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Abstract

Background: Texas has the highest hepatocellular carcinoma (HCC) incidence rates in the 

continental U.S., but these rates vary by race/ethnicity. We examined racial/ethnic disparities 

through a geospatial analysis of the social determinants of health.
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Methods: Using data from the Texas Cancer Registry, we assembled 11,547 HCC cases 

diagnosed between 2011 and 2015 into Texas’s census tracts geographic units. Twenty-nine 

neighborhood measures representing demographics and socioeconomic, and employment domains 

were retrieved from the US Census Bureau. We performed a series of aspatial and spatially 

weighted regression models to identify neighborhood-level characteristics associated with HCC 

risk.

Results: We found positive associations between HCC and proportion of population in census 

tracts that are black/African American, Hispanic, over 60 years old, in construction industry, and 

in the service occupation; but an inverse association with the proportion of population employed in 

the agricultural industry. The magnitude of these associations varied across Texas census tracts.

Conclusion/Impact: We found evidence that neighborhood-level factors are differentially 

associated with variations in HCC incidence across Texas. Our findings reinforce existing 

knowledge about HCC risk factors and expose others, including neighborhood-level employment 

status.

Graphical Abstract
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INTRODUCTION

Hepatocellular carcinoma (HCC), which constitutes >90% of primary liver cancer, is an 

increasingly important health problem in the United States. HCC incidence and mortality 

rates have increased 3 fold between 1975 and 2014, and these rates continue to increase.1,2 

Texas has the highest HCC incidence rates in the continental U.S.2 Meanwhile, HCC 

incidence and mortality rates vary by race/ethnicity with Hispanics now having the highest 

HCC incidence rates in the U.S.2–4

Reasons for the higher incidence of HCC in minority populations in Texas are likely 

multifactorial, including differences in the prevalence and/or severity of known risk factors 

for HCC (e.g., chronic hepatitis C and hepatitis B virus infections, alcohol, obesity, diabetes, 

fatty liver, smoking),5–7 disparities in prevention and treatment of HCC or its risk factors,8 

and possibly genetic susceptibility.9,10 In the U.S., renewed attention is directed toward the 
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significance of the social determinants of health (SDOH) in health disparities.11,12 HCC, 

its precursor, cirrhosis and risk factors, and the continuum of care patients undergo can 

be organized under three major domains of etiologic agents: proximal, intermediate, and 

distal. Proximal determinants operate at the individual level (e.g., genetic makeup, sex, race/

ethnicity, or personal income). Intermediate determinants include the environmental context 

within which an individual experience their routine/daily activities (e.g., neighborhood-

level social and physical environment). Distal determinants include policies that affect the 

availability, receipt of, and quality of healthcare. Examining geographic neighborhood-level 

factors provides an important framework for understanding intermediate determinants of 

SDOH.

Though many studies have examined relationships between demographic and socio-

environmental factors and cancers, including HCC,13–17 only a handful pursued 

epidemiological studies through spatial analysis methods.18,19 In the current analysis, we 

used a suite of aspatial and spatial modeling techniques to correlate HCC incidence rates 

with neighborhood sociodemographic conditions that are in the intermediate domain of HCC 

risk factors, hence, identifying neighborhood level characteristics that are associated with 

higher HCC incidence rates in Texas.

METHODS

Study Setting

Our study population and accompanying data were drawn from the Texas Cancer Registry 

(TCR) and the U.S. Census Bureau (Census). The TCR provided data on individual 

patients that were diagnosed with HCC in Texas between 2011 and 2015. We identified 

HCC cases within the TCR dataset using a combination of International Classification of 

Diseases for Oncology, Third Edition (ICD-O-3) site code C22.0 and ICD-O-3 histology 

codes 8170–8175. We used the Census 2011–2015 American Community Survey (ACS) 

5-year estimates to compute the neighborhood-level independent variables. The ACS is a 

nationwide survey that collects and produces information on social, economic, housing, 

and demographic characteristics about U.S. population. The ACS samples over 3.5 million 

households annually and produces a rolling 5-year average for each variable it measures.20 

The Census summarizes ACS estimates to specific geographic levels, including the census 

tract. The census tract, with an optimum population of approximately 4,000 residents or 

1,600 housing units, is a small and relatively permanent statistical subdivision of a county 

designed to be homogeneous in terms of population characteristics, economic status, and 

living conditions.21 The census tract was the unit of analysis, and all Texas census tracts 

(N=5,265) were considered for inclusion in our analysis.

