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Abstract

Objective: Studies use different instruments to measure cognitirating cognitive tests permit direct 

comparisons of individuals across studies and pooling data for joint analyses.

Method: We began our legacy item bank with data from the Adult Changes in Thought study 

(n = 5,546), the Alzheimer’s Disease Neuroimaging Initiative (n = 3,016), the Rush Memory and 

Aging Project (n = 2,163), and the Religious on such as the Mini-Mental State Examination, 

the Alzheimer’s Disease Assessment Scale–Cognitive Subscale, the Wechsler Memory Scale, 

and the Boston Naming Test. CocalibOrders Study (n = 1,456). Our workflow begins with 

categorizing items administered in each study as indicators of memory, executive functioning, 

language, visuospatial functioning, or none of these domains. We use confirmatory factor analysis 

models with data from the most recent visit on the pooled sample across these four studies for 

cocalibration and derive item parameters for all items. Using these item parameters, we then 

estimate factor scores along with corresponding standard errors for each domain for each study. 

We added additional studies to our pipeline as available and focused on thorough consideration of 

candidate anchor items with identical content and administration methods across studies.

Results: Prestatistical harmonization steps such qualitative and quantitative assessment of 

granular cognitive items and evaluating factor structure are important steps when trying to 

cocalibrate cognitive scores across studies. We have cocalibrated cognitive data and derived scores 

for four domains for 76,723 individuals across 10 studies.

Conclusions: We have implemented a large-scale effort to harmonize and cocalibrate cognitive 

domain scores across multiple studies of cognitive aging. Scores on the same metric facilitate 

meta-analyses of cognitive outcomes across studies or the joint analysis of individual data across 

studies. Our systematic approach allows for cocalibration of additional studies as they become 

available and our growing item bank enables robust investigation of cognition in the context of 

aging and dementia.
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Many studies of older adults include tests of cognitive function that are administered to 

study participants at study visits. Neuropsychological tests used to measure cognition vary 

across studies (see Supplemental Tables 1–19; Bennett et al., 2018; Montine et al., 2012; 

Weiner et al., 2017), which make harmonization of data across studies a particular challenge.

Harmonization describes a process of addressing differences in measurement or assessment 

that could involve procedural, rational, or statistical approaches (Gatz et al., 2015; Gross et 

al., 2018). Modern psychometric approaches (Borsboom, 2005; Embretson & Reise, 2000; 

McDonald, 1999) can be used to harmonize cognitive data from different studies. These 

tools have many desirable features we will illustrate in this article. At the end of our 

workflow, these tools enable us to derive cocalibrated scores for each cognitive domain. 

To perform statistical harmonization of cognitive items, we used cocalibration based on 

confirmatory factor analysis. Cocalibration means “calibrated together.” Cocalibrating items 

in an item bank enables us to obtain scores that are on the same metric, regardless 
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of whether there was total overlapping content in all the specific items administered. 

Cocalibration should be understood as a particular type of harmonization. Cocalibration 

facilitates either meta-analysis or pooled analyses of individual-level data.

These psychometric approaches have been used in high stakes educational testing since the 

1960s (Lord & Novick, 1968). This same item banking approach enables test forms with 

no overlapping content to be administered to students who sit across from each other at a 

testing center. The scores those students receive from their responses are on the same metric, 

even though they each responded to a distinct set of items. Those items had previously been 

cocalibrated with each other and many other items in an item bank (Hambleton et al., 1991).

While item banking strategies are an appealing approach to the challenges we faced, there 

are important differences between educational testing and cognitive testing of older adults. 

Multiple choice response options are common in educational testing settings and essentially 

never used in cognitive testing in older adults. Instead in cognitive tests, a wide variety of 

response formats have been developed (Gruhl et al., 2013), including counts of successful 

responses in a particular time, time to completion of a task, and scores based on the number 

of elements of a complex figure that are correctly copied or recalled, to name just a few. 

Furthermore, in many cases a common stimulus is used in multiple trials, which will lead to 

correlated item response data beyond the correlation due to a relationship with an underlying 

domain tested by the trials. This residual correlation can be called a methods effect. For 

example, trials of a word list learning task will have scores that are more correlated with 

each other than the correlation of any of those learning trials with any other test of memory. 

Another example of a methods effect is multiple tasks with very similar formats, such as 

testing letter fluency with the letters F, A, and S. Scores from those three stimuli will be 

more closely correlated with each other than any of them with some other measure of 

language because of the commonality of the tasks.

Our group and others over the past decades have adapted more flexible response formats into 

our models (Gruhl et al., 2013) and have made extensive use of bifactor models to address 

secondary domain structures induced by methods effects (R. D. Gibbons et al., 2007). 

Educational testing also faces an analogous challenge. Many tests of reading comprehension 

use a single block of text with several items addressing that block of text. Scores from those 

items are more closely correlated with each other than they are with any other item from the 

test due to what is known as a “testlet” design. The approaches we have taken to address 

secondary domain structure induced by methods effects are directly analogous to those used 

in educational testing settings to address testlets (Li et al., 2006; Wainer et al., 2007).

In this protocol article, we describe the workflows we established for item banking of 

cognitive test items across studies of older adults. In particular, we use this as an opportunity 

to discuss the rationale for the choices we have made with greater depth than we have had 

the opportunity to do previously (Mukherjee et al., 2020). We also report on recent progress 

integrating data from even more studies of older adults. Taken together, these steps have 

already facilitated analyses that would not be possible without our efforts at cocalibration. 

We hope they will be widely used by Alzheimer’s researchers in the coming years.
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Method

Overview. We have divided our workflow into distinct steps, as summarized in Figure 1. We 

will discuss each of the steps in the figure sections.

Preliminary Analyses in Each Data Set Considered Separately

The goals of the initial steps in the workflow are to ensure that we have a good 

understanding of the data, that we have made any transformations to the data needed 

to integrate the data into our workflows, and that the new data are consistent with our 

overarching modeling strategy.

Step A1: Acquire Data and Documentation From Each Study—We establish data 

use agreements for each study and acquire granular level data from cognitive batteries 

along with detailed documentation on each of the items in the battery. Information that has 

proven to be useful includes versions of tests, specific stimuli administered, and information 

on how responses are coded. We mine information from data dictionaries and cognitive 

administration protocol documents from the parent studies to help us in this process. This 

step in many cases takes multiple iterations as we learn more about the data set.

Step A2: Domain Assignment—We began our item bank by combining data from four 

very large studies—the Adult Changes in Thought (ACT) study (n = 5,546), the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI; n = 3,016), the Religious Orders Study (ROS; n = 

1,456), and the Rush Memory and Aging Project (MAP; n = 2,163). We refer to this group 

of studies as “legacy studies.”

