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Atlas of plasma NMR biomarkers for health
and disease in 118,461 individuals from the
UK Biobank

Heli Julkunen 1 , Anna Cichońska1, Mika Tiainen1, Harri Koskela1,
Kristian Nybo1, Valtteri Mäkelä1, Jussi Nokso-Koivisto1, Kati Kristiansson 2,
Markus Perola2, Veikko Salomaa 2, Pekka Jousilahti 2, Annamari Lundqvist2,
Antti J. Kangas1, Pasi Soininen1, Jeffrey C. Barrett1 & Peter Würtz1

Blood lipids and metabolites are markers of current health and future disease
risk. Here, we describe plasma nuclear magnetic resonance (NMR) biomarker
data for 118,461 participants in the UK Biobank. The biomarkers cover 249
measures of lipoprotein lipids, fatty acids, and small molecules such as amino
acids, ketones, and glycolysis metabolites. We provide an atlas of associations
of these biomarkers to prevalence, incidence, and mortality of over 700
common diseases (nightingalehealth.com/atlas). The results reveal a plethora
of biomarker associations, including susceptibility to infectious diseases and
risk of various cancers, joint disorders, andmental health outcomes, indicating
that abundant circulating lipids and metabolites are risk markers beyond
cardiometabolic diseases. Clustering analyses indicate similar biomarker
association patterns across different disease types, suggesting latent systemic
connectivity in the susceptibility to a diverse set of diseases. This work high-
lights the value of NMR basedmetabolic biomarker profiling in large biobanks
for public health research and translation.

UK Biobank is a prospective study of ~500,000 individuals who have
volunteered to have their health information shared with scientists
across the globe to advancepublic health research. This open resource
is unique in its size and availability of extensive phenotypic and
genomic data1–3. A selection of 30 routine blood biomarkers has pre-
viously been measured in the full cohort4,5, but there is a unique
opportunity to evaluate the public health relevance of a wider range of
biomarkers and accelerating translation, as exemplified by genome-
wide genotyping for population-based risk identification6.

Here, we describe detailed metabolic biomarkers quantified by
nuclear magnetic resonance (NMR) spectroscopy of 118,461 baseline
plasma samples, generated by Nightingale Health Plc (Fig. 1a). The
sample size is more than ten-fold larger than many of the largest
metabolic profiling studies conducted to date7,8. The NMR biomarker
panel comprises 249 measures of lipids and metabolites (Fig. 1b).

These data are now available to approved researchers through the UK
Biobank Showcase for all aspects of public health research. Many
studies are already using these biomarker data, spanning applications
related to, for instance, risk prediction, causal analyses, genetic dis-
covery and drug target validation9–18.

In this study, we present a comprehensive atlas of biomarker-
disease associations (available at nightingalehealth.com/atlas), sys-
tematically examined across the 249metabolic measures in relation to
presence, future onset and mortality of over 700 disease outcomes
(Fig. 1c). We illustrate the use of the atlas for biomarker discovery and
identification of connections between overall biomarker signatures for
various diseases. We replicate the findings in over 30,000 individuals
from five prospective cohorts in the Finnish Institute for Health and
Welfare (THL) Biobank profiled using the same NMR platform. Our
biomarker-disease atlas may serve as a starting point to move from
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biomarker discovery to more detailed analyses in biological and clin-
ical context.

Results
Plasma biomarker profiling by NMR
We measured lipid and metabolite biomarkers from 118,461 baseline
plasma samples using the Nightingale Health NMR platform
(Fig. 1a)7,9,19. Table 1 shows the characteristics of the participants with
NMR biomarker data currently available in the UK Biobank. The EDTA

plasma samples were picked randomly and are therefore representa-
tive of the 502,543 participants in the full cohort. Samples were gen-
erally drawnnon-fasting,with an average of 4 hours since the lastmeal.
The data release also contains biomarker measurements of ~4000
repeat visit samples collected on average four years after the baseline,
with ~1500 participants having biomarker data from both baseline and
the repeat-visit survey.

The Nightingale Health NMR biomarker platform quantifies 249
metabolic measures from each sample in a single experimental assay,

Fig. 1 | Nuclear magnetic resonance (NMR) biomarker data in the UK Biobank
and atlas of disease associations. a Process of the Nightingale Health-UK Biobank
Initiative: 1) EDTA plasma samples from the baseline survey were prepared on 96-
well plates and shipped to Nightingale Health laboratories in Finland, 2) Buffer was
added and samples transferred to NMR tubes, 3) Samples weremeasured using six
500MHz proton NMR spectrometers, 4) Automated spectral processing software
was used to quantify 249 biomarkermeasures from each sample, 5) Quality control
metrics based on blind duplicates and internal control samples were used to track

consistency metrics throughout the project, 6) Biomarker data were cleaned,
provided to UK Biobank and released to the research community. b Overview of
biomarker types included in the Nightingale Health NMR biomarker panel.
c Schematic illustration of the atlas of biomarker-disease associations published
along with this study. The webtool allows to display the associations of all bio-
markers versus prevalence, incidence and mortality of each disease endpoint, as
well as show each biomarker versus all disease endpoints.
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comprising 168 measures in absolute levels and 81 ratio measures
(Fig. 1b). The biomarkers include measures already routinely used in
clinical practice, such as cholesterol, as well as many emerging bio-
markers increasingly measured in cohorts, such omega-3 and other
fatty acids7,20. The panel of biomarkers is based on feasibility for
accurate quantification in a high-throughput manner, and therefore
mostly reflects molecules with high circulating concentration. Most of
the biomarkers relate to lipoprotein metabolism, with the lipid con-
centrations and composition measured in 14 lipoprotein subclasses in
terms of triglycerides, phospholipids, total cholesterol, cholesterol
esters, and free cholesterol, and total lipid concentration within each
subclass. The panel additionally includes the absolute concentration
and relative balance of the most abundant plasma fatty acids, such as
saturated fatty acids, and small molecules, like amino acids, and
ketone bodies. Apolipoproteins B and A1, and two inflammatory pro-
tein measures, albumin and glycoprotein acetyls, are also measured,
owing to their high abundance in plasma.

Details of the NMR biomarker measurements of the UK Biobank
samples are described in ‘Methods’. Key steps of the measurement
process are illustrated in Supplementary Fig. 1 and an overview of all
measured biomarkers is provided in Supplementary Fig. 2. The quality
control protocol is described in Supplementary Methods and Sup-
plementary Fig. 3. Coefficients of variation of the biomarkers are
shown is Supplementary Fig. 4 and technical as well as biological
variability illustrated in Supplementary Fig. 5. Comparisons of theNMR
biomarker measurements to routine clinical chemistry is illustrated in
Supplementary Fig. 6 and to othermulti-biomarker assaysmeasured in
smaller cohorts in Supplementary Figs. 7 and 8.

