally 
achieved with hybrid algorithms. However, advanced programming knowledge is required for that, and the establishment of the 
hybrid algorithm structure is a more time-consuming process than other methods. Considering the results obtained from the solo 
models and AI-based hybrid models, the differences are generally within very small limits.  

● Researchers generally do not share their datasets, which means that another researcher does not have the opportunity to validate 
and develop the method for the relevant dataset. The fact that the data is generally handled on a large scale makes it difficult to 
share the dataset. Many algorithms that can probably achieve better results than the algorithm that many researchers find best, but 
these cannot be determined by future works.  

● Particularly in artificial intelligence-based solar radiation predictions, the inability of researchers to derive a mathematical model 
limits their applicability by other researchers, although the results obtained from these studies are quite satisfactory.  

● Although it seems like an advantage for time series models, only the long-term solar radiation data from the previous years are 
required. However, the lack of solar radiation data for the regions to be estimated or not recorded over long periods prevents time 
series from becoming widespread in estimating solar radiation. Furthermore, since time series models ignore many important 
environmental, geographic, and climatic parameters that directly affect solar radiation trends, it has a high potential to fail both in 
capturing sudden changes in solar radiation data and the case of a different trend from previous periods.  

● Many researchers discuss the estimation of solar radiation of models using various types of statistical metrics in their studies. For 
example, the MSE metric, which is one of the most discussed statistical metrics in the discussions, is not suitable for discussing the 
prediction success models. By making predictions above and below the actual data, a model turns out to be quite small for the MSE 
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and misleads the researcher. In this framework, it is more reasonable to use statistical metrics that take into account the absolute 
expressions of the errors or to use metrics that give the errors as a percentage. In addition, it will be also fairer to discuss all 
statistical metrics as normalized.  

● In many studies, the same data types are commonly used as input parameters. Different ANN models should be developed and their 
accuracy checked by using different longitude, latitude, altitude, and extraterrestrial radiation for input parameters. This will be 
helpful for places where meteorological stations are not installed.  

● Developing new models considering global warming and climate changes is a critical issue for future studies.  
● The researchers have generally focused on the easy-to-measure meteorological station, satellite, and numerical weather parameters 

for the input data to reach the solar radiation of the relevant region. However, the performance of the models can be improved by 
using the feature selection methods (filter, wrapped, and embedded) in estimating the solar radiation data for a given region. The 
feature selection integrated solar radiation models have higher accuracy for global solar radiation, but their computational costs 
have been higher than that of the conventional/empirical solar radiation models.  

● Owing to the fluctuations of solar radiation, error magnitudes in the estimation of solar radiation occur. Furthermore, researchers 
often suffer from the presence and lack of data required for model training. This is usually due to the malfunction/maintenance/ 
non-existence of data measuring devices used in datasets. Thus, researchers encounter a challenging task in data preparation, 
feature selection, and model development stages, and the magnitude of the error in estimating solar radiation may be bigger. 

5. Conclusion 

This study deals with a detailed comparison of different methods used for the estimation of solar radiation works available in the 
literature. It is well understood that the dynamic nature of solar radiation noteworthy influences the reliability of most sectors 
including energy production, agriculture, and tourism in direct and/or indirect ways. Therefore, estimating solar radiation data with as 
few errors as possible will contribute to the development of these sectors. Many governments, investors, and decision-makers aim to 
maximize their profit margin by revising the location and size of their investments in these sectors according to the amount of solar 
radiation. However, it is well understood that the dynamic nature of solar radiation noteworthy complicates the estimation results and 
influences the reliability of most sectors in direct and/or indirect ways. From this point of view, the present review mainly discussed 
the estimation of solar radiation data by using empirical models, time series, artificial intelligence algorithms, and hybrid models. In 
conclusion, the findings of the study showed that each model has its own advantages and disadvantages in solar radiation prediction. 
That is, no optimal model/algorithm, which always gives satisfied results for all regions, was found. As a general assessment of the 
literature studies, it is noticed that hybrid methods developed to benefit from the advantages of single estimation methods generally 
give more accurate and reliable estimation results. However, hybrid models have higher computational complexity in comparison to 
single methods. From this point of view, using a single machine learning algorithm (particularly ANN and SVM) stands out as a very 
reasonable choice both in terms of an operational perspective and the success of the prediction results. On the other hand, it is seen that 
empirical models stand out with their features such as low computational costs, and ease of use. Since only historical solar radiation 
data is used in time series models, it has been concluded that it is an advantage that the data set is easy to create and easy to viable. 
Futhermore, the time series model provided not only simplicity and operability but also satisfied accuracy in estimating the solar 
radiation. In addition to the models, another important conclusion of the study is the creation of the dataset in a logical framework. 
While an input parameter has a great correlation in solar radiation data in one study and makes a significant contribution to the 
enhancement of the prediction success, in another study, it was found that the same input parameter worsened the prediction results. 
Therefore, researchers should be very meticulous while creating their dataset and make sure that each input parameter they use is at a 
correlational reasonable level. With the inclusion of improper input parameters in the dataset, the success of solar radiation estimation 
is negatively affected, which causes time loss, cost overruns, and computational complexities to a great extent. Accordingly, in order to 
improve the prediction success, it is of great significance to carefully examine the data set and perform cleansing and restructuring of 
historical datasets, because sudden changes observed in any parameter in the dataset, illogical results that may be caused by the time of 
measurement and the sensor, rapid climatic fluctuations, and incomplete data need to be cleaned. Finally, in recent years, tremendous 
developments in computer science and the ease of accessibility and availability of input data highly correlated to solar radiation are 
great important milestones that improve the success of solar radiation estimations. Knowledge of the solar radiation data for a given 
region is a very critical parameter, particularly for the energy, heating, tourism, and agriculture sectors, and since the estimation 
results should be obtained with as low errors as possible, and more, and more improvements, therefore, need to be gained to these 
sectors. 
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[14] Ü. Ağbulut, A.E. Gürel, A. Ergün, İ. Ceylan, Performance assessment of a V-Trough photovoltaic system and prediction of power output with different machine 

learning algorithms, J. Clean. Prod. 268 (2020), 122269. 
[15] M.K. Al-Ghezi, R.T. Ahmed, M.T. Chaichan, The influence of temperature and irradiance on performance of the photovoltaic panel in the middle of Iraq, Int. J. 

Renew. Energy Dev. 11 (2) (2022) 501. 
[16] R.B. Bazarbayev, K.R. Yakubov, D.S. Kurbanov, A.I. Allaniyazov, S. Balakumar, A.B. Kamalov, et al., Performance of crystalline Si solar cells and module on 

temperature and illumination intensity, Mater. Today Proc. 64 (5) (2022) 1661–1665. 
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[112] A.E. Gürel, Ü. Ağbulut, Y. Biçen, Assessment of machine learning, time series, response surface methodology and empirical models in prediction of global solar 

radiation, J. Clean. Prod. 277 (2020), 122353. 
[113] Y. Jiang, Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models, Energy Pol. 36 

(10) (2008) 3833–3837. 
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