In each of the legacy studies, the expert panel (ET, JM, and AS) assigned items from the 

cognitive battery to one of the following domains: memory, language, executive functioning, 

or visuospatial functioning. The studies administer many other items to participants as well, 

including assessments of subjective impairment or pre-morbid abilities. We identified items 

assessing these other domains as well but did not consider them further in our item banking 

efforts.

If applicable, the expert panel also assigned each of the cognitive items to subdomains based 

on the cognitive processes involved in each task. For example, the Rey Auditory Verbal 

Learning Test (RAVLT) trial items were identified as representing the memory domain and 

the subdomain of verbal episodic encoding while the RAVLT delayed recall item is in 

memory domain and the verbal episodic retrieval subdomain.

Using study operational and administration manuals, as well as published results, we made 

note of differing versions and administration methods, so as to be very clear which specific 

items were administered to study participants at each time point.

Several neuropsychological tests administer items across multiple domains to assess global 

cognition; examples of this include the Mini-Mental State Examination (MMSE; Folstein 

et al., 1975), the Modified MMSE (3MS; Teng & Chui, 1987), the Cognitive Abilities 

Screening Instrument (CASI; Teng et al., 1994), the Community Screening Interview for 
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Dementia (CSI-“D”; K. S. Hall et al., 1993; K. S. Hall et al., 2000), and the Montreal 

Cognitive Assessment (MoCA; Nasreddine et al., 2005). Many of these scales have 

overlapping content, and we previously cocalibrated them using similar approaches to 

those described here (Crane et al., 2008). We took a different approach to these global 

tests in our current item banking procedures in that we considered each cognitive domain 

separately. Test items assessing memory would be considered with other memory items and 

disaggregated from items assessing any other domain.

There are several reasons our thinking on global cognition has evolved since our earlier 

work (Crane et al., 2008). Conceptually, there are important contrasts across cognitive 

domains in older adults, and particularly in people with dementia and Alzheimer’s disease. 

A global score necessarily glosses over any distinctions across domains, which may limit 

understanding of associations with particular brain processes. Consideration of the designs 

of these tests and the stimuli they use also leads us to derive separate scores for cognitive 

domains rather than attempting to summarize overall cognition with a single number. Our 

previous article discussed the interlocking pentagons item and its different treatment in 

different tests (Crane et al., 2008). It is scored as correct versus incorrect, one point versus 

zero points, in the MMSE and the CSI “D”. The MMSE total score is 30, so the one point 

for the pentagons (copy two interlocking pentagons) item corresponds with 3.3% of the total 

score. In the CASI and the 3MS, the same pentagons item is scored on a 0–10 scale, and the 

total scores go to 100 points, so the pentagons item reflects 10% of the total. The pentagons 

item is the only element tapping visuospatial functioning in the MMSE, CASI, and 3MS. 

Should visuospatial functioning represent 3.3% of global cognition? Or 10%? And why? 

Articles describing the development of these tests (Folstein et al., 1975; Teng & Chui, 1987; 

Teng et al., 1994) do not provide compelling rationales for the relative importance of each 

item.

For these reasons, in recent years we moved toward breaking down tests of global cognition 

into component parts and considering each cognitive domain separately. An investigator 

wishing to study global cognition who wanted to weight it as four parts memory, two parts 

language, two parts executive functioning, and one part visuospatial could use the scores we 

produce to generate such global composite scores. Thus, our approach does not preclude the 

possibility of studying global cognition and, in fact it enables lines of research that are not 

possible with global composite scores alone.

Our approach began with theory as directed by our panel of a behavioral neurologist and 

two neuropsychologists. All three panel members have extensive experience in the clinical 

and research evaluation of older adults and neurodegenerative conditions, and their domain 

assignments reflected this disciplinary background and clinical and research experience. Our 

goal was to ascertain whether the data available to us from studies of older adults were 

consistent with this theory, and then, if so, to obtain cocalibrated nonoverlapping domain 

scores to facilitate cross-study analyses. Others with different goals could have used the 

data in different ways, such as beginning with exploratory factor analysis approaches or 

permitting items to load on multiple domains.
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Step A3: Data Quality Control—Following domain assignment, our data manager 

(RES) performed initial quality control steps on the data which included making a master 

file for all cognitive data with labels and descriptions for each item in the data set. Follow-up 

quality control steps performed by the analysts (S-EC, ML, PS, SM) included recoding of 

the data where necessary. For example, items such as Trail Making Tests A and B were 

reverse coded (i.e., where a higher value indicated worse performance). We checked each 

item to make sure higher values represent better cognitive performance, and reverse coded as 

needed. This step facilitates interpretation of factor loadings, as all loadings on the general 

factor should be positive if all of the items are coded in the same direction, and a negative 

loading would indicate a need for extra scrutiny.

Whenever possible, we used granular data from each study as it is more informative than 

summary totals. For example, for a word list learning measure, one can imagine multiple 

ways of recording participant responses. Ideally, studies could report whether each specific 

word was recalled on each trial. However, this granular level data of participant response is 

not always available. Many studies report only the total number of words recalled on each 

trial or the total of words recalled across all of the learning trials. These scores may be 

impossible to reconcile across studies unless they were obtained precisely the same way in 

the two studies. Sometimes data are not electronically available in a sufficiently granular 

form, in which case we seek resources for data entry or, if that proves impossible, we 

may decide to drop the item from further cocalibration steps. Collection and data entry of 

granular data up front helps us derive cognitive scores which are more precise and enable us 

to be confident in confirming that an item can be used as an anchor, as we will discuss.

Given that we were working with longitudinal data, we had to decide which visit (e.g., first 

visit, most recent visit) we would use in cocalibration. We selected the most recent visit 

for each participant. This choice optimizes the spread of cognitive abilities in the data set, 

which is desirable for ensuring parameters are valid over the entire range of ability levels, 

while preserving sample size (Embretson & Reise, 2000; Hambleton et al., 1991) and still 

including only a single observation per person. Some studies such as ACT enrolled people 

known to be free of dementia, and others enrolled people with particular diagnoses who met 

with specific eligibility criteria (e.g., ADNI and others). By choosing the most recent visit, 

cognition in some participants would have declined to the maximal extent available in these 

data, optimizing the spread of ability levels.

We considered the distribution of each item among participants with nonmissing data and 

combined categories as needed. Our goals for combining categories were (a) to avoid sparse 

categories, which we operationally defined as <5 responses per category for each study 

administering each item, (b) to have no more than 10 categories, the maximum number of 

categories handled by Mplus v7.4 (Muthen & Muthen, 1998–2012), and (c) to retain the full 

range of responses from each study, to avoid collapsing categories at the highest and lowest 

levels of functioning. Retaining variability at the tails at the expense of the center of the 

distribution minimizes potential floor and ceiling effects.