Atlas of biomarker–disease associations
The extensive electronic health records in the UK Biobank and the
unprecedented sample size make it possible to study biomarker
associations across the full spectrum of common diseases. We sys-
tematically computed the associations of the 249 NMR biomarkers
with over 700 disease endpoints. Incident and mortality endpoints
were defined by 3-character ICD-10 codes from nationwide hospital
episode statistics and death records for diseaseswith at least 50 events
occurring during 10 years after blood sampling. Prevalent endpoints
were defined for diseases with over 50 events in the hospital records
during ~25 years before the blood sampling. Details of the data pre-
processing and statistical modelling are described in Methods. We
collated the results in form of an online atlas of biomarker-disease
associations available at nightingalehealth.com/atlas (Fig. 1c). The
webtool can display interactive forestplots for all biomarkers with
prevalence, incidence, and mortality of each disease endpoint, as well
as disease-wide association plots for each of the 249 biomarkers.

We observed a total of 33,764 individual biomarker associations
to incident disease endpoints at p < 5e-5 (Methods). Similarly, for 648

prevalent disease endpoints and 77 causes of death, 26,035 and
3,055 significant associations were identified, respectively. These bio-
marker associations were not concentrated in cardiometabolic dis-
eases but spread across nearly all ICD-10 chapters. Examples include
infectious diseases of both systemic and local character, certain can-
cers as well as mental and neurological disorders and musculoskeletal
diseases. The magnitudes of biomarker associations for these diverse
types of diseases were often similar to those of cardiovascular dis-
eases. In the subsequent analyses in this paper, we focus on analyses of
the future onset of diseases from ICD-10 chapters A-N and the 37
biomarkers from the Nightingale Health NMR platform certified for
diagnostic use.

Biomarkers across the spectrum of diseases
Examining the NMR biomarkers across the spectrum of common dis-
eases canprovide insights intodisease pathophysiology and specificity
of the biomarkers. Fig. 2a illustrates the span of diseases in different
ICD-10 chapters associated with the 37 clinically certified biomarkers.
Many of the biomarkers exhibited associations across all types of
diseases, with the exception of diseases of the eyes and the ears. For
example, monounsaturated fatty acids relative to total fatty acids
(MUFA%)were associated with almost 200 different disease endpoints
spanning all ICD-10 chapters A-N. Also, more established biomarkers
such as omega-3% (i.e. concentration relative to total fatty acids) and
routine cholesterol measures were associated with a wide spectrum of
diseases. Glycolysis-related metabolites and amino acids displayed
fewer associations, but still spanned more than endocrine and circu-
latory diseases.

Figure 2b–e shows the strongest incident disease associations in
detail for four exemplar biomarkers; further examples are shown in
Supplementary Fig. 9. The inflammatory biomarker glycoprotein
acetyls, also known as GlycA, was associated with the risk of 32% of the
incident disease endpoints examined (p < 5e-5), with a median hazard
ratio of 1.26 per 1-SD increment in the biomarker concentration. The
most significant associations were observed for gout, type 2 diabetes,
smoking dependence, kidney diseases, chronic obstructive pulmonary
disorder, myocardial infarction, pneumonia and anemias. Figure 2c
highlights the strongest disease associations for the ratio of poly-
unsaturated fatty acids tomonounsaturated fatty acids (PUFA/MUFA),
showing as widespread disease associations as for GlycA. Similar
results were observed also for other fatty acid measures, such as
omega-3% andomega-6% aswell asMUFA% (Supplementary Fig. 9a–c).

By contrast to this pattern of diverse associations, some bio-
markers exhibited more distinct disease specificity. For instance, the
amino acid alanine was primarily associated with the risk of diabetes
and complications related to diabetes (Fig. 2d). Glycine and glutamine
(Supplementary Fig. 9d, e) were also associated with diabetes-related
complications, but additionally with the risk of liver and kidney dis-
eases, with lower plasma concentrations indicating higher disease risk.
Glycine was also strongly associated with many circulatory disease
endpoints, in line with the earlier suggested causal role of glycine
levels in coronary heart disease21. Most of the biomarkers had a con-
sistent direction of associations across different diseases, but not all.
For example, higher branched-chain amino acid levels were associated
with a higher risk for many metabolic diseases but a lower risk for a
range of other diseases such as lung diseases, hernia and smoking
dependence (Fig. 2e). A small number of biomarkers showedonlyweak
magnitude of association across the spectrum of diseases, such as the
ketone body 3-hydroxybutyrate (Supplementary Fig. 9f).

Considered from the disease perspective, Fig. 3 shows the bio-
marker association profiles for the incidence of six exemplar diseases.
Multiple biomarkers are associated with incident hospitalisation for
sleep disorders, depression, lung cancer and sepsis, with magnitudes
of associations generally similar to those of myocardial infarction. The
majority of the biomarkers associated exclusively in one direction of

Table 1 | Characteristics of the UK Biobank participants with
plasma NMR biomarkers in the first data release from
Nightingale Health

Subset with NMR bio-
markers, baseline

Full cohort,
baseline

Number of participants 118,461 502,543

Age at blood sampling
(median, [range])

58 [39–71] 58 [37–73]

Females (%) 54 54

Body mass index (kg/m2), mean 27.4 27.4

Smoking prevalence (regular,
occasional; %)

7.9, 2.7 7.8, 2.7

Fasting time, mean (h) 3.8 3.8

Self-reported cholesterol-
lowering medication use (%)

18 17
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effect across these diseases and exhibited similar association patterns
overall. An exception to this is osteoporosis, for which increased risk
was characterised by decreased concentrations of branched-chain
amino acids and triglycerides, and higher high-density lipoprotein
cholesterol and apolipoprotein A1—in contrast to the other diseases in
Fig. 3. All biomarker associations were robust to a sensitivity analysis
excluding the first two years of follow-up, suggesting that they are not
driven by clinically incipient cases at baseline (Supplementary Fig. 10).

