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Abstract

Background—Coronary artery disease (CAD) is the leading cause of death worldwide. 

Recent meta-analyses of genome-wide association studies (GWAS) have identified over 175 loci 
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associated with CAD. The majority of these loci are in non-coding regions and are predicted to 

regulate gene expression. Given that vascular smooth muscle cells (SMCs) play critical roles in the 

development and progression of CAD, we aimed to identify the subset of the CAD GWAS risk 

loci associated with the regulation of transcription in distinct SMC phenotypes.

Methods—Here, we measured gene expression in SMCs isolated from the ascending aortas of 

151 heart transplant donors of various genetic ancestries in quiescent or proliferative conditions 

and calculated the association of their expression and splicing with ~6.3 million imputed single 

nucleotide polymorphism (SNP) markers across the genome.

Results—We identified 4,910 expression and 4,412 splice quantitative trait loci (sQTL) 

representing regions of the genome associated with transcript abundance and splicing. 3,660 

eQTLs had not been observed in the publicly available Genotype-Tissue Expression dataset. 

Further, 29 and 880 eQTLs were SMC- and sex-specific, respectively. We made these results 

available for public query on a user-friendly website. To identify the effector transcript(s) 

regulated by CAD GWAS loci, we used four distinct colocalization approaches. We identified 

84 eQTL and 164 sQTLs that colocalized with CAD loci, highlighting the importance of genetic 

regulation of mRNA splicing as a molecular mechanism for CAD genetic risk. Notably, 20% 

and 35% of the eQTLs were unique to quiescent or proliferative SMCs, respectively. One CAD 

locus colocalized with an SMC sex-specific eQTL (TERF2IP), and another locus colocalized 

with SMC-specific eQTL (ALKBH8). The most significantly associated CAD locus, 9p21, was 

an sQTL for the long non-coding RNA CDKN2B-AS1, also known as ANRIL, in proliferative 

SMCs.

Conclusions—Collectively, our results provide evidence for the molecular mechanisms of 

genetic susceptibility to CAD in distinct SMC phenotypes.

Graphical Abstract
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INTRODUCTION

Coronary artery disease (CAD) is the leading cause of death worldwide1. Heritability 

estimates for CAD vary between 40% to 70%, suggesting a strong genetic contribution 

to disease pathology2. Genome-wide association studies (GWAS) have identified 175 loci 

associated with increased risk for CAD3–5. Approximately 40% of the CAD loci are 

associated with known risk factors, such as blood lipid levels, nitric oxide signaling, and 

blood pressure3. The remaining 60% have unknown mechanisms, but there is evidence 

that some of these loci function through the vessel wall where the disease develops6. 

In addition, 94% of CAD-associated genetic variants are in non-coding regions of the 

genome7, implying that the disease-causing loci involve regulatory mechanisms that affect 

the transcription of genes6. Therefore, gene expression studies performed in cells and tissues 

relevant to CAD in human populations can pinpoint the regulatory mechanisms of disease 

susceptibility8.

Expression quantitative trait loci (eQTL) and splicing quantitative trait loci (sQTL) analyses 

are key approaches that link genetic variants with variations in gene expression and splicing 

patterns, respectively8,9. They have enabled the prioritization of genetic variants within 

GWAS loci for different traits, and have shown that trait-associated genetic variants often 

function in a tissue- or cell type-specific manner10–13. Smooth muscle cells (SMCs), which 

make up the medial layer of arteries, play key roles in the integrity of the vessel wall, 

regulation of blood pressure and initiation and development of atherosclerosis. Recent 

studies provided compelling evidence that SMCs can play either beneficial or detrimental 

roles in lesion pathogenesis depending on the nature of their phenotypic changes, for 

example from a quiescent to a proliferative phenotype14–17. In addition, SMC phenotypic 

switching seems to be important in explaining sex differences in atherosclerotic plaque 

composition18. Thus, identifying the genetic determinants of SMC gene expression is crucial 

for understanding the biological significance of CAD-associated genetic variants functioning 

in SMCs. This will also inform the prediction of novel drug candidates targeting the disease 

processes in the vessel wall.

Despite publicly available population-level gene expression datasets from various tissues 

and cells, including 54 tissues from the Genotype-Tissue Expression (GTEx) project19 

and atherosclerosis-relevant tissues and cell types from the STARNET cohort20, aortic 

endothelial cells21,22, monocytes23, whole blood24, and coronary artery SMCs25 as well 

as epigenome profiling from the Roadmap Epigenomics Project26, more than half of the 

CAD loci are still not functionally annotated. Therefore, in this study, using a multi-omics 

approach, we identified the genetic variants that are associated with SMC-specific gene 

expression derived from 151 healthy and ancestrally-diverse heart transplant donors. This 

allowed us to identify CAD-associated loci, including the most significantly associated CAD 
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locus, 9p21, that perturb SMC transcription, thereby leading to the prediction of candidate 

effector transcripts and candidate causal variants in these disease-associated loci.

METHODS

A detailed description of the methods and the experimental procedures are provided in 

the Online Data Supplement. Please see the Major Resources Table in the Supplemental 

Materials.

The RNAseq and ATACseq data are available at GEO with the accession numbers 

GSE193817 and GSE198544 respectively. eQTL/sQTL results can be accessed at 

https://virginia.box.com/s/t5e1tzlaqsf85z13o4ie2f9t1i0zfypd and https://virginia.box.com/s/

o81cxrj5xne3xem4au785mupikduuwbu We have created a user-friendly website at http://

civeleklab.cphg.virginia.edu to query the dataset published in this paper.

RESULTS

Transcriptional profiling of human aortic SMCs

We performed RNA sequencing of aortic SMCs derived from 151 ancestrally-diverse 

healthy heart transplant donors (118 males and 33 females) to identify their transcriptional 

profiles. After quality control filtering, data analyses were performed on 139 and 145 

samples cultured in the absence (quiescent) or presence (proliferative) of FBS, respectively 

(Figure 1). There were 18,637 and 18,116 expressed genes in quiescent and proliferative 

SMCs, respectively (Table 1). Principal component analysis identified two distinct clusters 

of samples corresponding to the cells cultured in the two conditions (Supplementary 

Figure 1A). Further, 2,773 genes were differentially expressed (Padj< 1×10−3), including 

canonical SMC markers (VCAM1, SMTN, ICAM1, TAGLN, CNN1, ACTA2, SPP1) in 

agreement with the differences observed in the quiescent and proliferative state of SMCs 

(Supplementary Figure 1B, Supplementary Table 1). Extracellular matrix organization was 

among the top biological pathways identified in GO enrichment analysis of upregulated 

genes in proliferative versus quiescent phenotypes. In contrast, pathways that are associated 

with DNA replication and proliferation were repressed in the quiescent phenotype 

(Supplementary Figure 1C).