We treated each item as an ordinal indicator of the domain. The numerical value assigned 

to each category is irrelevant beyond its rank, for example, calling the lowest category 3 
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versus 18 makes no difference in how the item is treated or what the final score would be. 

This flexible approach does not make the strong assumption of a linear relationship between 

times and the underlying cognitive domain. The ordered categorical approach has much in 

common with spline approaches, which offer flexibility in modeling that may be important 

for constructs that may not be linear.

Missing data were a particular area of focus in our quality control effort. Some studies had 

little information about the reason for a missing data element. Other studies had specific 

codes, such as indicating participant refusal to complete an administered item or that the 

interviewer ran out of time so the item was not administered. After careful consideration, we 

decided to treat all types of missing data—regardless of codes available from the study—as 

if the item had not been administered.

Step A4: Confirmatory Factor Analyses—We modeled each domain separately 

using confirmatory factor analysis (CFA) with Mplus using robust weighted least squares, 

including terms for the mean and the variance (WLSMV) estimator (Beauducel & Herzberg, 

2006; Flora & Curran, 2004).

As detailed in our prior article (Mukherjee et al. 2020), we consider several candidate 

bifactor structures. Our expert panel assigns subdomains based on theoretical considerations 

at the time we are considering domain assignments for each item. We also identify methods 

effects based on the ways items are administered. We perform agglomerative hierarchical 

cluster analyses to identify clusters of items with additional correlation structure. We then 

review proposed data-driven clusters of items with the expert panel and confirm that there 

is some thematic or methods based explanation for pairs or groups of items identified by 

the clustering algorithm; we only include secondary domains the expert panel agrees are 

plausible. When the more complicated model is consistent with theory (i.e., our content 

experts agree that the secondary domain structure makes theoretical sense), fits the data 

better (as evidenced by substantially better fit statistics), and produces substantially different 

scores (which we operationalize as differences greater than 0.3 logit units for at least 5% of 

the sample), we conclude that we need the more complicated model.

We used several criteria to compare these bifactor models for each domain, and found that in 

each case the agglomerative hierarchical clustering approach appeared to have the best fit, as 

detailed in Mukherjee et al. (2020).

Once we had selected the best candidate bifactor model, we compared it with a single factor 

model, with no secondary structure (all items load only on the domain general factor).

We provide a schematic representation of single factor and bifactor models in Figure 2.

Our overall strategy in terms of single factor versus bifactor modeling was that we would 

choose the single factor model if adding secondary factors did not markedly improve model 

fit and if adding secondary factors did not markedly impact any individual’s score.

Our criteria for selecting the better model included evaluating fit statistics and concordance 

of model results with theory, such as positive loadings on secondary factors. The fit statistics 
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we considered were the confirmatory fit index (CFI) where higher values indicate better fit; 

thresholds of 0.90 and 0.95 have been used in other settings as criteria for adequate or good 

fit (Hu & Bentler, 1999; Reeve et al., 2007); the Tucker–Lewis index, which has similar 

criteria as the CFI; and the root mean squared error of approximation (RMSEA), where 

lower values indicate better fit, and thresholds of 0.08 and 0.05 have been used in other 

settings as criteria for adequate or good fit (Hu & Bentler, 1999; Reeve et al., 2007).

When comparing the single factor model with the best bifactor model, we (a) determined 

whether loadings on the primary factor were within 10% of each other across the two 

models and (b) compared the scores for the single factor model versus scores for the bifactor 

model. We used as our threshold a difference of 0.30 units. We chose this value based on 

the default stopping rule for computerized adaptive testing; this has been used for years 

(S. W. Choi et al., 2010) as a default level of tolerable measurement imprecision. While 

arbitrary, this is a level of measurement imprecision that has been thought to be tolerable in 

a variety of situations. If there were a substantial number of people (typically 5%) for whom 

the differences in scores were larger than 0.3 from each other, and if the bifactor model 

conformed to our theory better and had better fit statistics, we selected the bifactor model 

as our choice for modeling a domain. Otherwise, we would select the simpler single factor 

model.

Step B1: Identification of Anchor Items—Cocalibration requires either the same 

people taking different tests or different tests sharing common items. Here we had common 

items. We identified candidate anchor items with identical content across tests administered 

in different studies and ensured that their relationship with the underlying ability tested was 

the same across studies by performing preliminary CFA models within each study, where 

we focused particularly on the pattern of loadings across the studies. Confirmed anchor 

items were then used to anchor the scales in each domain to a common metric. We show a 

depiction of candidate anchor items in Figure 3. We consulted a member of the expert panel 

(EHT) for anchor items selection review and confirmation.

Step B2: Quality Control for Anchor Items—Anchor items were cleaned and recoded 

after considering item response data from all studies that administered the item, making 

sure that the range of responses to the anchor items was similar in each study. We carefully 

reviewed documentation from each study to ensure that the anchor item stimulus was 

precisely the same across studies, that the response options were precisely the same or could 

be recoded to be exactly equivalent across studies, and that we were mapping data from each 

study in a way that the same response would result in the same score regardless of the study 

in which the person was enrolled.

There were occasions where a potential candidate anchor item turned out to be administered 

in incompatible ways or scored in a way that could not be reconciled exactly across the two 

studies. These discrepancies were further discussed among the expert panel. If a candidate 

anchor item did not meet the approval of the panel, we included those items as indicators of 

the underlying domain in the different studies, but did not use those items as anchor items.
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Step B3: Confirmatory Factor Analyses—We cocalibrated each cognitive domain by 

incorporating the components of the best model in each study (i.e., the final single-factor 

or bifactor model selected as described above) into one megacalibration model, as shown in 

Figure 4.

One particularly complicated aspect of cocalibrating scores using bifactor models is how to 

handle secondary domains. Some anchor items had loadings on the primary domain (e.g., 

memory) and on a secondary domain. That structure by itself does not lead to conceptual 

problems. Nevertheless, item representation of the secondary domain may vary across 

studies, with variable numbers of items, and potential missing data and identifiability issues. 

To address this, we used robust maximum likelihood (MLR) estimation that is robust to 

missing data, and if a secondary domain contained overlapping item(s) across studies along 

with study specific unique items, they were assigned to a common secondary domain in 

the megacalibration model. While the CFA model with the WLSMV estimator produces fit 

statistics in Mplus, the CFA model with the MLR estimator does not output fit statistics. We 

performed sensitivity analyses to confirm for ourselves that scores on the primary domain 

were minimally impacted by various ways of specifying the mean and variance on secondary 

domains. Since it made little difference how we specified these parameters, in our final 

models, we specified a mean of 0 and a variance of 1 for each secondary domain factor.