Shared biomarker signatures for different diseases
Comparing biomarker signatures between diseases may help to
understand molecular differences between conditions with similar
pathophysiology and identify novel connections8,22. Figure 4a shows
examples of clustering of diseases according to their overall biomarker
association patterns. In the vertical direction, biomarkers such as
GlycA and MUFA% cluster together due to their similarity in associa-
tions with many different types of diseases. Most amino acids cluster

Fig. 2 | Biomarkers for future disease onset across a spectrum of diseases.
a Total number of incident disease associations by biomarker at statistical sig-
nificance level p < 5e-5. The disease outcomes were defined based on 3-character
ICD-10 codeswith 50ormore events from chapters A-N, with a total of 556 diseases
tested for association. The colour coding indicates the proportion of associations
coming from each ICD-10 chapter from A to N. b–e Twenty most significant asso-
ciations for four biomarkers: b Glycoprotein acetyls, c Ratio of polyunsaturated
fatty acids to monounsaturated fatty acids (PUFA/MUFA), d Alanine, and

e Branched-chain amino acids (BCAA). The forestplots highlight 20 of the most
significant associations, arranged according to decreasing association magnitude.
Data are presented ashazard ratios and95%confidence intervals (CI), per SD-scaled
biomarker concentrations. All models were adjusted for age, sex and UK biobank
assessment centre, using age as the timescale of the Cox proportional hazards
regression. Similar disease-wide association plots for all 249 biomarkers across all
endpoints analysed are available in the biomarker-disease atlas webtool. Source
data are provided as a Source Data file.
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together, but glycine and histidine have deviating associations more
similar to those of omega-6% and omega-3%, respectively. In the hor-
izontal direction, the clustering analysis reveals both well-known
connections between diseases and less anticipated similarities. For
example, diabetes has highly similar biomarker association patterns
with several of its complications, including polyneuropathies and ret-
inal disorders. Common diseases of an infectious origin, pneumonia
and general bacterial infection, also cluster together in terms of their
overall biomarker association patterns, as does COPD and lung cancer.
Some of the less well-known connections include, for instance, liver
diseases and polyneuropathies which had almost identical overall
biomarker associations as further highlighted in Fig. 4b.

The biomarker signatures were similar for many diseases, but
notable differences may still be observed for diseases of similar

pathophysiological origin20. Figure 4c illustrates how acute myo-
cardial infarction and hospitalisation for heart failure have many
deviating biomarker associations even though these two endpoints
are often combined for clinical trial analyses in the five-point major
adverse cardiovascular event (MACE) definition. Supplementary
Figs. 11–13 further illustrate similarities and differences in the bio-
marker signatures for various other types of cardiovascular diseases.
The biomarker association pattern differed for different types of
myocardial infarction, angina, chronic ischaemic heart disease, and
different types of stroke. Even more pronounced differences were
observed when compared to heart failure and peripheral artery dis-
ease. In particular, many biomarker associations appeared to be
stronger for other circulatory endpoints than for myocardial infarc-
tion and ischaemic stroke. These results may suggest potential
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Fig. 3 | Biomarker profiles for the incidence of various types of diseases.Hazard
ratios of biomarkers with the incidence of six disease examples: A41 Sepsis (red;
n = 117,806, 2986events),C34 Lung cancer (light blue;n = 117,964, 1210 events), F32
Depression (green; n = 116,993, 5455 events), G47 Sleep disorders (dark blue;
n = 117,325, 1865 events), I21 Myocardial infarction (orange; n = 116,797, 2523
events) and M81 Osteoporosis (lavender; n = 117,538, 3326 events). Data are pre-
sented as hazard ratios and 95% confidence intervals (CI), per SD-scaled biomarker
concentrations. Themodels were adjusted for age, sex andUKbiobank assessment

centre, using age as the timescaleof theCoxproportional hazards regression. Filled
points indicate statistically significant associations (p < 5e-5), and hollow points are
non-significant ones. Similar forest plots for all 249 NMR biomarkers across all
endpoints analysed are provided in the biomarker-disease atlas webtool. BCAA
indicates branched-chain amino acids, DHA docosahexaenoic acid; MUFA mono-
unsaturated fatty acids, PUFA polyunsaturated fatty acids, SFA saturated fatty
acids. Source data are provided as a Source Data file.
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benefits for risk prediction separately for these types of cardiovas-
cular events.

Replication of biomarker signatures
Replication is essential in biomarker studies, nomatter the sample size
of the discovery analyses. We, therefore, sought to replicate the NMR
biomarker associations in the UK Biobank in two ways: first by

comparing the results to biomarkers measured by independent
laboratory assays from the same UK Biobank samples, and second by
analysing NMR biomarker data for over 30,000 participants from the
Finnish Institute for Health and Welfare Biobank (THL biobank).
Figure 5 shows the high concordance between disease associations for
the eight biomarkers that have been measured by both NMR and
clinical chemistry. The associations always have the same direction,
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and the hazard ratios are sometimes stronger for one assay and
sometimes another, suggesting neither is systematically better at
capturing disease association. Small deviations in the results may be
because the plasma samples used for the NMR measurements were
more affected by a known sample dilution issue than the corre-
sponding serum samples used for clinical chemistry4. The consistency
between the NMR-based and clinical chemistry assays in absolute
concentrations is illustrated in Supplementary Fig. 7 and further dis-
cussed in Methods.

We note that low-density lipoprotein (LDL) cholesterol and apo-
lipoprotein B displayed inverse associations across a wide range of
diseases, i.e. higher concentration was associated with lower risk for
disease incidence (Fig. 5). This observation, which is surprising com-
pared to the existing literature on LDL as a risk factor for heart disease,
is seen in both the NMR and clinical chemistry measurements, indi-
cating that it stems fromcharacteristics of theUKBiobank study rather
than any property of the NMR measurements. This observation was
mainly explained by widespread use of lipid-lowering medications in
the case of cardiovascular endpoints, since the inverse lipid associa-
tions were attenuated or inverted direction of effect when individuals
on lipid-lowering medication were excluded (Supplementary Fig. 14).

Nonetheless, for most non-circulatory diseases, including five of the
six disease examples shown in Fig. 3, the LDL cholesterol associations
remained inverse even after excluding individuals on cholesterol-
lowering medication (Supplementary Fig. 15), warranting further
investigation in other cohorts.

We further replicated the associations observed in UK Biobank by
a meta-analysis of five independent population-based cohorts from
Finland measured using the same NMR platform (Methods; clinical
characteristics listed in Supplementary Table 1). Figure 6 illustrates the
consistency of the biomarker association signatures against all-cause
mortality and five available incident disease outcomes. Replication
results for the remaining available endpoints are shown in Supple-
mentary Fig. 16.

