
Overview and Considerations in Bottom-Up Proteomics

Rachel M. Miller1, Lloyd M. Smith1,*

1Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA

Abstract

Proteins are the key biological actors within cells, driving many biological processes integral to 

both healthy and diseased states. Understanding the depth of complexity represented within the 

proteome is crucial to our scientific understanding of cellular biology and to provide disease 

specific insights for clinical applications. Mass spectrometry-based proteomics is the premier 

method for proteome analysis, with the ability to both identify and quantify proteins. Although 

proteomics continues to grow as a robust field of bioanalytical chemistry, advances are still 

necessary to enable a more comprehensive view of the proteome. In this review, we provide a 

broad overview of mass spectrometry-based proteomics in general, and highlight four developing 

areas of bottom-up proteomics: 1) protein inference, 2) alternative proteases, 3) sample-specific 

databases and 4) post-translational modification discovery.

Overview of Mass Spectrometry-Based Proteomics

Proteins are central to nearly all major biological processes within the cell, acting as a bridge 

between genotype and phenotype.1 Comprehensive characterization of the proteome would 

deepen our understanding of diseases and complex biological processes, and is an ongoing 

goal of mass spectrometry-based proteomics. However, this is not trivial, as the proteome is 

not only highly complex but also dynamic in nature. Therefore, proteomic analysis must not 

only seek to identify which proteins are present, but also their abundance and modification 

status.

Initially, it was thought that a single gene was transcribed to a single RNA transcript, 

which was then translated into a single protein. However, this single gene to single protein 

hypothesis has since been abandoned. Instead, it is now understood that the proteome is 

incredibly diverse, with numerous protein products, or proteoforms, coming from a single 

gene (see Figure 1). A proteoform is defined as the distinct molecular form of a protein, 

with a specific amino acid sequence and set of post-translational modifications.2 The depth 

of proteoform complexity within the proteome is not yet fully understood, but this immense 

diversity can stem from numerous sources such as mutations at the gene-level, variants or 

alternative splicing at the transcript-level, and post-translational modifications or cleavage 

events at the protein-level.2–6 This depth of complexity further supports the importance of 

characterizing the proteome, because analysis of the genome and transcriptome alone cannot 

fully account for the complex phenotypes observed in healthy and disease states.
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Mass spectrometry-based proteomics has quickly become the most high-throughput, 

reliable, and sensitive method for the characterization of the proteome.7–10 The principle 

of applying tandem mass spectrometry to the study of proteins is quite simple. In the initial 

MS1 spectra, the intact mass of a peptide or proteoform analyte is determined by measuring 

its mass-to-charge (m/z) ratio and using the observed charge state (z). In the subsequent 

MS2 scan, the intact peptide or proteoform is fragmented, generating product ions whose 

m/z values enable amino acid sequence determination leading to identifications.

Beyond identification, mass spectrometry-based proteomics can also facilitate the 

quantification of peptide or proteoform analytes. Approaches to mass spectrometric-based 

quantification can be divided into two categories, stable isotopic labeling, and label-free 

quantification. In isotopic labeling-based approaches, a mass tag which can then be 

recognized by the mass spectrometer is associated with the analyte of interest and is used 

to provide its relative abundance.11–13 In label-free approaches, no mass tags are utilized, 

and the intensity value of the peptide or protein of interest is used to determine its relative 

abundance.14,15

Mass spectrometry-based proteomics can be divided into two different approaches, bottom-

up and top-down. The key difference between these two approaches is the analyte, which is 

either a peptide or a proteoform, respectively (see Figure 2). The vast majority of proteomics 

experiments utilize the bottom-up approach. In bottom-up, or shotgun proteomics, proteins 

are digested into peptides which are then analyzed via LC-MS/MS.16 Peptides are ideal 

analytes for mass spectrometry-based proteomics because they are easy to solubilize, 

separate and ionize. Since peptides are the observed unit in bottom-up proteomics, but 

protein-level information is still the desired outcome, peptides must act as proxies for their 

proteins or proteoforms of origin. All information regarding the presence and abundance of 

proteins in the sample are inferred from the peptides identified. The assumption that peptides 

are ideal proxies for the proteins or proteoforms in the sample is somewhat faulty. When 

proteoforms are digested into peptides, they lose their connectivity to their proteoforms of 

origin, which not only complicates the process of protein identification but also prevents the 

determination of which proteoforms are present in the sample. When reconstructing proteins 

from peptides, it is impossible to completely reconstruct the complexity of the proteome at 

the proteoform-level.