Dependent Variable

The research file from the TCR included location reference data values for each individual 

HCC patient, including the longitude (X) and latitude (Y) coordinate points that represent a 

patient’s address at the time of HCC diagnosis. We overlaid the X, Y data on top of Texas 

census tract boundaries and summed the count of HCC cases per census tract. We used the 

count of HCC cases with an Empirical Bayes smoother that used the census tract population 
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as the offset term for each tract.22,23 That is, the model estimates the number of HCC cases 

per capita given the explanatory variables included in the model.

Explanatory Variables

We assembled US census neighborhood-level variables into five categories that included 

race/ethnicity, nativity/citizenship, age/sex, socioeconomic status, and employment industry. 

The variables included for each category are listed in the supplementary materials; Table S1. 

Except for the area deprivation index (ADI) that was computed, the explanatory variables 

were retrieved from the U.S. Census ACS 2011–2015 5-year estimates database, entered 

analysis workflows as percentage values, and were treated as continuous data. The ADI is 

a composite measure of neighborhood socioeconomic disadvantage that relies on 17 census 

variables (Table S1) drawn from four categories, including; poverty, housing, employment, 

and education.24 Each census tract was assigned a score from 1 to 10 based on a decile 

classification of the ADI scores.

Data Analysis

After summarizing the HCC cases into census tract boundaries, our analytic dataset was 

highly skewed. To address the evidence of overdispersion observed in our dataset—the 

variance of the dependent variable is greater than the mean—we used the Poisson-based 

modeling with negative binomial regression (NBR) technique.22,25 For each census tract, 

the number of HCC cases per capita is assumed to be Poisson distributed and independent. 

The Poisson–Gamma model was applied to the count of HCC cases in each census tract, 

while the total population of >20-year-old residents was used as an offset term.22,23 Given 

that the dependent variable is treated as a count variable, the Poisson regression models 

the log of the expected count as a linear function of the explanatory variables. The Poisson 

regression coefficient is interpreted as follows: for a one-unit change in the explanatory 

variable, the difference in the logs of expected counts is estimated to change by the 

respective regression coefficient, while holding the other independent variables constant. 

The coefficients were expressed in terms of relative risk (RR) by exponentiating the Poisson 

regression coefficient,22,23,26 and rescaled per a 10-unit change in the explanatory variable.

Our model selection process involved two stages. Stage 1. Explanatory variables that had a 

bivariate relationship with HCC (at p ≤ 0.10) were arranged under their respective category 

and subsequently entered into a series of multivariable NBR models. Eventually, variables 

that maintained a significant association with HCC (p<0.05) were retained. To minimize 

multicollinearity among the retained variables, we dropped variables where T < 0.6 

(Variance Inflation Factor, VIF > 1.67). As a general practice, the variable with the lowest 

tolerance was removed first, allowing the model to re-run without them. Candidate variables 

with tolerances ≥ 0.6 proceeded to Stage 2. Stage 2. For our final model estimation, all the 

variables that passed the multicollinearity test and maintained significance at p<0.05 from 

Stage 1 were included in a series of multivariable NBR model runs. Variables were dropped 

from any iteration of the Stage 2 model runs when p≥0.05 or T < 0.4 (VIF > 2.5). All 

statistical analyses were done using SPSS 28.0 (SPSS Inc, Chicago, IL, USA) and Stata16.0 

(Stata Corp, College Station, TX).
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To finalize our analysis, we included the variables in the final model run of Stage 2 in a 

Geographically Weighted Poisson Regression (GWPR) procedure. GWPR technique extends 

the conventional regression framework by allowing local variations in rates of change so 

that the coefficients produced are for specific locations, not global estimates.27,28 Thus, 

each census tract has a separate Beta (β) coefficient for the exposure-outcome relationships 

being modeled. It shows areas where significant relationships are most or least pronounced, 

or neighborhoods where relationships diverge from what was observed in global models.29 

We ran the GWPR with the MGWR 2.2 software (https://sgsup.asu.edu/sparc/mgwr). The 

software’s functionality and utility were discussed in detail by Oshan and colleagues.30 

We used the adaptive bi-square kernel to remove the effect of observations outside the 

neighborhood specified for local model fitting, while the “golden section search” function 

was used to select an optimal bandwidth. The local coefficients that resulted from the 

GWPR modelling were mapped in ArcGIS Pro (Esri, Redlands, CA).