To confirm that cultured SMCs reflect in vivo physiology, we projected their transcriptomes 

onto the 49 tissues profiled in GTEx v841 (Supplementary Figure 2). We observed that 

SMCs formed a distinct cluster and the closest tissue/cell type are fibroblasts, skeletal 

muscle, blood vessels and heart.

cis-Expression Quantitative Trait Loci in SMCs

We obtained genotype information for ~6.3 million variants with at least 5% minor allele 

frequency in our population. Clustering of the donor genotypes with the 1000 Genomes 

reference population samples identified 6, 12, 64, and 69 of the individuals with East Asian, 

African, Admixed American, and European ancestry, respectively (Supplementary Figure 3).
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To identify genetic loci associated with transcript abundance, we performed association 

mapping with the genotypes of ~6.3 million variants and the expression levels of 18,116 

and 18,637 genes in quiescent and proliferative SMCs, respectively using tensorQTL44. We 

identified 3,000 and 4,188 eGenes with cis-eQTL (< 1Mb from the TSS) at FDR q-value 

< 0.05 in the quiescent and proliferative phenotypes, respectively (Table 1). We identified 

that 1,322 and 1,899 eGenes from quiescent and proliferative SMC respectively, were 

differentially expressed between the two conditions (Padj<0.05) (Supplementary Table 2). 

Next, we compared our results against the GTEx v8 eQTL dataset composed of 49 different 

human tissues41 using the QTlizer R package50. We found that 2,818 SMC cis-eQTLs 

(eSNP and eGene pair) were present in at least one GTEx tissue, whereas 3,660 were unique 

to our dataset (Figure 2A). Most of the shared SMC eQTLs were enriched in the tissues that 

are anatomically rich in SMCs (Supplementary Figure 4). Conditioning on the lead SNPs 

identified 254 and 465 secondary and beyond eQTLs for quiescent and proliferative SMCs, 

respectively.

We identified SMC-specific eQTLs using GTEx tissues as a reference61 with 

METASOFT50. We identified 29 SMC-specific cis-eQTLs under a stringent criteria of eQTL 

posterior probability > 0.9 for SMCs and < 0.1 for all the GTEx tissues (Supplementary 

Table 3, Supplementary Figure 5). To validate these results, we queried these 29 cis-

eQTLs in the STARNET dataset of seven cardiometabolic tissues from ~600 donors20. We 

identified only two of the SMC cis-eQTLs (rs367077-HLA-K and rs4795548-SH3GL1P2) 

to be present in the STARNET dataset at FDR < 0.05 (Supplementary Table 4). 12 of the 29 

SMC-specific cis-eQTLs were present in both quiescent and proliferative SMCs, 9 loci were 

cis-eQTLs only in quiescent and 8 loci were cis-eQTLs only in proliferative SMCs. Because 

many tissues in GTEx contain vascular wall cells, we examined if the 29 SMC eQTLs 

showed associations in monocytes/macrophages23 and aortic endothelial cells21. None of the 

29 eQTLs were present in these cells suggesting that the regulatory impact of the variants in 

these loci are SMC specific.

15% (3,000) and 39% (1,976) of the eGenes were unique to quiescent and proliferative 

cells, respectively (Figure 2A) (Poverlap <1×10−300, hypergeometric test). Therefore, we 

determined whether the eQTL effect sizes were statistically different between the two 

phenotypic states. We compared the regression slopes of an eQTL in quiescent (βnoFBS) 

vs proliferative (βFBS) phenotypes using a Z-test48. We identified 1,248 eQTLs at FDR 

q-value < 0.05 with varying effects between the two phenotypic states (Supplementary 

Table 5). We classified the condition-specific eQTLs into three different categories (Figure 

2B). 58% (527) of them showed differences in magnitude of the effect size between the 

two phenotypes, 39% (358) showed eQTL effect in only one phenotype, and 3% (25) 

showed differences in the direction of effect between the two phenotypes (Figure 2C). Three 

examples of condition-specific eQTLs are shown in Figure 2B. These results suggest that 

regulatory variation impacts SMC gene expression in specific contexts.

Since sex differences in the genetic regulation of gene expression have been observed 

in many tissues67,68, we separately identified sex-biased cis-eQTLs in quiescent and 

proliferative SMCs. We identified 457 and 454 sex-biased cis-eQTLs (eigenMT value <0.05) 

in quiescent and proliferative SMCs, respectively (Supplementary Table 6). 24% of them 
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(combined conditions) showed differences in magnitude of effect size between the two 

sexes, 46% showed eQTL effect in only one sex, and 30% showed differences in the 

direction of effect between the two sexes (Figure 2C). Three examples of sex-biased eQTLs 

are shown in Figure 2B.

To characterize the potential function of the eQTL signals, we evaluated the overlap of the 

lead variant and LD proxies (r2≥0.8; 1000G EUR) in accessible chromatin regions of SMCs 

as identified by ATACseq in 5 different donors in quiescent and proliferative phenotypes. 

9.86% of the lead variants of the eQTLs were in these accessible chromatin regions. After 

including LD proxies of these lead variants, 1,386 of 3,000 eQTL signals in quiescent SMCs 

and 1,945 of 4,188 eQTL signals in proliferative SMCs overlapped accessible chromatin 

regions, demonstrating the potential regulatory function of these loci. We next sought to 

identify transcription factor binding sites (TFBSs) overrepresented in ATACseq peaks and 

overlapping eQTL SNPs in the accessible chromatin regions (Supplementary Figure 6). 

Motif enrichment analysis showed enrichment of putative binding sites for members of the 

SP2, SP1, ELK4, and GABPA TF families, some of which are known to play functional 

roles in SMCs69–71.