In top-down proteomics, intact proteins/proteoforms are analyzed via tandem mass 

spectrometry.17–22 Here intact proteoforms are directly being observed, and the relationship 

between the base amino acid sequence and the post-translational modifications on the 

proteoform are preserved. Therefore, no proxies are required in top-down proteomics. 

However, top-down analysis is very complicated and there are many challenges that must 

be overcome including but not limited to the low abundance of many proteoforms, the 

low signal-to-noise ratio of large molecular weight proteoforms, and low solubility of 

intact proteoforms.23–25 Additionally, for proteoforms, the sequence coverage of fragment 

ions is drastically reduced relative to peptides. Generally, in top-down proteomics, most 

fragment ions identified are localized near the N- and C- termini, leaving large portions 

of the middle of the proteoform without fragment ion coverage. This reduced sequence 

coverage can make localization of PTMs difficult creating ambiguity in the identification of 
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proteoforms.26 Currently, the sensitivity of top-down proteomics is quite restricted compared 

to that of bottom-up proteomics. Top-down proteomics is limited to those proteins with high 

abundance and low molecular weight, with sensitivity diminishing drastically for proteins 

with a mass above 30 kDa.23

Although bottom-up proteomics is quite robust, there are many places within the 

conventional workflow where improvements can be made to enhance the characterization 

of the proteome. In this review we will discuss four areas in which the development of new 

tools and methods can further improve proteome characterization via mass spectrometry-

based proteomics: 1) the process of protein inference, 2) the use of alternative proteases, 3) 

the use of sample-specific databases and 4) the discovery and validation of post-translational 

modifications.

The Process of Protein Inference

In bottom-up proteomics, as discussed in the previous section, peptides are the analyte. 

Proteins within a sample are digested into peptides, which are then analyzed via tandem 

mass spectrometry. Although peptides are directly observed, more often than not, protein-

level identifications and abundance measures are desired.27 Therefore, the observed peptides 

serve as an intermediate to the desired protein-level results, making it necessary to 

reconstruct the original proteins in the sample. This reconstruction process is called protein 

inference and is often quite complicated and imperfect. The process of protein inference is 

convoluted by the existence of “shared peptides”, which are peptide sequences that could 

result from the digestion of multiple proteins present in the sequence database.27,28 The 

identification of these peptides generates ambiguity in the protein-level results, because it 

is impossible to distinguish the peptide’s protein of origin. Conversely, there are “unique 

peptides”, which are peptides distinct to a single protein within the sequence database, and 

the identification of such a peptide can confidently identify a single protein.27,28 The more 

shared peptides identified, the more complicated the process of protein inference becomes. 

Shared peptides are increasingly prevalent in higher order eukaryotic organisms where there 

is a greater degree of sequence homology resulting from related protein families, paralogous 

genes and complex alternative splicing.27,29,30 Various models exist to address the protein 

inference problem, most of which differ from each other in their approach to handling the 

complications arising from shared peptides.

Algorithms for protein inference can be broadly grouped into three categories: 1) optimistic, 

2) statistical and 3) parsimonious. In optimistic algorithms, all possible proteins which 

could exist, based on the peptides identified, are considered detected. The underlying 

assumption made when utilizing this approach, is that the sample contains a large number 

of homologous proteins.27 Optimistic algorithms tend to be the simplest approach to protein 

inference, since there is no effort to reduce the ambiguity conferred by shared peptides. 

This also makes these algorithms the easiest to follow and comprehend for the end user. 

However, the increased ambiguity present in these algorithms is also why this model for 

protein inference is not widely utilized. Instead, statistical and parsimonious approaches 

have been and continue to be heavily favored. One example of optimistic inference is the 

original algorithm employed in DTASelect.31
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Statistical approaches assemble evidence from the peptide identifications to estimate the 

probability a given protein is present in the sample. Typically, these algorithms utilize 

peptide posterior error probability (PEP) values, or other peptide scoring metrics to calculate 

protein-level probabilities.10,27,28 Statistical protein inference algorithms can be further 

sub-classified into non-parametric or parametric models. Non-parametric, or distribution 

free methods, make few to no assumptions regarding the probability distributions of the 

data being assessed.27 Due to this, these methods are easier to use and are generally more 

robust. One of the most well-known and utilized non-parametric statistical protein inference 

algorithms is ProteinProphet.32 Conversely, parametric models assume that the data used 

to generate the model comes from a probability distribution, and also makes assumptions 

regarding the parameters of said distribution.27 Due to the increased number of assumptions 

made in parametric models, they tend to produce more accurate protein probability estimates 

than non-parametric models, when the assumptions made are accurate. A major limitation 

to statistical approaches to protein inference is the inaccessibility of the logic underlying the 

algorithm. It can be unclear to the end user why certain proteins are weighted more heavily 

than others.