The biomarker associations were generally consistent in the two
biobanks, especially for amino acids and other polar metabolites,
fatty acid ratios and the two inflammatory protein measures. The
results for absolute fatty acid concentrations deviated between the
two study populations, whereas the results for fatty acid measures
scaled relative to total fatty acids were highly concordant. This may
suggest that such ratiomeasures aremore easily transferrable across
sampling approaches. The biomarker associations were consistent in

Fig. 4 | Clustering of incident diseases according to their biomarker signatures.
a Heatmap showing the clustering of biomarker association signatures for the
incidence of a diverse set of diseases. The diseases represent three diseases from
each ICD-10 chapter from A to N, selected based on the highest number of sig-
nificant associations. The colouring indicates the associationmagnitudes in units of
the effect sizes, i.e log(hazard ratio per SD). The dendrograms depict the similarity
of the association patterns, computed using complete linkage clustering based on
the linear correlation between the association signatures. Significant associations
with p value < 5e-5 are marked with an asterisk. All models were adjusted for age,
sex and UK biobank assessment centre, using age as the timescale of the Cox

proportional hazards regression. Examples of overall biomarker signatures com-
pared for incidence of b Other diseases of liver (K76) and Other polyneuropathies
(G62), and c Acute myocardial infarction (I21) and Heart failure (I50). The hazard
ratios for each biomarker are shown as points with 95% confidence intervals (CI)
indicated in vertical and horizontal error bars. The colouring of the points indicates
the significance of the biomarker association for the pair of diseases. The red lines
denote a hazard ratio of 1, and the grey line denotes the diagonal. BCAA indicates
branched-chain amino acids, DHA docosahexaenoic acid, MUFAmonounsaturated
fatty acids, PUFApolyunsaturated fatty acids, SFA saturated fatty acids. Source data
are provided as a Source Data file.

G47 Sleep disorders I21 Myocardial infarction M81 Osteoporosis

A41 Sepsis C34 Lung cancer F32 Depression
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Fig. 5 | Comparison of nuclear magnetic resonance (NMR) and clinical chem-
istry biomarker associations. Hazard ratios of biomarkers for which both NMR-
based (red) and clinical chemistry (blue) measurements are available, against the
incidence of six disease examples: A41 Sepsis (n = 117,806, 2986 events), C34 Lung
cancer (n = 117,964, 1210 events), F32 Depression (n = 116,993, 5455 events), G47
Sleep disorders (n = 117,325, 1865 events), I21 Myocardial infarction (n = 116,797,

2523events) andM81Osteoporosis (n = 117,538, 3326 events).Data arepresented as
hazard ratios and 95% confidence intervals (CI), per SD-scaled biomarker con-
centrations. The models were adjusted for age, sex and UK biobank assessment
centre, using age as the timescaleof theCoxproportional hazards regression. Filled
points indicate statistically significant (p < 5e-5) associations, hollow points non-
significant ones. Source data are provided as a Source Data file.
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each of the five Finnish cohorts, although there was a tendency for
stronger hazard ratios for the cohort with shortest follow-up time
(Supplementary Fig. 17). The greatest deviations were observed for
aforementioned LDL-related biomarkers, which displayed strong
inverse associations for diabetes and major adverse cardiovascular
event (MACE) in UK Biobank but flat or weakly positive associations

in the Finnish cohorts. By excluding participants using cholesterol-
lowering medication in the UK Biobank, the associations generally
became more consistent (Fig. 6). However, many of the inverse
associations for LDL cholesterol and related lipids also replicated in
the Finnish cohorts, such as in the case of all-cause mortality and
chronic kidney failure (Fig. 6a, e).

THL biobank cohorts, meta−analysis
UK biobank
UK biobank, excluding individuals using cholesterol lowering medication
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Fig. 6 | Replication of biomarker associations with incident disease. Biomarker
associations for six disease endpoints are shown for THL Biobank (red) and UK
Biobank for the full study population (light blue) as well as for individuals without
self-reported use of cholesterol-lowering medication (dark blue): a All-cause mor-
tality, b Major adverse cardiovascular event, c Diabetes, d Chronic obstructive
pulmonary disease (COPD), e Chronic kidney failure and f Liver diseases. Results
from THL biobank were meta-analysed for five prospective Finnish cohorts (FIN-
RISK 1997, 2002, 2007, and 2012, and Health 2000). Data are presented as hazard
ratios and 95% confidence intervals (CI), per SD-scaled biomarker concentrations.
All models were adjusted for age and sex, using age as the timescale of the Cox
proportional hazards regression. Analyses in the UK biobank were additionally

adjusted for the UK biobank assessment centre. Filled points indicate statistically
significant associations (p < 5e-5), and hollow points non-significant ones. Black
horizontal line denotes a hazard ratio of 1. Event numbers for incident disease or
mortality in the two biobanks are shown in Table 2. ICD-10 codes used for com-
piling the composite endpoints are listed in SupplementaryTable 2. The replication
results are shown here for six endpoints available in THL biobank; results for all
overlapping endpoints are shown in Supplementary Fig. 16. Results are shown
separately for each of the five Finnish cohorts in Supplementary Fig. 17. BCAA
indicates branched-chain amino acids, DHA docosahexaenoic acid, MUFA mono-
unsaturated fatty acids, PUFA polyunsaturated fatty acids, SFA saturated fatty
acids. Source data are provided as a Source Data file.
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Age and lipid-lowering medication effects
Excluding individuals using lipid-loweringmedicationmight introduce
collider bias in the findings by selecting for healthier individuals. To
provide more context for evaluating these results, we also replicated
the results in FINRISK 1997 cohort which has a low prevalence of
cholesterol-lowering medication use due to the cohort being sampled
in 1997 (3.5% in the full cohort, 4.5% aftermatching age toUKbiobank).
The results are shown in Supplementary Fig. 18, with analysesmatched
to the age range of UK Biobank participants. Most of the biomarker
associations were consistent in this comparison and the aforemen-
tioned inverse andweak associations for LDL-related lipids observed in
the UKbiobankwere also seen in the FINRISK 1997 cohort that ismuch
less affected by cholesterol-lowering medication. This includes, for
instance, the null association of LDL cholesterol with MACE and the
inverseassociationswith all-causemortality and chronic kidney failure.
These results suggest that the observations made in UK Biobank after
excluding cholesterol-lowering medication users are likely not pri-
marily due to collider bias, but rather relate to the characteristicsof the
higher-aged individuals in UK Biobank.