Once we had fit the final megacalibration model for each domain, we extracted item 

parameters (loadings and thresholds) for all items. These values then populated our item 

bank for each domain.

Scores From the Legacy Data Set for Each Time Point

We used each study’s item parameters from the megacalibration model for a given domain 

(the item bank item parameters) to obtain scores for each person at each time point. We 

considered each study’s data separately. We fixed all of the item parameters to their item 

bank values, and freely estimated means and variances for each factor in the model. Then we 

ran the model one additional time with all of the parameters fixed including the mean and 

the variance to extract factor scores for the primary factor (e.g., memory; labeled “Domain” 

in the figures) along with the corresponding standard errors. We used all participants with 

relevant data to obtain scores and standard errors for each domain, including people who 

may have been missing data entirely for some other domain.

Step C1: Domain Assignments for Subsequent Data Sets—Similar to the legacy 

data sets, our expert panel considers each element administered to study participants 

and categorize each one as an indicator of memory, executive functioning, language, 

visuospatial, or none of these. Secondary domains are also assigned the same way as for 

the legacy data set described above.

Step C2: Data Quality Control on the Most Recent Study Visit Data—We 

consider data from the most recent study visit for each participant, as we did for the legacy 

studies. Some studies we have cocalibrated more recently have had cognitive batteries 

that have evolved over time and we have found it convenient to separate the data set 

into mutually exclusive subsets based on which cognitive batteries were administered. In 
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essence, we treat each of these subsets as a distinct study that results in a less sparse 

covariance matrix of item responses and enables Mplus to estimate the item parameters and 

factor scores in a robust manner (see Scollard et al. article in this volume).

Step C3: Identify Candidate Anchor Items by Comparing Content With Domain 
Item Banks—We review each of the items from the new study and compare items with 

those already calibrated in the item bank. If content is identical and response options are 

identical, we consider the item to be a candidate anchor item. Procedures are the same as for 

the legacy data set described above.

Step C4: Quality Control for Anchor Items Added in Follow-Up Studies—We 

review distributions of responses in the study used to generate the item bank parameters 

and check that there is overlap with the distribution of item responses in the new study. 

We always recode data from the new study exactly as we did for the item bank study to 

ensure that the item is treated precisely the same way regardless of study. For some items the 

distribution of observed responses in the new study is sparse in some response categories, 

and this sparseness may persist after recoding. Since we are fixing parameters for anchor 

items as opposed to estimating parameters, modeling with sparseness in a response category 

will still work. What does not work is when there is a response category that is completely 

empty in the new study. To date this has consistently happened at the top or bottom category 

for an item. When this has happened we carefully excise the item parameters from that 

extreme and unobserved category so that the remaining parameters are appropriate for the 

observed distribution for that item. We take special care with this step as haste can lead to 

errors that could be difficult to catch; we pay particular attention to this step in our code 

review (see below).

Step C5: Confirmatory Factor Analysis Fixing Parameters for Anchor Item 
Banks to Item Bank Values—We used Mplus to analyze the most recent study visit 

data set. We fixed anchor items at their values from the item bank while new study specific 

items (nonanchors) were freely estimated. After this step, every item from the new study’s 

cognitive battery has item parameters.

Step C6: Scores—We then fixed parameters for all of the items, and generated scores and 

corresponding standard errors for each person at each study visit. As for the legacy model 

this took two steps: first we freely estimated the mean and variance, and then we fixed the 

mean and variance to the estimated values to obtain individual scores and standard errors.

Step C7: Populate Item Bank With Any New Items From the New Study—The 

steps above can be used to generate scores as long as there is overlapping item content. 

Item parameters for nonanchors can be added to the item bank. We have had several data 

sets where we have determined that the distribution of ability levels observed in the new 

study was substantially different than that from our legacy studies. For example, we came 

across the Antiamyloid Treatment in Asymptomatic Alzheimer’s (A4) study (Sperling et al., 

2014) later on in our pipeline. Only cognitively intact people were considered for inclusion 

in the study, and only data from that screening visit were available for consideration. By 

design, there were no people with dementia in that data set, so lower portions of the ability 

Mukherjee et al. Page 10

Neuropsychology. Author manuscript; available in PMC 2023 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distribution were not observed for any of our cognitive domains. We can obtain scores 

for such a data set assuming sufficient anchor item availability, but it would not be a 

good choice for calibrating item bank parameters for items first seen in that data set. A 

baseline data set from studies with constrained enrollment (i.e., studies like ACT) would not 

include people with poorer cognitive functioning. If a subsequent study included a broader 

range of participant ability levels because it included data from people with dementia, the 

items initially calibrated in the study of people without dementia would have truncated 

distributions which would lead to floor effects.

For studies where the full range of cognitive ability was observed, we update the item bank 

to incorporate item parameters from new study-specific items. In this way, the item banks 

for each domain continue to grow.

Code Review

Our quality control steps include a formal code review process (Vable et al., 2021) using 

GitHub (https://github.com). A primer on using Git and GitHub can be found at Blischak 

et al. (2016). In brief, we have created our private repository for the cocalibration effort 

and have folders designated for each study in our pipeline as well as relevant files related 

to our workflow. For a given study, as a team we choose a primary coder and a primary 

code reviewer for each cognitive domain a priori with a secondary code reviewer on standby 

if needed. We have three separate steps (precalibration step to look at factor structure; 

intermediate step to derive item parameters for unique items; derive scores) where a GitHub 

pull request is initialized by the primary coder and the review process involves reviews and 

updates until everyone approves it. GitHub makes it easier to track changes and one can 

go back or forward to any version of the code. The final code is pushed out making sure 

it is well annotated and reproducible with the primary coder and code reviewer’s contact 

information for future use.

Studies Included in Legacy Model

The ACT Study—The ACT cohort is an urban and suburban elderly population randomly 

sampled from Kaiser Permanente-Washington (KPW) that includes 2,581 cognitively intact 

subjects age ≥65 who were enrolled between 1994 and 1998. An additional 811 subjects 

were enrolled in 2000–2002 using the same methods except oversampling clinics with more 

minorities. More recently, a continuous enrollment strategy was initiated in which new 

subjects are contacted, screened and enrolled to maintain a sample of 2000 people enrolled 

and at risk for dementia outcomes. This resulted in a total enrollment of 5,546 participants 

as of September 2018. Participants underwent assessment at study entry and every 2 years to 

evaluate cognitive function and collect demographic characteristics, medical history, health 

behaviors, and health status. In addition, information on participants’ health care utilization 

and medication utilization were available from KPW electronic databases. Participants were 

assessed with the Cognitive Abilities Screening Instrument (CASI) at study entry and 

subsequent biennial visits (Teng et al., 1994). Participants with CASI scores ≤85 underwent 

a standardized diagnostic evaluation for dementia, including a physical and neurological 

examination, and additional neuropsychological tests (Kukull et al., 2002; Marcum et al., 

2019). The extended neuropsychological battery includes tests such as WMS-R logical 
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memory (2 stories), Mattis Dementia Rating Scale, Consortium to Establish a Registry for 

Alzheimer’s Disease (CERAD) battery, Constructional Praxis, Verbal Paired Associates, 

Trails A & B, Clock Drawing, Boston Naming Test (BNT), and verbal fluency measures. All 

of these data are reviewed at consensus conference where research criteria for dementia and 

Alzheimer’s disease are determined.