Parsimonious approaches to protein inference seek to apply the principle of Occam’s razor, 

which states the simplest answer is most likely the correct answer, to handle the problem of 

shared peptides.27 The goal of these approaches is to establish the minimum set of proteins 

which can explain all the identified peptides. The complexity of parsimony is equivalent 

to the computationally prohibitive NP-hard set cover problem.27 Therefore, to be able to 

“solve” what the minimum set of proteins are in the sample, heuristics and assumptions 

must be established, enforcing the simplest answer is likely to be the correct answer. Several 

statistical approaches have principles of parsimonious algorithms at their core.10,33 The 

discarding of putative proteins when alternative protein identifications have more support 

is a major limitation of parsimonious approaches, because these removed proteins could 

be present in the sample.28 Additionally, the heuristics and assumptions that are central 

to the algorithm may not be clear to the end user, making it difficult to understand the 

end protein list, and why some proteins are absent.33 Examples of parsimonious protein 

inference algorithms can be found within the search software programs Andromeda34 and 

MetaMorpheus35, as well as in standalone tools such as IDPicker36.

The problem of protein inference and how to handle shared peptides is not yet solved, and 

new algorithms are still being developed.33 One method for improving the quality of protein 

inference results, outside of continued algorithm development, is the curation of peptide 

identifications used as input for the inference algorithm. All assumptions regarding the 

presence or absence of a protein are based on the peptides used within the inference process. 

Increasing the depth and quality of the peptide identifications will in turn also increase the 

depth and quality of the inferred protein identifications. One approach to increasing the 

quality of inferred proteins is to increase the stringency of applied peptide filters.37 If false 

positive peptide identifications are incorporated for inference, they can lead to identifications 

that are not reflective of the sample’s proteome. However, being overly conservative can 

result in the loss of valuable true positives.37 In the process of protein inference, the 

more quality peptide identifications utilized, the better. Towards this end, several studies 

have shown protein inference results can be improved through the aggregation of peptide 

Miller and Smith Page 4

Analyst. Author manuscript; available in PMC 2024 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



identifications across multiple search engines prior to inference.38 Another approach to 

improve protein inference, is the use of peptide identifications from multiple orthogonal 

proteolytic digests.35 Leveraging these peptide identifications from alternate proteases 

increases sequence coverage of the proteome, and the number of unique peptides identified, 

both of which have a positive impact on the accuracy of protein inference results.35

The Value of Alternative Proteases

For bottom-up proteomics, the serine protease trypsin is used almost exclusively. Trypsin 

is robust, reliable, and affordable.39–41 Cleaving after lysine or arginine residues, 

trypsin generates small peptides with a charged residue at the C-terminal position, 

ideal for collision-induced dissociation (CID) fragmentation.39–41 However, the near 

ubiquitous utilization of trypsin provides a tunnel-like view of the proteome.39,42 Trypsin 

alone is incapable of producing peptide identifications sufficient for the comprehensive 

characterization of the proteome. One factor contributing to this lack of comprehension is 

the mismatch of the peptide length distribution between those produced by tryptic digest 

and those identified via mass spectrometry (see Figure 3). Most peptides identified by mass 

spectrometry are between 7–35 amino acids in length. Nearly one-third of the peptides 

theoretically produced by tryptic digestion of the human proteome are under 6 amino acids 

in length and are too small for MS/MS based identification. This can lead to regions of 

proteins which are intractable to tryptic peptides. There are also entire classes of proteins 

and post-translational modifications (PTMs) which are difficult to characterize with tryptic 

digests.42 One such class of proteins are membrane proteins, whose transmembrane domains 

are composed mainly of hydrophobic amino acids, with very few lysine or arginine residues. 

Digestion of these transmembrane proteins generate very long and very hydrophobic 

peptides which are difficult to solubilize and ionize for mass spectrometry-based proteomics.