Colocalization between eQTLs and CAD GWAS signals

To predict the effector transcripts that are regulated by CAD GWAS loci, we performed 

colocalization analyses using four distinct approaches. Overall, we had genotypes for 169 

of the 175 CAD loci in our dataset. First, to identify the eQTLs that were likely to be 

driven by the GWAS loci, we assessed if the GWAS and eQTL lead variants were in 

high linkage disequilibrium (LD) (r2≥0.8) in our population. Using the LD colocalization 

approach only, we identified 16 and 22 eGenes (FDR q-value < 0.05) in the quiescent 

and proliferative phenotype that showed an overlap with CAD loci, respectively. We 

also performed colocalization analysis using three additional methods: SMR52, COLOC54, 

and eCAVIAR53. We used FDR q-value < 0.05 for SMR and colocalization posterior 

probability (CLPP) > 0.01 as cutoffs for eCAVIAR and PPH4 > 0.5 for COLOC. Using 

all four colocalization methods, we identified 84 eGenes that showed statistically significant 

colocalization. 17 and 30 of them showed an overlap with at least two of the colocalization 

methods in quiescent and proliferative SMCs, respectively (Figure 3, Supplementary Table 

7, Supplementary Figure 7). Some of the eGenes predicted by the four colocalization 

methods differed; therefore, we visualized the coincidence of the eQTL and GWAS 

lead SNPs by inspecting the regional colocalization plots using LocusCompare55. This 

coincidence was also supported by conditional analysis on each lead eSNP and CAD GWAS 

index SNP.

Next, we assessed the LD between the sex-biased eQTL and CAD GWAS SNPs and 

identified TERF2IP whose cis-eQTL colocalized with the 16q23.1 CAD locus: (Figure 4). 

The sex-biased eQTL for TERF2IP was present only in proliferative SMCs. The CAD risk 

allele of the eSNP rs12929673, T, was associated with lower expression of TERF2IP in 

females and higher expression in males (Figure 4A). The same locus was also associated 

with two SMC phenotypes relevant to atherosclerosis in a sex-stratified manner72.The CAD 

risk allele of the eSNP rs12929673, T, was associated with reduced proliferation response 
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to IL-1β stimulation and lower calcification in females compared to males which showed 

the opposite effect (Figure 4B). The CAD GWAS signal at this locus was stronger in males 

(Prs12929673,male=2×10−6
; βrs12929673,male=0.28) than in females (Prs12929673,female=1×10−2

; 

βrs2929673,female=0.15) in the UK Biobank cohort73 (Figure 4C, suggesting a protective role 

for lower TERF2IP expression against atherosclerosis.

To identify SMC-specific genetic regulation of CAD risk, we asked if the SMC-specific 

eQTLs (Supplementary Table 3) colocalized with CAD GWAS loci. We found that cis-

eQTL for ALKBH8 colocalized with the 11q22.3 CAD locus (Figure 5A). This SMC-

specific eQTL is also colocalized with systolic and diastolic blood pressure (Figure 5B–C), 

suggesting a role for this gene, which encodes a methyltransferase, in regulating blood 

pressure and atherosclerosis risk. The risk allele, G, of the eSNP rs7926602 is associated 

with lower expression of ALKBH8 in quiescent and proliferative SMCs (Figure 5D–E).

Functional annotation of CAD GWAS-colocalized SMC eQTLs

The 84 colocalized eQTLs contain 3,811 SNPs that are in high LD in our study population 

(r2≥0.8). We overlapped these SNPs with accessible chromatin regions identified in 

ATACseq experiments performed in quiescent and proliferative SMCs from five donors. We 

determined that 128 SNPs in 30 eQTL loci in quiescent SMCs and 140 SNPs in 37 eQTL 

loci in proliferative SMCs were in accessible chromatin peaks (Supplementary Table 8). We 

predict these SNPs to have a regulatory impact on eQTL gene expression and potentially be 

causal for SMC gene expression and CAD risk.

We previously characterized the SMC donors for 12 atherosclerosis-relevant phenotypes74. 

First, we assessed the association of the eSNPs in the CAD loci with these phenotypes. 

Second, we assessed the correlation between the phenotypes and the colocalized eQTL 

gene expression. The risk allele of the eSNP rs7195958 at the DHODH locus was 

associated with increased SMC proliferation compared to the non-risk allele. The risk 

allele was also associated with decreased expression of DHODH in quiescent SMCs. As 

would be predicted by these association results, there was a significant positive correlation 

between DHODH expression and SMC proliferation, suggesting that the 16q22 CAD locus 

regulates SMC proliferation by perturbing DHODH expression (Supplementary Figure 8A). 

Similarly, the risk allele of the eSNP rs12817989 at the FGD6 locus had lower association 

with SMC proliferation compared to the non-risk allele. The risk allele was associated 

with higher expression of FGD6 in proliferative SMCs. As would be predicted by these 

association results, there was a significant negative correlation between FGD6 expression 

and SMC proliferation, suggesting that the 12q22 CAD locus regulates SMC proliferation 

by perturbing FGD6 expression (Supplementary Figure 8B).

Finally, human single cell RNAseq (scRNAseq) analysis from coronary atherosclerotic 

plaques confirmed the expression of most of the eQTL genes in SMCs (Supplementary 

Figure 9)17. We were able to assess the expression of 76 of the 84 eQTL genes in the 

coronary artery scRNASeq dataset and found that 50 were higher expressed in SMCs, 

pericytes, and fibroblasts compared to endothelial cells, monocytes, macrophages, and other 

immune cells. For example, we found that the expression of the long non-coding RNA 

SNHG18 was regulated by the 5p15 CAD locus in both the quiescent and proliferative 
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SMCs. The risk allele was associated with decreased expression of SNHG18 (Figure 

6A). Of the 16 potentially causal SNPs in high LD in this locus, six of them were in 

accessible chromatin regions in both SMC phenotypic states (Figure 6B, Supplementary 

Table 8). Nine SNPs also displayed an allelic effect in a massively parallel reporter assay 

(MPRA) performed in SMCs exposed to cholesterol to induce phenotypic switching to 

resemble modulated SMCs found in atherosclerotic plaques62 (Figure 6C). SNPs rs1651285, 

rs1706987, and rs1398337 were in both accessible regions and showed allelic effects in 

MPRA, identifying them as the potential causal variants at this locus. The expression of 

SNHG18 was highly enriched in SMC, fibroblast/fibromyocyte, and pericyte clusters in a 

human carotid artery scRNA-seq dataset17 (Figure 6D). Further, SNHG18 expression was 

negatively correlated with PDGF-BB-induced proliferation (Figure 6E). When we silenced 

the SNHG18 expression in immortalized human coronary aortic SMCs (Supplementary 

Figure 10), we observed increased proliferation (Figure 6F).