To provide another angle on the influence of cholesterol-lowering
and othermedications on the biomarker associations, we stratified the
biomarker analyses by age tertiles4. As the use of cholesterol-lowering
and othermedications increases with age, younger age groups are less
prone to such sources of bias. Fig. 7 shows age-stratified biomarker
associations for 17 biomarkers across the incidence of the six exemp-
lary diseases from Fig. 3. Results for the remaining 20 biomarkers are
shown in Supplementary Fig. 19. In many cases, the association mag-
nitudes were stronger in the youngest age tertile. In particular, notable
differences were observed in the case of LDL-related biomarkers, for
which the associations became weaker in the older tertiles against
myocardial infarction and completely inverted direction against non-
circulatory diseases, which can likely be at least partially attributed to
the higher prevalence of statin use in the oldest age groups. Increased
association magnitudes with younger age were also observed for
biomarkers known to not be affected by lipid-lowering treatment23,24,
including inflammatory protein biomarkers and several amino acids,
suggesting that the effects cannot be entirely attributed to a lower
prevalence of statin use among the younger individuals. Comparison
of the age stratified association estimates across all endpoints analysed
are available in the biomarker-disease atlas webtool.

Discussion
Detailed biomarker profiling is a key part of the promise of precision
medicine initiatives to transform preventative healthcare. Blood bio-
markers providemodifiablemolecularmeasureswhich relate to future
health outcomes and serve as intermediates between lifestyle factors
and disease risk. This study describes the generation of NMR bio-
marker data by Nightingale Health in the UK Biobank, which is cur-
rently the world’s largest resource of metabolic biomarkers linked to
health records. These data greatly extend the blood biomarker cov-
erage in the UK Biobank and provide a wide span of molecular

biomarkers not commonly measured in clinical practice, including
amino acids, ketones and fatty acids. With over 118,000 plasma sam-
ples profiled in the UK Biobank, the addressable research questions
extend vastly beyond biomarker discovery and the large sample size
benefits, for example, causal analyses and risk prediction9,13,14,17. Due to
the streamlined data access policy in UK Biobank, the data release
opens possibilities for the research community to use the entire epi-
demiological toolbox to study the NMR biomarkers in relation to
public health.

The biomarkers in the Nightingale Health NMR platform are
typically denoted ‘metabolic biomarkers’, and most prior studies on
the data have focused on cardiometabolic diseases. Our analyses
reveal that many of these biomarkers capture risk for many other
diseases aswell. This includes the future onset of diseases of the joints,
bones, lungs, many different cancers as well as manymental disorders
diseases and severe infectious diseases. These results explain earlier
reports on strong associations of the NMR biomarkers with all-cause
mortality25, since many of the biomarkers are associated broadly with
leading causes of morbidity and mortality. Widespread associations
across different diseases are known for inflammatory biomarkers such
as GlycA26,27, but it has not previously been shown for circulating fatty
acids, amino acids or many detailed lipoprotein measures. For exam-
ple, MUFA% was the biomarker associated across the highest number
of endpoints and showed similar disease clustering as GlycA. Our
results of widespread disease associations for many fatty acid ratios
may suggest that thesebiomarkers shouldbe considered asmarkers of
systemic inflammation more so than of recent diet.

Plasma metabolites are increasingly understood to link to
multimorbidities8,27. This is strongly reinforced by our discovery of
biomarker associationswith the full spectrumof commondiseases.We
observed that a broad range of diseases with different pathophysiol-
ogy were characterised by similar biomarker association profiles. For
example, severe infectious diseases had similar biomarker signatures
to, for instance, chronic respiratory diseases as well as urinary and
renal diseases. A potential explanation may be that many of the bio-
markers reflect the innate immune system’s ability to respond. This
would help to explain why many of the biomarkers were associated
with susceptibility to severe infectious diseases, suchashospitalisation
and death from sepsis, fungal infections and pneumonia9. These
observations illustrate how novel insights beyond individual diseases
can be gained by studying overall biomarker signatures and numerous
disease outcomes simultaneously. The genomic data in UK Biobank
may help to elucidate causality of these results via Mendelian
randomisation11,17.

The striking similarity of the biomarker risk profiles across various
diseases might pose challenges to certain clinical applications requir-
ing high disease specificity. However, it is ideal when aiming to use the
biomarker panel to assess the risk of multiple diseases and overall
health status simultaneously based on a single measurement. This
could potentially be used for individualised health assessment at scale
to prioritise high-risk individuals for further examinations and guide

Table 2 | Sample size and number of events for replication analyses

Endpoint THL Biobank UK Biobank UK Biobank subset
Number of events/N (%) Number of events/N (%) Number of events/N (%)

All-cause mortality 3 928/34 019 (11.55%) 7 802/117 868 (6.62%) 5 219/97 212 (5.37%)

Chronic kidney failure 328/33 982 (0.97%) 4 254/117 550 (3.62%) 2 270/97 074 (2.34%)

COPD 732/33 736 (2.17%) 4 404/117 141 (3.76%) 2 885/96 811 (2.98%)

Liver diseases 417/33 783 (1.23%) 2 696/117 328 (2.3%) 1 884/96 828 (1.95%)

MACE 4 640/31 754 (14.61%) 6 511/115 745 (5.63%) 4 311/96 885 (4.45%)

Diabetes 2 703/31 565 (8.56%) 6 836/115 579 (5.91%) 3 376/96 746 (3.49%)

UK Biobank subset represents subset excluding individuals with self-reported use of cholesterol lowering medication.
COPDchronic obstructive pulmonary disease, MACEmajor adverse cardiovascular event.
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Fig. 7 | Age-stratified biomarker profiles for the onset of various types of dis-
eases.Biomarker profiles stratifiedby age tertiles: 1st tertile (3–53 years of age; dark
blue), 2nd tertile (54–61 years of age; red) and3rd tertile (62–71 years of age; green).
Results are shown for 17 biomarkers across six disease examples: A41 Sepsis
(n = 117,806, 2986 events), C34 Lung cancer (n = 117,964, 1210 events), F32
Depression (n = 116,993, 5455 events), G47 Sleep disorders (n = 117,325, 1865
events), I21 Myocardial infarction (n = 116,797, 2523 events) and M81 Osteoporosis
(n = 117,538, 3326 events). Results for the remaining 20 biomarkers are shown in
Supplementary Fig. 19. Data are presented as hazard ratios and 95% confidence

intervals (CI), per SD-scaled biomarker concentrations. The models were adjusted
for age, sex and UK biobank assessment centre, using age as the timescale of the
Cox proportional hazards regression. Filled points indicate statistically significant
associations (p < 5e-5), and hollow points non-significant ones. Similar forest plots
for all 249 NMR biomarkers across all endpoints analysed are provided in the
biomarker-disease atlas webtool. DHA indicates docosahexaenoic acid, MUFA
monounsaturated fatty acids, PUFApolyunsaturated fatty acids, SFA saturated fatty
acids. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-36231-7

Nature Communications |          (2023) 14:604 10



preventative actions. In fact, a recently published study28 demon-
strated the potential of the NMR biomarker profiles to predict
multi-disease outcomes, showing predictive improvements over
comprehensive clinical risk factors which were largely shown to
translate into clinical utility. As such, this could havemany applications
in clinical settings and provide an attractive tool for multi-disease
risk screening.