Additionally, tryptic digestion may elicit an inherit bias in the proteomic results obtained. 

Examples of this are 1) phosphoproteome analysis, 2) the identification of splice junction 

peptides and 3) quantitative proteomic experiments. In phosphoproteome analysis, when 

negatively charged phosphorylated serine or threonine residues are adjacent to arginine or 

lysine residues, cleavage with trypsin can be inhibited. This results in longer peptides, with 

higher charge states that are not as amenable to identification with CID or higher-energy 

C-trap dissociation (HCD) fragmentation.39,41 This can result in biased phosphoproteome 

results, missing key phosphorylation sites, and lacking coverage in some of the most 

important regulatory regions throughout the proteome.42,43 For the identification of splice 

junction peptides, trypsin can also provide incomplete and therefore biased results. 

Surrounding exon boundaries, there are evolutionary preferred nucleotides which increase 

the occurrence of lysine and arginine coding triplets.44 Due to this, most identifiable tryptic 

peptides flank splice junctions, and the peptides crossing the junction are too small to 

be identified. This is problematic for the characterization of proteome-wide alternative 

splicing, where identifying splice junction peptides are critical. The use of trypsin alone 

can also introduce bias in protein quantification results. Studies have shown that protein 

quantification values differ based on the protease used for analysis, and that the pooling of 

data from multiple proteases can provide the best estimate for accurate protein abundance 

values.45,46
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To overcome these pitfalls of trypsin, alternative proteases can be considered. The use of 

an alternative protease or multiple proteases has been shown to increase protein sequence 

coverage, the number of post-translational modifications identified, and the number of splice 

junctions covered. 35,39,40,42,44,45,47 Different proteases have various strengths which may 

make them ideal for different proteomic applications.

Chymotrypsin, Glu-C and Lys-C, like trypsin, are all serine proteases and can be utilized for 

high-throughput proteomic analysis.39 Chymotrypsin cleaves after tyrosine, phenylalanine 

and tryptophan residues, and is favored for proteins with long stretches of hydrophobic 

amino acids. As an alternative protease, chymotrypsin produces peptides which are generally 

considered to be the most orthogonal to those obtained by tryptic digests.39 Lys-C has 

strict specificity, cleaving only after lysine residues, and can produce longer peptides than 

trypsin.39 Lys-C is often paired with trypsin to improve the efficiency of cleavage after 

lysine residues. Glu-C which cleaves after glutamic acid, and also after aspartic acid when in 

phosphate buffers, is ideal for the digestion of heavily glycosylated proteins.39 Since the side 

chains of both glutamic and aspartic acid cannot be glycosylated, the modification will not 

inhibit cleavage of the proteins to peptides. Glu-C has also been heavily utilized for plasma 

proteomic applications.39,48

There are also proteases which cleave N-terminally, or before their triggering amino 

acids. Asp-N cleaves before aspartic acid residues. One distinct advantage of Asp-N is 

its compatibility with detergents during the digestion process. Asp-N has been noted as 

an especially valuable alternative protease for sensitive targeted proteomic applications 

such as selected reaction monitoring (SRM) analyses.39,41,45 Lys-N, which cleaves before 

lysine residues, has high resistance to both denaturants and temperatures up to 70 °C.39 

Peptide products of Lys-N digestion, when paired with electron transfer dissociation (ETD) 

fragmentation, can provide exceptional product ion coverage which in many cases could 

even enable facile de novo sequencing of the peptides.39

Arg-C, which cleaves after arginine residues, is another valuable alternative protease. Unlike 

with trypsin, the presence of a proline residue adjacent to an arginine residue does not 

prevent cleavage when using Arg-C.39 Arg-C, like Lys-C, produces longer peptides than 

what is achieved with trypsin. Arg-C is typically utilized alongside other proteases in a 

multi-protease approach to help characterize and map post-translational modifications as 

well as increase protein sequence coverage.