To determine the transcriptional profile of SNHG18 downregulation, we performed 

transcriptome analysis using RNAseq in human coronary artery SMCs and found 778 

genes that were differentially expressed (Padj<0.05) (Supplementary Table 9). Of these, 375 

genes showed a log2(fold-change [FC]) above 0.2, and 403 genes were downregulated with 

log2(FC)<−0.2. Upregulation of MKI67, a cellular marker for proliferation, in response 

to SNHG18 knockdown confirmed our proliferation results. Furthermore, proliferation/cell 

cycle, cell migration, cell motility, and blood vessel development/angiogenesis were among 

the top biological pathways identified in the GO enrichment analysis of downregulated 

genes Supplementary Table 10). While, pathways that are associated with actin cytoskeleton 

organization, cell morphogenesis and regulation of cellular component biogenesis were 

identified in GO enrichment analysis of upregulated genes (Supplementary Table 11).

In contrast, none of the DEGs are cis-regulated suggesting that the effects of SNHG18 are in 

trans to affect other genes. Next, we assessed SNHG18 mRNA expression in human aortic 

SMCs from three donors using RNA-scope in situ hybridization and immunofluorescence. 

Our results confirmed that SNHG18 mRNA localized to the nucleus and cytoplasm and was 

co-expressed with SMC marker ACTA2 mRNA in all the cells we imaged. In agreement 

with our results, Zhen et al., demonstrated, using in situ hybridization assays, that SNHG18 
is localized to both the nucleus and cytoplasm in different cancer cells and tissues75.

Collectively, these lines of evidence point to three variants in the 5p15 locus as potential 

causal SNPs regulating the expression of SNHG18 and SMC proliferation, thereby affecting 

the CAD risk in this locus.

Splicing Quantitative Trait Loci in SMCs

Previous studies showed that RNA splicing explains a large proportion of heritable risk for 

complex diseases9. To identify genetic loci associated with mRNA splicing, we quantified 

RNA splicing with LeafCutter46 and performed association mapping with tensorQTL44. 

We identified 3,147 and 3,578 sGenes with cis-sQTL (< 200 kb from splice sites) in the 

quiescent and proliferative phenotypes, respectively (FDR q-value <0.05) (Table 1). 1,919 

and 1,700 sGenes from quiescent and proliferative SMC respectively, were differentially 

expressed (Supplementary Table 12). Similar to eQTL findings, the majority of the sGenes 
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were shared (51%) between the two conditions (Poverlap < 1×10−300, hypergeometric test). 

19% (834) and 29% (1,265) of the sGenes were unique to quiescent and proliferative 

conditions, respectively (Supplementary Figure 11A). Conditioning on the lead SNPs 

identified 144 and 120 secondary and beyond sQTL for quiescent and proliferative 

conditions, respectively. We also determined the overlap of genes with cis-eQTL or -sQTL. 

In quiescent SMCs, only 20% (1,008) of the 5,139 genes with a cis-eQTL or -sQTL 

were genetically regulated both at the mRNA splicing or expression levels (Poverlap = 

4.7×10−136, hypergeometric test). Similarly, in proliferative SMCs, only 24% (1,522) of the 

6,244 with a cis-eQTL or -sQTL were genetically regulated both at the mRNA splicing 

or expression levels (Poverlap = 9.1×10−189, hypergeometric test) (Supplementary Figure 

11B). This suggests that genetic regulation of mRNA abundance and splicing are largely 

independent in SMCs, in agreement with studies in other tissues9,76.

Colocalization between sQTLs and CAD GWAS signals

To identify genes whose alternative splicing is associated with genetic risk for CAD, we 

performed colocalization analyses of splicing QTLs and CAD loci using four distinct 

approaches similar to the eQTL analysis described above. The intronic excision levels, 

as measured by LeafCutter46, of 100 and 120 sGenes in the quiescent and proliferative 

phenotypes were significantly associated with CAD loci, respectively. Colocalization of cis-

sQTLs with 44 and 60 genes with CAD loci was unique to quiescent or proliferative SMCs, 

respectively (Figure 7A; Supplementary Table 13). Significantly more CAD genes were 

colocalized with sQTLs (164) than eQTLs (84). We examined whether the identified SMC 

sQTLs that colocalized with CAD could impact the ability of RNA binding proteins (RBPs) 

playing a role in splicing events. We used RBP-Var77, which provides extensive annotation 

for the functional variants involved in post-transcriptional interactions. RBP-Var includes 

collection of RBP binding SNPs which may disrupt the binding of RBPs, derived from 

crosslinking immunoprecipitation sequencing data sets for 60 RBPs and motif matching 

sites for 153 RBPs. When considering only 303 sQTL lead variants in 164 loci, 122 (40%) 

overlapped the binding site of an RBP (Supplementary Table 14).

We identified 11 genes whose expression and alternative splicing was associated with the 

same CAD loci (Supplementary Table 15). These results point to the significant role of the 

genetic regulation of mRNA splicing as a molecular mechanism for CAD genetic risk.

We observed that the 9p21 locus, which has been the most significantly associated CAD 

locus in many populations, contains an sQTL for CDKN2B-AS1, also known as ANRIL 

(Figure 7A–C). We detected the expression of 25 of the 28 CDKN2B-AS1 transcripts in 

SMCs (Figure 7D, Supplementary Figure 12). Our results showed that the most significantly 

differentially excised intron at 9p21 (chr9:22064018-22096372) was found in CDKN2B-
AS1. The frequency of this splicing event found in SMC proliferative phenotype (P = 

2.7×10−4; β=−0.28) was colocalized with the genotype of the rs10217586 SNP in the CAD 

locus (P = 1.9×10−122; β=−0.16). Previous studies conducted in aortic endothelial cells21,22, 

monocytes23, whole blood24, coronary artery SMCs25, and umbilical artery SMCs78 did 

not identify an eQTL or sQTL for CDKN2B-AS1 in this locus, suggesting that the genetic 

variants in the 9p21 locus act in aortic SMCs through splicing.
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DISCUSSION