Our biomarker-disease atlas publishedwith thispaper canbe used
to rapidly corroborate or refute many prior biomarker studies. For
instance, we replicate the recent reports on higher branched-chain
amino acid concentrations associated with lower risk for Alzheimer’s
disease and dementia29. The event numbers for these neurodegen-
erative diseases in UK Biobank alone are similar to those in the meta-
analysed eight cohorts. The biomarker-disease atlas may also be used
to put into question other reported biomarker discoveries, such as
branched-chained amino acids in relation to risk for pancreatic
cancer:30 the association was essentially flat in UK Biobank despite a
similar number of events. These examples illustrate how the
biomarker-disease atlas may speed up research and serve as a starting
point for analyses that yield deeper aetiological insights and clinical
context, much as widely available GWAS summary statistics trans-
formed the interpretation of genetic studies. We note that the avail-
ability of theNMRbiomarker data inUKBiobank does not diminish the
relevance of having these data in smaller cohorts, both for replication
and for complementary study designs. For example, the precise esti-
mates of biomarker associations in UK Biobank can make analyses of
smaller cohorts and trialsmore interpretable in relation to longitudinal
sampling and intervention effects.

Metabolic profiling of all 500,000 baseline plasma samples in UK
Biobank is underway. This will greatly expand the possibilities for
studying rarer diseases and prediction of short-term risk, as well as
open possibilities for analyses focusing on individuals with prevalent
disease and multi-morbidity trajectories. Coupled with the rich geno-
mic data, clinical chemistry and proteomics measures, imaging, com-
plete health-records, and other health-related data that are continually
added to the UK Biobank resource, the NMR biomarker data will
enhance the possibilities for scientific discovery and is set to yield
important findings for public health and clinical use. The data are
available to approved researchers through similar access protocols as
existing UK Biobank data (http://ukbiobank.ac.uk/).

Methods
UK Biobank cohort
The UK Biobank study was approved by the North West Multi-Centre
Research Ethics Committee and all participants provided written
informed consent. The study protocol is available online (https://www.
ukbiobank.ac.uk). The biomarker profiling of plasma samples by NMR
spectroscopy was approved under UK Biobank Project 30418.

The UK Biobank resource is a globally accessible biomedical
database of half a million UK participants aged 40–69 years at
baseline1. Baseline characteristics of the full cohort and the subset with
available NMR biomarker data are provided in Table 1. A large variety
of health information has been collected for each participant. For
instance, the database includes questionnaire data on participant’s
socio-economic and lifestyle factors, cognitive tests, imaging data,
heart and lung function measures, body size and composition mea-
sures. Extensive genomic data is available, with genotyping array and
exome-sequencing data available for all participants, and whole-
genome sequencing under way2.

The UK Biobank blood sample collection was undertaken at
baseline in 22 local assessment centres across the UK between 2007
and 2010. The blood sample handling and storage protocol has been
previously described31. Prior to the measurement of the NMR bio-
markers, 35 biomarkers have been measured from blood and urine
samples by clinical chemistry4,5.

Plasma biomarker profiling by NMR
Nightingale Health Plc. is performing biomarker profiling of baseline
plasma samples for all 500,000 participants in the UK Biobank. Details
of the Nightingale Health NMR biomarker platform have been descri-
bed previously7,19. The main steps in the experimental procedures are
illustrated in Supplementary Fig. 1. The biomarkermeasurements took
place in Finland between 2019 and 2020using six NMR spectrometers.
The first data release covers biomarker measurements from a random
selection of 118,461 EDTA plasma samples from the baseline recruit-
ment. In addition, around 4000 EDTA plasma samples from repeat
assessments are included in the same data release, with both baseline
and repeat-visit sample measured for ~1500 participants. The NMR
biomarker dataset has been made available for the research commu-
nity through the UK Biobank in March 2021.

All sample analysis processes were performed according to the
standard operating procedures that are part of NightingaleHealth’s EN
ISO 13485 certified Quality Management System (certified by DEKRA
CertificationB.V. Nightingale Healthmeasured all plasma sampleswith
a CE-marked In VitroDiagnosticMedical Device. At time of completion
of UK Biobank phase 1 samples, 37 of the biomarkers in the panel were
CE-marked and certified for diagnostics use. In order to facilitate
translational applications and visualisation of the results, we focused
on this set of 37 clinically validated biomarkers in the examples high-
lighted in the paper, as they span most of the different metabolic
pathwaysmeasured by the NMR platform. Complete results for all 249
biomarkers measured are provided in the biomarker atlas webtool.

Plasma sample preparation. EDTA plasma samples from aliquot 3
were prepared in 96-well plates by UK Biobank laboratory (Stockport,
UK). At least 90 µL of plasma was aliquoted in each well using TECAN
freedom EVO 150 robotic liquid handlers, which have coefficients of
variation (CV) in pipetting volume at <0.75% across 8 tips. The plasma
samples were shipped to Nightingale Health laboratories in Finland in
96-well plates on dry ice in batches of 5000–20,000 samples. No
selection criteria were applied to the sampling and the 118,461 samples
are therefore a random subset of the full cohort.

Samples were stored in a freezer at −80 °C at Nightingale Health
laboratories after arrival from UK Biobank laboratory. Before pre-
paration, frozen samples were slowly thawed at +4 °C overnight, and
then mixed gently and centrifuged (3min, 3400× g, +4 °C) to remove
possible precipitate. Aliquots of each sample were transferred into
3-mm outer-diameter NMR tubes and mixed in 1:1 ratio with a phos-
phate buffer (75mMNa2HPO4 in 80%/20% H2O/D2O, pH 7.4, including
also 0.08% sodium 3-(trimethylsilyl) propionate-2,2,3,3-d4 and 0.04%
sodium azide) automatically with an automated liquid handler (Perki-
nElmer Janus Automated Workstation).

NMR spectroscopy. The plasma samples were measured using six
500MHz NMR spectrometers (Bruker AVANCE IIIHD). Measurements
were conducted blinded prior to the linkage to the UK Biobank health
outcomes. The prepared plasma samples on 96-well plates were loa-
ded onto a cooled sample changer, which maintains the temperature
of samples waiting to be measured at +6 °C. Two NMR spectra were
recorded for each plasma sample. The first spectrum is a presaturated
proton spectrum, which features resonances arising mainly from
proteins and lipids within various lipoprotein particles. The second
spectrum is a Carr-Purcell-Meiboom-Gill T2-relaxation-filtered spec-
trum where most of the broad macromolecule and lipoprotein lipid
signals are suppressed, leading to enhanced detection of low-
molecular-weight metabolites.