Protease discovery and optimization is an on-going area of research and interest. One 

of the newer proteases is Proalanase, which cleaves after proline and alanine residues in 

highly acidic conditions.49 Proalanase enables the digestion of proline-rich proteins, such as 

collagen, and enables phospho-site profiling. It has been shown to be heavily orthogonal to 

tryptic digestion, providing valuable complementary coverage of the proteome.49

The use of multiple proteases, or alternative proteases, is crucial for the comprehensive 

characterization of the proteome. There are barriers that exist preventing widespread 

adoption of multiple, or alternative proteases. One such hurdle is the determination of 

which proteases are most beneficial to specific applications. This hurdle can be addressed 
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using an in silico digestion tool to aid in experimental planning. Tools like this can be 

utilized to determine which proteases provide adequate or unique sequence coverage of 

target proteins, or sufficient PTM coverage. Another, more critical hurdle, is the increased 

time and sample requirements needed for multi-protease approaches. Towards addressing 

this concern, the Swaney group at University of California- San Francisco has developed a 

method which enables the pooling of peptides from multiple proteolytic digestions prior to 

data independent acquisition (DIA) analysis.50 Advances such as this are key to the future of 

comprehensive bottom-up proteomics leveraging multiple proteases.

The Importance of Sample-Specific Databases

Protein sequence databases are critical for high-throughput proteomic data analysis. Within 

search programs for bottom-up proteomics, protein sequence databases are digested in silico 

to generate a pool of candidate theoretical peptides. For each theoretical peptide, theoretical 

fragment ion m/z values are generated. These theoretical peaks are then compared to those 

experimentally observed in the MS2 spectra to determine peptide identifications. Without 

protein databases, peptide identifications would necessitate the use of de novo sequencing, 

or more recently spectral library searching. De novo search approaches take significantly 

longer than database searching methods, and generally tend to have higher false positive 

rates.

Typically, for many model organisms, there are reference protein databases (UniProt, 

Ensembl, RefSeq) which can be utilized for proteomic analysis.51,52 These reference protein 

databases seek to broadly represent all proteins present. While these reference databases 

are useful starting points, it is known that even within the same species, protein sequences 

can vary between individuals, tissues, and cell lines. Therefore, reference databases may be 

incomplete and fail to represent each individual sample. If the protein database used for 

proteomic analysis is not concordant with the sample being analyzed, the accuracy of the 

proteomic results is detrimentally impacted, and the biological conclusions drawn from the 

results may be inaccurate. In many cases, the reference database may not only lack sequence 

variants, but may lack entire protein isoform sequences for a given gene. When the reference 

database is incomplete in this manner, peptides containing these variants, or that are unique 

to missing isoforms cannot be identified. Peptides shared between the missing isoforms and 

those present in the sequence database will be incorrectly parsed resulting in inaccurate 

protein inference results. It is also possible the sample may express a subset of the protein 

isoforms present in the reference database. In this case, protein-level results can have false 

positive identifications, or an inflated level of protein ambiguity.

One approach to dealing with this database-sample discordance is the generation of 

sample-specific databases. This idea spawns from the sub-field of proteomics called 

proteogenomics, which seeks to integrate transcriptomic and proteomic data.53,54 For the 

specific application of sample-specific database generation, RNA-sequencing data can be 

translated in silico to construct a protein sequence database. Since this database is based on 

the RNA transcripts which function as protein precursors, the generated database is likely 

more accurate to the proteins and protein isoforms present in the sample than the reference. 

However, these constructed sample-specific databases still are subject to several limitations 
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such as the sensitivity and specificity of the RNA-sequencing technologies utilized. Also, 

not all transcripts carry equivalent coding potential, and select protein isoforms, although 

translated, may not be stable.

Initially utilizing proteogenomics, reference databases were supplemented with peptide 

sequences containing variants or alternative splice junctions, as identified from short-read 

RNA-sequencing technology.55–60 These augmented databases represented the first attempts 

to generate a sample-specific search space. However these databases could become rather 

large, containing many sequences within reference proteins that were not relevant to 

the actual sample.54,61 To address this, tools such as Spritz were created to generate 

entire sample-specific protein databases by reconstructing full transcripts from short-read 

RNA-sequencing followed by in silico translation.62 Short-read RNA-sequencing has many 

parallels to bottom-up proteomics, in that the transcripts within the samples are fragmented 

to form short RNA oligonucleotides. These RNA fragments are then sequenced and mapped 

back to a reference genome to reconstruct RNA transcripts, much in the way that peptides 

are mapped to proteins through the protein inference process. Just like protein inference is 

imperfect, the process of reconstructing full transcripts from short-read RNA-sequencing is 

also imperfect. Short-read RNA-sequencing excels at the identification of sequence variants 

but can fall short in the reconstruction of alternatively spliced transcripts, just as bottom-up 

proteomics cannot reliably identify proteoforms (see Figure 4).