Using the MGWR 2.2 software, we performed diagnostic tests to assess biases in the 

local estimates produced by the GWRPR, they were: (1) the Monte Carlo test for spatial 

variability of parameter estimate surface and (2) the local collinearity diagnostics.30 The 

Monte Carlo test is a computationally intensive process that requires the GWPR to be 

calibrated many times; default number of iterations is 1000. The test constructs pseudo 

p-values for hypothesis testing; where p-value <0.05 indicates that the spatial variability of 

a parameter estimate surface is not occurring at random. The local collinearity diagnostics 

assess local multicollinearity via two methods: the local condition number (local CN) and 

the local variance inflation factor (local VIF). The local CN provides a single aggregate 

measure of local multicollinearity while the local VIF is generated for each covariate. 

Local CN > 30 or VIF >10 suggests there might be issues with local estimates due to 

multicollinearity.

RESULTS

After removing 44 census tracts with less than 100 residents, 14 where 100% of residents 

lived in quarters (e.g., correctional facilities), and two with inexplicably high HCC rates, 

5,205 census tracts remained for data analysis. A total of 11,547 HCC diagnoses occurred 

between 2011–2015. Basic demographic data on the HCC cases are shown in Table 1 and 

the distribution of the average annual age-standardized incidence rates across Texas is shown 

in Figure 1. The incidence rates ranged from 0 to 208 per 100,000 adult population.

For context, descriptive data on the full list of explanatory variables are shown in Table S2. 

From the full list, three variables were not included in Stage 1 since they had no bivariate 

association with HCC at p ≤ 0.10, they were: % male, % Non-Hispanic Native Hawaiian, 

Pacific Islander, and % over 65 years old with no health insurance (Table S3). Stage 1 

modeling produced 14 significant variables that were entered into the Stage 2 modeling 

(see Table 2 for summarized results and Tables S4 and S5 for more details). Seven of the 

14 variables that entered Stage 2 remained statistically significantly associated with HCC. 

A 10-point increase in the percentage of the following characteristics is associated with 

increased risk for HCC incidence by the corresponding factors: % Non-Hispanic Black RR 

= 1.10 (95% CI, 1.08–1.12), % Hispanic RR = 1.10 (95% CI, 1.08–1.11), % 60 years and 
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above RR = 1.32 (95% CI, 1.28–1.34), % employed in the construction industry RR = 

1.12 (95% CI, 1.07–1.17), % employed in the other services, except public admin. RR = 

1.08 (95% CI, 1.00–1.17). Also, compared to census tracts in the first decile of the ADI, 

those in decile 10 had RR = 1.71 (95% CI, 1.52–1.91). Conversely, 10-point increase in % 

employed in the agricultural industry was associated with decreased risk (RR = 0.92; 95% 

CI, 0.87–0.96) (Table 2; see Table S5 for more details).

The GWPR established evidence of spatial heterogeneity, i.e., the relationships between the 

HCC incidence and the explanatory variables that remained in the final NBR model were not 

constant across Texas (Figure 2). In general, the positive association between % NH Black 

and HCC incidence was pronounced in the southernmost part of the Texas-Mexico border, 

along the center of the state, and in the north-western part of the state. For % Hispanics, 

the positive association with HCC incidence was also pronounced in the southernmost part 

of the Texas-Mexico border, and generally in the western half of the state. Percent ≥60 y.o. 

and the ADI maintained positive associations with HCC incidence across much of the state, 

except for patches of census tracts on the eastern side of the state for % ≥60 y.o., and on 

some on the northern part for the ADI. For % employed in construction and % employed 

in the other services (not administration) industries, the local relationships were generally 

either positive or not significant. Only agricultural/forestry industry had more negative local 

relationships with HCC incidence than positive relationships, although the relationship was 

not significant in most parts of the state. The Monte Carlo test suggests that only one 

explanatory variable (i.e., % in other services, except public administration) was threatened 

by multiple testing (Monte Carlo pseudo p-value = 0.107). For the remaining six variables 

the pseudo p-value was <0.05. In terms of local collinearity, the local CN was less than 

30 in 5,205 census tracts (91.4%) and none of the explanatory variables had local VIF>10; 

suggesting that the local estimates were likely not degraded by the presence of collinearity.

DISCUSSION

In this population-based study of HCC in Texas, we found that measures that 

represent minority population, socioeconomic disadvantage, or blue-collar employment 

were independently associated with higher risk of HCC incidence while employment in 

the agricultural industry was associated with a lower risk. However, these relationships 

are not uniform across the state. The local modeling approach showed significant and 

spatially varying patterns of relationships between the explanatory variables and HCC risk. 

