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Abstract

Impaired mitochondrial function and disrupted proteostasis contribute to musculoskeletal 

dysfunction. However, few interventions simultaneously target these two drivers to prevent 

musculoskeletal decline. Nuclear factor erythroid 2-related factor 2 (Nrf2) activates a 

transcriptional program promoting cytoprotection, metabolism, and proteostasis. We hypothesized 

daily treatment with a purported Nrf2 activator, PB125, in Hartley guinea pigs, a model 

of musculoskeletal decline, would attenuate the progression of skeletal muscle mitochondrial 

dysfunction and impaired proteostasis and preserve musculoskeletal function. We treated 2-month- 

and 5-month-old male and female Hartley guinea pigs for 3 and 10 months, respectively, with the 

phytochemical compound PB125. Longitudinal assessments of voluntary mobility were measured 

using Any-Maze™ open-field enclosure monitoring. Cumulative skeletal muscle protein synthesis 

rates were measured using deuterium oxide over the final 30 days of treatment. Mitochondrial 
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oxygen consumption in soleus muscles was measured using high resolution respirometry. In both 

sexes, PB125 1) increased electron transfer system capacity; 2) attenuated the disease/age-related 

decline in coupled and uncoupled mitochondrial respiration; and 3) attenuated declines in protein 

synthesis in the myofibrillar, mitochondrial, and cytosolic subfractions of the soleus. These effects 

were not associated with statistically significant prolonged maintenance of voluntary mobility in 

guinea pigs. Collectively, treatment with PB125 contributed to maintenance of skeletal muscle 

mitochondrial respiration and proteostasis in a pre-clinical model of musculoskeletal decline. 

Further investigation is necessary to determine if these documented effects of PB125 are also 

accompanied by slowed progression of other aspects of musculoskeletal dysfunction.

Graphical Abstract

Musculoskeletal decline is an age-related multifactorial syndrome that is characterized by joint 

degeneration and loss of skeletal muscle function. Mitochondrial dysfunction and impaired protein 

turnover are two causative factors of musculoskeletal decline. 10 months of daily oral PB125 

supplementation attenuated disease-related declines in mitochondrial respiration and protein 

synthesis in both male and female Hartley guinea pigs, which are a preclinical model of 

spontaneous and progressive musculoskeletal decline. Despite the attenuation of mitochondrial 

dysfunction and impaired protein turnover, there was not a statistically significant effect on the 

maintenance of mobility over the 10-month trial.
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Introduction

The musculoskeletal system is comprised of bones, joints, cartilage, tendon, and skeletal 

muscle, all of which are physically and biochemically connected (Bonewald et al., 2013; 

DiGirolamo et al., 2013). Age-related decline in musculoskeletal function contributes to 

the health burden associated with aging (Goates et al., 2019). Moreover, obesity also 

causes musculoskeletal decline during periods of growth in overweight/obese children 

and adolescents (Krul et al., 2009; Merder-Coskun et al., 2017) and further drives 

musculoskeletal dysfunction across the lifespan (Wang et al., 2016). Musculoskeletal 

dysfunction imparts a loss of mobility and independence (Roux et al., 2005) and leads to 

frailty (Walston et al., 2006). It also exacerbates comorbidities including cardiometabolic 

disease (Baskin et al., 2015), cancer (Williams et al., 2018), and cognitive decline 

(Ogawa et al., 2018); and increases mortality (García-Hermoso et al., 2018). There are no 

established therapeutics to slow musculoskeletal decline (Yoshimura et al., 2017), including 

musculoskeletal deficiencies associated with osteoarthritis (OA), which affects over 30 

million US adults (US Bone and Joint Initiative, 2020). Accordingly, the NIH identified a 

critical need (PAR-15-190) to “accelerate the pace of development of novel therapeutics… 

for preventing and treating key health issues affecting the elderly.”

The lack of effective therapeutics for maintaining musculoskeletal function is partially 

attributable to the insidious nature of musculoskeletal decline in humans, as well as 

the absence of animal models that recapitulate the multifactorial processes that drive 

musculoskeletal decline. The Hartley guinea pig is an outbred guinea pig that develops 

primary (also considered spontaneous or idiopathic) OA that closely resembles disease 

onset and progression in humans starting at 4 months of age (Jimenez et al., 1997). By 

nine months of age, these guinea pigs have diminished mobility. At 18 months of age, 

the severity of OA renders the guinea pigs up to 50% less mobile (Santangelo et al., 
2014). Similar to humans with OA (Kemmler et al., 2015; Noehren et al., 2018), skeletal 

muscle fiber size and density decrease and the proportion of type I fibers increases in the 

gastrocnemius by 15 months in these guinea pigs (Tonge et al., 2013; Musci et al., 2020). 

Low skeletal muscle mass in the lower limb is associated with knee osteoarthritis (Lee 

et al., 2016). Accordingly, the Hartley guinea pig represents a potential model to study 

musculoskeletal deficiencies associated with OA in a compressed amount of time (i.e. 5 

to 15 months of age). Indeed, another lab tested the effect of treatment with metformin 

and rapamycin, drugs that have beneficial effects on lifespan in mice (Strong et al., 2016), 

on progression of musculoskeletal dysfunction in Hartley guinea pigs. Surprisingly, the 

drugs had deleterious effects on OA severity (Minton et al., 2021) and impaired skeletal 

muscle mitochondrial function (Elliehausen et al., 2021). Thus, there remains a strong 

need to investigate other therapeutic interventions that can slow the progression of OA and 

OA-related musculoskeletal dysfunction.
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Oxidative stress, mitochondrial dysfunction, and the loss of proteostasis, which are all 

hallmarks of aging and contribute to other chronic diseases, likely contribute to OA and loss 

of skeletal muscle function. Cartilage and skeletal muscle are slow to proliferate and have 

low rates of protein turnover (Vaananen, 1993; Hall, 2012; Relaix et al., 2021) relative to 

tissues such as liver (Drake et al., 2013). Thus, cartilage and skeletal muscle are susceptible 

to accumulating oxidative damage and impaired proteome integrity. Targeting mitochondrial 

dysfunction likely ameliorates not just impaired ATP production and oxidative stress but 

also other factors that underlie musculoskeletal decline such as impaired proteostasis 

(protein homeostasis) (Musci et al., 2018). Impaired mitochondrial function is associated 

with, and precedes, impairments in proteostasis and decrements in skeletal muscle function 

(Gaffney et al., 2018; Gonzalez-Freire et al., 2018). Inversely, improvements in proteostatic 

mechanisms regulating mitochondrial proteome integrity would improve mitochondrial 

function (Hamilton & Miller, 2017), which may in turn alleviate the energetic constraints 

that impair adequate cellular function. Thus, targeting oxidative stress, mitochondrial 

function, and/or impaired proteostasis could similarly slow the progression of OA and 

skeletal muscle decline.

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates 

hundreds of genes involved in adaptation to stress, including those involved in redox 

homeostasis, mitochondrial energetics, and proteome maintenance (Gao et al., 2020). Nrf2 

activation leads to the upregulation of cytoprotective genes by binding to the antioxidant 

response element in the promoter regions of target genes, including antioxidant genes 

such as SOD-1, NQO1, and HO-1 (Katsanos et al., 2006). Nrf2 activation also has anti-

inflammatory effects (Ahmed et al., 2017) and has a role in regulating mitochondrial 

biogenesis (Piantadosi et al., 2008). Transient Nrf2 activation through phytochemical 

supplementation (Donovan et al., 2012; Reuland et al., 2013; Kubo et al., 2017; Hybertson 

et al., 2019) is a potential therapeutic intervention that could mitigate chronic diseases 

(Houghton et al., 2016) and contribute to extended lifespan. Transiently activating Nrf2 

targets several interconnected drivers of aging including macromolecular damage, disrupted 

redox homeostasis (Reuland et al., 2013; Fang et al., 2017), inflammation (Kobayashi et 
al., 2016), and impaired proteostasis (Konopka et al., 2017). Indeed, treatment with the 

phytochemical Nrf2 activator Protandim extended median lifespan of male mice in the 

NIH-NIA Interventions Testing Program (ITP) (Strong et al., 2016).

Given the positive effects of Nrf2 activator treatment, we sought to identify the effects 

of months-long Nrf2 activator treatment on skeletal muscle mitochondrial respiration and 

protein turnover in the Hartley guinea pig. Nrf2 activation occurs by a complex set of 

mechanisms, thus different Nrf2 activators have similar but not identical effects on Nrf2 

activity, gene regulation, and physiological endpoints (Baird & Yamamoto, 2020; McCord 

et al., 2021; Yu & Xiao, 2021). For this study, we utilized the dietary phytochemical 

combination PB125 as the Nrf2 activator due to the low electrophilic toxicity of its 

components and potent Nrf2 activating properties (Hybertson et al., 2011; Hybertson et al., 
2019; McCord et al., 2021). We hypothesized treatment with Nrf2 activator PB125 would 

improve skeletal muscle mitochondrial respiration and mechanisms of proteostasis, thereby 

attenuating musculoskeletal declines in both male and female guinea pigs.
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Methods

Husbandry

All procedures were approved by the Colorado State University Institutional Animal Care 

and Use Committee and were performed in accordance with the NIH Guide for the Care and 

Use of Laboratory Animals. Dunkin-Hartley guinea pigs were obtained from Charles River 

Laboratories (Wilmington, MA, USA) at 1- and 4- months of age (mo) for each treatment 

regimen; 14 male and female guinea pigs were utilized in each age and treatment group 

(total n = 112) (Figure 1A). As mentioned, Hartley guinea pigs begin developing knee OA 

at 3 to 5 mo and have severe OA and skeletal muscle and joint phenotypes consistent with 

aged human musculoskeletal systems by 15 mo (Jimenez et al., 1997; Tonge et al., 2013; 

Santangelo et al., 2014; Musci et al., 2020). Accordingly, we chose these ages to determine 

if PB125 could prevent the onset (short term treatment from 2 to 5 mo) or mitigate the 

progression (long term treatment from 5 to 15 mo) of musculoskeletal dysfunction (Jimenez 

et al., 1997; Santangelo et al., 2014) and skeletal muscle decline (Musci et al., 2020) (Figure 

1A). It is important to note that, because knee OA was progressing as these animals age 

from 2 to 15 mo, we cannot discern the effect of age itself from disease progression. 