To overcome complications arising from the inaccurate parsing of RNA fragments into 

full-length transcripts, long-read RNA-sequencing technologies can be utilized. In recent 

years, technology platforms from Pacific Biosciences and Oxford Nanopore, have become 

more prevalent in the transcriptomic community due to their ability to sequence full-length 

RNA transcripts with increasing accuracy.63–66 Specifically, for PacBio, technology has 

been developed to provide greater than 99% accuracy for the sequencing of single RNA 

transcripts.67 Sequencing of intact, full-length RNA transcripts eliminates the read parsing 

issues of short-read sequencing approaches and enables a more comprehensive view of the 

transcript isoform landscape of the sample (see Figure 4). This can provide an even more 

precise sample-specific database than those constructed using short-read RNA-sequencing 

data, especially for protein isoforms.

The Analysis and Discovery of Post-Translational Modifications

As powerful as proteogenomic approaches are for the generation of sample-specific 

databases, no transcriptional information can inform on the presence of post-translational 

modifications (PTMs). Post-translational modifications represent a critical layer of proteome 

diversity and are central to many important biological processes. The presence or absence 

of PTMs impact the function of proteoforms, contribute to signaling cascades and regulate 

diverse cellular functions.68–74 Mass spectrometry-based proteomics has quickly become the 

premier tool for the proteome-wide analysis of post-translational modifications. Using mass 

spectrometry-based proteomics for PTM mapping provides high sensitivity and throughput, 

as well as the ability to localize PTMs to a single amino acid residue using fragment ions. 

Localization of PTMs is of critical importance, especially for the investigation of functional 

significance. Unlike other PTM mapping approaches, such as antibody-based methods, 
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proteomic analysis of PTMs is flexible in terms of the PTMs being analyzed and is not 

limited to a single modification at a time.9

As the field of proteomics has evolved, the ability to characterize PTMs reliably and 

accurately has grown in its importance. Ignoring modified peptides or proteins leads to a 

vast under sampling of the proteome. Some modification sites are very well established 

and may be included as annotated modifications in the reference database (UniProt XML). 

However, these annotations are nowhere near complete, and proteins with unannotated 

PTMs are a large contributor to the dark proteome.75–79

Methods for the discovery of PTMs not present in the protein database have evolved over 

time, giving greater PTM coverage. Initially, an approach called variable modification 

searching was applied.80 In this strategy, a selected PTM is allowed to occur on any 

amino acid residue fitting the modification motif in the search space. For example, 

for phosphorylation, theoretical peptides with phosphorylation at all serine, threonine 

or tyrosine residues are generated, as well as the unmodified theoretical peptides. This 

approach greatly expands the search space, increases search time, and introduces bias in 

the peptide-level false discovery rate (FDR) calculations.79 The bias in FDR calculations 

leads to a dramatic increase in the false positive rate for modified peptides. This approach 

is most valid when the variable modification being considered is widespread or enriched in 

the sample.79 Variable modification searching should only be applied for a small number 

of modifications at a time, as the negative repercussions of inflated false positive rates 

and increased database size compound with increasing numbers of modifications.79 These 

limitations make variable modification searching incompatible with reliable proteome-wide 

PTM discovery. To overcome many of the limitations of variable modification searching, 

Chick et. al. proposed a flexible method for PTM discovery and coined it “open search” 

or “open mass search”.77 In open searching, a large precursor mass tolerance is permitted. 

Therefore, the precursor mass of the experimental peptide can vary from the unmodified 

theoretical mass of the peptide and still be considered a match. The difference in mass 

observed can be accounted for by the mass(es) of unannotated PTMs. For the purpose of the 

Chick et. al foundational study, a mass difference up to 500 Da between the experimental 

and theoretical peptides was permitted.77 In the open search approach, the product mass 

tolerance applied for the search remains narrow, requiring high-mass accuracy for fragment 

ion matches.77 Therefore, a quality sequence tag can be utilized to identify the peptide’s 

amino acid sequence in question, and the difference between the experimental precursor and 

theoretical peptide mass could be used to identify a PTM, or combination of PTMs. This 

process eliminates the database size issues of variable modification searching and maintains 

an accurate FDR rate for modified peptides. However, there are still several limitations with 

the open search approach, first of which is the high computational and time requirements 

necessary to complete this kind of search.75,76,79 Second, the difference in mass between 

the experimental and theoretical peptide may not always be easily identifiable as a PTM 

or combination of PTMs, leaving confusion and ambiguity. Third, this method fails to 

permit the identification of fragment ions containing the modified amino acid residue.77 