Spatial analysis approaches are powerful methods for investigating disease patterns, and 

they are increasingly used to better understand cancer epidemiology.19,31,32 By allowing 

regression coefficients to vary over space, the GWPR allows for the visualization of 

spatially heterogeneous relationship between each explanatory variable and HCC. In 

general, the relationships between HCC risk and the demographic/SES variables were more 

spatially heterogenous than the relationships with the employment industry variables. The 

relationship with % black/AA appeared to show the most dramatic changes across the state; 

it is more pronounced in the southernmost and north-western parts.

Our study joins recent and growing research examining various aspects of the relationships 

between neighborhood level demographic and socioeconomic factors and HCC outcomes 
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in general,15,16 and the handful doing so through spatial analytical approaches.18,19 

In a prospective cohort study of seniors living in six US states (California, Florida, 

Louisiana, New Jersey, North Carolina, and Pennsylvania), area socioeconomic deprivation 

was associated with increased risk of HCC and chronic liver disease (CLD) mortality 

after accounting for participants’ age, sex, and race, but after accounting for educational 

attainment and health-risk factors, the socioeconomic deprivation relationship became non-

significant for HCC but remained so for CLD mortality.18 Also, our study adds to the 

literature in this space by including employment measures in our analysis. Few studies have 

investigated the relationships between employment and HCC.33,34 Previous studies have 

suggested an association between HCC and several blue-collar jobs,33–35 and a protective 

association between managerial jobs and HCC.33 These studies assessed employment 

measures at the individual level, ours may be the first to do so at the neighborhood level, 

in terms of relationships with HCC. Indeed, the ecological nature of our study precludes 

the interpretation of a causal link between working in the industries that remained in our 

analysis (i.e., construction, other services except public administration, and agriculture) and 

HCC.

Our study has some limitations. Though we found associations between HCC incidence 

from the TCR and specific area level measures of demographic, socioeconomic, and 

employment measures, the measures used were census estimates that match the time 

of HCC diagnosis. Hence, they may not reflect earlier neighborhood-level exposures. 

However, because census tracts are stable census standard geographies, and our analysis 

examined all the census tracts in Texas, we expect our neighborhood-level estimates are fair 

representations of the historical neighborhood milieu across Texas. Also, because the ACS 

produces population-level estimates (here, census tract-level) based on information from a 

sample of the US population, the estimates have standard errors indicating their degrees of 

uncertainty.36,37 The implicit nonuniformity of these standard errors over space may bias 

the results of spatial analyses employing the ACS measures. However, the Census ACS 

remains a premier source for areal data in the US. Additionally, the measures considered in 

this analysis may not represent a comprehensive list of all the factors that could influence 

HCC incidence in Texas neighborhoods. Although we started with many neighborhood 

measures (N=29), we cannot rule out other unexamined factors. In the current analysis, the 

lack of individual-level factors (e.g., hepatitis C infection) in our analysis workflow may 

be a limitation. However, we designed this work to focus exclusively on the contributions 

of neighborhood-level characteristics to community incidence of HCC. To a large extent, 

our approach relies on previous assertions of the independent contributions of neighborhood-

level social, economic, and environmental factors to health outcomes.11,38,39 Understanding 

HCC relationships with factors that operate at the community level may offer new HCC 

intervention approaches or help strengthen existing ones.

In summary, we found preliminary evidence that neighborhood-level factors may partly 

explain spatial and racial/ethnic variations in HCC incidence. Future research, including 

longitudinal exposure assessment studies, are needed to clarify the specific roles of 

occupations and industries in HCC.
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What You Need to Know

BACKGROUND:

Racial/ethnic minorities in the United States have disproportionately high rates of 

hepatocellular carcinoma (HCC); however, the reasons for this high HCC burden remains 

unclear.

FINDINGS:

We identified novel neighborhood-level factors that are associated with variations in HCC 

incidence across Texas, including proportion of population in census tracts that are black/

African American and Hispanic.

IMPLICATIONS FOR PATIENT CARE:

Intermediate social determinants of health, including neighborhood-level social and 

physical environment, may influence HCC risk and may be a target for primary 

prevention of HCC among minority populations.
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Figure 1. 
The 2011–2015 average annual age-adjusted hepatocellular carcinoma (HCC) incidence 

rates shown for Texas’ census tracts. * 5,205 of the 5,265 Texas census tracts were included 

for analysis. ** The natural breaks technique (i.e., Jenks optimization) was used to classify 

the data; Jenks seeks to minimize intra-class variance and simultaneously maximize inter-

class.
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Figure 2. 
The local beta coefficients were exponentiated (RR) to show the sensitivity of HCC 

incidence to a change of 10-unit difference in each of the neighborhood characteristics 

shown above, specific to each census tract. The class labeled 0.991–1.010 crosses 1.0. To 

simplify interpretation, colors before yellow shade (from top to bottom) suggest census 

tracts where an increase in the proportion of a given independent variable was associated 

with decreased RR for HCC, while colors after the yellow shade suggest census tracts where 
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an increase in the proportion of the explanatory variables was associated with increased RR 

for HCC.
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Table 1:

Basic demographic data on the HCC cases diagnosed in Texas between 2011–2015.