Additionally, these animals are still experiencing long bone and soft tissue growth until ~10 

mo (Watson et al., 1996). Thus, any changes between 5 mo and 15 mo guinea pigs could 

be a result of disease progression or a maturation/aging process. We acknowledge this is a 

limitation.

Animals were maintained at Colorado State University’s Laboratory Animal Resources 

housing facilities and were monitored daily by veterinary staff. All guinea pigs were 

singly-housed in solid bottom cages, maintained on a 12–12 hour light-dark cycle, and 

provided ad libitum access to food and water. Two control females, two PB125 females, 

one control male, and two PB125 males required humane euthanasia prior to final analysis 

due to underlying issues unrelated to treatment (final n = 105). Gross necropsy findings 

by veterinarians did not raise significant concern as the cause of death in these cases were 

consistent with what would be expected in conventionally raised guinea pigs.

Measurement of PB125 in OraSweet and in Guinea Pig Plasma using High Performance 
Liquid Chromatography- Mass Spectrometry (HPLC/MS)

PB125 (Pathways Bioscience, Aurora, CO) is a phytochemical compound comprised of 

rosemary, ashwagandha, and luteolin powders, which contain the three active ingredients 

carnosol (CRN), withaferin A (WFA), and luteolin (LUT) at a mixed ratio of 15:5:2 by 

mass, respectively (Hybertson et al., 2019). Prior to treatment initiation, to ensure adequate 

compound delivery, plasma levels of each of three primary active ingredients were measured 

15, 30, 45, 60, 90, and 120 min post dosing at concentrations of 8, 24, and 48 mg/ml 

(Figures 1B – 1D), which corresponds with a dosage of 250, 750, and 1250 PPM. The 

concentration of each drug was reported as μg/ml. Because we prepared weekly allotments 

of PB125 in OraSweet, we verified the stability of PB125 suspended in OraSweet stored 

at both room temperature and 4°C for one week (Figure 1E). Compound was kept at 4°C. 

Reference standards of LUT and WFA were purchased from Sigma Aldrich (St. Louis, MO). 

CRN was purchased from Cayman Chemical (Ann Arbor, MI). All other reagents were 
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purchased from Thermo Fisher Scientific (Waltham, MA). HPLC grade methanol was used 

for preparation of all solutions. Samples were analyzed at the Nathan Shock Core Analytical 

Pharmacology Core at the University of Texas Health Medical School.

The liquid chromatography tandem mass spectrometry (LC/MS/MS) system consisted of 

a Shimadzu SIL 20A HT autosampler, LC-20AD pumps (2), and an AB Sciex API 4000 

tandem mass spectrometer with turbo ion spray. The LC analytical column was an ACE C8 

(50 × 3.0 mm, 3 micron) purchased from Mac-Mod Analytical (Chaddsford, PA). Mobile 

phase A contained 0.1% formic acid dissolved in water. Mobile phase B contained 0.1% 

formic acid dissolved in 100% HPLC grade acetonitrile. The LC Gradient was: 0 to 2 min, 

25% B; 2 to 6 min, linear gradient to 99% B; 6 to 10 min, 99% B; 10 to 10.01 min, 99% 

to 25% B min; 10.1 to 12 min, 25%B. LUT and CRN were detected in negative mode using 

these transitions: 285 to 132.9 m/z and 329 to 285 m/z, respectively. WFA was detected in 

positive mode at the transition of 471 to 281 m/z.

LUT, CRN, and WFA stock solutions were prepared in methanol at a concentration of 1 

mg/ml and stored in aliquots at −80°C. Working stock solutions of each drug were prepared 

each day from the super stock solutions at a concentration of 100 μg/ml, 10 μg/ml, and 1 

μg/ml which were used to spike the calibrators.

Dosages of PB125 in OraSweet were diluted 1000x in 70% ethanol. Calibrator samples 

were prepared daily by spiking blank OraSweet to achieve final concentrations of 0, 30.4, 

152, 760, and 2280 μg/ml. The calibrators were then diluted 1000x in 70% ethanol. The 

samples were transferred to injection vials and 10 μl was injected into the system. Each drug 

was quantified by comparing the peak area ratios for each dosage sample against a linear 

regression of calibrator peak area ratios.

LUT, CRN, and WFA were also quantified in guinea pig plasma. The transitions used were 

the same as the OraSweet dilutions. Calibrator samples were prepared daily by spiking blank 

plasma to achieve final concentrations of 0, 5, 10, 25, 50, 100, 500, 1000, and 5000 ng/ml. 

Calibrators were left to sit for 5 min after spiking. Briefly, 0.1 mL of calibrator and unknown 

plasma samples were mixed with 1.0 ml of chilled ethanol, vortexed vigorously, and then 

centrifuged at 17,000 g for 5 min at 25°C. The supernatants were transferred to 1.5 ml 

microcentrifuge tubes and dried to residue under a nitrogen stream. The residues were then 

redissolved in 60 μL of 50/50 mobile phase A/mobile phase B and were centrifuged 5 min 

at 17,000 g. The samples were transferred to injection vials and 15 μL was injected into the 

LC/MS/MS. Each drug was quantified by comparing the peak area ratios for each unknown 

sample against a linear regression of calibrator peak area ratios. The concentration of LUT, 

CRN, and WFA were expressed as ng/mL plasma (Figure 1B – 1D).

Treatment, euthanasia, and tissue acquisition

Based on the analysis conducted at the NSC Analytical Pharmacology Core (Figures 1B 

– D), we selected a dosage of 8 mg/kg of bodyweight, which corresponds to 250 PPM, 

about 2.5x the dose of PB125 given to mice in the NIA ITP (https://www.nia.nih.gov/

research/dab/interventions-testing-program-itp/compounds-testing) and the lowest dose at 

which changes in plasma concentration were detected. After a one-month acclimation to 
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housing conditions, male and female guinea pigs in each age group (2 or 5 months) were 

randomized to receive a daily oral dose of 8.0 mg/kg bodyweight of PB125 suspended 

in OraSweet (Perrigo, Dublin, Ireland) or an equivalent volume of OraSweet only (CON). 

Following established protocol, guinea pigs were given a subcutaneous injection of 0.9% 

saline enriched with 99% deuterium (2H2O) equivalent to 3% of their body weight 30 days 

prior to euthanasia (Musci et al., 2020). Drinking water was enriched to 8% 2H2O for 

the purpose of maintaining 2H2O enrichment of the body water pool during the 30-day 

labelling period. At the time of harvest, the guinea pigs were 5 mo (after 3 months of 

treatment) or 15 mo (after 10 months of treatment). In accordance with the standards of 

the American Veterinary Medical Association, animals were anesthetized with a mixture of 

isoflurane and oxygen; thoracic cavities were opened and blood was collected via direct 

cardiac puncture. Whole blood was centrifuged (1200 g, 4°C, 15 min) to separate plasma, 

which was frozen at −80°C until further analysis. After blood collection, the anesthetized 

animals were transferred a chamber filled with carbon dioxide for euthanasia.

Upon euthanasia, the right soleus of the guinea pig was promptly excised and a portion of 

the right soleus muscle (~40 mg) was harvested and placed in BIOPS preservation buffer 

(2.77 mM CaK2-EGTA, 7.23 mM K2-EGTA, 20 mM imidazole, 20 mM taurine, 50 mM K-

MES, 0.5 mM dithiothreitol, 6.56 mM MgCl2, 5.77 mM ATP, and 15 mM phosphocreatine, 

adjusted to pH 7.1) containing 12.5 μM blebbistatin to inhibit muscle contraction (Pesta & 

Gnaiger, 2011). The rest (~70 mg) of the soleus was frozen in liquid nitrogen and used 

for other analyses. After excision of the soleus, at least 70 mg of the right gastrocnemius 

was collected and frozen immediately in liquid nitrogen. Both soleus and gastrocnemius 

muscles were trimmed of tendons and connective tissue and weighed. Bone marrow was also 

harvested in saline from the humeri.

Mitochondrial respirometry

After the soleus was placed in BIOPS, the muscle fibers were prepared for high 

resolution respirometry as follows. Mechanical permeabilization occurred on ice using 

forceps to separate the fibers. After mechanical permeabilization, fibers underwent chemical 

permeabilization for 30 min in BIOPS with 12.5 μM blebbistatin and 50 μg/mL saponin, 

followed by a 15 min rinse in BIOPS. Approximately 2.0 mg (wet weight) of muscle 

fibers were placed in mitochondrial respiration medium (MiR05, 0.5 mM EGTA, 3 mM 

MgCl26H2O, 20 mM Taurine, 15 mM Na2Phosphocreatine, 20 mM Imidazole, 0.5 mM 

Dithiothreitol, and 50 mM K+ -MES at pH 7.1) in an Oxygraph-2k (O2K) (Oroboros, 

Innsbruck, Austria) for high resolution respirometry. To control for oxygen flux at higher 

concentrations of oxygen, each morning of respirometry analysis, we conducted high 

oxygen concentration calibrations at 450, 350, 250, and 167 (i.e., concentration of room air) 

nmol/ml O2 (Pesta & Gnaiger, 2011). During the experiments, oxygen concentrations were 

maintained between 225 – 450 nmol/ml O2. High resolution respirometry measurements 

were performed in duplicate using two different protocols. Please refer to Table 1 for a 

detailed explanation of the protocols.