Quantified biomarkers. The biomarkers were quantified using Night-
ingale Health’s proprietary software (quantification library 2020),
which simultaneously quantifies 249 metabolic measures per EDTA
plasma sample, comprising 168 absolute and 81 ratio measures
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(Supplementary Fig. 2). All the biomarkers are of known-identity. The
biomarker measures include routine lipids, lipoprotein subclass pro-
filing with lipid concentrations within 14 subclasses, fatty acid com-
position, and various low-molecular-weightmetabolites such as amino
acids, ketone bodies and glycolysis metabolites quantified in molar
concentration units. For 14 lipoprotein subclasses, the lipid con-
centrations and composition are measured in terms of triglycerides,
phospholipids, total cholesterol, cholesterol esters, and free choles-
terol, and total lipid concentration within each subclass. The majority
of the biomarkers are measured in absolute concentration units
(mmol/L). The 37 biomarkers in the panel which have been certified for
diagnostics use (CE-marked) aremarkedby asterisks in Supplementary
Fig. 2. The average biomarker detection rate was >99% across the
plasma samples.

The quality control protocol is described in Supplementary
Methods and illustrated in Supplementary Fig. 3. The distribution of
coefficients of variation of the biomarkers for UK Biobank’s blind
duplicate samples as well as Nightingale Health’s internal control
samples is shown in Supplementary Fig. 4. The coefficients of variation
for each biomarker is given in the UK Biobank data resource (https://
biobank.ndph.ox.ac.uk/showcase/label.cgi?id=220). This resource
also contains distribution plots showing the consistency over con-
secutive shipment batches and indifferentNMRspectrometers, aswell
as scatter plots on the technical repeatability from blinded duplicate
samples and the biological consistency in repeat-visit samples drawn
from the same individuals four years apart. These technical and bio-
logical repeatability assessments are illustrated with GlycA as an
example in Supplementary Fig. 5. Supplementary Methods further
contain notes about the quality flags for samples and biomarkers as
well as general recommendations for data processing in relation to
epidemiological analyses.

Plasma sample dilution issue. All UK Biobank blood samples are
known to suffer from unintended dilution during the initial sample
storage process at UK Biobank facilities. Prior reports have suggested
that samples from aliquot 3, used for the NMR measurements, suffer
from 5-10% dilution4. The dilution is believed to come from mixing of
participant samples with water due to seals that failed to hold a system
vacuum in the automated liquid handling systems. While this issue is
likely to have an impact on some of the absolute biomarker con-
centration values, it is expected to have limited impact on most epi-
demiological analyses. However, we recommend that this aspect is
considered when conducting analyses that rely on absolute con-
centrations, such as stratification based on biomarker concentration
cutpoints. This may also cause challenges to compare distributions of
biomarker concentrationswith those observed in other cohort studies.
We, therefore, caution against using the concentrations observed in
UK Biobank as reference levels for translational applications.

Comparison to clinical chemistry. The consistency between lipids,
apolipoproteins, creatinine, albumin and glucosemeasured by routine
clinical chemistry and Nightingale Health NMR is illustrated in Sup-
plementary Fig. 6. For these comparisons, it is important to note that
the clinical chemistry in UK Biobank was measured from serum sam-
ples, primarily from aliquot 1, while the NMR biomarkers were mea-
sured fromEDTAplasma samples fromaliquot 3. Thedifferent aliquots
are affected by different degrees of dilution, with aliquot 3 being
5–10% diluted while aliquot 1 has almost no dilution4. Supplementary
Fig. 6 therefore also shows the measurement consistency in the Fin-
Health 2017 study, without the dilution issue. This study is a
population-based cohort under the Finnish Institute for Health and
Welfare (THL) Biobank with n ~ 6000. In the FinHealth 2017 cohort,
clinical chemistry assays were measured from frozen serum samples
soon after the cohort survey and the NMR biomarkers one year later

from frozen samples using the Nightingale Health platform on 350 µL
aliquots of serum.

Correlations between the clinical chemistry assays and NMRwere
high in both cohorts, but the overall consistency was weaker in UK
Biobank compared with the FinHealth 2017 study. In particular, the
absolute concentrations were deviating more from the diagonal in UK
Biobank in than in the FinHealth 2017 study, owing to the sample
dilution issue in UK Biobank. Other aspects contributing to mismatch
in absolute concentrations in UK Biobank are subtle differences in
biomarker levels between serum and EDTA plasma and longer differ-
ences in sample storage time. The consistency of the NMR biomarkers
with clinical chemistry in the FinHealth 2017 study is in line with earlier
studies that have reported correlation coefficients R > 0.92. A recent
paper reported correlations of the same NMR biomarkers with clinical
chemistry for FINRISK cohorts under the THL Biobank to be R~0.95 for
the newest sample collection, and R~0.90 for the oldest sample
collections20. Note that ‘Clinical LDL cholesterol’ is the NMR-based
measure that provides concentrations consistent with clinical chem-
istry and the Friedewald equation for LDL-cholesterol.We further note
that the correlation coefficient for albumin was weaker in the UK
Biobank than observed for the other clinical chemistry measures.
However, the associations of albumin with disease outcomes were
broadly similar for albumin for both assays as shown in Fig. 5.

Comparisons of the NMR biomarkers with overlapping bio-
markers from commercial mass-spectrometry assays and gas chro-
matography fatty acid assays in smaller cohorts are described
in Supplementary Methods and scatter plots of the consistency illu-
strated in Supplementary Figs. 7 and 8.

Disease outcome definitions
Prevalent, incident andmortality disease outcomes were derived from
UK Hospital Episode Statistics data and national death registries. A
diagnosis in hospital or death record formed the basis of the disease
endpoint definition. Primary care records were not used. Disease
endpoints were defined based on the first occurrence of 3-character
ICD-10 code using the hospital inpatient and death register data (Jan-
uary 2021 update). To extend the follow-time prior to the introduction
of ICD-10 in 1995, ICD-9 codes were mapped to the corresponding
3-character ICD-10 codes using general equivalence mappings from
Center for Disease Control (https://ftp.cdc.gov/pub/Health_Statistics/
NCHS/Publications/ICD10CM/2018/).