GWAS have successfully identified 175 loci associated with CAD risk; however, the genes 

and mechanisms responsible for many of these loci remain unknown. Majority of the 

variants are in non-coding regions making the task of identifying causal variants and genes 

difficult. Systems genetics aims to address this challenge by associating genetic variants 

with molecular phenotypes to comprehensively uncover the relationship between genotype 

and phenotype. Colocalized molecular QTL signals enable identification of reasonable 

candidate genes in disease-relevant cells and tissues. Therefore, we conducted, as far as 

we know, the largest transcriptome and whole-genome analyses using human aortic SMCs 

derived from a multiethnic population. We cultured these critical vascular cell types to CAD 

in two different media formulations to recapitulate the atherosclerosis-relevant quiescent 

and proliferative state of SMCs. PCA of the transcriptome confirmed the distinctiveness of 

the two conditions and the comparison with publicly available datasets in GTEx revealed 

regulatory patterns specific to human SMCs.

Intersection of our SMC eQTL data with the GTEx dataset showed that more than half 

of SMC eQTLs were not evident in GTEx tissues, indicating genetic regulation of gene 

expression unique to SMCs. Another study also found about half of the eQTLs from 

aortic endothelial cells of up to 157 donors were absent in the GTEx dataset22. This is 

possibly because most GTEx eQTLs have been performed in heterogeneous tissue samples 

containing various cell types and the genetic effects that are functioning only in rare cell 

types within a sampled tissue may not be detected. Indeed, most of the SMC eQTLs 

shared with GTEx samples were in the tissues that are rich in SMCs. Differences in 

RNA sequencing methods may have also contributed to the differences between GTEx 

and our study. Cell-type-specific eQTL analysis in disease-relevant tissues will lead to the 

identification of novel and more precise disease associations that can help elucidate the 

molecular mechanisms by which the genetic variants affect the disease.

Overlapping TF binding sites with eQTL SNPs identified enrichment of putative binding 

sites for members of the SP2, SP1, ELK4, and GABPA TF families. While SP2 has an 

unknown role in SMCs, we predicted that the eQTL SNPs would impact SP2 binding to 

DNA in both the quiescent and proliferative phenotypes, suggesting an important role for 

this transcription factor in the regulation of gene expression by genetic variants in SMCs. 

Chromatin immunoprecipitation followed by sequencing (ChIP–seq) data for the promising 

TFs, SP2, SP1, ELK4, and GABPA, have yet to be generated in SMCs to support our 

ATAC-seq analyses. We also predicted the transcription factors KLF5, E2F1, and CTCF 

to be important for atherosclerosis as their binding sites are enriched in the proliferative 

SMCs. E2F1 is not only known to regulate cell proliferation79 but it is also upregulated in 

proliferative SMCs compared to quiescent SMCs suggesting it may be contributing to the 

phenotypic transition of SMCs from a quiescent to a proliferative state.

Several colocalization approaches have been developed in recent years80. They are sensitive 

to the parameters, such as thresholds applied to the prior probabilities, and differences 

in haplotype structures of the populations from which GWAS and molecular QTL data 

are derived. When the lead variants for the GWAS and eQTL studies are the same or 
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in high LD in both populations, colocalization is straightforward81. Since the donors in 

our study population had various genetic ancestries and the CAD GWAS participants 

were of European ancestry, we used four different colocalization methods that may help 

to account for the differences in the LD structure. While multiple eQTLs and sQTLs 

had evidence for colocalization with CAD loci with two or more approaches, only seven 

genes (AL513548.3, EIF2B2, FES, FURIN, MAP3K7CL, SMAD3, REST) had evidence 

from all four approaches. Further development of colocalization methods is needed to 

increase the confidence in molecular QTL studies for identifying candidate genes for 

GWAS loci. For example, analytical approaches by modeling varying LD patterns across 

datasets with multi-ethnic populations will most likely enhance colocalization discoveries. 

Notably, most existing molecular QTL and GWAS studies are limited by the cost of the 

phenotyping, genotyping, and sequencing power and focus on people of European ancestry. 

In addition, the combination of the improved colocalization methods with data aggregation, 

e.g., a meta-analysis of molecular QTLs (sQTL, eQTL, pQTL, etc.) and other relevant 

molecular phenotype studies, such as data from single cells RNAseq, methylation, chromatin 

accessibility, and histone modification, could significantly enhance both the sensitivity and 

specificity of the colocalization findings.

In addition, while performing the colocalization analyses using molecular QTL results from 

a multiethnic population could identify common variants that have disease relevance for all 

ethnic groups, they could also miss some genetic-ancestry specific colocalizations due to 

differing haplotype structures between the populations where the molecular QTL studies and 

CAD GWAS were performed. Therefore, more studies, like the most recent CAD GWAS 

performed in a multi-ethnic population, are needed82.

A previous study predicted the colocalization of five genes with CAD loci using eQTL data 

from coronary artery SMCs of 52 donors cultured only under proliferative conditions25. Our 

study of 151 donors whose SMCs were cultured in two conditions significantly expands 

these previous findings. Only two of the five predicted causal genes in the coronary SMC 

study, FES and SMAD3, were replicated in our study. One of the five genes, TCF21, which 

encodes a transcription factor that inhibits SMC differentiation17,83, is expressed in coronary 

but not aortic SMCs; therefore, we were not able to test its association with genetic variants. 

While the other two genes, SIPA1 and PDGFRA, are expressed in aortic SMCs, we did 

not detect their colocalization with CAD loci. A recent study that was published78 while 

this manuscript was being revised identified 42,257 eGenes in umbilical cord aortic SMC 

from 1,486 donors. They identified 85 genes colocalized with CAD GWAS loci, 16 of which 

overlapped with our study (AL513548.3 (MIA3-AS1), ARHGAP42, CETP, EIF2B2, FES, 
FGD6, LINC02542, MAP1S, REST, MLH3, NEK9, SKIV2L, SMAD3, SMG6, SNHG18, 
TDRKH-AS1). The discrepancies between our study and these two studies may be related 

to differences in methods, such as the P-value thresholds for declaring a cis-eQTL or 

its colocalization significant in addition to the aortic bed where the SMCs were isolated 

from. By performing our studies in a large number of donors with deep RNA sequencing, 

we provide a significant number of the predicted causal CAD genes playing a role in 

SMCs. The differences between ascending aorta, coronary artery, and umbilical cord aorta 

SMC eQTLs point to differences in transcriptional regulation among the vascular beds. 