The first protocol (SUIT 1) was an ADP titration protocol to determine ADP sensitivity 

(Km) and maximal oxidative capacity (Vmax) under Complex I supported respiration. We 
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measured Complex I supported leak respiration (State 2[PGM]) with the addition of 10 

mM glutamate, 0.5 mM malate, and 5 mM pyruvate. Upon acquisition of State 2[PGM], 

we titrated progressively greater concentrations of ADP from 0.1 mM, 0.175 mM, 0.25 

mM, 1 mM, 2 mM, 4 mM, 8 mM, 12 mM, 20 mM, to 24 mM (State 3[PGM]), awaiting 

steady-state oxygen flux prior to adding the subsequent titration to determine Complex I 

linked ADP Vmax and apparent Km (i.e. ADP sensitivity). After the ADP titration was 

completed, we added 5 mM cytochrome C to test mitochondrial membrane integrity. After 

cytochrome C addition, we added 10 mM succinate to acquire maximal Complex I and II 

supported coupled respiration (State 3[PGM + S]). We then added 0.5 μM FCCP sequentially 

until there was no increase in respiration to determine the capacity of the electron transport 

system to consume oxygen, or maximal uncoupled respiration (ETS[CI-CIV]). Finally, we 

added 5 μM rotenone to measure maximal uncoupled respiration with the inhibition of 

Complex I (ETS[CII-CIV]), followed by 2.5 μM Antimycin A to measure residual oxygen 

consumption (ROX). The respiratory control ratio (RCR: State 3/State 2), which is an index 

of mitochondrial efficiency was also evaluated.

The second protocol (SUIT 2) measured oxygen consumption while simultaneously 

measuring ROS production by using the fluorometer attachment of the O2K (Robinson 

et al., 2019) and addition of 10 μM Amplex Red, 1 U/ml horseradish peroxidase, and 5 U/ml 

superoxide dismutase. We then measured fatty acid supported leak respiration by adding 

10 mM glutamate, 0.5 mM malate, 5 mM pyruvate, and 0.2 mM octanoylcarnitine (State 

2[PGM + Oct]) and 10 mM succinate (State 2[PGM + Oct + S]). After stimulating maximal 

leak respiration, we added submaximal boluses of ADP (0.5 mM: (State 3[Sub + 0.5D]) 

and 1 mM: State 3[Sub + 1.0D]), followed by a saturating bolus of ADP (6.0 mM: State 

3[Sub + 6.0D]). We added 5 mM cytochrome C to test mitochondrial membrane integrity. 

We set a cytochrome C control factor threshold of 0.25. We set this threshold based on 

the presence of a negative linear relationship between the cytochrome C control factor and 

State 3 respiration in the SUIT 2 protocol. Upon eliminating respirometry trials that had a 

cytochrome C control factor of greater than 0.25, the negative linear relationship no longer 

existed and all samples included in analysis were not biased by over-permeabilization, which 

is what the cytochrome C control factor approximates (Pesta & Gnaiger, 2011) (Figures 

2A – 2C). After the addition of cytochrome C we did not make any further assessments of 

ROS emission as cytochrome C is a redox substrate. We added 5 μM rotenone to determine 

maximal coupled respiration in the absence of Complex I (State 3[Sub + D − CI]) followed 

by sequential titrations of 0.5 μM FCCP until respiration no longer increased to determine 

maximal fatty acid supported uncoupled respiration (ETS[Sub + D − CI]). and added 2.5 μM 

antimycin A to measure ROX.

Protein isolation and fractionation

The gastrocnemius and soleus muscles were homogenized and fractionated following 

established laboratory protocols (Drake et al., 2013; Miller et al., 2013; Groennebaek et al., 
2018; Miller et al., 2019; Sieljacks et al., 2019; Musci et al., 2020). Briefly, tissues (20 – 50 

mg) were homogenized at 1:10 in isolation buffer (100 mM KCl, 40 mM Tris HCl, 10 mM 

Tris Base, 5 mM MgCl2, 1 mM EDTA, 1 mM ATP, pH − 7.5) with phosphatase and protease 

inhibitors (HALT Thermo Scientific, Rockford, IL, USA) using a tissue homogenizer (Bullet 
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Blender, Next Advance Inc., Averill Park, NY, USA) with zirconium beads (Next Advance 

Inc., Averill Park, NY, USA). After homogenization, subcellular fractions were isolated via 

differential centrifugation as previously described (Musci et al., 2020). Once fractionated 

pellets were isolated and purified, 250 μl 1 M NaOH was added and pellets were incubated 

for 15 min at 50 °C and 900 RPM.

Sample preparation and analysis via GC/MS: Proteins

Protein subfractions were hydrolyzed in 6 M HCl for 24 hours at 120 °C after which 

the hydrolysates were ion-exchanged, dried in vacuo, and then resuspended in 1 mL 

of molecular biology grade H2O. Half of the suspension was derivatized with 500 μL 

acetonitrile, 50 μL 1 M K2HPO4, and 20 μl of pentafluorobenzyl bromide and incubated at 

100 °C for 60 min. Derivatives were extracted into ethyl acetate and the organic layer was 

transferred into vials which were then dried under nitrogen. Samples were reconstituted in 

ethyl acetate (200 μL – 700 μL).

The derivative of alanine was analyzed on an Agilent 7890A GC coupled to an Agilent 

5977A MS as previously described (Robinson et al., 2011; Drake et al., 2013; Miller et 
al., 2013; Groennebaek et al., 2018; Miller et al., 2019; Sieljacks et al., 2019; Musci et al., 
2020). The newly synthesized fraction (f) of proteins was calculated from the true precursor 

enrichment (p) based upon plasma analyzed for 2H2O enrichment and adjusted using mass 

isotopomer distribution analysis (Busch et al., 2005). Protein synthesis of each subfraction 

was calculated as the fraction of deuterium-labeled over unlabeled alanine proteins over the 

entire labeling period (30 days) and expressed as the fractional synthesis rate (FSR). Thus, 

we divided fraction new by our labeling period (30 days) and multiplied by 100 to express 

FSR as %/day. Our isotope approach and analysis followed the established procedures 

detailed in this Core of Reproducibility in Physiology publication (Miller et al., 2020).

Sample preparation and analysis via Gas Chromatography/Mass Spectroscopy (GC/MS): 
Body water

80 μL of plasma was placed into the inner well of an o-ring cap that was screwed to 

tube and inverted on a heating block overnight at 100°C. After incubation, 2 μL of 10 M 

NaOH and 20 μL of acetone were added to the samples and 2H2O standards (0 – 20%) 

and capped immediately, vortexed, and incubated at room temperature overnight. Samples 

were extracted with 200 μL hexane and the organic layer was transferred through pipette tips 

filled with anhydrous Na2SO4 into GC vials and analyzed via EI mode using a DB-17MS 

column.

Protein content

Western blotting was used to measure relative content of Nrf2, heme oxygenase (HO-1) 

and OXPHOS proteins in a subset of tissues. 50–70 mg portions of gastrocnemius 

and 30 mg portions of soleus (n=9 per treatment group) were powdered under liquid 

nitrogen and homogenized in a Bullet Blender with zirconium beads and 1.0 mL of 

radioimmunoprecipitation assay (RIPA) buffer (150 mM NaCl, 0.1 mM EDTA, 50 mM 

Tris, 0.1% sodium deoxycholate, 0.1% SDS, 1% Triton X-100, pH = 7.50) with HALT 

protease inhibitors. Samples were reduced (50 μL of B-mercaptoethanol) and heated at 50°C 
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for 10 min. Approximately 10 μg of protein was loaded into a 4% - 20% Criterion pre-cast 

gel (Bio-Rad, Hercules, CA, USA) and resolved at 120 V for 120 min. The proteins were 

then transferred to a PVDF membrane at 100 V for 75 min in transfer buffer (20% w/v 

methanol, 0.02% w/v SDS, 25 mM Tris Base, 192 mM glycine, pH 8.3). Protein transfer to 

membrane was confirmed with ponceau stain. Membranes were then blocked and incubated 

with primary antibodies against Nrf2 (Santa Cruz 13032), HO-1 (Abcam 13243) and total 

OXPHOS proteins (Abcam 110413) diluted to 1:500, 1:1,000, and 1:500 respectively in 

1% milk on a shaker overnight in 4°C. Membranes were rinsed and then incubated with 

appropriate secondary antibodies (Santa Cruz 2004 (Nrf2 and HO-1) and 2005 (OXPHOS)) 

diluted to 1:10,000 in 5% BSA for 45 min at room temperature. Protein carbonyls were 

measured by following the protocol in the commercially available OxiSelect Protein 

Carbonyl Immunoblot Kit (Cell Biolabs STA-308) as previously performed (Konopka et 
al., 2015; Konopka et al., 2017). After the membranes were rinsed, SuperSignal West Dura 

Extended Duration Substrate (Thermo Fisher 34075) was applied and the membranes were 

subsequently imaged using a FluorChem E Chemiluminescence Imager (Protein Simple, San 

Diego, CA, USA). Analysis of densitometry was completed using AlphaView SA Software. 

Units are expressed as density of primary antibody relative to density of ponceau staining.

Mobility

Before the onset of the study, animals were acclimated over a 2-week period to an 

open circular field behavior monitoring system (ANY-Maze™, Wood Dale, IL) to assess 

voluntary physical mobility. Animals’ activities were recorded, and data were collected for 

10 consecutive minutes on a monthly basis throughout the study. Mobility assessments were 

conducted in the mornings to minimize variance due to time of day. Additionally, cohorts 

containing both CON and PB125 treated guinea pigs were evaluated on the same day and 

time. To evaluate the effect of PB125 treatment on the time to event noncompliance, we 

employed a Kaplan-Meier curve, frequently used to visually summarize time-to-event data 

(Ranstam & Cook, 2017). The “event” was defined as number of weeks into the study until 

an animal selected to remain stationary when exposed to the open circular field (i.e., zero 

distanced traveled in enclosure). Remaining individuals that maintained voluntary mobility 

throughout the entire 40-week study duration were censored at the 40-week study endpoint.