A prevalent event was defined as an event that occurred before
the date of participant’s baseline visit when a blood sample was col-
lected. Individuals with corresponding prevalent event for each out-
come were excluded from the analysis of incident disease, but not for
analyses of mortality outcomes. The occurrence of both primary and
secondary diagnoses codeswas considered to form the endpoints. The
follow-up of hospitalisations ended onNovember 30, 2020 in England,
October 31, 2020 in Scotland, and February 28, 2018 in Wales. The
follow-up of death registry ended on November 30, 2020. We omitted
disease outcomes with fewer than 50 cases from the analyses. This led
to a total of 648 prevalent, 717 incident and 77 mortality outcomes for
the study population with NMR biomarker data available.

For the examples highlighted in this paper, we focused on 556
incident disease outcomes from ICD-10 chapters A-N. The selection of
chapters A-N excludes pregnancy-related outcomes, conditions origi-
nating in the perinatal period and congenital malformations, defor-
mations and chromosomal abnormalities (chapters O-Q) as there were
not enough incident events passing the criteria of over 50 events to be
included in the analyses. Chapters R-U (symptoms, signs and labora-
tory findings not elsewhere classified, injuries, accidents and factors
influencing health status and contact with health care services and
codes for special purposes) were excluded to place the focus on
common diseases.
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Biomarker association analyses across all endpoints
For the disease association analyses, biomarker values outside four
interquartile ranges from median were considered outliers and
excluded from the analyses. Furthermore, biomarker values were
corrected for the NMR spectrometer used for the measurements by
fitting a linear regression model with log1p-transformed concentra-
tions as the outcome and spectrometer as the predictor. Scaled resi-
duals from this regression were used as predictors in the association
analyses. Log1p stands for the natural logarithm of 1 + x.

We used Cox proportional hazard modelling to estimate asso-
ciations between biomarkers and incident disease outcomes (hospi-
talisation or death) across all endpoints with 50 or more events. The
models were adjusted for sex and UK biobank assessment centre,
using age as the time scale of the Cox proportional hazards regression.
Associations for each biomarker-disease pair were computed sepa-
rately. For biomarker association testing with prevalent diseases, we
used logistic regression models adjusted for age, sex and assessment
centre. Hazard ratios and odds ratios are reported per SD increment in
the log1p-transformed biomarker concentrations in order to allow
comparison of association magnitudes for measures with different
units and concentration range. Sex-specific analyses were conducted
for 148 female-specific and 18 male-specific diseases (Supplementary
Table 3). These association analyses were performed in a subset con-
taining only the specific sex, using the same approach without the
inclusion of sex as a covariate. We also performed analyses by strati-
fying theUKbiobank population into age tertiles (1st tertile 39-53 years
of age, statin use 6%; 2nd tertile 54-61 years of age, statin use 17%; 3rd
tertile 62-71 years of age, statin use 30%).

In the biomarker-disease atlas, results are reported for all con-
ducted analyses and the webtool allows to filter by a desired sig-
nificance level. In this paper, we use a multiple testing-corrected
significance level of 5 × 10−5 for reporting statistically significant asso-
ciations, i.e. correcting for 1000 independent tests to account for both
high correlation between the NMR biomarkers (~50 independent
tests7) and correlations between the disease endpoints analysed.

Clustering analyses
For clustering analyses, a dendrogram and heatmap were computed
based on the association magnitudes of the 37 biomarkers with three
diseases from each ICD-10 chapter from A to N. The diseases were
selected based on the highest number of significant biomarker asso-
ciations in each ICD-10 chapter. The 37 biomarkers selected are the
ones clinically validated in the Nightingale Health NMR platform.
Biomarkers are clustered in the dendrogram based on disease asso-
ciation profiles, and diseases are clustered based on biomarker pro-
files, using complete linkage clustering based on linear correlation
between the association signatures.

Replication in additional cohorts
To replicate biomarker associations from the UK Biobank, we used
data from five prospective population-based studies administered
under the Finnish Institute for Health and Welfare (THL) Biobank:
FINRISK 1997, FINRISK 2002, FINRISK 2007, FINRISK 2012 and Health
2000. Each cohort is an independent random sample drawn from
people aged 25-98 (25–74 in FINRISK, 30 and over in Health 2000) in
the Finnish population. Baseline characteristics of these cohorts are
provided in Supplementary Table 1. The study participants are unique
in each cohort. Baseline blood samples were collected for ~85% of all
participants enroled. Venous blood was drawn non-fasting, but with
recommended minimum of 4-h fast. Biomarker profiling by the
Nightingale Health NMR platform was conducted from frozen serum
samples for all participants during 201820. The cohort studies were
approved by the Coordinating Ethical Committee of the Helsinki and
Uusimaa Hospital District, Finland. Written informed consent was
obtained from all participants.

Fourteen disease endpoints were used for replication analyses in
THL Biobank, selected based on the outcome data made available to
Nightingale Health Plc. The disease outcome definitions were pre-
defined by THL Biobank based on a combination of national hospital
and cause-of-death registries (Supplementary Table 2). The registry-
based follow-up cover virtually all diseases leading to hospitalisation or
death in Finland. Follow-up data for the present studywere until the end
of 2016. For the replication analyses, we defined similar endpoints in UK
Biobank based on the ICD-10 codes listed in Supplementary Table 2.

The association analyses were for incident disease, so individuals
with prevalent disease of the same endpoint were omitted. The hazard
ratios were computed separately in each cohort using Cox propor-
tional hazards regression adjusted for sex and using age as the time
scale of the regression. Results from the individual cohorts weremeta-
analysed using inverse variance weighting. Similar to the analyses in
UK Biobank, hazard ratios are reported in SD-scaled units.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Nightingale Health NMR biomarker data have been released to
the UK Biobank resource in spring 2021 (https://biobank.ndph.ox.ac.
uk/showcase/label.cgi?id=220). The UK Biobank data are available
for approved researchers through the UK Biobank data-access pro-
tocol. NMR spectral data are not available as they are outside of the
scope of the Nightingale-UK Biobank initiative. Instructions for the
data access process, timeframe and restrictions imposed on the data
are described at https://www.ukbiobank.ac.uk/enable-your-research/
apply-for-access. The average number of weeks from application
submission to data release is 15 weeks for UK Biobank. Nightingale
Health NMR biomarker data from FINRISK and Health 2000 cohorts,
used for replication in this study, are available for approved
researchers through THL Biobank. Instructions for the data access
process is provided at https://thl.fi/en/web/thl-biobank/for-
researchers/application-process. We provide access to all
biomarker-disease summary statistics for non-commercial use
through an interactive webtool https://nightingalehealth.com/atlas
(CCBY-NC-ND 4.0 license). Source data are provided with this paper.

Code availability
Code used in this study is available at: https://github.com/
NightingaleHealth/ukb-nightingale-biomarker-atlas. Analyses were
performed using R (completed and tested with version 4.1.1).
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