The ADNI Study—ADNI was launched in 2003 by the National Institute on Aging, 

the National Institute of Biomedical Imaging and Bioengineering, the Food and Drug 

Administration, private pharmaceutical companies, and nonprofit organizations. Study 

resources and data are available through its website (http://adni.loni.usc.edu). The initial 

5-year study (ADNI1) was extended by 2 years in 2009 (ADNIGO), and in 2011 and 

2016 by further competitive renewals (ADNI2 and ADNI3). Through April of 2020, 3,016 

individuals were enrolled across the different ADNI waves. The study was conducted after 

institutional review board approval at each site. Written informed consent was obtained 

from study participants or authorized representatives. Additional details of the study design 

are available elsewhere (Weiner et al., 2010, 2017). ADNI’s neuropsychological battery 

included the Mini-Mental State Examination (MMSE), Alzheimer’s Disease Assessment 

Schedule–Cognition (ADAS-Cog), BNT, Rey Auditory Verbal Learning Test, Wechsler 

Memory Scale–Revised (WMS-R) Digit Span, WMS-R Logical Memory, Trails A & B, 

clock drawing, and animal- and (for ADNI1 only) vegetable fluency. ADNI administered 

Montreal Cognitive Assessment (MoCA) items beginning in ADNIGO.

The ROS Study—The ROS has been ongoing since 1993, with a rolling admission. 

Through February of 2020, 1,456 older nuns, priests, and brothers from across the United 

States initially free of dementia who agreed to annual clinical evaluation and brain donation 

at the time of death completed their baseline evaluation.(Bennett, Schneider, Arvanitakis, et 

al., 2012)

The MAP Study—The MAP has been ongoing since 1997, also with a rolling admission. 

Through February of 2020, 2,163 older persons from across northeastern Illinois initially 

free of dementia who agreed to annual clinical evaluation and organ donation at the time 

of death completed their baseline evaluation.(Bennett, Schneider, Buchman, et al., 2012; 

Bennett et al., 2005)

ROS/MAP administers 21 cognitive tests such as CERAD test, MMSE, East Boston Story, 

logical memory story from WMS-R, BNT, semantic fluency measures, WMS-R Digit Span, 

Symbol Digit Modalities Test, Judgment of Line Orientation, Standard Progressive Matrices, 

and Number Comparison (Bennett et al., 2018; Wilson et al., 2002). This comprehensive 

battery overlaps mostly across ROS and MAP (19 out of 21) and enables investigation of 

episodic memory, semantic memory, working memory, perceptual speed, and visuospatial 

functioning.

Transparency and Openness

We report the variables used in each study, how we determined our sample size, all data 

exclusions, all analyses, and all measures in the study. All analysis scripts are available from 
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authors on request and all cognitive data and the harmonized cognitive domains used can be 

requested from the parent studies. Data were analyzed using Mplus v7.4 and Stata v16. The 

analyses conducted in this article were not preregistered.

Results

Findings From the Legacy Data Sets

We included n = 5,546 from ACT, n = 3,016 from ADNI, n = 1,456 from ROS, and 

n = 2,163 from MAP in our legacy cocalibration model. Demographic and clinical 

characteristics from the most recent study visit are shown in Table 1. We fixed the mean 

at 0 and variances at 1 for the primary and secondary domains to estimate item parameters. 

We freely estimated the mean and variances of the primary and secondary factors when 

running domain-specific models to derive scores in each study.

Legacy Study Items in the Item Bank for Each Domain

For the memory domain, MMSE orientation items and logical memory immediate and 

delayed recall were administered in each of the studies and served as anchor items. The 

ROS and MAP battery added an additional 13 items to the item bank, the ACT study added 

25, and ADNI added 20 more (Supplemental Tables 1–4). For executive functioning, ACT 

and ADNI had Trails A and B in common, and ADNI, ROS, and MAP had digit span 

forward and backward and the WORLD backwards item from the MMSE. ROS and MAP 

added four additional items, ACT added eight items, and ADNI added seven items from all 

waves plus seven from the MoCA in later waves of the ADNI study (Supplemental Tables 

5–8). For language, all four studies had the reading and command items from the MMSE 

as well as animal fluency in common, ACT, ROS, and MAP had the 15-item version of the 

Boston Naming Test in common, and ADNI, ROS, and MAP had repeating a phrase and 

writing a sentence from the MMSE in common. ROS and MAP added 11 additional items, 

ACT added eight additional items, and ADNI added five additional items plus six from 

the MoCA in later waves of the ADNI study (Supplemental Tables 9–12). For visuospatial 

functioning, all four studies had interlocking pentagons, ROS and MAP added the Judgment 

of Line Orientation, ACT added five additional items and ADNI added six additional items 

(Supplemental Tables 13–16).

With the most recent data pulls, we derived scores for 5,546 individuals from ACT where 

each individual had all four scores for 98% of their visits (n = 26,498 scores). In ADNI, we 

have scores for 3,189 individuals where we have all four scores for 90% of their visits (n = 

11,680). In ROS, we derived scores for 1,456 individuals where all four scores were present 

for 94% of the observations (n = 14,805). In MAP, we derived scores for 2,163 individuals 

where all four scores were present for 96% of the observations (n = 14,350). Distributions of 

these scores in each of the four studies are shown in Figure 5.

Follow-Up Study 1: Findings From the Rush Minority Aging Research Study Data

The Minority Aging Research Study (MARS) is a longitudinal, epidemiologic cohort study 

of decline in cognitive function and risk of Alzheimer’s disease (AD) in older African 

Americans, with brain donation after death added as an optional component for those willing 
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to consider organ donation (Barnes et al., 2012). A comprehensive neuropsychological 

battery of 23 cognitive tests is administered at each annual visit. The tests we used for 

cocalibration overlapped completely with what we had seen in ROS and MAP, which were 

part of the legacy model. As a result, all items were anchors and we were able to directly use 

all our derived item parameters to obtain scores for all MARS participants across all time 

points.