Statistics

For mitochondrial respirometry, in line with best practices, technical replicates were 

averaged. The average variability between these technical replicates in this study was 18%, 

which is standard according to the literature (Jacques et al., 2020). Apparent Km and 

Vmax values were determined using Michaelis-Menten kinetics in Prism 9.0 (La Jolla, 

California, USA). For evaluating growth rates, a non-linear Gompertz growth line was fit 

to the change in body mass over time (i.e. the rate of growth). The rate of growth, k, 

was compared between treatment and control within in each sex. For respirometry, isotopic 

measures, and Western blots, three-way ANOVAs were used to measure the main effects of 

sex, musculoskeletal disease progression/age (referred to as disease/age-related effects from 

here forward), and PB125 treatment. Post-hoc analyses were performed using Bonferroni’s 

post-hoc test.
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To determine the effect of PB125 on disease/age-related changes in mitochondrial 

respiration and protein synthesis when a significant effect of disease/age was detected, 

we conducted a subset analysis using a one-way ANOVA with a Dunnett’s post-hoc test 

comparing 15 mo treated and untreated guinea pigs to 5 mo untreated guinea pigs.

Because this study was a secondary project within a larger study with a different primary 

outcome, we did not design this study to be powered to detect differences in mitochondrial 

respiration and protein synthesis at a p-value <0.05. Moreover, prior to this study, there 

was no published data on mitochondrial respiration in permeabilized skeletal muscle fibers 

of guinea pigs. While we set statistical significance a priori at p<0.05, we also report 

differences with p<0.10 and corresponding effect sizes to highlight potential directions for 

future studies.

For measuring sustained mobility, we employed Kaplan-Meier curves combined with log 

rank and Gehan-Breslow-Wilcoxon tests to assess the probability of sustained voluntary 

mobility throughout the 10-month study period of the “long term” study.

Data are presented as mean +/− SD. All statistics were performed in Prism 9.0 (La Jolla, 

California, USA). Cohen’s d was calculated by calculating the difference between group 

means relative to the variance of either group (Sullivan & Feinn, 2012).

Results

Growth rate (k-curves) of the group treated with PB125 did not significantly differ from the 

control group (CON) as measured by changes of body weight throughout treatment (p>0.70 

for both sexes) and at euthanasia (p>0.70) (Figures 1F – 1H). Moreover, there were no 

differences in relative skeletal muscle mass between PB125 and CON (Figures 1I & J).

Disease/age-related declines in mitochondrial respiration occur in both male and female 
guinea pigs

Because mitochondrial respiratory capacity has never been measured in permeabilized 

skeletal muscle fibers from Hartley guinea pigs, we first evaluated disease/age- and sex-

differences in mitochondrial respiration. As a reference, refer to Table 1 for an explanation 

for each respiratory state mentioned below. Figures 2D – K provide summary titration 

data. Eleven of 210 trials were excluded due to over-permeabilization (cytochrome C 

control factor > 0.25; Figures 2A & B). Maximal coupled (State 3[CI-CIV]) (Figure 3A) 

and uncoupled (Electron Transport System (ETS) [CI-CIV]) (Figure 3B) respiration were 

significantly greater in males than females (Cohen’s d=0.653, 0.735; p=0.006; p=0.002, 

respectively). Uncoupled Complex II-IV (ETS[CII-CIV]) supported respiration was also 

greater in males (Figure 3C) (Cohen’s d=0.668; p=0.002). However, there was no difference 

in mitochondrial efficiency (RCR) between sexes (Figure 3D) (Cohen’s d=0.134, p=0.576). 

There were no differences in fatty acid supported coupled respiration between sexes at 

sub-saturating concentrations of ADP (Figures 3E & F) or at saturating (6 mM ADP) 

concentrations of ADP (Figure 3G) (Cohen’s d=0.413; p=0.070).
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Disease/age had a negative effect on several aspects of mitochondrial respiration in both 

male and female guinea pigs. 15 mo male and female guinea pigs had lower coupled (State 

3[PGM+S]) (Figure 3A) and uncoupled (ETS[CI-CIV]) (Figure 3B) respiration compared to 

5 mo counterparts (Cohen’s d=0.731, 0.680; p=0.001, p=0.004, respectively). There was 

also a disease/age-related decline (Cohen’s d=1.388, p<0.0001) in uncoupled respiration 

without Complex I support (ETS[CII-CIV]) (Figure 3C). Disease/age had no effect on fatty 

acid oxidation supported respiration (Figures 3E – G). Mitochondrial efficiency (RCR) also 

decreased as a result of disease/age (Cohen’s d=0.533, p=0.012) (Figure 3D).

PB125 improves mitochondrial respiration in both male and females

PB125 improved several components of mitochondrial respiration in both 5 mo and 15 

mo guinea pigs, and in both males and females. PB125 did not significantly enhance 

coupled respiration (State 3[PGM+S]) in male and female guinea pigs (Cohen’s d=0.357, 

p=0.098) (Figure 3A), but did significantly increase electron transport system (ETS) 

capacity (ETS[CI-CIV]) (Figure 3B; Cohen’s d=0.438, p=0.037). However, PB125 did not 

influence uncoupled respiration with Complex I inhibited (ETS[CII-CIV]) (Figure 3C; 

Cohen’s d=0.175, p=0.369).

PB125 significantly improved fatty acid supported respiration at sub-saturating (1 mM 

ADP), but not at saturating (6 mM ADP) concentrations of ADP (Figures 3E & F; Cohen’s 

d=0.519, 0.402, p=0.035, p=0.077, respectively). There was no main effect of PB125 on 

RCR (Figure 3D; Cohen’s d=0.204, p=0.403), a metric of mitochondrial efficiency, or on 

ROS emission (Figures 3H & I).

PB125 has sex specific effects on mitochondrial ADP kinetics

No O2K data from the ADP titration protocol were excluded based on cytochrome C control 

factors as all values were below 0.25 (Figure 2A). We determined ADP kinetics by titrating 

progressively higher concentrations of ADP with saturating amounts of pyruvate, glutamate, 

and malate. ADP Vmax was greater in both 15 mo male and female guinea pigs compared 

to 5 mo counterparts (Figure 3J; Cohen’s d=0.445, p=0.049). In females, ADP Vmax was 

lower compared to males (Figure 3J; Cohen’s d=0.720, p=0.001). Guinea pigs that received 

treatment with PB125 had a greater Complex I supported ADP Vmax (Figure 3J; Cohen’s 

d=0.498, p=0.026). Post-hoc comparisons indicate that PB125 improved ADP Vmax in 5 

mo female guinea pigs (p=0.045).

Despite ADP Vmax being greater in 15 mo guinea pigs, there was no effect of disease/age 

on the apparent Km of ADP (Figure 3K). There were also no differences in Km between 

sexes. However, PB125 did significantly increase the apparent Km (Cohen’s d=0.669, 

p=0.007) indicating lower ADP sensitivity, as there was an increase in ADP Vmax and 

an absence of change in respiration rates in sub-saturating amounts of ADP (Figures 2D 

– J). There was a non-significant interaction between sex and PB125 treatment (p=0.092), 

indicating that the PB125-mediated increase in Km (i.e. decrease in sensitivity) may have 

occurred only in males.

Musci et al. Page 12

J Physiol. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PB125 attenuates disease/age-related declines in mitochondrial respiration

For any main effects of disease/age on mitochondrial respiration, we evaluated if 

PB125 attenuated the disease/age-related changes. That is, where we identified significant 

differences between 5 mo CON and 15 mo CON guinea pigs, but no differences between 

5 mo CON and 15 mo PB125 animals, we reported those findings as an attenuating effect 

of PB125 treatment on age-related changes in mitochondrial respiration. While there was 

a main positive effect of disease/age on ADP Vmax in the three-way ANOVA (Figure 3J), 

there was no significant difference in ADP Vmax between 5 mo and 15 mo CON guinea 

pigs in the subsequent one-way ANOVA analysis (Figure 4A; Cohen’s d=0.547, p=0.109). 

Treated 15 mo guinea pigs, however, had a significantly higher ADP Vmax compared to 

5 mo animals (Figure 4A; Cohen’s d=0.869, p=0.007). Interestingly, this effect was only 

observed in males (p=0.021) (Figure 4B). While ADP Vmax was greater in 15 mo guinea 

pigs, 15 mo guinea pigs had a significantly (Cohen’s d=0.709, p=0.024) lower maximal 

coupled respiration (State 3[CI-CIV]) compared to 5 mo counterparts (Figure 4C) though this 

effect was observed in females only (Figure 4D). PB125, however, prevented that disease/

age-related decline (Cohen’s d=0.270, 0.440, compared to 5 mo CON and 15 mo CON, 

respectively, Figure 4C). Maximal uncoupled respiration (ETS[CI-CIV]) (Figure 4E) was also 

lower in 15 mo CON compared to 5 mo CON (Cohen’s d=0.600), but PB125 prevented 

the decline (Cohen’s d=0.120, 0.480, compared to 5 mo and 15 mo CON, respectively). 

Further interrogation revealed that 15 mo females had lower ETS[CI-CIV] compared to their 

5 mo counterparts, which PB125 attenuated (Figure 4F). Interestingly, when Complex I was 

inhibited, PB125 had no effect on uncoupled respiration (ETS[CII-CIV]) and had no effect 

on the disease/age-related decline in CII-CIV capacity (Cohen’s d=0.202) in either 15 mo 

males or females (Figures 4G – H). While the RCR of 15 mo CON guinea pigs was lower 

compared to 5 mo guinea pigs, RCR was not different between 15 mo PB125 treated guinea 

pigs and 5 mo CON (Figure 4I). However, this occurred only in males where there was 

a significant difference (p=0.036) between 5 mo and 15 mo CON animals (Figure 4J) but 

no difference (p=0.151) between 15 mo males treated with PB125 compared to 5 mo CON 

(Figure 4J). There was no difference in RCR between 5 mo and 15 mo females (Figure 4J). 