Characteristics N = 11,547 (%)

Sex

Male 8736 (75.7)

Female 2808 (24.3)

Other 3 (0.03)

Age at diagnosis

Mean (SD) 63.1 (10.8)

<50 808 (7.0)

50–69 7789 (67.5)

70+ 2950 (25.5)

Race/ethnicity

NHW 5033 (43.6)

NHB 1615 (14.0)

Hispanic 4301 (37.2)

Other 598 (5.2)

Year of diagnosis

2011 2030 (17.6)

2012 2140 (18.5)

2013 2282 (19.8)

2014 2522 (21.8)

2015 2573 (22.3)
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Table 2:

Categories of neighborhood-level SDOH and incidence of HCC in Texas (N census tracts = 5,205).

Neighborhood Characteristics Stage 1 IRR (95% CI) 
a, b

Stage 2 
c

Final Stage 2 IRR (95% CI) 
a, d

Race / Ethnicity

 % Non-Hispanic White 
e

 % Non-Hispanic Black or African American 1.11 (1.10–1.13) X 1.10 (1.08–1.12)

 % Non-Hispanic American Indian and Alaska Native 
f 1.34 (0.86–2.08)

 % Non-Hispanic Asian 0.77 (0.74–0.81) X

 % Non-Hispanic Native Hawaiian, Pacific Islander 
e

 % Non-Hispanic Other + 2 or more races 0.86 (0.79–0.93) X

 % Hispanic or Latino 1.10 (1.09–1.11) X 1.10 (1.08–1.11)

Citizenship

 % Population; not a US Citizen 0.91 (0.84–0.99) X

 % Population; foreign-born 
b 1.06 (0.99–1.13)

 % of Foreign-born; born in Latin America 1.13 (1.12–1.14) X

Age and Sex

 % of Population; 50 to 59 y.o. 
f 0.96 (0.90–1.04)

 % of Population; 60 y.o. and above 1.12 (1.08–1.16) X 1.32 (1.28–1.34)

 % of Population; Male 
e

Socioeconomic Status

 Area Deprivation Index (decile) 2.78 (2.46–3.13) X 1.71 (1.52–1.91)

 % of 18 to 34 years with no health insurance 
g 1.08 (1.06–1.10)

 % of 35 to 64 years with no health insurance 
g 0.97 (0.94–1.00)

 % of 65 years and over with no health insurance 
e

Industry

 % in Agriculture, forestry industry 0.90 (0.86–0.95) X 0.92 (0.87–0.96)

 % in Construction industry 1.43 (1.37–1.51) X 1.12 (1.07–1.17)
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Neighborhood Characteristics Stage 1 IRR (95% CI) 
a, b

Stage 2 
c

Final Stage 2 IRR (95% CI) 
a, d

 % in Manufacturing category 0.95 (0.90–1.00) X

 % in Transportation and warehousing etc. 1.20 (1.11–1.29) X

 % in Professional, scientific etc. 0.87 (0.82–0.92) X

 % in Educational services and health care etc. 
g 1.10 (1.06–1.15)

 % in Other services, except public admin. 1.20 (1.11–1.29 X 1.08 (1.00–1.17)

a
The coefficient values were exponentiated; expressed in terms of relative risk (RR). Explanatory variables were rescaled to interpret results as an 

increase or a decrease in the risk of HCC incidence associated with a 10-unit change in predictor variable.

b
Effect estimates shown were from running a series of multivariable models where variables that represent each category were entered into the 

model together. Variables across categories were not included in any single model. Only variables significant at p ≤ 0.10 during the bivariate 
analysis were used.

c
Variables that were allowed to enter Stage 2.

d
Effect estimates shown were from running a series of multivariable models where variables were added across categories. Only variables 

significant at p < 0.05 during Stage 1 and those not affected by multicollinearity were used.

e
Variables that were examined in bivariate analysis but not included in the category-specific multivariable models (i.e., not included in Stage 1) 

because P value > 0.10. Of note NH White was excluded to avoid model overfitting in the race/ethnicity category.

f
Variables that were not significant at p < 0.05 during Stage 1 model runs.

g
Variables that were dropped due to multicollinearity issues during Stage 1 model runs (Tolerance < 0.6; VIF > 1.67).
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