We derived scores for 767 individuals from MARS where each individual had all four scores 

for 97% of their visits (n = 5,075 scores). Demographic and clinical characteristics at most 

recent visit are shown in Table 2. Violin plots for each domain are shown in Figure 6.

Follow-Up Study 2: Findings From the National Alzheimer’s Coordinating Center Data

The National Alzheimer’s Coordinating Center (NACC) is responsible for developing and 

maintaining a database of participant information collected from Alzheimer’s Disease 

Centers (ADCs) funded by the National Institute on Aging (NIA; Beekly et al., 2007). 

The neuropsychological test battery from the Uniform Data Set (UDS) of the Alzheimer’s 

Disease Centers (ADC) program of the National Institute on Aging consists of brief 

measures of attention, processing speed, executive functioning, episodic memory, and 

language (Weintraub et al., 2018, 2009). The UDS battery has evolved over time from 

Version 1.0 to 2.0 to 3.0.

We included individuals with baseline age ≥60 for cocalibration purpose. Demographic and 

clinical characteristics from the most recent study visit are shown in Table 3.

By design there was substantial overlap in the battery used for the ADNI study and for 

the NACC data. We considered UDS data in two batches, essentially as two separate 

studies. The only visuospatial item administered in the UDS is the dichotomous interlocking 

pentagons item, which was not sufficient to obtain scores for that domain. We were able 

to obtain cocalibrated scores for the other domains. Beyond the pentagons item, NACC 

collects other MMSE items as composites. For example, the five orientation to time items 

from the MMSE are reported to NACC as a single score. For these situations, we reran the 

legacy model with everything other than these composites treated as anchor items, obtaining 

item parameters on the same metric for the MMSE composite scores from the legacy data. 

We then used these item parameters for the MMSE composite scores in the NACC data, 

along with other anchors as shown in Supplemental Tables 17–19. More details about this 

process can be found in Supplemental Text 2. We derived scores for 41,459 individuals from 

NACC UDS 1/2/3 where each individual had all four scores for 87% of their visits (total = 

145,028). The distribution of scores is shown in Figure 7.

Other Data Set Cocalibrated and Harmonized

With a growing item bank, we have been able to cocalibrate and harmonize cognitive 

domains from various aging studies such as the A4 Study, the Australian Imaging, 

Biomarkers and Lifestyle (AIBL) study of aging (Ellis et al., 2009), the Baltimore 

Longitudinal Study of Aging (BLSA; Ferrucci, 2008), and the Framingham Heart Study 

(FHS; Elias et al., 1995). The cognitive scores can be obtained from the parent studies via 
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data user agreement (DUA). Taken together, across all of these studies, we have cocalibrated 

cognitive data for 76,723 individuals from 10 studies.

Discussion

We cocalibrated cognitive data across multiple studies of older adults using a modern 

psychometrics approach. This approach, which is well-suited to our purpose, was easily 

adapted from its application to educational settings, to the specific challenges from cognitive 

testing of older adults.

Our expert panel categorized each item as best reflecting single cognitive domain, but for 

several items also identified a second domain that the item also tapped. We used CFA to 

assess whether the items that best reflected a domain load well for that domain. We wanted 

each domain to contain a mutually exclusive set of items, and as a result, did not explore 

factor analysis models for domains that included items assigned to their secondary domains. 

For genetic analyses, one of the motivating use cases for our harmonization efforts, there 

is tremendous interest in pleiotropy, where a particular genetic factor may underlie multiple 

phenotypes. Allowing cross-loading of a single item on multiple domains would induce 

correlation between domain scores and would make evaluation of pleiotropy findings at least 

difficult if not impossible (Solovieff et al., 2013). Others with different goals could have 

made different modeling choices.

One contribution we make in this article is that we used bifactor models to cocalibrate 

these data. As shown, the introduction of secondary factors requires careful thought and 

consideration. We compared several methods of deriving candidate secondary structures. 

We compared several methods of deriving candidate secondary structures. While the 

different bifactor models produced consistent results—suggesting some robustness to the 

specification of the secondary factors—it should also be emphasized that bifactor models 

had substantially better fit than single factor models, and that the bifactor models and single 

factor models produced scores that were substantially different from each other for some 

people. In many cases in our workflow we are faced with the overarching question of 

whether we need a more complicated bifactor model or whether a simpler single factor 

model would be “good enough.” On the other hand, even if a more complicated model is 

consistent with theory, if fit statistics are either marginally better, very similar, or worse, 

and if the scores from a more complicated model do not substantially differ from those 

of a simpler model, we would choose the simpler model. In this instance, application of 

that approach led us to choose bifactor models rather than single factor models. But in the 

case of the sensitivity analyses of different choices we could make for subdomains, we 

did not find evidence that we needed a different model. Both of these sets of results can 

be seen as examples of the same overarching strategy. In each case, fit statistics led us to 

choose models where the secondary structure was derived from agglomerative hierarchical 

clustering. The resulting scores for each domain account for these secondary data structures, 

which essentially avoids overemphasizing responses that would otherwise by somewhat too 

influential on the overall score.
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We used data from the most recent study visit for each person to calibrate items. This 

strategic choice ensured that each individual would only be included once in our calibration 

modeling, so we did not have to address within-person correlations. This choice also 

maximized the spread of observed ability levels for each domain, which is desirable for 

a calibration sample. Some data sets by design were characterized by constrained variation 

in one or more domains. For example, A4 included the baseline data point from a group of 

cognitively normal older adults, which meant there were no people with dementia and no 

substantially impaired scores. For these data sets, we can obtain scores that are cocalibrated 

based on the inclusion of anchor items, but we did not use study-specific item parameters 

from these data sets in our item bank. All of the items in our item bank had parameters 

estimated from samples with a broad range of ability levels.

Of note, we used similar methods in previous work (Mukherjee et al., 2020). There are 

important differences here. First and foremost, that work focused exclusively on samples 

of people with clinical Alzheimer’s dementia, and all recoding and model calibration was 

performed on those data. In the present work we include people across the entire range of 

the cognitive ability scale, from completely unimpaired to severely impaired. Our work for 

this article is thus applicable to people at all levels of cognitive ability, not limited to people 

with clinical Alzheimer’s dementia.

As in any item banking effort, anchor items are essential for successfully linking scores 

across different studies. We pay close attention to anchor items as detailed here, ensuring 

that the stimuli are identical, that the responses are scored in an identical fashion, and that 

the distribution of observed scores has substantial overlap across studies.