PB125 had no effect on mitochondrial content as assessed by OXPHOS Western blot (data 

not shown), suggesting that the improvements in mitochondrial respiration are independent 

of mitochondrial content in skeletal muscle and may reflect improved mitochondrial quality.

Sex- and treatment- and disease/age-related effects on skeletal muscle protein synthesis

To determine whether or not PB125-mediated improvement in mitochondrial respiration was 

linked to improvements in components of proteostasis, we used 2H2O to measure cumulative 

protein synthesis rates over 30 days. There were no differences in fractional synthesis rate 

(FSR) in either the gastrocnemius or soleus between male and female guinea pigs (Figure 5). 

There was a disease/age-related decline in the rates of protein synthesis in all subfractions 

in the soleus and gastrocnemius of both male and female guinea pigs (p<0.010 for all 

subfractions) (Figure 5). PB125 did not have a main effect on FSR in any of the subfractions 

of either muscle from 5 mo or 15 mo, male or female guinea pigs (Figure 5). However, there 

was a non-significant interaction between age and treatment (p=0.086) in the myofibrillar 

subfraction of the soleus of both male and female guinea pigs, suggesting that PB125 may 

have had a positive effect on myofibrillar FSR at 15 mo (Cohen’s d=0.533, Figure 5A).
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PB125 mitigates disease/age-related declines protein synthesis

Because there was a disease/age-related decline in protein synthesis rates in all subfractions 

of both the soleus and gastrocnemius, we sought to determine if PB125 prevented any of 

those declines. PB125 attenuated the disease/age-related decline in myofibrillar FSR of the 

soleus in both males and females (Figures 6A – B). Additionally, PB125 attenuated the 

decline in mitochondrial FSR in the soleus (Figure 6C), but these significant differences 

were no longer detectable when evaluated in males and females separately (Figure 6D). In 

the soleus, PB125 also mitigated the decline in cytosolic FSR in males only (Figure 6F), but 

had no effect on the decline in collagen FSR in either sex (Figures 6G & H). In contrast, 

PB125 had no attenuating effect on the disease/age-related decline in protein synthesis in 

any subfraction of the gastrocnemius (Figures 6I – P).

The effect of PB125 on downstream Nrf2 targets

To determine how long term PB125 administration affected the Nrf2 pathway, we assessed 

protein content of Nrf2 and heme oxygenase-1 (HO-1), both of which are downstream 

targets of Nrf2 activation (Figures 7A & B). There was a disease/age-related increase in 

Nrf2 protein content (Cohen’s d=1.462, p=0.025), but no age-related difference in HO-1 

expression. PB125 had a significant effect on Nrf2 protein content (p=0.027), with there 

being a significant interaction between treatment and disease/age. 5 mo guinea pigs treated 

with PB125 had greater Nrf2 content compared to CON (Cohen’s d=0.832), whereas PB125 

treated 15 mo guinea pigs had lower Nrf2 content compared to CON (Cohen’s d=1.285). 

Another target downstream of Nrf2 activation, HO-1 demonstrated a similar disease/age and 

treatment interaction, particularly in males where 15 mo male guinea pigs had greater HO-1 

content compared to 5 mo counterparts (p=0.010). However, PB125 treated 15 mo male 

guinea pigs had significantly lower protein levels of HO-1 compared to CON counterparts. 

There was no differences in protein carbonyl content, a marker of protein damage, in the 

soleus or gastrocnemius (Figures 7C & D).

The effect of PB125 on mobility

To determine whether or not improvements in skeletal muscle mitochondrial respiration 

and proteostasis translated to improvements in, or maintenance of, mobility, we assessed 

voluntary activity in an enclosed area using overhead monitoring. We used Kaplan-Meier 

curves (Figures 7E & F) to depict the probability of sustained voluntary mobility throughout 

the 40-week study period. There was no statistically significant effect of PB125 on 

maintained mobility in either male or female guinea pigs. However, CON guinea pigs 

selected to remain stationary more rapidly than PB125 guinea pigs (Figures 7E & F; 

grouped sex hazard ratio=0.713, 95% CI=0.3501 to 1.453; median ratio=1.5, CI=0.756 to 

2.976; p=0.231). Further, PB125 males tended to have a relative maintenance of mobility 

compared to controls until about 32 weeks into the study. Interestingly, ~50% of PB125 

males were event noncompliant by 36 weeks, while ~50% of CON males maintained 

mobility the entire 40-week study duration (remaining animals were censored at this time) 

(Figure 7E). For the majority of the study, PB125 females maintained their mobility 

compared to CON females. Approximately 50% of control females loss mobility around 
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16 weeks, while PB125 treated females sustained voluntary mobility until about 28 weeks 

(Figure 7F).

Discussion

In this study, we tested the effects of a novel phytochemical Nrf2 activator, PB125, on 

two factors that drive chronic disease in humans: mitochondrial dysfunction and loss 

of proteostasis in locomotor muscle. PB125 moderately improved various aspects of 

mitochondrial respiration. We observed that PB125 ameliorated declines in skeletal muscle 

mitochondrial respiration and protein synthesis in both male and female Hartley guinea pigs, 

over an age span during which they mature, develop OA, and have increasing mobility 

impairment. The relatively moderate improvements and maintenance of mitochondrial 

respiration and proteostatic mechanisms may also be associated with prolonged maintenance 

of voluntary activity in females. Collectively, this study demonstrates the potential utility of 

targeting Nrf2 to ameliorate musculoskeletal decline.

Sex- and age/disease-related differences in mitochondrial respiration

This is the first study to measure skeletal muscle mitochondrial respiration in both male 

and female Hartley guinea pigs using high resolution respirometry. At the time of data 

collection, there was no mitochondrial respiration data in Hartley guinea pig skeletal 

muscle. To date, the Konopka group is the only other lab that has published mitochondrial 

respirometry data in male-only Hartley guinea pig soleus. Following a similar protocol, 

they found slightly higher (~10–20%) respiration and ADP Vmax values in 8 mo males 

compared to our 5 mo males (Elliehausen et al., 2021). We sought to characterize differences 

between male and female guinea pigs at 5 and 15 months of age (mo) to determine 

sex differences and changes in skeletal muscle mitochondrial respiration as these guinea 

pigs mature and develop osteoarthritis. We found a clear sex difference in coupled and 

uncoupled respiration, with females having lower rates of oxygen consumption than males, 

accompanied by decreased fatty acid supported respiration and ADP kinetics. Interestingly, 

these differences do not seem to be a consequence of mitochondrial content and may instead 

reflect intrinsic differences in mitochondrial function. One study in both young and old 

men and women determined that there was no difference in phosphocreatine recovery post-

exercise, a metric of mitochondrial capacity (Kent-Braun & Ng, 2000). However, measuring 

ATP production using bioluminescence revealed that mitochondria of men have greater 

capacity to produce ATP than that of women (Karakelides et al., 2010). Employing high 

resolution respirometry has revealed equivocal results; thus, it remains unclear whether or 

not females have greater oxidative capacity than males (Cardinale et al., 2018; Miotto et 
al., 2018). Regardless, it is essential to continue interrogating potential sex differences in 

mitochondrial function and changes that occur with the progression of osteoarthritis in both 

sexes.

Mitochondrial function declines with age and contributes to the aging process in humans 

(Short et al., 2005; Gonzalez-Freire et al., 2015; Distefano et al., 2017; Gonzalez-Freire 

et al., 2018). However, less is known about changes in mitochondrial function during 

development in either healthy or overweight adolescents, though obesity seems to lead 
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to impaired musculoskeletal function in developing adolescents (Krul et al., 2009) and 

may accelerate the aging process (Salvestrini et al., 2019). We demonstrated that both 

male and female Hartley guinea pigs experience a decline in mitochondrial respiration as 

they mature from 5 to 15 mo. Given the relatively young age of these guinea pigs (15 

months; ~10% of recorded maximal lifespan (Gorbunova et al., 2008), and ~25% of average 

companion guinea pig lifespan (Quesenberry et al., 2021)), it is difficult to ascertain if these 

changes are a consequence of age, the underlying factors that drive OA and musculoskeletal 

dysfunction, or a combination of both. Other laboratory and companion guinea pigs do 

not exhibit these musculoskeletal phenotypes as early in their lifespans (Santangelo et al., 
2011; Musci et al., 2020). Thus, it is remarkable that despite being relatively young, these 

guinea pigs demonstrate a decline in mitochondrial respiration. However, this decline could 

be influenced by a departure from a growth phase (essentially complete by approximately 9 

mo in this strain) and/or a consequence of factors that cause or stem from the progression of 

OA.

Osteoarthritis is associated with impaired mitochondrial respiration and redox regulation in 

degenerating joints (Loeser, 2010; Collins et al., 2016; Farnaghi et al., 2017; Collins et al., 
2018). Interestingly, lower mitochondrial respiration was associated with more severe OA 

in 9 mo Hartley guinea pigs (Elliehausen et al 2021, Minton et al 2021). In the current 

study, both coupled and uncoupled respiration, as well as mitochondrial efficiency, declined 

with age/disease progression in both male and female guinea pig skeletal muscle. There 

was also a decline in fatty acid supported oxidation. In contrast, ADP Vmax unexpectedly 

increased with age in both male and female guinea pigs. Given the non-uniform changes 

in mitochondrial complex protein content (data not shown), it is unlikely differences in 

mitochondrial content explain the age/disease-related declines in respiration. Moreover, we 

do not have mitochondrial respiration data in strains of guinea pigs that do not develop 

OA at these ages. However, these data, as well as other literature, support the notion 

that impaired mitochondrial respiration is a characteristic of this pre-clinical model of 

musculoskeletal decline.