Thus, our aortic SMC design provides more generalizable knowledge for aortic diseases. 
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Larger numbers of donors or meta-analysis of the SMC eQTL studies should lead to the 

identification of more causal genes associated with CAD.

Nearby genes to the index SNP in a locus are usually used as signposts for annotation. 

Previous CAD GWAS identified 366 nearby genes as potentially causal4. We found that 

only 26 and 33 of these nearby genes matched eQTL and sQTL, respectively. On the other 

hand, 173 genes were distinct from the initial locus annotations. 58 were derived from 

eQTL and 127 were derived from sQTL colocalizations. For example, rs11810571 in the 

1q21.3 locus is located near TDRKH and RP11-98D18.9. However, our results showed 

significant colocalizations with the expression level of GOLPH3L, CTSK and CTSS located 

~ 1 MB from the variant. For 8 loci, we identified multiple genes associated with the risk 

variants. For example, 15q21 risk locus was associated with FES and FURIN genes in 

proliferative state, while in quiescent SMCs it was associated with the expression of FES, 

RCCD1 and IQGAP1. Finally, previous GWAS identified missense mutations in 20 genes4. 

For two of the genes, LIPA and TRIM5, we also observed an eQTL effect. For three of 

the genes, ADAMTS7, DAGLB, DHX58, we also observed both eQTL and sQTL effects. 

These examples demonstrate the complexity of the molecular mechanisms by which CAD 

loci affect disease risk.

Long non-coding RNAs (lncRNAs) are typically >200 nucleotides in length and do not 

contain a functional open reading frame. They can be encoded within protein coding genes 

or can be encoded in the intergenic regions from the sense or antisense DNA. They are 

expressed at much lower levels relative to their protein coding counterparts84. By performing 

library preparation with ribosomal RNA depletion, as opposed to polyA selection, and deep 

sequencing, we were able to assess the expression of ~3,000 lncRNAs. Recent studies have 

shown that lncRNA plays an essential role in SMC biology and CAD85,86. We identified 

that CAD loci were associated with the expression of 12 lncRNAs and with the splicing 

of 15 lncRNAs. One of the colocalized lncRNA was small nucleolar RNA host gene 18 

(SNHG18) which was regulated by the variants in the 5p15 CAD locus in both the quiescent 

and proliferative SMCs. While the role of SNHG18 in SMC biology and CAD have not 

been studied, it was observed to be upregulated in glioma and regulate the progression of 

epithelial-mesenchymal transition and cytoskeleton remodeling of glioma cells87.

Identifying tissue and cell-specific mechanisms of GWAS loci has been challenging with 

few notable exceptions88–90. We found that SMC-specific eQTL for ALKBH8 colocalized 

with the 11q22.3 CAD locus, with the risk allele leading to lower ALKBH8 expression. 

The CAD risk allele is also associated with higher blood pressure73, suggesting a role 

for this gene, which encodes a tRNA methyltransferase, in regulating the vascular tone. 

Embryonic fibroblasts isolated from Alkbh8-deficient mice were shown to have increased 

levels of intracellular reactive oxygen species, lipid peroxidation products and a transcript 

expression signature indicative of oxidative stress compared to fibroblasts isolated from 

wild-type littermates91. ALKBH8 agonists have been proposed for treating myocardial 

infarction injury due to its function on the modulation of autophagy and oxidative stress92.

Significant differences between sexes in the underlying pathology of atherosclerosis and its 

gene regulation have been described by us and others18,93. We had 118 male and 33 female 
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donors in our population. The sex ratio of the donors is similar to the reported cases over a 

20-year period in heart transplant donor registries, where 31.3% of the transplanted hearts 

are from deceased women94. Despite the imbalance in the numbers of males and females, 

which may have affected the statistical power of the interaction test, we were able to identify 

~1,000 sex-biased eQTLs. One example of sex-biased eQTLs that colocalized with CAD 

GWAS signal was the TERF2IP gene. Lower TERF2IP leads to telomere elongation95, 

which is associated with decreased CAD risk96. Risk allele at this locus was associated with 

higher TERF2IP expression in males and lower expression in females. The same locus had 

an association with CAD risk only in males, suggesting that the lower TERF2IP expression 

in females may be playing a protective role against atherosclerosis. These results suggested 

that considering sex as a biological variable in cardiovascular research is essential to 

enhance our understanding of sex differences and to inform the development of sex-specific 

preventions and interventions in multi-ethnic populations.

Identifying genes whose expression is influenced by colocalizing cis-eQTL is just the 

first step in dissecting SMC and CAD GWAS loci. Discovering the functions of the 

predicted causal genes in SMC biology and CAD risk is also needed. We had previously 

shown that CAD loci are associated with atherosclerosis-relevant cellular phenotypes 

in the same donors74. We combined the two datasets to predict that DHODH and 

FGD6 are candidate causal genes that regulate SMC proliferation. DHODH encodes 

dihydroorotate dehydrogenase, which catalyzes the fourth enzymatic step in de novo 
pyrimidine biosynthesis. Its role in SMCs is not known but pyrimidine nucleotides are 

involved in the energetics of smooth muscle contracture97. A missense variant in FGD6 
has been shown to increase the risk of polypoidal choroidal vasculopathy, which primarily 

affects the vascular layer of blood vessels in the choroid98.

The 175 CAD loci contain >6,000 SNPs and identifying which of these alter transcriptional 

activity in SMCs is a necessary step to dissect the molecular mechanism of the loci. We 

overlaid the genomic locations of eQTL SNPs with accessible chromatin regions to predict 

that 194 SNPs may alter gene expression, thereby significantly reducing the number of 

predicted causal variants in CAD loci. Our studies show that integrating across multiple 

scales, from genotype to cellular phenotypes, allows us to focus on a few plausible 

hypotheses to test in subsequent in vitro and in vivo studies to identify the molecular and 

cellular genetic mechanisms of CAD loci.