The cocalibration approaches described in this article will enable investigations of 

associations with late life cognitive functioning and decline using data from multiple 

studies, even though those studies measured cognition in older adults using different 

neuropsychological tests. The payoff for the work we have done is the ease of use of the 

resulting scores. They address important psychometric challenges in the parent data, so the 

user of the scores can focus on their scientific questions of interest.

This article has focused on considerations in cocalibrating scores across studies that used 

different batteries. We did not address validity. There are many layers that ensure the validity 

of our cocalibrated scores. First, these scores are derived from cognitive tests administered 

by prominent studies that have had their methods peer reviewed many times. The modern 

psychometrics approach we used does not diminish the validity of the underlying measures. 

Second, our approach to domain assignments began with our expert panel, who in turn 

are guided by disciplinary considerations in the field of neuropsychology. The tests whose 

items we analyzed here have been widely used, producing a vast literature in applied 

settings. Furthermore, we are transparent with our choices and indeed present our domain 

assignments to the scientific community in this article. Others could assign items to different 

domains. We suspect that differences in assignment across content experts likely would 

reflect matters of degree. For example, we assigned the overlapping pentagons item to the 

visuospatial domain, though certainly there are aspects of executive functioning that are 

required to successfully complete this item, and it could be argued that item would be 

Mukherjee et al. Page 16

Neuropsychology. Author manuscript; available in PMC 2023 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a better representative of the executive functioning domain than the visuospatial domain. 

Even in such an instance, however, we suspect such a content expert would agree with our 

panel that the interlocking pentagons item is also an indicator of the visuospatial domain. 

Disagreements of this sort on matters of degree do not rise to the level of challenging the 

overall validity of any domain score. The only real such challenge to overall validity would 

be if an item simply was not an indicator of the domain our experts assigned it to, which we 

think has not happened. Third, we have in previous work compared modern psychometric 

scores alongside classical test theory-derived scores for the same domain, using a variety 

of validity comparisons including known group comparisons, strength of association with 

a priori selected imaging findings, ability to predict decline over time and conversion from 

Mild Cognitive Impairment (MCI) to AD (S. E. Choi et al., 2020; Crane et al., 2012; L. 

E. Gibbons et al., 2012). The cocalibration we do here is a minor tweak of the calibration 

we have done previously and evaluated validity with, using essentially the same modeling 

strategy. There is a simple practical reason we do not provide additional novel analyses 

of the validity of the cocalibrated scores, which is that given the challenges we had to 

address to develop cocalibrated scores, there is no classical test theory-derived approach 

for harmonizing these data that we would recommend. All such methods we are aware of 

make assumptions that are not supported by data. For example, if we took z-scores within 

a domain for each study, we would not have a way to link studies together without making 

a huge assumption that the means and standard deviations of the two samples are exactly 

the same. As shown elsewhere in this issue (Hampton et al., 2020), when we have evaluated 

this assumption across studies we have not found it to be plausible. Standard approaches 

widely used in the field such as z-scores make strong assumptions that must be correct for 

resulting scores to be valid (McNeish & Wolf, 2020). Some studies change all or part of 

the neuropsychological battery over time and it becomes impossible to cocalibrate cognitive 

data with naïve total score and z-score approaches and derive scores on the same scale. 

There are other approaches such as linear linking for related traits (Nichols et al., 2021) 

built using item response theory machinery that can be used for cocalibration but it uses 

additional assumptions and is not amenable to domains with secondary data structure. Our 

approaches make far fewer assumptions; at each step, as outlined here, we have made careful 

modeling choices that are consistent with the data. A limitation of this field is that there is no 

robust metric to get a sense of cocalibration accuracy.

One limitation of our current workflow is that our choice of which datasets to begin our 

procedures with was based in part on convenience, specifically which data sets we had 

access to at the beginning of our work. As more data sets become available, it will become 

possible to consider the implications of making different choices. Investigations of those 

choices may be very useful in determining the potential impact of initial selection of studies 

or pooling all of the studies together, as well as the cumulative impact of sequential item 

parameter instabilities.

We do not incorporate methods to account for repeated measures in our CFAmodels. In this 

initial work, we chose a single measurement occasion for each individual. There could be 

some learning effects that could have an impact on item difficulty or discrimination. Further 

work will be needed to investigate this issue. We are somewhat comforted that, in many 

instances, intervals between testing are many months (ADNI and others), a year (ROS/MAP 
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and others), or even 2 years (ACT and others) apart; retest or learning effects are thought 

to be more salient with study visits that are close to each other. This is an active area 

of research (Jutten et al., 2020). Another limitation is that we didn’t perform any formal 

Differential Item Functioning (DIF) testing across the suite of studies. DIF occurs when 

groups (such as defined by sex, ethnicity, age, or education) have different probabilities of 

endorsing a given item after controlling for overall scores. We plan to examine and adjust 

our scores for DIF in future studies, especially across ethnicity (e.g., MAP and MARS), and 

adjust for it if it turns out to be impactful (Crane et al., 2007; Dmitrieva et al., 2015).

To date these efforts have enabled us to cocalibrate hundreds of thousands of scores 

from tens of thousands of individual study participants. These rich data are available 

for interested investigators to use. The item parameters we have generated to date are 

stored and deriving scores for additional study participants and observations becomes a 

much simpler task in subsequent waves from ongoing studies and indeed for new studies 

with overlapping content. There are multiple ongoing funded initiatives that have or will 

use these cocalibrated cognitive data. Cocalibrated cognitive scores were used to derive 

a measure of resilience (Dumitrescu et al., 2020) facilitating meta-analysis of genetic 

results across cohorts enabling us to find candidate loci associated with resilience. These 

analyses would not have been possible without the cocalibrated scores; cocalibrated scores 

facilitated analyses of the replicability of genotype–phenotype association signals across 

multiple studies that used different instruments to measure cognition. The Alzheimer’s 

disease genetics community has seen value in the approaches we have taken; we propose 

to use these same approaches in the now funded U24 AG074855, “Alzheimer’s Disease 

Sequencing Project Phenotype Harmonization Consortium.” Our hope is that this protocol 

article will serve a valuable role in all these initiatives in documenting our workflow for 

cocalibrating cognitive scores across studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

Question: What considerations were addressed in setting up and implementing a robust 

workflow that harmonizes and cocalibrates cognitive data across studies of older adults? 