PB125 treatment ameliorates disease/age-related declines in mitochondrial respiration

PB125 treated guinea pigs had augmented mitochondrial respiration in 5 mo females 

and 15 mo males as characterized by greater ADP Vmax and electron transport system 

capacity ETS[CI-CIV]. PB125 did not augment coupled respiration despite improvements in 

uncoupled respiration, which may reflect enhanced reserve capacity suited to handle greater 

electron flux. Importantly, PB125 attenuated disease/age-related dysfunction of Complex I 

and II supported coupled and uncoupled respiration and fatty acid oxidation in both sexes. 

Notably, PB125 selectively attenuated the disease/age-related decline in coupled respiration 

in males and uncoupled respiration in females. PB125 attenuated the disease/age-related 

declines in mitochondrial efficiency/coupling in males only. In humans, mitochondrial 

coupling decreases with age (Kumaran et al., 2005). Exercise-induced attenuation in loss 

of mitochondrial efficiency/coupling with age (Conley et al., 2013) has led researchers to 

speculate that improving mitochondrial efficiency may help attenuate sarcopenia (Harper 

et al., 2021). Interestingly, in the presence of rotenone, a Complex I inhibitor, there was 
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no effect of PB125, which suggests that PB125 improves mitochondrial respiration through 

improvements in Complex I function.

Though PB125 does stimulate Nrf2 activation (as measured by a promoter/reporter assay) 

in vitro (Hybertson et al., 2019), the changes we observed in Nrf2 content with PB125 

treatment were not consistent between young and older guinea pigs. Instead, PB125 had a 

significant interaction with age, increasing Nrf2 content in 5 mo guinea pigs, and decreasing 

Nrf2 protein expression in 15 mo guinea pigs. HO-1 content showed a similar pattern. 

Though we have no acute in vivo data to support this, we hypothesize that PB125 activated 

Nrf2, as demonstrated by greater Nrf2 content in 5 mo guinea pigs. 10 months of treatment 

with PB125 led to consistent Nrf2 activation, leading to greater downstream antioxidant 

enzymes. With age, we hypothesize that greater basal levels of ROS led to a greater Nrf2 

content in 15 mo CON guinea pig. We further posit that PB125 ameliorated the increase in 

age-related ROS, which led to significantly lower levels of Nrf2 and HO-1. This pattern is 

similar to aerobic exercise, which upregulates antioxidative capacity and protects from age-

related increases in oxidative stress (Muthusamy et al., 2012). In humans, Nrf2 expression 

increases with age; however, aerobic exercise training reduces levels of Nrf2 (Ostrom & 

Traustadottir, 2020). We speculate a similar pattern occurred with PB125 treatment, though 

further work is required to understand how PB125 affects Nrf2 activation in vivo in both 

young and old organisms. Similar to many drugs and supplements, it is quite possible that 

PB125 has widespread effects that are not mediated through a singular pathway.

A different Nrf2 activator, sulforaphane, similarly improved Complex I function (Bose et 
al., 2020) as PB125 had in the present study. The pathways underlying the effect of Nrf2 

activation on mitochondrial respiration are not entirely understood. Several studies have 

demonstrated that Nrf2 is a central mediator for exercise-induced mitochondrial biogenesis 

and improvements in mitochondrial function (Merry & Ristow, 2016; D’Souza et al., 2020; 

Islam et al., 2020). Interestingly, both Nrf2-related redox signaling (Safdar et al., 2010) and 

Complex I function decrease with age in skeletal muscle (Kruse et al., 2016). Thus, PB125 

may target a critical mechanism that contributes to mitochondrial dysfunction, though the 

specific mechanisms by which Nrf2 activation might contribute to Complex I function 

remain to be elucidated.

As a master regulator of cytoprotective gene transcription, Nrf2 is a critical component 

of redox homeostasis. Skeletal muscle mitochondria of aged Nrf2 knock-out mice emit 

significantly more ROS than aged wildtype counterparts reflecting the role of Nrf2 in 

regulating redox balance (Kitaoka et al., 2019). In vitro, Nrf2 knock out models have 

compromised Complex I activity due to impairments in NADH availability (Kovac et al., 
2015). Importantly, pyruvate dehydrogenase is a redox sensitive enzyme responsible for 

supplying NADH to Complex I (Fisher-Wellman et al., 2015). Thus, age-related increases 

in oxidative stress may constrain the supply of NADH to Complex I, which would explain 

age-associated decline in Complex I capacity and how NAD+ supplementation restores 

mitochondrial respiratory capacity (Kruse et al., 2016; McElroy et al., 2020). In our study, 

PB125 increased mitochondrial respiration, particularly in Complex I, which may have been 

mediated by improved cellular redox regulation. However, future studies will need to more 

rigorously investigate the effect of PB125 on redox homeostasis.
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Another potential mechanism by which PB125 enhanced mitochondrial respiration in this 

study is through greater mitochondrial protein turnover. However, there was a decline 

in mitochondrial biogenesis as these guinea pigs matured and OA developed, suggesting 

that, in order to maintain mitochondrial density, degradation of mitochondrial proteins (i.e. 

mitophagy or ubiquitin dependent degradation of mitochondrial proteins) also declined. 

Impaired mitophagy contributes to mitochondrial dysfunction and disease in humans (Ryu et 
al., 2016; Gouspillou et al., 2018; Newman & Shadel, 2018). Importantly, PB125 attenuated 

the age/disease-related decline in mitochondrial protein synthesis, suggesting that declines 

in degradation/mitophagy may have also been attenuated, though we did not directly 

measure this. As such, we posit that mitochondrial protein turnover, which is essential for 

maintenance of overall mitochondrial function (Szczepanowska & Trifunovic, 2021), was 

maintained in 15 mo PB125 guinea pigs compared to 15 mo CON guinea pigs in this study. 

Others have also demonstrated that Nrf2 activators play a role in modulating mitochondrial 

protein turnover. In C. elegans the Nrf2 homolog mediated Tomatidine-induced (a Nrf2 

activator) mitophagy (Fang et al., 2017). Our group has demonstrated that Protandim, also 

a phytochemical Nrf2 activator, enhanced mitochondrial protein turnover in wheel running 

rats (Bruns et al., 2018). Thus, Nrf2 activation seems to preserve mitochondrial protein 

turnover in 15 mo guinea pigs while turnover may have declined in 15 mo CON guinea pigs. 

Interestingly, the Konopka group published mitochondrial respiration data in Hartley guinea 

pigs treated with either rapamycin or rapamycin combined with metformin, interventions 

reported to have anti-aging effects, following similar mitochondrial respiration protocols as 

the present study. Surprisingly, they reported that both rapamycin and rapamycin combined 

with metformin had deleterious effects on mitochondrial respiration (Elliehausen et al., 
2021) and worsened OA severity (Minton et al., 2021). In contrast, the PB125-induced 

improvements in the present study also led to ameliorating OA severity in the same 

guinea pigs (In preparation). Altogether, these data support that PB125 can attenuate age 

related declines in mitochondrial respiration, which may in turn lead to the maintenance of 

musculoskeletal health.

PB125 attenuates declines in components of protein homeostasis

Decline in mechanisms to maintain proteostasis (which include not only protein synthesis 

and degradation, but also chaperone-mediated folding and protein trafficking (Noack et al., 
2014)) contributes to musculoskeletal dysfunction (Kaushik & Cuervo, 2015; Santra et al., 
2019). There is limited insight on the effect of either age or OA progression on protein 

homeostasis in humans, though basal protein synthesis appears to be unchanged with age in 

humans (Volpi et al., 2001; Brook et al., 2016). Moreover, it is unclear whether or not both 

men and women experience a decline in proteostasis with age. While men generally have 

greater muscle mass than women, men also lose muscle mass faster and muscle strength 

to a greater degree; however, women are less fatigue resistant (thoroughly reviewed in 

(Gheller et al., 2016). In the present study, we documented declines in protein synthesis in 

all subfractions of the soleus and gastrocnemius muscles of both male and female Hartley 

guinea pigs. There were no sex differences in fractional synthesis rates in either muscle. 

This is the first study to characterize declines in protein synthesis in female Hartley guinea 

pigs. However, these declines could be attributed to the fact that we compared skeletal 

muscle protein synthesis rates of 5 mo guinea pigs, while they are still growing, to 15 mo 
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guinea pigs, which have plateaued in body weight (Figures 2A & 2B). We have previously 

documented that rates of skeletal muscle protein synthesis in 15 mo male Hartley guinea 

pigs are slower than 9 mo Hartley guinea pigs, which is the age at which growth plateaus 

(Figures 1F & G) (Musci et al., 2020). Thus, the decline in protein synthesis observed in the 

present study may be a consequence of both reaching maturity as well as musculoskeletal 

decline consistent with either musculoskeletal disease progression or advancing age.

We documented differences in long-term protein synthesis rates to minimize the bias of 

faster turning over proteins (Miller et al., 2015); however, it is possible that our approach 

may still not identify differences in fractional synthesis rates between ages if the protein 

pools subject to turnover (i.e. the dynamic protein pools) are not the same between the 

5 mo and 15 mo guinea pigs. As recently demonstrated by Abbott and colleagues, the 

dynamic protein pool declines with age and, thus, can obscure the fractional synthesis rates 

and biases towards aged animals having lower synthesis rates (Abbott et al., 2021). The 

approach the authors utilized raises important considerations for evaluating the effect of age 

or interventions on protein turnover in future studies. Employing such an approach may also 

help reconcile differences in observations on the effect of age on protein turnover between 

species (Volpi et al., 2001; Miller et al., 2019; Musci et al., 2020) and more accurately 

describe the age-related effects on protein kinetics.

The mechanisms by which PB125 attenuated the decline in protein synthesis are not 

entirely clear. It is worth noting that the attenuation in protein synthesis occurred only 

in the soleus. It is unclear why there is a muscle-specific effect. However, the soleus 

muscle is primarily comprised of type I myofibers and gastrocnemius is much more mixed 

(Musci et al., 2020). PB125-mediated improvements in mitochondrial respiration likely 

alleviated energetic constraints. Protein turnover is energetically demanding, accounting 

for nearly 35% of basal metabolism (Waterlow, 1984; Rolfe & Brown, 1997; Bier, 1999). 