This becomes problematic if many of the potentially identifiable product ions contain the 

modified residue, making the modified peptide intractable to identification. Examples of 

search software programs which implement an open search strategy include Open-pFind81 
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and MS-Fragger82. Both tools have implemented approaches which seek to address the 

excessive time requirements of the traditional open search approach. The fragment ion index 

approach of MSFragger greatly reduces the overall search time relative to traditional open 

search approaches.82. In Open-pFind, a two-stage search is implemented consisting of an 

open sequence-tag-based search followed by a restricted search. The tag-index technique is 

essential in reducing the overall search time for the open search stage of Open-pFind, while 

the database reduction implemented in the restricted search further reduces overall search 

times.81 Additionally, MSFragger includes a location-aware algorithm which has addressed 

the limitation of excluding fragment ions containing the modified residue. This not only 

permits PTM localization, but also increases the sensitivity of the search.82

To further build on the open search approach, and address its downfalls, the Smith group 

invented global post-translational modification discovery (GPTMD), a multi-notch search 

approach for global discovery of PTMs.75,76 GPTMD searches for putative modifications 

found with an initial search using a multi-notch approach. This PTM discovery approach 

enables the identification of a large variety of PTMs while maintaining high confidence. 

The process of GPTMD has two main steps: 1) a multi-notch initial search to augment 

the protein database with putative PTMs and 2) a narrow precursor mass search using 

the augmented database to confidently identify PTM modified peptides.76 The multi-notch 

search is an extension of a narrow-precursor mass search enabling the inclusion of a variety 

of specific mass differences, or notches, between the precursor and theoretical masses. This 

approach improves upon the advantages of the open search approach, enabling the discovery 

of PTMs, without generating identifications with incomprehensible mass shifts.76 GPTMD 

also reduces the search time and increases the accuracy of modified peptide identifications 

relative to open search approaches.76 Using GPTMD, users define the mass notches they 

are willing to accept by selecting a list of modifications they are interested in discovering. 

A notch is generated for each mass shift associated with a PTM. Then, for each theoretical 

peptide, only experimental spectra with precursor masses that correspond to the unmodified 

peptide, or that differ by one of the defined notches are considered. These candidate spectra 

are then investigated for fragment ions matching the theoretical peptide. If a spectrum could 

correspond to a modified peptide, the corresponding PTM for the given notch is added to 

the augmented database. Once this augmented GPTMD database containing putative PTMs 

is generated, a final narrow-precursor mass search is completed to generate high confidence 

peptide identifications for both modified and unmodified peptides.76 This approach can be 

used to consistently identify PTM modified peptides which are not present in the sequence 

database.76
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Figure 1: 
Sources of proteome complexity. Proteoforms provide a depth of complexity to the proteome 

which would not be possible if a gene only led to the production of a single protein product. 

Instead, mutations at the gene-level, variants or alternative splicing at the transcript-level, 

and post-translational modifications or cleavage events at the protein-level contribute to a 

still undefined number of proteoforms, which are the functional units of the proteome.
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Figure 2: 
Experimental workflows for bottom-up and top-down proteomic approaches.
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Figure 3: 
Comparison of the theoretical and experimental length distribution of tryptic peptides. 

The length distribution of in silico digested tryptic peptides (grey), as determined by 

ProteaseGuru, is compared to the length distribution of peptides experimentally identified 

from MetaMorpheus analysis of the tryptic data Miller et. al. (green).35 Most experimentally 

identified peptides are between 7–35 amino acids in length, whereas the theoretical tryptic 

digest favors the generation of shorter peptides.
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Figure 4: 
Comparison of short- and long-read sequencing for the reconstruction of transcript isoforms. 

In short-read RNA-sequencing approaches, RNA fragments are generated from which full-

length transcripts must be reconstructed. Depending on the coverage of alternative splice 

junctions, incorrect transcript inference can be achieved. In this example, based on the 

fragments identified, a single transcript is reconstructed. Therefore, the two additional 

transcript isoforms are missed. In long-read RNA-sequencing, full-length transcripts are 

sequenced, and no reconstruction is required. Therefore, in the provided example, all three 

transcript isoforms expressed in the sample are identified.
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