The landscape of CAD-relevant RNA splicing events are mostly unknown. We observed 

that significantly more CAD loci were associated with splicing than expression, suggesting 

that the majority of the genetic risk for CAD acts through regulating transcript splicing in 

SMCs rather than transcript abundance. This observation is in agreement with a previous 

study that showed that sQTLs are more likely to be enriched for Alzheimer’s disease GWAS 

SNPs than eQTLs76. Further, we observed that sQTLs that colocalized with CAD loci were 

associated with a distinct group of genes than eQTLs, indicating that our results can explain 

additional factors of the genetic architecture of CAD.

Of significant note, we identified the colocalization of CDKN2B-AS1 (ANRIL) sQTL 

with the 9p21 locus. This locus has been under intense scrutiny because it is the most 
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significantly associated CAD locus and has been replicated in many populations with diverse 

ancestries99. Since there is no association with traditional risk factors such as dyslipidemia, 

diabetes mellitus, age, and sex, previous studies focused on identifying the effects at the 

vessel wall. eQTL studies in endothelial cells did not identify an impact of the genetic 

variants in this locus on gene expression22; however, they have been shown to regulate 

adhesion, contraction, and proliferation in SMCs derived from induced pluripotent stem 

cells100. Aortic SMCs isolated from mice with a knock-out of the homologous region 

showed excessive proliferation and diminished senescence101. When these mice were 

bred to an atheroprone background, they developed larger atherosclerotic plaques with 

no changes in blood pressure, lipid levels, body weight, or fasting glucose102. Primary 

SMCs were prone to dedifferentiation and had accelerated calcification, reflective of the 

susceptibility mechanisms of the humans carrying the risk allele. This region contains five 

tightly clustered genes, which partly overlap. CDKN2B-AS1 overlaps in antisense the full 

length of the CDKN2B gene body while sharing a bidirectional promoter with CDKN2A. 

There are 28 linear and multiple circular isoforms of ANRIL. We detected the expression 

of 25 of the 28 linear isoforms in SMCs. Previous studies showed associations of linear 

ANRIL isoforms, as well as CDKN2A and CDKN2B with the variants in the 9p21 locus in 

whole blood, peripheral blood monocytes, peripheral blood T lymphocytes, lymphoblastoid 

cells lines, vascular tissues such as carotid atherosclerotic plaque samples, aorta, mammary 

artery, as well as subcutaneous or omental adipose tissue99,103. Our study shows these 

variants affect linear ANRIL splicing in SMCs; however, the associations of these variants 

with circular forms of ANRIL remain to be determined. The mechanism by which ANRIL 
isoforms affect SMC functions such as proliferation, migration, and calcification also needs 

to be explored.

Collectively, our results predicted candidate causal genes playing a role in SMCs that 

modulate the genetic risk for CAD. Some of the loci act differentially in quiescent and 

proliferative SMC phenotypes emulating different stages of atherosclerosis. They also have 

distinct effects in males and females, and some are SMC-specific. Taken together, our 

results provide evidence for the complexity of the molecular mechanisms of CAD loci. We 

expect that our findings will provide a rich catalog of molecular QTLs to the cardiovascular 

community and candidates for future preclinical development.
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Non-Standard Abbreviations and Acronyms

ATACseq Assay for Transposase-Accessible Chromatin with high-throughput 

sequencing

CAD Coronary artery disease

CLPP Colocalization posterior probability

eQTL Expression quantitative trait locus

FBS Fetal bovine serum

GTEx Genotype-Tissue Expression

GWAS Genome-wide association studies

LD linkage disequilibrium

RBP RNA binding protein

SMC Smooth muscle cells

SNP Single nucleotide polymorphism

sQTL Splicing quantitative trait locus

STARNET Stockholm-Tartu Atherosclerosis Reverse Networks Engineering 

Task
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NOVELTY AND SIGNIFICANCE

What Is Known?

• Genome-wide association studies (GWAS) identified 175 loci associated with 

coronary artery disease (CAD).

• Most of these loci are in non-coding regions, have unknown mechanisms, but 

are predicted to regulate gene expression.

• The most significantly associated CAD GWAS locus, 9p21, remains a 

mystery after many years of studies.

• Vascular smooth muscle cells (SMCs) play critical roles in the development 

and progression of CAD.

What New Information Does This Article Contribute?

• We identify 84 genes whose expression and 164 genes whose splicing are 

regulated by loci associated with increased risk for CAD.

• We discover distinct genetic architectures of gene expression in quiescent and 

proliferative SMC phenotypes.

• We predict that long non-coding RNA SNHG18 is a likely causal transcript 

for CAD and affects SMC proliferation.

• We identify the colocalization of TERF2IP with a sex-biased CAD locus.

• We show that the 9p21, the most significantly associated CAD locus, affects 

the splicing of the long non-coding RNA CDKN2B-AS1, also known as 

ANRIL, in SMCs.

CAD is the leading cause of death worldwide. Recent meta-analyses of GWAS have 

identified 175 loci associated with CAD. Given that vascular SMCs play critical roles 

in the development and progression of CAD, we hypothesized that a subset of the CAD 

GWAS risk loci are associated with the regulation of transcription in distinct SMC 

phenotypes. We identified 4,910 eQTL and 4,412 sQTL that represent regions of the 

genome associated with transcript abundance and splicing. 3,660 of the eQTLs had not 

been observed in the publicly available GTEx dataset. We identified 84 eQTL and 164 

sQTLs that colocalized with CAD loci. Notably, 20% and 35% of the eQTLs were 

unique to quiescent or proliferative SMCs, respectively. A CAD locus colocalized with 

a sex-specific eQTL, TERF2IP, and another locus colocalized with SMC-specific eQTL, 

ALKBH8. The most significantly associated CAD locus, 9p21, was an sQTL for the 

long non-coding RNA CDKN2B-AS1, also known as ANRIL, in proliferative SMCs. 