Impairments in mitochondrial function consequentially constrain the amount of energy 

dedicated to proteostasis. Mitochondrial dysfunction precedes the loss of proteostasis in 

skeletal muscle, which leads to declines in function (Ben-Zvi et al., 2009; Gaffney et al., 
2018). Moreover, other interventions that attenuate the decline in or improve mitochondrial 

function, also improve proteostatic mechanisms and preserve overall muscle function. For 

example, maintaining physical activity and caloric restriction in rodents delays declines 

in mitochondrial respiration as well as skeletal muscle function (Zangarelli et al., 2006; 

Stolle et al., 2018), a similar observation made in masters athletes (Zampieri et al., 2015). 

While both exercise and caloric restriction have broad effects, more targeted interventions 

focused on improving mitochondrial function also report a similar phenomenon: enhancing 

mitochondrial function delays skeletal muscle dysfunction (Gaffney et al., 2018; Campbell 

et al., 2019). This observation occurs in other tissues as well. Increasing mitochondrial 

proteostasis decreases proteotoxic amyloid aggregation in cells, increasing fitness and 

lifespan in C. elegans (Sorrentino et al., 2017). These studies emphasize the importance of 

mitochondrial respiration and the production of ATP to facilitate proteostatic mechanisms. 

In humans, aerobic exercise improves mitochondrial function through mitochondrial 

remodeling and improves skeletal muscle function (Greggio et al., 2017). Altogether, our 

data support the posit that PB125-mediated improvements in mitochondrial respiration 
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alleviated constraints in energy which led to greater amount of ATP available to support 

proteostasis.

Another mechanism by which PB125 may have attenuated declines in skeletal muscle 

proteostasis is through the mitigation of inflammation and oxidative stress, which can have 

deleterious effects on protein turnover, particularly protein synthesis. Protein synthesis, at 

rest, appears to be no different between young and old individuals (Volpi et al., 2001; 

Brook et al., 2016). However, age-related inflammation and oxidative stress can blunt the 

anabolic response to stimuli such as exercise or feeding. This concept, termed anabolic 

resistance, is a contributor to age-related musculoskeletal dysfunction and appears to blunt 

the anabolic response to resistance exercise training (Cuthbertson et al., 2005; Wilkes et 
al., 2009; Brook et al., 2016). Interventions designed to mitigate age-related increases in 

oxidative stress or inflammation seem to improve skeletal muscle anabolic responses to 

exercise (Trappe et al., 2002), feeding (Rieu et al., 2009; Smiles et al., 2019), and insulin 

(Rivas et al., 2016). There is an increase in some systemic inflammatory mediators in these 

Hartley guinea pigs, which may be associated with OA (Huebner et al., 2007; Santangelo 

et al., 2011). Importantly, PB125 stimulates transcription of endogenous antioxidant and 

anti-inflammatory genes (Hybertson et al., 2011; Hybertson et al., 2019). Thus, it is possible 

that PB125 treatment ameliorated oxidative stress and inflammation and improved the 

anabolic response to feeding. However, because we measured cumulative protein synthesis 

over 30 days, rather than acutely in response to an anabolic stimulus such as feeding, we 

cannot determine if there were any changes specifically in the anabolic response to feeding. 

Future studies should investigate the efficacy of PB125 on abrogating inflammation and 

oxidative stress and, in acute settings, determine whether targeting Nrf2 could enhance 

the anabolic response to feeding or activity. In the present study, there was no observed 

effect of treatment on ROS emission or protein oxidation. However, our lab has previously 

demonstrated that another Nrf2 activator increases antioxidant protein expression (Reuland 

et al., 2013) and augmented protein synthesis related to proteostasis in skeletal muscle of 

rats in response to wheel running exercise (Bruns et al., 2018). Thus, treatment with Nrf2 

activators may represent a class of interventions that augment adaptation to acute stressors 

(Musci et al., 2019).

Future Directions

The improvements in mitochondrial respiration and proteostasis did not translate to 

statistically significant improvements in sustained mobility. However, it is important to note 

that our measure of mobility is only one metric of musculoskeletal function. Additionally, 

musculoskeletal function is not the only factor that dictates mobility. For example, we 

recently demonstrated that these guinea pigs exhibit hallmarks of human Alzheimer’s 

disease that could explain impairments in integrative functional outcomes such as gait (Wahl 

et al., 2022). Thus, it is still important to assess additional and more specific components 

of musculoskeletal function, as mitochondrial function is a strong determinant in physical 

function such as gait speed and grip strength in humans (Gonzalez-Freire et al., 2018).

Another observation that warrants further investigation are the sex-specific effects of PB125. 

Other interventions involving Nrf2 activators have also demonstrated sex-specific effects. 
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The Interventions Testing Program reported that treatment with the Nrf2 activator Protandim 

extended median lifespan in heterogenous male mice, but not females (Strong et al., 
2016). Our lab has also previously demonstrated that Protandim only improved myofibrillar 

proteostasis in men (Konopka et al., 2017). Other healthspan promoting interventions, such 

as a metformin and rapamycin, also have sex specific effects (Strong et al., 2016). We have 

begun interrogating these sex specific effects through the use of kinetic proteomics (Wolff 

et al., 2019; Wolff et al., 2021). Moving forward, it will be necessary to interrogate the sex 

differences in the present study and the implications they have on the efficacy of PB125 to 

attenuate musculoskeletal decline in men and women, as they experience similar prevalence 

worldwide (Shafiee et al., 2017).

A limitation of the study was comparing guinea pigs still in the growth/maturation process 

to those that have finished growing. While Hartley guinea pigs reach sexual maturity by 

4 mo, our data demonstrate they do not cease growing until 9 mo. Nonetheless, even at a 

relatively young age, these Hartley guinea pigs are an established model of age-related knee 

osteoarthritis (Jimenez et al., 1997; Santangelo et al., 2014). Thus, some of the comparisons 

made could be a consequence of comparing guinea pigs that are growing to those that are 

not. Regardless, the phenotype exhibited by these guinea pigs still reflects age-related OA 

and musculoskeletal decline in humans. The aim of our study was to determine whether 

long term supplementation of a phytochemical compound could ameliorate the progression 

of age-related OA- and musculoskeletal decline documented in this model (Musci et al., 
2020; Elliehausen et al., 2021; Minton et al., 2021). Further, our group has also documented 

that brains of these guinea pigs exhibit hallmarks of human brain aging (Wahl et al., 
2022). Future studies should focus on comparisons in these guinea pigs after the growth 

phase. Such studies would reveal how the musculoskeletal system changes after maturation 

and while OA continues to progress, as well as provide opportunities to test potential 

interventions that target both aging and musculoskeletal dysfunction. However, a significant 

barrier to asking such questions is that OA is often so severe in Hartley guinea pigs at 18 

mo, that veterinarians often recommend euthanasia. However, future studies could study 

interventions between from 10 mo to 18 mo, after the growth phase has completed.

The decline in mitochondrial respiration while these guinea pigs were still maturing also 

raises interesting future directions, particularly in trying to determine how mitochondrial 

function may play a role in adequate organismal development. Another direction is to further 

interrogate the decline in mitochondrial function and protein synthesis during active growth. 

Of note, Hartley guinea pigs experience an increase in systemic inflammation during 

development and OA progression (Santangelo et al., 2011) and experience an increase in 

adiposity (Radakovich et al., 2019; Musci et al., 2020). Accordingly, it is tempting to 

suggest these Hartley guinea pigs may represent a model for adolescent obesity. However, 

additional studies are necessary comparing the development of Hartley guinea pigs to a 

strain of guinea pigs not as susceptible to inflammation and OA during development (i.e. up 

to 12 mo).
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Conclusions

Musculoskeletal dysfunction is a primary contributor to disability and loss of 

independence in humans. There are few existing interventions that effectively mitigate 

the decline in skeletal muscle function, particularly in aging individuals and/or 

adolescents and younger adults with OA. In this study, we further characterized a 

model of musculoskeletal dysfunction measuring mitochondrial respiration and protein 

synthesis in both male and female Hartley guinea pigs. Moreover, we tested a 

potential healthspan-extending phytochemical compound PB125, which is currently 

in the NIA-ITP (https://www.nia.nih.gov/research/dab/interventions-testing-program-itp/

compounds-testing), on mitochondrial respiration and proteostasis in this pre-clinical guinea 

pig model of musculoskeletal decline. We found that PB125 improved mitochondrial 

respiration and attenuated declines in protein synthesis, mechanisms that could contribute 

to improvements in function and longevity. This project adds to the growing literature 

that supports the use of Nrf2 activators to improve organismal health. The data from this 

study provide mechanistic insight by which a readily translatable intervention could mitigate 

musculoskeletal decline in humans.
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Key Points Summary

• Aside from exercise, there are no effective interventions for musculoskeletal 

decline, which begins in the fifth decade of life and contributes to disability 

and cardiometabolic diseases.

• Targeting both mitochondrial dysfunction and impaired protein homeostasis 

(proteostasis), which contribute to the age and disease process, may mitigate 

the progressive decline in overall musculoskeletal function (e.g. gait, 

strength).

• A potential intervention to target disease drivers is to stimulate Nrf2 

activation, which leads to the transcription of genes responsible for redox 

homeostasis, proteome maintenance, and mitochondrial energetics.

• Here, we tested a purported phytochemical Nrf2 activator, PB125, to improve 

mitochondrial function and proteostasis in male and female Hartley guinea 

pigs, which are a model for musculoskeletal aging.