Findings: Data from thousands of individuals at tens of thousands of study visits have 

been cocalibrated to the same metrics for four different cognitive domains. Importance: 
These data will facilitate analyses of cognition across studies, despite varying levels 

of overlap in cognitive tests used across studies. Next Steps: Cocalibrated scores and 

standard errors for the studies incorporated in our item banking efforts to date are 

available to investigators. Additional studies will be incorporated in the coming years 

using the same methods.
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Figure 1. Cocalibration Workflow
Note. Each of these steps is explained in more detail below. M = memory; E = executive 

functioning; L = language; V = visuospatial functioning; ACT = Adult Changes in Thought; 

ADNI = Alzheimer’s Disease Neuroimaging Initiative; ROS/MAP = Religious Orders 

Study/Memory and Aging Project.
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Figure 2. Single Factor (Left) and Bifactor (Right) Models of 14 Items From a Single Study
Note. The figure to the left depicts a single factor model of 14 items (1–7 and 11–17) 

that are depicted as loading on a single common factor. There are no secondary domains 

or residual covariances; this model forces all covariance between items to be captured by 

the single general factor (labeled “Domain” here). The figure to the right depicts the same 

14 items, and a relationship with a general factor that captures covariance across all of the 

items. But different from the figure to the left, this bifactor model includes two subdomains 

(labeled “Subdomain 1” and “Subdomain 2”). These subdomains capture covariance among 

the subdomain items (e.g., Items 1–7 for Subdomain 1, and Items 11–17 for Subdomain 

2) that is not shared with items outside that subdomain. A subdomain could be based 

on a methods effect (e.g., the same words from a word list learning task), or based on 

a common subset of a higher order domain (e.g., several items tapping set shifting in a 

model of executive functioning), or a data-driven subset based on agglomerative hierarchical 

clustering.
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Figure 3. Data From Two Studies Illustrating Anchor Items
Note. This figure depicts data from a single domain for two studies. The blue study items 

are the same as those shown in Figure 2 in the bifactor model. The red study items appear 

to have some overlap, as depicted in the dashed blue boxes—red items 4–7 appear to be the 

same as blue items 4–7, and red items 15–17 appear to be the same as blue items 15–17. We 

pay close attention to these candidate anchor items, ensuring that the stimuli are identical 

and that the response coding is identical. The subset of items for which that turns out to be 

the case then are treated as anchor items, where the item parameters are forced to be the 

same between the blue study and the red study. Other items are treated as study-specific 

items, including those already understood to be study-unique (e.g., blue items 1–3 and 11–

14, and red items 8–10 and 18–21).

Mukherjee et al. Page 27

Neuropsychology. Author manuscript; available in PMC 2023 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Cocalibration of the Red and Blue Studies
Note. Cocalibration model for data from Study 1 and Study 2. Study 1 data include blue 

and purple items, while Study 2 data include purple and red items. Beige items are anchors, 

which received extra attention and quality control (see above). This is referred to in this 

document as the “megacalibration model.”
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Figure 5. Violin Plot of the Distributions for Each of the Cognitive Scores Across All Time Points 
by Study Used in Legacy Model
Note. The violin plot displays the median as a circle, the first-to-third interquartile range as 

a narrow, shaded box, and the lower-to-upper adjacent value range as a vertical line. The 

violins are mirrored density curves. ACT = adult changes in thought; ADNI = Alzheimer’s 

Disease Neuroimaging Initiative; ROS = Religious Orders Study; MAP = Memory and 

Aging Project.
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Figure 6. Violin Plot Showing Distribution of Scores Across All Time Points for Four Cognitive 
Domains in MARS
Note. MARS = Minority Aging Research Study.
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Figure 7. Violin Plot Showing Distribution of Scores Across All Time Points for Three Cognitive 
Domains in UDS 1 & 2 and UDS 3
Note. UDS = uniform data set.
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Table 1

Demographic and Clinical Characteristics of the Legacy Studies at the Most Recent Study Visit

Variable ACT ADNI ROS MAP

Sample size, n 5,546 3,016 1,456 2,163

Age, mean (SD) 81.9 (7.8) 74.9 (8.7) 85.8 (7.4) 86.0 (7.9)

Female, (%) 58.2 48.1 71.6 73.5

Education, mean (SD) 14.9 (3.2) 16.1 (2.8) 18.4 (3.3) 14.9 (3.3)

Self-reported race, %

 Non-Latinx White 88.8 88.1 89.6 88.5

 African/American   3.6   4.6   5.7   5.2

 Hispanic/Latino   1.1   3.7   4.3   5.5

 Others   6.5   3.6   0.4   0.8

Cognitive diagnosis at most recent visit, %

 Cognitively normal 92.2 38.3 42.2 50.4

 Mild Cognitive Impairment (MCI) N/Aa 32.0 23.0 23.7

 Diagnosed with AD   6.0 29.7 33.4 24.5

 Other dementia   1.8 N/A   1.4   1.4

Note. ACT = adult changes in thought; ADNI = Alzheimer’s Disease Neuroimaging Initiative; ROS = Religious Orders Study; MAP = 
Memory and Aging Project; AD = Alzheimer’s disease; SD = standard deviation. A few individuals were missing some of these demographic 
characteristics.

a
In ACT, MCI as a diagnosis is generally not made.
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Table 2

Demographic and Clinical Characteristics of MARS at the Most Recent Study Visit

Variable MARS

Sample size, n 767

Age, mean (SD)   79.9 (7.3)

Female, (%)   77.2

Education, mean (SD)   14.8 (3.5)

Self-reported race, %

 Non-Latinx White  0.0

 African/American   99.9

 Hispanic/Latino  0.0

 Others  0.1

Cognitive diagnosis at most recent visit, %

 Cognitively normal   74.8

 MCI   21.0

 Diagnosed with AD  3.9

 Other dementia  0.3

Note. MARS = Minority Aging Research Study; SD = standard deviation; MCI = Mild Cognitive Impairment. Percentages for cognitive diagnosis 
(DX) shown for nonmissing data only.
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Table 3

Demographic and Clinical Characteristics for Individuals With Study Baseline Age ≥60 in the NACC Data Set 

at the Most Recent Study Visit

Variable UDS 1 & 2 UDS 3

Sample size, n 29,154 15,232

Age, mean (SD)    77.1 (8.4) 76.3 (8.3)

Female, (%)    56.8 58.4

Education, mean (SD)    14.9 (3.6) 15.8 (3.2)

Self-reported race, %

 Non-Latinx White    80.5 80.1

 African/American    14.3 14.1

 Hispanic/Latino      1.1   0.7

 Others      4.1   5.1

Cognitive diagnosisa at most recent visit, %

 Cognitively Normal    33.8 48.0

 MCI    19.2 15.7

 Diagnosed with AD    44.0 34.3

 Other dementia      3.0   2.0

Note. NACC = National Alzheimer’s Coordinating Center; MCI = Mild Cognitive Impairment; AD = Alzheimer’s disease; UDS = uniform data 
set; SD = standard deviation.

a
Based on primary, contributing, or noncontributing cause Alzheimer’s disease.
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