We created a user-friendly website (http://civeleklab.cphg.virginia.edu) for cardiovascular 

researchers to query our dataset. Our study provided evidence for the molecular 

mechanisms of genetic susceptibility to CAD in distinct SMC phenotypes.
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Figure 1: Study design and overview of analyses.
Aortic smooth muscle cells (SMCs) from 151 heart transplant donors of various genetic 

ancestries were characterized for three atherosclerosis-relevant phenotypes: migration, 

calcification and proliferation74. To measure gene expression of SMCs, sequencing of 

ribosomal RNA-depleted total RNA isolated from SMCs cultured in the absence or presence 

of FBS to simulate quiescent or proliferative phenotypic state was performed. Associations 

of gene expression and splicing with the genotypes of ~6.3 million imputed SNPs were 

calculated to discover cis-eQTLs as well as condition-specific and sex-biased eQTLs 
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and sQTLs. Colocalization between molecular QTL and coronary artery disease GWAS 

associations was identified using four different methods.
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Figure 2: Identification of cis-eQTLs, condition-specific and sex-biased eQTLs in aortic smooth 
muscle cells.
A) Venn diagram comparing eQTL discovered in quiescent (blue) and proliferative (red) 

conditions versus GTEx tissues (yellow) (FDR q-value<0.05). 3,660 of SMC cis-eQTLs 

(pair of SNP-gene) were absent or not significant in the GTEx dataset. 1,362 and 1,976 

of these novel cis-eQTLs were unique to quiescent and proliferative cells, respectively. B) 
Condition-specific (top) and sex-biased (bottom) eQTLs were classified into three different 

categories: condition-specific or sex-biased effect, condition-specific or sex-biased direction, 

and condition-specific or sex-biased magnitude. C) Quantification of the three different 

condition-specific (left) and sex-biased (right) eQTL groups.
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Figure 3: Summary of the SMC eQTL and CAD GWAS colocalization.
Plots show the colocalization of CAD GWAS and eQTL signals using a combination of 

four different methods in A) quiescent and B) proliferative SMCs. The X-axis shows the 

chromosomal position of the colocalized SNP; Y-axis shows the effect size and direction 

of the eQTL with respect to the risk allele from the coronary artery GWAS4. The effect 

size value is proportional to gene expression residual after PEER correction43. Risk alleles 

that are associated with increased gene expression level are shown with up-triangle and 

Aherrahrou et al. Page 25

Circ Res. Author manuscript; available in PMC 2024 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



risk alleles that are associated with decreased gene expression level are shown with down-

triangle. Bolded gene symbols are common between the two phenotypic states.

Aherrahrou et al. Page 26

Circ Res. Author manuscript; available in PMC 2024 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Colocalization between TERF2IP sex-biased eQTL and CAD GWAS.
Colocalization based on linkage disequilibrium between sex-biased eQTL SNPs and CAD 

GWAS identified TERF2IP as a colocalized gene. A) Genotype-gene expression plots for 

TERF2IP for the colocalized SNP(rs12929673) in quiescent and proliferative SMCs in 

males and females. B) Sex biased association of rs12929673 with SMC proliferation in 

response to IL-1β and calcification in response to high inorganic phosphate based on data 

described in our previous publication74. C) LocusZoom55 plots showing the association 

signal for sex-combined (Harst and Verweij4) and sex-stratified (UK Biobank73) GWAS for 

coronary artery disease at the AL160313.1 or TERF2IP locus.
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Figure 5: Colocalization between SMC-specific eQTL and vascular disease GWAS.
cis-eQTL for ALKBH8 expression colocalized with the 11q22.3 A) Coronary artery disease 

(CAD), B) Diastolic (DBP) and C) Systolic (SBP) blood pressure GWAS locus. The risk 

allele (G) of SNP rs7926602 is associated with lower ALKBH8 expression in D) quiescent 

and E) proliferative SMCs.
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Figure 6: Colocalization between SNHG18 eQTL and 5p15.31 CAD GWAS locus.
The risk allele (T) of SNP rs1651285 is associated with lower SNHG18 expression in A) 
quiescent and proliferative SMCs B) LocusZoom55 plots of the CAD GWAS and SMC 

cis-eQTL in the 5p15.31 locus. SNPs rs1651285, rs1706987, and rs1398337 are located 

in an accessible chromatin region identified by ATACseq in SMCs (lower panel). C) Bar 

plot summarizing the CAD haplotypes in the chr5p15/SNHG18 locus (Hap 1, 2, 3, 4) 

that demonstrated significant allele-specific enhancer activity in massively parallel reporter 

assays performed in cholesterol-loaded SMCs (n=3). Significant differences (two-sided 
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T-test) are shown between Hap2/Hap3 vs. Hap1 (reference haplotype). A different color 

represents each nucleotide. Adenine (A) is indicated by the dark orange color, Cytosine 

(C) is indicated by the blue color, Guanine (G) is indicated by the green color, and the 

orange light indicates Thymine (T). D) Uniform manifold approximation and projection 

plot of single-cell RNA-sequencing data from human coronary atherosclerotic plaques71. 

E) Negative correlation of SNHG18 expression with PDGF-BB-induced proliferation in 

SMCs using Spearman correlation. F) Downregulation of SNHG18 in SMCs increased 

proliferation (n-3). Hap indicates haplotype. G) Representative RNAScope™ Double ISH 

images (40X) of human aortic SMCs stained for ACTA2, SNHG18, and DAPI. The 

representative images in H were chosen since they captured the critical cell structures and 

evident staining. Scale bar represents 20 μm.
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Figure 7: Summary of the SMC sQTL and CAD GWAS colocalization and the 9p21 locus.
A) Shows the colocalization summary of CAD GWAS and sQTLs signals using four 

different methods in SMCs. B) CDKN2B-AS1 cis-sQTL signal colocalized with the 9p21 

CAD GWAS locus. C) Distribution of the percent spliced in index (PSI) values for 

CDKN2B-AS1 intron based on the rs10217586 genotype. D) Average expression of the 

28 CDKN2B-AS1 transcripts in 151 quiescent and proliferative SMCs. The standard error of 

the mean is shown. The isoform structures of the two most abundant transcripts are shown. 

Detailed isoform structures for all transcripts are in Supplementary Figure 14.
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Table 1:

Expression and Splicing Quantitative Trait Loci

Gene Expression Splicing

Condition Gene Type No of genes tested No of eGenes with at least 
one eQTL No of genes tested No of sGenes with at least 

one sQTL

Quiescent

protein coding 13,341 2,267 11,123 2,774

lncRNA 3,183 477 959 244

pseudogene 1,484 215 291 129

other 629 41 1 0

Total 18,637 3,000 12,374 3,147

Proliferative

protein coding 13,182 3,367 11,013 3,180

lncRNA 2,986 546 996 273

pseudogene 1366 228 297 125

other 582 47 1 0

Total 18,116 4,188 12,307 3,578
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