• PB125 improved mitochondrial respiration and attenuated disease- and 

age-related declines in skeletal muscle protein synthesis, a component of 

proteostasis, in both male and female Hartley guinea pigs.
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Figure 1. 
Study Design, PB125 plasma concentration, and anthropometric data. There were two 

cohorts of guinea pigs in this study (A). The first cohort was treated with PB125 or vehicle 

control from 2 mo to 5 mo, an age range during which knee OA begins developing. The 

second cohort was treated from 5 mo to 15 mo of age, an age range after the onset of knee 

OA and during which detectable declines in musculoskeletal quality arise. In the final 30 

days of each study, a bolus I.P. injection of 2H2O was administered and 2H2O was mixed 

in drinking for measurement of protein synthesis. A portion of the soleus was harvested for 

mitochondrial respirometry assessments. Another portion of the soleus as well as a portion 

of the gastrocnemius was harvested for isotopic measurements. Comparisons between 5 mo 

and 15 mo guinea pigs were made between the cohorts at the day of harvest. Longitudinal 

weight and mobility data were acquired from the second cohort. The plasma concentrations 

of luteolin, carnosol, and withaferin A after dosing guinea pigs with 8 (B), 24 (C), or 40 (D) 
mg/kg of PB125 from 0 to 120 min. The plasma concentrations of luteolin and withaferin 

A are on the primary Y-axis and carnosol is on the secondary Y-axis. The stability of the 

phytochemical components suspended in OraSweet vehicle at room temperature and in 4°C 

(E). Growth charts for male (F) and female (G) guinea pigs (n=28 for each sex). There was 

a significant effect of Disease/Age (p<0.0001) and Sex (p<0.0001) on guinea pig body mass 

(n=88) (H). There was no effect of Disease/Age in relative soleus mass (mg of muscle/g 
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of body mass) (n=86) (I); however, there was a significant (p=0.005) negative effect of 

Disease/Age on the gastrocnemius (n=86) (J)
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Figure 2. 
Cytochrome C Control Factor Scatterplots and SUIT Protocol overviews. Scatterplots and 

regression line relating Cytochrome C Control Factor to coupled respiration in Suit 1 

(n=107) (A) and Suit 2 before (n=107) (B) and after (n=94) (C) a limit of 0.25 (dotted 

line drawn on B) was implemented to establish O2K trials to exclude due to over 

permeabilization. Graphs summarizing the age/sex/treatment groups of the SUIT 1 protocol 

(D – G) and SUIT 2 protocol (H – K). Statistics were not conducted on the data grouped in 

this manner.
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Figure 3. 
Disease/Age-, Sex-, and Treatment-related differences in mitochondrial respiration from 

SUIT 1 & 2 protocols. There was a significant negative effect of Disease/Age on 

State 3[CI-CIV] respiration (Cohen’s d=0.731, p=0.001). Female guinea pigs had lower 

levels of respiration compared to males (Cohen’s d=0.653, p=0.006). Treatment did 

not significantly increase respiration (Cohen’s d=0.357, p=0.098) (n=105) (A). Electron 

transport system capacity (ETS[CI-CIV]) significantly decreased with Disease/Age (Cohen’s 

d=0.680, p=0.004) and was lower in females (Cohen’s d=0.735, p=0.002). PB125 treatment 

increased respiration (Cohen’s d=0.438, p=0.037). The interaction effect between Sex and 

Disease/Age was not significant (p=0.058) (n=107) (B). There was a significant decrease 

in Complex II – IV uncoupled respiration with age (Cohen’s d=1.388, p<0.0001), but there 

was no effect of Treatment (Cohen’s d=0.175, p=0.369). Female guinea pigs had lower 

respiration compared to male guinea pigs (Cohen’s d=0.668, p=0.002 effect of Sex) (n=107) 

(C). Mitochondrial efficiency (RCR) decreased with Disease/Age (p=0.012) and there was 

no significant interaction (p=0.106) between Sex and Treatment (n=101) (D). There was no 

difference in fatty acid supported respiration with 0.5 mM ADP between Sex, Disease/Age, 

or Treatment groups (n=69) (E). Fatty acid supported respiration with 1.0 mM ADP was 

higher in PB125 treated guinea pigs (Cohen’s d=0.519, p=0.035 effect of Treatment), but the 

effect of Sex or Disease/Age was not significant (p=0.121, 0.880 respectively) (n=90) (F). 
At saturating amounts of ADP (6.0 mM), there was no significant effect of Sex on fatty acid 

supported respiration (Cohen’s d=0.413, p=0.070) or PB125 treatment (Cohen’s d=0.402, 
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p=0.077) (n=90) (G). PB125 treatment had no effect on ROS emission during LEAK (i.e. 

State 2 respiration) (n=86) (H) or State 3 respiration in the presence of sub-saturating 

amounts (0.5 mM) of ADP (n=66) (I). There was a Disease/Age-related increase in ADP 

Vmax (Cohen’s d=0.445, p=0.049), though female guinea pigs had a lower Vmax compared 

males (Cohen’s d=0.720, p=0.001). PB125 significantly increased ADP Vmax (Cohen’s 

d=0.498, p=0.026). Post-hoc analysis revealed PB125 5 mo female had greater ADP Vmax 

compared to CON 5 mo female guinea pigs (p=0.045) (n=101) (J). There was a significant 

increase in ADP Km from PB125 treatment (Cohen’s d=0.669, p=0.007). There was no 

significant interaction between Sex and Treatment (p=0.092) (n=96) (K).
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Figure 4. 
PB125 attenuates Disease/Age-related declines in mitochondrial respiration. There was no 

difference in ADP Vmax between 5 mo and 15 mo CON guinea pigs (p=0.109), whereas 

15 mo PB125 treated guinea pigs had a higher ADP Vmax than 5 mo CON guinea pigs 

(Figure 6A; Cohen’s d=0.869, p=0.007) (n=75) (A). Comparing sex-specific effects, PB125 

only had a positive effect in male guinea pigs (p=0.021) (n=75) (B). There was a Disease/

Age-related decrease (Cohen’s d=0.709, p=0.024) in State 3[PGM + S] between CON guinea 

pigs, though this difference was attenuated in 15 mo PB125 treated guinea pigs (Cohen’s 
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d=0.270, 0.440, compared to 5 mo CON and 15 mo CON) (n=78) (C). The Disease/Age-

related decline was only observed in female guinea pigs (p=0.046), and was attenuated by 

PB125 (p=0.290) (n=78) (D). Uncoupled respiration ETS[CI – CIV] nonsignificantly (Cohen’s 

d=0.600, p=0.061) decreased with Disease/Age, though PB125 attenuated this difference 

(p=0.875, Cohen’s d=0.120, 0.480, compared to 5 mo and 15 mo CON, respectively) (n=79) 

(E). However, there were no significant differences when sex was considered (n=79) (F). 
There was a significant decrease (p<0.0001) in ETS[CII – CIV] between 5 mo and 15 mo 

CON guinea pigs that PB125 did not attenuate (p<0.001) (n=79) (G) in either sex (n=79) 

(H).

Musci et al. Page 38

J Physiol. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Fractional synthesis rates (FSR) of both the soleus and gastrocnemius subfractions decreases 

with Disease/Age. FSR significantly decreased with Disease/Age in all subfractions of the 

soleus (p=0.002, p=0.003, p<0.0001, p<0.0001 for myofibrillar (n=103) (A), mitochondrial 

(n=104) (B), cytosolic (n=102) (C), and collagen (n=103) (D) subfractions, respectively). 15 

mo guinea pigs also had a significant decrease in FSR in every subfraction of gastrocnemius 

(p<0.0001 for all subfractions) (n=103 for each subfraction except mitochondrial where 

n=102) (E – H).
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Figure 6. 
PB125 treatment attenuates Disease/Age-related declines in FSR in soleus, but not 

gastrocnemius, subfractions. 15 mo CON guinea pigs had lower FSR in each subfraction 

of the soleus (p=0.002, p=0.030, p<0.0001, p<0.0001 for the myofibrillar (n=76) (A), 
mitochondrial (n=76) (C), cytosolic (n=74) (E), and collagen (n=76) (G) subfractions, 

respectively). PB125 attenuated the decline in the myofibrillar (A) and mitochondrial (C) 
subfractions, but not in the cytosolic (E) or collagen subfractions (G). PB125 attenuated 

(Cohen’s d=0.533) the decline in myofibrillar FSR in both males (p=0.920) and females 

(p=0.166) (n=76) (B) and attenuated the decline in cytosolic FSR in males only (p=0.207) 

(n=74) (F). In the gastrocnemius, 15 mo CON guinea pigs had significantly lower FSR 

compared to 5 mo CON guinea pigs in each subfraction (p<0.0001 for all subfractions) 

(n=76, in each subfraction) (I, K, M, O). The FSR of all subfractions of the gastrocnemius 

in 15 mo PB125 guinea pigs was also significantly lower compared to 5 mo CON guinea 
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pigs (p<0.0001 for all subfractions) (I, K, M, O). This pattern was observed in both male 

and female guinea pigs (n=76, in each subfraction) (J, L, N, P).
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Figure 7. 
PB125 influences Nrf2 content but does not significantly change protein carbonylation or 

mobility. There was no effect of Sex on Nrf2 (n=96) (A) or HO-1 (n=72) (B) protein 

content in the gastrocnemius. There was significant effect of Disease/Age and Treatment 

on Nrf2 protein content Cohen’s d=1.462, p=0.025). There was a significant (p<0.0001) 

interaction between Disease/Age and Treatment on both Nrf2 and HO-1 protein content. 

There was no effect of Disease/Age, Sex, or Treatment on protein carbonyl concentration 

in the soleus (n=46) (C). There was no (n=46) significant increase (p=0.0814) in protein 

carbonyl concentration in the gastrocnemius (D). There was a greater proportion of PB125 

treated male (n=26) (E) and female (n=24) (F) guinea pigs that maintained mobility over the 

course of the study period. However, there was no statistically significant effect of PB125 

on the probability of maintaining mobility throughout the course of the study. * denotes 

significant difference between 5 mo CON; # denotes significant difference between 15 mo 

CON.
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